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Abstract

Despite remarkable advances in natural lan-
guage processing, developing effective sys-
tems for low-resource languages remains a
formidable challenge, with performances typ-
ically lagging far behind high-resource coun-
terparts due to data scarcity and insufficient
linguistic resources. Cross-lingual knowledge
transfer has emerged as a promising approach
to address this challenge by leveraging re-
sources from high-resource languages. In this
paper, we investigate methods for transferring
linguistic knowledge from high-resource lan-
guages to low-resource languages, where the
number of labeled training instances is in hun-
dreds. We focus on sentence-level and word-
level tasks. We introduce a novel method,
GETR (Graph-Enhanced Token Representa-
tion) for cross-lingual knowledge transfer along
with two adopted baselines (a) augmentation in
hidden layers and (b) token embedding transfer
through token translation. Experimental results
demonstrate that our GNN-based approach sig-
nificantly outperforms existing multilingual
and cross-lingual baseline methods, achiev-
ing 13 percentage point improvements on truly
low-resource languages (Mizo, Khasi) for POS
tagging, and 20 and 27 percentage point im-
provements in macro-F1 on simulated low-
resource languages (Marathi, Bangla, Malay-
alam) across sentiment classification and NER
tasks respectively. We also present a detailed
analysis of the transfer mechanisms and iden-
tify key factors that contribute to successful
knowledge transfer in this linguistic context.

1 Introduction

Cross-lingual knowledge transfer has emerged as
a crucial approach for improving natural language
processing capabilities across different languages.
Recent advances in multilingual model variants
have demonstrated remarkable success in this do-
main by jointly training on multiple languages
simultaneously, enabling zero-shot and few-shot

learning capabilities. These models, such as XLM-
R (Conneau et al., 2020), XLM-V (Liang et al.,
2023) and mmBERT (Marone et al., 2025), learn
shared representations across languages, thereby
facilitating knowledge transfer from high-resource
to low-resource languages. The success of these
models largely stems from their ability to lever-
age massive multilingual corpora and transformer-
based architectures (Vaswani et al., 2017), which
effectively capture cross-lingual patterns and rela-
tionships.

However, when dealing with extremely low-
resource scenarios where target languages have
very limited labeled data (e.g., only 100 training
instances), even state-of-the-art multilingual mod-
els struggle (Wu and Dredze, 2020; Downey et al.,
2024; Cassano et al., 2024) to generalize effectively.
While parameter-efficient techniques like Adapter
fine-tuning (Houlsby et al., 2019) extreme and
LoRA (Hu et al., 2021) reduce overfitting by up-
dating fewer parameters, they still underperform in
such extreme low-resource settings. Cross-lingual
models like AdaMergeX (Zhao et al., 2025) also
fail to capture sufficient linguistic nuances when
number of target language examples is low.

Most languages worldwide have extremely lim-
ited digital resources – India alone has at least hun-
dreds of such languages, including several of its
22 official languages like Dogri, Bodo, Kashmiri
and Santali. For practical evaluation in this work,
we use comparatively higher-resource languages
(Marathi, Bangla, Malayalam) as simulated low-
resource scenarios to enable rigorous testing with
sufficient evaluation data. To validate our approach
on truly low-resource languages, we also evalu-
ate on two real low-resource languages: Mizo and
Khasi, which have only 502 and 507 annotated
sentences respectively for POS tagging tasks.

To address this challenge of extreme low-
resource setting, we propose a comprehensive
framework that intelligently transfers linguistic
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knowledge from high-resource to low-resource lan-
guages through one novel and two adopted com-
plementary approaches. We name our approach
BhashaSetu after the words “Bhasha” and “Setu”
that mean “language” and “bridge” respectively
in most Indian languages, highlighting its role in
bridging languages.

Our approach is as follows. First, we introduce
an adopted baseline, Hidden Augmentation Layers
(HAL) that create mixed representations in the hid-
den space, allowing controlled knowledge transfer
while preserving the target language’s distinctive
features. Second, we develop another adopted base-
line, a token embedding transfer mechanism that
leverages translation-based mappings to initialize
low-resource language embeddings effectively. Fi-
nally, we propose a novel Graph-Enhanced Token
Representation (GETR) approach that uses Graph
Neural Networks (Zhou et al., 2020; Kipf and
Welling, 2016; Veličković et al., 2017) to enable
dynamic knowledge sharing between languages at
the token level, thereby capturing complex cross-
lingual relationships through graph-based message
passing. In short, our contributions are:

1. We propose a comprehensive framework,
BHASHASETU, for cross-lingual knowledge
transfer in extreme low-resource scenarios,
comprising two adopted baselines such as hid-
den augmentation layer (HAL) and token em-
bedding transfer (TET), and a novel graph-
enhanced token representation (GETR) with
GNNs (Sec. 3).

2. We conduct extensive experiments across mul-
tiple NLP tasks and language pairs span-
ning multiple languages, demonstrating the
versatility and robustness of our approach.
Experimental results on POS tagging task
low-resource languages Mizo and Khasi us-
ing high-resource languages Hindi and En-
glish demonstrate that our novel GNN-based
approach significantly outperforms existing
methods, achieving 13 percentage points im-
provement respectively in macro-F1 score
compared to traditional multilingual and cross-
lingual baselines while requiring only 100
training instances in the low-resource lan-
guage (Sec. 4).

3. We provide systematic analysis of the impact
of various factors on cross-lingual knowledge
transfer, including mixing coefficient, archi-
tectural depth and dataset size ratios between
languages (Sec. 4).

2 Related Work

Cross-lingual transfer learning has advanced sig-
nificantly with multilingual pre-trained models
such as XLM-R (Conneau et al., 2020) and mm-
BERT (Marone et al., 2025). While effective, these
approaches require substantial multilingual train-
ing data, limiting their applicability in extreme
low-resource settings. Recent parameter-efficient
fine-tuning methods like LoRA (Hu et al., 2021),
AdaMergeX (Zhao et al., 2025), and SALT (Lee
et al., 2025) reduce overfitting risks but struggle
with extremely limited target data.

Data augmentation techniques in hidden spaces,
including mixup (Zhang et al., 2017; Verma et al.,
2018) and their NLP adaptations (Chen et al.,
2020; Sun et al., 2020), have proven valuable
for low-resource scenarios and are comprehen-
sively surveyed by Feng et al. (2021). Token-level
transfer approaches like trans-tokenization (Remy
et al., 2024) enable cross-lingual embedding trans-
fer without requiring parallel data, addressing a
critical challenge for low-resource languages.

Graph-based cross-lingual methods such as Het-
erogeneous GNNs (Wang et al., 2021) depend on
external semantic parsers and operate solely at the
GNN level, without integrating graph knowledge
into transformer models. Colexification-based mul-
tilingual graphs (Liu et al., 2023) construct graphs
from colexification relations rather than token in-
teractions, and similarly do not infuse graph infor-
mation into transformers. While recent work has
employed graph-based transformers with UCCA
semantic graphs (Nguyen et al., 2023), such ap-
proaches require pre-trained semantic parsers that
are typically unavailable for low-resource Indian
languages. In contrast, our GETR method con-
structs token-level graphs directly from training
data and uniquely integrates GNN-based token
interactions within the transformer, enabling dy-
namic, fine-grained cross-lingual knowledge shar-
ing without external linguistic resources.

3 Methodology

This section presents three approaches for cross-
lingual knowledge transfer: (a) Augmentation in
Hidden Layers (HAL), an adaptation of exist-
ing layer-wise mixing strategies; (b) Token Em-
bedding Transfer through Translation (TET),
a refinement of token embedding transfer through
translation dictionaries; and (c) Graph-Enhanced
Token Representation (GETR), a novel approach
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leveraging Graph Neural Networks to dynamically
share token embeddings across languages at hid-
den layers. While HAL and TET build upon estab-
lished techniques from prior work, both are adapted
specifically for the cross-lingual setting with mod-
ifications tailored to leverage high-resource lan-
guage knowledge for low-resource language tasks.
In contrast, GETR introduces a fundamentally new
mechanism that constructs dynamic token-level
graphs to enable fine-grained cross-lingual knowl-
edge sharing through neighborhood aggregation in
GNNS. Before delving into the technical details
of these approaches, we first formally define the
problem statement.

Problem Statement: Let us formally define our
notation for cross-lingual knowledge transfer. For
a high-resource language, we denote the dataset
of textual instances as XH = {x1, x2, . . . , xNH

},
where each xi represents an individual text in-
stance (e.g., a sentence). The corresponding
task-specific outputs are represented as YH =
{y1, y2, . . . , yNH

}. Here, NH represents the total
number of instances in the high-resource dataset,
typically in the order of thousands or more. Simi-
larly, we denote the low-resource language dataset
as XL and its corresponding outputs as YL, where
|XL| = NL ≪ NH , with NL being extremely
small (approximately 100 instances). This extreme
data scarcity in the low-resource setting presents
the core challenge in our task.

We define the combined dataset as X = {XH ∪
XL} and Y = {YH ∪ YL}. Our objective is to
learn a model M : X → Y that maps input
text instances from either or both XH and XL to
their respective outputs, while effectively leverag-
ing the high-resource language data to compen-
sate for the limited low-resource samples. The
output space Y can correspond to any encoder-
based task, with two common task variants. The
first is for sentence-level tasks (such as sentiment
analysis) where yi is one of c classes. The sec-
ond is for sequence-labeling tasks (such as NER):
yi = [yi1 , yi2 , . . . , yiT ], where T is the sequence
length and each token-level label yit ∈ Ytags repre-
sents a class (such as an NER tag).

Despite the different output structures, the core
challenge of effective cross-lingual knowledge
transfer remains consistent across tasks, allowing
us to apply the same methodological approaches
with task-specific adaptations. We next describe
the three methods.

3.1 HAL

Hidden layer augmentation has emerged as a preva-
lent technique for generating synthetic training data
in the latent space when working with textual in-
puts (Zhang et al., 2017; Verma et al., 2018). While
this approach has been successfully applied for do-
main adaptation within the same language (Zhang
et al., 2022), its application to cross-lingual knowl-
edge transfer, particularly from high-resource to
low-resource languages, represents a novel direc-
tion. This method is particularly versatile as it can
be applied to any high-resource and low-resource
language pair, regardless of their script similarities.

Let EM : X → H denote the encoder compo-
nent of the model M that maps each input text xi to
its final encoded CLS representation hCLSi. We pro-
pose a hidden augmentation mechanism that fuses
knowledge from high-resource and low-resource
languages through a weighted combination in the
latent space. Formally, we generate new training
pairs Ai = (hCLS

Ai
, yAi) as follows:

hCLS
Ai

= α · hCLS
Hi

+ (1− α) · hCLS
Li

(1)

yAi =

{
α · yHi + (1−α) · yLi ,

(α · yHi,t + (1−α) · yLi,t)
T
t=1

(2)

where α ∈ [0, 1] is a mixing coefficient that con-
trols the contribution of each language. This co-
efficient can be either fixed through training or
randomly sampled per iteration. For sentence tasks
with c classes, yHi , yLi ∈ Rc are typically one-
hot encoded vectors, while for sequence tasks,
yHi,t, yLi,t ∈ R|Ytags| represent the tag distribution
at position t.

Empirically, α values between 0.1 and 0.4 yield
optimal results, as they maintain the primary char-
acteristics of the low-resource language while
supplementing it with knowledge from the high-
resource language. Since the augmentation pro-
duces soft labels, we employ KL-divergence loss
(Cui et al., 2024) instead of standard cross-entropy
loss (Mao et al., 2023) for soft labels and cross-
entropy for hard labels during training. This frame-
work can be further extended by adding multiple
transformer layers above EM and performing aug-
mentation at each layer’s CLS output, thus enabling
hierarchical knowledge fusion.

3.2 TET

Traditional approaches often initialize token em-
beddings for low-resource languages randomly,
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Algorithm 1 Token Embedding Transfer through
Translation (TET)
1: VL ← Set of unique words from LRL corpus
2: for all wl ∈ VL do ▷ For each LRL word
3: wh ← TranslateToHRL(wl)
4: Th ← HRLTokenize(wh)
5: Tl ← LRLTokenize(wl)
6: Eh ← {GetPretrainedEmbeddings(t)|t ∈ Th} ▷

HRL token embeddings
7: eavg ← Mean(Eh)
8: for all tl ∈ Tl do ▷ For each LRL token
9: Ptl ← ∅ ▷ Initialize projected embeddings set

10: for all w′ ∈ VL do ▷ Check all LRL words
11: if tl ∈ LRLTokenize(w′) then
12: Ptl ← Ptl ∪ {eavg}
13: end if
14: end for
15: El[tl]← Mean(Ptl) ▷ Final embedding for LRL

token
16: end for
17: end for
18: return El ▷ Dictionary of LRL token embeddings

which can lead to suboptimal performance, espe-
cially when training data is scarce. We propose an
initialization strategy that leverages token embed-
dings from a high-resource language through trans-
lation mapping (Remy et al., 2024). This approach
provides a more informed starting point for the
embedding matrix of the low-resource language,
thereby enabling effective fine-tuning even with
limited training samples. The core idea is to initial-
ize the token embeddings of the low-resource lan-
guage using the semantic information captured in
the pre-trained embeddings of their translated coun-
terparts in the high-resource language. While this
method assumes the availability of word-level trans-
lations for the training data of the low-resource lan-
guage, it does not require any pre-trained models or
large corpora in the low-resource language. In our
experiments, we used pymultidictionary (Pizarro,
2025) primarily to make our translation process
seamless, faster and automated for the languages
in our study, followed by manual verification of
the translations to ensure accuracy. For extremely
low-resource languages without dictionary support,
we recommend manually translating the limited
training vocabulary (which is manageable given
the small dataset size of ∼100 instances).

Algorithm 1 details our systematic process
for transferring token embeddings from a high-
resource language (e.g., English) to a low-resource
language (e.g., Marathi). To illustrate this process,
consider transferring embeddings for the Marathi
word "āntarbhās.ika" meaning "cross-lingual" in
English. The word would be translated to En-

glish as "cross-lingual", which might be tokenized
as "cross" + "lingual" in English. The word,
"āntarbhās.ika" would be tokenized in Marathi, po-
tentially splitting it into subword tokens like "āntar"
+ "bhās.ika". The pre-trained embeddings for these
English tokens are retrieved and averaged. For each
Marathi token, we collect all instances where it ap-
pears across different words in the Marathi corpus.
For example, the token "bhās.ika" might also ap-
pear in words like "bahubhās.ika" (meaning "multi-
lingual"). Finally, we average all corresponding
English embedding projections to create the final
embedding for each Marathi token. While we show
transliterated examples here for clarity, in our ac-
tual experiments we used the original scripts for all
languages.

3.3 GETR
We propose a novel approach leveraging Graph
Neural Networks (GNN) (Zhou et al., 2020) to
enable dynamic knowledge sharing between high-
resource and low-resource languages at the token
level. For each batch of mixed-language inputs,
we construct an undirected graph G = (T,C),
where T = {t1, t2, . . . , tNk

} represents the set of
N unique tokens in batch k. The edge set C cap-
tures sequential relationships between tokens, de-
fined as C ⊆ {tij , ti(j+1)|tij , ti(j+1) ∈ T}, where
tokens ti1, ti2, . . . , tin form sentence si.

To illustrate the mechanism, consider two sen-
tences: "The movie was good" from a high-
resource language and "I was impressed with the
movie" from a low-resource language. As shown
in Figure 1, tokens are represented as nodes with
edges connecting consecutive tokens within each
sentence. When computing the representation for
shared tokens (e.g., "was"), the model incorporates
contextual information from both language environ-
ments. This allows the CLS embedding of the low-
resource sentence to benefit from the high-resource
language’s token representations through neighbor-
hood aggregation.

Given the encoder output H ∈ RB×S×D (where
B, S, and D denote batch size, sequence length,
and embedding dimension respectively), we re-
shape it to H′ ∈ RL×D (L = B×S) for GNN pro-
cessing. We employ either GCN (Kipf and Welling,
2016) or GAT (Veličković et al., 2017) layers with
an adjacency matrix A ∈ {0, 1}L×L that captures
token relationships such as Aij = 1 if li and lj
are consecutive tokens in a sentence. Notably, we
construct A using the flattened dimension L rather
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Figure 1: Graphical representation of tokens of two
sentences in a batch: “The movie was good” and “I was
impressed with the movie”.

than unique tokens, allowing for token repetition
which makes the array multiplication simpler and
straight-forward. The GNN output is then reshaped
to generate query Q and key K matrices for the
subsequent transformer layer:

H′ = Reshape(H) ∈ RL×D

H′
G = GNN(H′)

HG = Reshape(H′
G) ∈ RB×S×D

Q = HG ×Wq

K = HG ×Wk

(3)

where Wq ∈ RD×D′
and Wk ∈ RD×D′

are query
and key weight matrices respectively. The subse-
quent transformer operations remain unchanged,
following the standard sequence of cross-attention,
feed-forward networks, layer normalization, and
residual connections. The value V matrix main-
tains its original computation path:

V = H×Wv (4)

where Wv ∈ RD×D′
is the value weight matrix.

Once Q, K and V are computed, the rest of the
transformer encoder (Vaswani et al., 2017) block
is unchanged, i.e., cross-attention block followed
by feed-forward, layer normalization and residual
connection. Figure 2 illustrates our modified BERT
architecture with GNN layers (gray shaded area).
Multiple GNN layers can be stacked sequentially
to enable deeper cross-lingual knowledge transfer.

Strategic Batch Formation for Graph Construc-
tion: We propose a batch formation strategy
that balances high-resource and low-resource in-
stances while maximizing token overlap between
languages. For every batch of size B, we ensure
exactly B/2 instances from each language domain.
Our construction alternates between low-resource
and high-resource anchors: we first select a random
low-resource instance, then add (n/2− 1) neigh-
bors from low-resource language and n/2 from

Figure 2: BERT encoder architecture incorporating the
GNN layer for cross-lingual knowledge transfer.

high-resource language based on maximum token
overlap. These n instances are removed from the
available pool to prevent repetition within an epoch.
We then select a high-resource anchor and repeat
the process, and continue this alternation until the
batch is filled. To improve robustness, 70% of the
batches follow this strategic formation while the
remaining 30% maintain an equal language distri-
bution that selects instances randomly. This pre-
vents over-reliance on specific token patterns while
preserving structured knowledge transfer. The pro-
cess continues across epochs until all low-resource
instances are utilized.

During inference, we apply the same principle
using training data to form neighborhoods for test
instances based on token overlap. This balanced
batch construction creates our token interaction
graph G = (T,C), enabling effective cross-lingual
token relationships without requiring pre-trained
resources for the low-resource language.

Cross-Script Edge Construction: When sen-
tences in a batch use different scripts, we establish
edges between tokens based on semantic equiva-
lence. We utilize the same translation mechanism
described in our TET method (Sec. 3.2) – a combi-
nation of dictionary lookup via pymultidictionary
(Pizarro, 2025) followed by manual verification.

When two sentences appear in the same batch
(e.g., s1 from English and s2 from Marathi), and the
i-th word of s1 (wE

i ) conveys similar meaning as
the j-th word of s2 (wM

j ) based on our translation
dictionary, connections are established between
their tokens. If these words are each represented
by single tokens, one edge connects them. If tok-
enizers split these words into multiple sub-tokens,
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then every token of wE
i will be connected to every

token of wM
j .

For example, if “antarbhasika” (in Marathi)
and “cross-lingual” (in English) are present in
different sentences of a batch, and they are tok-
enized as “antar” + “bhasika” and “cross” + “lin-
gual” respectively, edges will be established be-
tween all pairs: “antar”-“cross”, “antar”-“lingual”,
“bhasika”-“cross” and “bhasika”-“lingual”. While
some connections may be noisy, this approach
works because: (1) some connections are se-
mantically appropriate (e.g., “antar”-“cross” and
“bhasika”-“lingual”), and (2) such cross-token sce-
narios occur infrequently (< 20% of connections in
a typical batch). During training, the model learns
to adjust weights for these connections based on
their usefulness for the objective function.

4 Experiments and Results

4.1 Dataset

Our experiments evaluate cross-lingual knowledge
transfer across multiple languages and tasks.

For sentiment classification, we employ two
high-resource languages: Hindi (Yadav, 2023;
Sawant, 2023) and English (Akanksha, 2023),
each with 12,000 labeled instances. We use two
low-resource target languages: Marathi (Pingle
et al., 2023), which shares the Devanagari script
with Hindi, and Bangla (Bengali) (Sazzed and Ja-
yarathna, 2019), a language close to Hindi but with
its own script. For the Marathi and Bangla datasets,
we simulate extreme low-resource scenarios with
the following random splits: 100 training instances,
1,500 validation instances, and 2,000 test instances.
All sentiment classification datasets contain binary
labels (positive and negative) with balanced class
distributions.

For Named Entity Recognition (NER), we main-
tain English and Hindi as high-resource languages,
with 12,000 training instances (17 entity tags) and
12,084 training instances (13 entity tags) respec-
tively (Jain, 2022; Murthy et al., 2022). For low-
resource languages, we use Marathi (Litake et al.,
2022) and Malayalam (Mhaske et al., 2023) (which
uses a completely different script) with 100 train-
ing, 1,500 validation, and 2,000 test instances (14
and 7 unique entity tags for Marathi and Malayalam
respectively) created by random sampling.

For the Part-of-Speech (POS) tagging task, we
compiled two truly low-resource language datasets
(Ghosh et al., 2025): Mizo (502 sentences) and

Khasi (507 sentences). Each sentence is fully an-
notated with POS tags. From both datasets, 100
sentences were randomly selected as the training
set and 100 as the validation set; the remainder
302 sentences for Mizo and 307 for Khasi formed
the test set. High-resource POS datasets comprise
12,000 labeled sentences each for English (Silveira
et al., 2021) and Hindi (Bhat et al., 2025).

4.2 Implementation Details
Following our extreme low-resource assumption,
we first used a tinyBERT (Jiao et al., 2020) ar-
chitecture (without pre-training) to train models
from scratch using only 100 labeled instances of
each low-resource language, including training new
tokenizers. Additionally, we trained two classi-
cal ML models such as XGBoost for sentiment
classification and CRF for NER and POS tagging
tasks. We established several baselines for compar-
ison: (1) Joint Training (JT), which trains on high
and low resource languages simultaneously, simi-
lar to multilingual models; (2) JT-HRLAdapLRL,
which sequentially fine-tunes on high-resource
data followed by adapter-based fine-tuning on low-
resource data; (3) XLMFT-HRLAdapLRL, which
applies the same sequential approach but starts
from XLM-R (Conneau et al., 2020); (4) LoRA
(Hu et al., 2021), which updates low-rank de-
composition matrices instead of full weights; and
(5) AdaMergeX (Zhao et al., 2025), which com-
bines multiple adaptation methods. For adapter
fine-tuning, we used a reduction factor of 16, in-
creasing total parameters by only 1%. For LoRA
and AdaMergeX, we followed the recommended
parameter settings for encoder tasks from their orig-
inal papers (Hu et al., 2021; Zhao et al., 2025).

For our high-resource languages, we utilized
l3cube-pune/hindi-albert (Joshi, 2022) for
Hindi and albert/albert-base-v2 (Lan et al.,
2019) for English across both tasks. All ex-
periments were conducted on an Amazon EC2
p4de.24xlarge instance with 8 NVIDIA A100
GPUs (80 GB each), using batch sizes of 128 for
most approaches (8 for Scratch Training due to low
number of data points, and 120 for GETR meth-
ods to accommodate graph construction using 9
neighbors per instance). We employed AdamW
with learning rates between 3e-5 and 3e-7 for pre-
trained models, and 3e-4 for Scratch Training with
TET. Models were trained for 50 epochs with best
checkpoints selected via validation loss.

For a fairer comparison between methods, we

2116



carefully balanced parameter counts across all mod-
els. Since GETR adds additional GNN layers to
the architecture, we removed transformer layers
from the pre-trained model to maintain compara-
ble model size. For example, in GETR-GAT, we
removed the last 3 transformer encoder layers and
added 2 GAT layers, resulting in a parameter count
(237,558,024) nearly identical to the Joint Training
model (237,557,762). All experiments used the
original scripts of the respective languages rather
than transliteration. For baseline models, HAL
and GETR approaches, we leveraged pre-trained
tokenizers from high-resource languages, augment-
ing them with new tokens from low-resource lan-
guages. These newly added tokens were randomly
initialized, allowing the model to learn appropriate
representations during training

All reported results are evaluated on carefully
selected test sets to ensure that there is no overlap
with training data (Table 1). As expected, with
such limited data and no pre-trained knowledge,
Scratch Training models failed to learn meaningful
patterns, defaulting to macro-F1 scores of 0.33-
0.38 for sentiment classification, and 0.03-0.17 for
NER and 0.02-0.16 for POS tagging.

4.3 Results on Sentiment Classification Task
Using English as the high-resource language, the
baseline models achieve macro-F1 scores ranging
from 0.53 to 0.55 for Marathi, with AdaMergeX
performing best among them. Our proposed HAL
method with α = 0.2 and two layers shows im-
provement (0.63 with TET), but the GETR-GAT
approaches demonstrate substantially greater gains,
with GETR-GAT+HAL achieving the best perfor-
mance (0.75 macro-F1), representing a 20 percent-
age point improvement over the best baseline. For
Bangla as the low-resource language, baseline mod-
els achieve macro-F1 scores of 0.63, while GETR-
GAT+HAL+TET delivers the best performance at
0.75, a 12 percentage point improvement.

With Hindi as the high-resource language, base-
line performance improves significantly (up to
0.76 for AdaMergeX with Marathi), highlighting
the benefit of script similarity. When Hindi is
used as HRL and Marathi as LRL, TET is not
required as they share the Devanagari script, en-
suring that Marathi tokens already have pre-trained
embeddings from the Hindi model. This explains
the absence of TET-based results for this lan-
guage pair in Table 1. Our HAL approach further
boosts performance (0.80 macro-F1), while GETR-

GAT+HAL achieves the highest score for Marathi
(0.87 macro-F1), an 11 percentage point improve-
ment over the best baseline. For Hindi-Bangla,
GETR-GAT+HAL+TET reaches 0.81 macro-F1,
outperforming the best baseline (AdaMergeX at
0.69) by 12 percentage points.

4.4 Results on NER Task
We extended our evaluation to NER for Malayalam
and Marathi. Baseline models achieve macro-F1
scores of 0.26–0.28 regardless of high-resource
language choice (English or Hindi). GETR-
GAT+HAL+TET substantially outperforms base-
lines: for Malayalam, reaching 0.52 with English
(24 pp improvement) and 0.55 with Hindi (27 pp
improvement); for Marathi, achieving 0.40 with
English (11 pp above best baseline) and 0.44 with
Hindi (8 pp above best baseline).

4.5 Results on POS Tagging Task
We evaluate Part-of-Speech tagging on two low-
resource languages, Mizo and Khasi. Baseline
performance is consistent across both languages
and high-resource language choices at 0.71–0.75.
GETR-GAT+HAL+TET delivers strong improve-
ments: for Mizo, reaching 0.92 with English and
0.88 with Hindi; for Khasi, achieving 0.88 with
English and 0.83 with Hindi, demonstrating the
method’s effectiveness on truly low-resource lan-
guages with minimal digital presence.

These consistent improvements across different
tasks and language families (Indo-Aryan and Dra-
vidian) demonstrate that our GETR approach ef-
fectively transfers knowledge regardless of task
type or target language. GETR’s superior perfor-
mance can be attributed to its ability to create dy-
namic, contextualized connections between tokens
across languages, enabling more effective knowl-
edge transfer at a granular level. Unlike static
approaches, GETR allows low-resource language
tokens to directly incorporate relevant semantic
information from high-resource contexts through
the graph structure, creating richer representations
that better capture cross-lingual patterns. This
transfer mechanism operates efficiently through
the transformer’s multi-head attention, where Q
and K matrices capture the graph-based knowledge
of tokens while preserving the original value com-
putations, allowing cross-lingual information to
propagate throughout the network. We observed
that when using more complex approaches like
HAL or GETR, TET’s contribution diminishes. We
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HRL Method Sentiment Classification NER POS Tagging

Marathi Bangla Marathi Malayalam Mizo Khasi

- Scratch Training (tinyBERT) 0.33 ±0.000 0.33 ±0.000 0.03 ±0.073 0.03 ±0.073 0.02 ±0.061 0.04 ±0.084
- Scratch Training (XGBoost) 0.38 ±0.001 0.36 ±0.001 - - - -
- Scratch Training (CRF) - - 0.17 ±0.004 0.15 ±0.002 0.16 ±0.002 0.14 ±0.003

English

Joint Training 0.53 ±0.002 0.63 ±0.001 0.29 ±0.001 0.26 ±0.002 0.75 ±0.010 0.71 ±0.012
Adapter Finetuning 0.53 ±0.001 0.63 ±0.002 0.29 ±0.001 0.26 ±0.001 0.76 ±0.008 0.72 ±0.008
XLMFT-HRLAdapLRL 0.53 ±0.001 0.63 ±0.002 0.29 ±0.002 0.26 ±0.001 0.76 ±0.009 0.72 ±0.011
LoRA 0.54 ±0.001 0.63 ±0.001 0.29 ±0.001 0.27 ±0.001 0.78 ±0.007 0.73 ±0.008
AdaMergeX 0.55 ±0.001 0.63 ±0.001 0.29 ±0.001 0.28 ±0.002 0.79 ±0.010 0.75 ±0.007
HAL 0.60 ±0.001 0.64 ±0.001 0.32 ±0.001 0.30 ±0.003 0.85 ±0.009 0.79 ±0.008
HAL + TET 0.63 ±0.001 0.65 ±0.003 0.33 ±0.001 0.31 ±0.002 - -
GETR-GAT 0.73 ±0.001 0.72 ±0.001 0.40 ±0.001 0.46 ±0.001 0.91 ±0.007 0.86 ±0.007
GETR-GAT + TET 0.74 ±0.001 0.73 ±0.002 0.40 ±0.001 0.47 ±0.003 - -
GETR-GAT + HAL 0.75 ±0.001 0.74 ±0.001 0.40 ±0.001 0.51 ±0.002 0.92 ±0.006 0.88 ±0.006
GETR-GAT + HAL + TET 0.74 ±0.001 0.75 ±0.001 0.40 ±0.001 0.52 ±0.001 - -

Hindi

Joint Training 0.75 ±0.004 0.67 ±0.003 0.35 ±0.002 0.28 ±0.002 0.75 ±0.009 0.71 ±0.007
Adapter Finetuning 0.74 ±0.002 0.67 ±0.002 0.34 ±0.003 0.28 ±0.002 0.76 ±0.009 0.71 ±0.008
XLMFT-HRLAdapLRL 0.74 ±0.002 0.67 ±0.002 0.34 ±0.002 0.28 ±0.002 0.76 ±0.008 0.72 ±0.010
LoRA 0.75 ±0.001 0.68 ±0.001 0.35 ±0.002 0.28 ±0.001 0.77 ±0.006 0.73 ±0.009
AdaMergeX 0.76 ±0.001 0.69 ±0.001 0.36 ±0.001 0.28 ±0.001 0.78 ±0.008 0.74 ±0.007
HAL 0.80 ±0.005 0.72 ±0.004 0.38 ±0.001 0.32 ±0.003 0.83 ±0.006 0.77 ±0.009
HAL + TET - 0.73 ±0.002 - 0.32 ±0.002 0.83 ±0.005 0.77 ±0.006
GETR-GAT 0.85 ±0.001 0.79 ±0.002 0.44 ±0.001 0.48 ±0.001 0.88 ±0.008 0.82 ±0.006
GETR-GAT + TET - 0.80 ±0.001 - 0.49 ±0.003 0.88 ±0.007 0.82 ±0.006
GETR-GAT + HAL 0.87 ±0.001 0.80 ±0.003 0.44 ±0.001 0.53 ±0.002 0.88 ±0.007 0.83 ±0.007
GETR-GAT + HAL + TET - 0.81 ±0.002 - 0.55 ±0.001 0.89 ±0.008 0.83 ±0.009

Table 1: Performance (Macro-F1 score) comparison of different training approaches on Sentiment Classification,
NER, and POS Tagging tasks when Hindi and English are considered as HRL and Marathi, Bangla, Malayalam,
Mizo, and Khasi as LRL. The mean and standard deviation numbers are reported based on 5 independent runs. Bold
indicates results that are better with statistical significance (p < 0.005).

implemented additional baselines including HAL-
LRL (augmentation within low-resource language
only) and other three XLM-R finetuning variants,
all performing comparably to Joint Training. We
also evaluated GETR-GCN, but GETR-GAT con-
sistently outperformed it due to GAT’s adaptive
edge weighting versus GCN’s equal weighting of
connections. Complete results for these experi-
ments appear in Table 4 (in Appendix).

4.6 Cost and Environmental Impact
GETR-GAT incurs modest computational over-
head compared to Joint Training while delivering
substantial performance gains. Training on AWS
p4de.24xlarge instances requires approximately
11% additional time per epoch (≈ 50 minutes vs.
≈ 45 minutes for Joint Training) and 8% more
peak GPU memory (≈ 41 GB vs. ≈ 38 GB) due
to graph neural network computations and neigh-
borhood construction. Over 50 training epochs, the
total training time increases from 37.5 hours to 41.7
hours. Inference is approximately 6.3% slower per
sample (0.0101 vs. 0.0095 seconds on p3.2xlarge
V100 GPUs). The increased energy consumption
(≈ 2.2 kWh vs. ≈ 2.0 kWh per full run) results

in approximately 10% higher CO2 emissions ( ≈
0.99 kg CO2 vs. ≈ 0.90 kg CO2), corresponding
to roughly 0.09 kg additional CO2 per model train-
ing. These modest computational costs are justified
by the significant performance improvements as
shown in Table 1. Detailed report is presented in
Table 14 (in Appendix).

4.7 Ablation Studies
To evaluate the robustness of our approach
and demonstrate its advantage over baseline
methods, we compared BhashaSetu (our best-
performing GETR-GAT+HAL configuration) with
AdaMergeX (Zhao et al., 2025) across varying
dataset sizes for NER with Hindi as HRL and
Marathi as LRL (Table 2). The results reveal
two critical insights. First, with extremely limited
low-resource data (10-50 instances), AdaMergeX
achieves modest performance (0.05-0.17 F1), while
BhashaSetu demonstrates substantially better re-
sults even with minimal data, achieving 0.11 F1
with just 10 LRL instances and 0.34 F1 with 50
instances – a 17 percentage points improvement
over AdaMergeX at these data scales. The fixed
HRL size (12,000) experiment shows BhashaSetu’s
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LRL Size HRL Size Macro F1

AdaMergeX BhashaSetu

10 12000 0.05± 0.001 0.11± 0.001
50 12000 0.17± 0.002 0.34± 0.002

100 12000 0.35± 0.001 0.44± 0.003
500 12000 0.39± 0.001 0.49± 0.002

1000 12000 0.42± 0.002 0.52± 0.001
5000 12000 0.55± 0.002 0.64± 0.003

10000 12000 0.71± 0.003 0.79± 0.002

100 12000 0.35± 0.001 0.44± 0.003
100 5000 0.22± 0.002 0.41± 0.002
100 1000 0.11± 0.028 0.25± 0.032
100 500 0.04± 0.025 0.10± 0.023

Table 2: NER performance comparison based on Macro-
F1 between AdaMergeX and our approach (BhashaSetu)
with Hindi as high-resource and Marathi as low-resource
language under varying dataset sizes.

consistent advantage across all LRL sizes, with im-
provements of 9-17 percentage points, though the
relative gap narrows as low-resource data increases.

The second experiment, keeping LRL fixed at
100 instances while varying HRL size, reveals
that AdaMergeX’s performance degrades dramat-
ically with decreasing HRL data (from 0.35 F1
with 12,000 instances to just 0.04 F1 with 500 in-
stances). While BhashaSetu also shows decreased
performance with less HRL data, it maintains sub-
stantially better results (0.10 F1 even with just
500 HRL instances) and demonstrates greater re-
silience to HRL data reduction. These results
highlight both BhashaSetu’s effectiveness at en-
abling cross-lingual knowledge transfer and its su-
perior ability to leverage limited high-resource data
compared to AdaMergeX. Our additional experi-
ments on sentiment classification (details in Tables
7 and 8 in Appendix) reinforce these findings, with
BhashaSetu outperforming AdaMergeX by 14-28
percentage points for Hindi-Bangla and 12-27 per-
centage points for English-Bangla pairs across var-
ious dataset sizes.

We investigated whether increasing batch size
during training improves training efficiency while
maintaining performance. Training GETR-GAT
with batch sizes of 60, 120, and 4096 on sentiment
classification tasks across multiple language pairs,
we found that smaller batches (120) achieved com-
parable performance to large batch sizes (4096) but
required approximately 14% more training steps
to saturation. This is expected, as larger batches
enable more direct token connections between low-
resource and high-resource languages through the
graph structure, allowing the model to learn global
semantics more efficiently. Smaller batches re-

quire successive approximations through the 30%
random sampling strategy to establish these cross-
lingual connections across epochs. These results
demonstrate that GETR’s effectiveness is robust
to different batch sizes, though computational con-
straints typically limit practical batch sizes. De-
tailed results are presented in Sec. C.1 of Appendix.

To assess GETR’s resilience to incomplete or
noisy cross-lingual edge information, we con-
ducted experiments by systematically reducing the
percentage of cross-lingual token connections in
the graph. Each typical batch contains 600–1000
token connections established through our trans-
lation mappings. We evaluated GETR-GAT per-
formance with 100%, 70%, 50%, 30%, and 0% of
these connections, where 0% reduces to standard
Joint Training. Performance degraded gracefully
with fewer connections, demonstrating that GETR
maintains substantial gains even with 70% of the
edges (typically within 2–5 percentage points of
full performance) and converges toward Joint Train-
ing baseline at 0% edge retention. This robustness
suggests that GETR does not require perfect bilin-
gual lexicons and can function effectively even with
partial or noisy translation dictionaries. Detailed
results are presented in Sec. C.2 of Appendix.

5 Conclusions

In this paper, we addressed the challenge of
cross-lingual knowledge transfer for extreme low-
resource scenarios. We proposed two adopted base-
lines, HAL and TET, and a novel GETR mecha-
nism. Experimental results demonstrate that while
traditional multilingual and cross-lingual models
struggle with extreme data scarcity, our proposed
approaches effectively leverage knowledge from
high-resource languages.

Future work includes exploring linguistic in-
sights and self-supervised pre-training strategies
specific to low-resource languages, memory-
optimized implementations of graph neural net-
works, and cross-lingual transfer for a wider range
of tasks and language pairs.
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Limitations

While our proposed approaches demonstrate strong
performance across different tasks and language
pairs, we acknowledge certain aspects that present
opportunities for future research. Our experiments
primarily focus on Indian languages from both
Indo-Aryan and Dravidian families, which could
be extended to typologically more distant language
pairs with different word orders or morphological
systems in future work.

Although BhashaSetu is effective with minimal
low-resource data (100 instances), we observe that
transfer performance correlates with high-resource
language data availability, a common pattern in
transfer learning approaches. This relationship be-
tween source data volume and transfer effective-
ness presents an interesting direction for develop-
ing more data-efficient transfer techniques.

The Token Embedding Transfer approach ben-
efits from word-level translation capabilities be-
tween language pairs. While such resources ex-
ist for many language combinations, future work
could explore unsupervised methods for establish-
ing cross-lingual correspondences when traditional
bilingual dictionaries are unavailable.

Our Graph-Enhanced Token Representation ap-
proach introduces additional computational com-
plexity during training and inference due to graph
construction operations and GNN computations
compared to simpler methods. However, this com-
putational investment delivers substantially im-
proved performance (21-27 percentage points gain
in F1 scores), representing a favorable trade-off in
many practical scenarios. Future implementations
could explore optimization techniques to reduce
this overhead.

Finally, while we demonstrate effectiveness on
classification tasks (sentiment analysis and NER),
extending these approaches to generative tasks in-
volving neural machine translation or summary
generation represents a promising direction for fu-
ture research. This would further validate the ver-
satility of our framework across the broader NLP
task spectrum.

Ethics Statement

This research aims to promote linguistic inclusiv-
ity by addressing the technological disparity be-
tween high-resource and low-resource languages.
We acknowledge that NLP capabilities have pre-
dominantly benefited widely-spoken languages, po-

tentially exacerbating digital divides along linguis-
tic lines. All datasets used in our experiments are
publicly available with appropriate citations, and
we did not collect or annotate new data that might
introduce privacy concerns.

We recognize that transfer learning approaches
may inadvertently propagate biases from source
to target languages; however, our work takes a
step toward mitigating representation disparities
by enabling better performance with minimal la-
beled data in low-resource languages. Due to the
focus on extremely low-resource settings (approxi-
mately 100 training instances), the computational
requirements for target language adaptation were
substantially lower than those typically needed for
high-resource language model development, reduc-
ing the environmental impact compared to training
large language models from scratch. While the
GETR approaches do introduce additional compu-
tational overhead during the knowledge transfer
process, the overall resource consumption remains
modest relative to pre-training large multilingual
models. This efficiency is particularly beneficial for
researchers and practitioners with limited computa-
tional resources working on low-resource language
technologies.

While we focused on Indian languages in this
study, we believe that similar approaches could
benefit other low-resource languages globally, con-
tributing to more equitable language technology
development. We emphasize that the performance
improvements demonstrated should be considered
within the context of the limitations described in
our paper, and that practical applications would
require careful consideration of cultural and lin-
guistic nuances specific to each target community.
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Figure 3: Architecture incorporating the Hidden Aug-
mentation Layer (HRL and LRL inputs are high- and
low-resource language inputs respectively)
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Appendix

A HAL

Figure 3 illustrates our modified architecture in-
corporating the hidden augmentation layer. The
framework can be further extended by adding mul-
tiple transformer layers above EM and performing
augmentation at each layer’s CLS output, thus en-
abling hierarchical knowledge fusion.

B Dynamic Mixing Coefficient Analysis

We experimented with a dynamic mixing coeffi-
cient that changes linearly during model training,
transitioning from 1 (favoring the high-resource
language) to 0 (favoring the low-resource lan-
guage). The definition of dynamic α is given by:

α =
1− s

T

where s represents the number of training steps
and T is the total number of training steps. This
approach aims to gradually shift the model’s focus
from leveraging high-resource language knowledge
during early training phases to increasingly rely-
ing on low-resource language-specific patterns as
training progresses.

Implementing this dynamic mixing strategy, we
found no major improvement over the existing
HAL approach. Table 3 presents the comprehen-
sive results for all high-resource and low-resource
language pairs across both Sentiment Classification
and Named Entity Recognition tasks, comparing
the original HAL with fixed α = 0.2 to HAL with
the dynamic α (HAL-DynamicAlpha).

B.1 Discussion

The empirical results demonstrate that the dynamic
mixing coefficient strategy yields negligible perfor-
mance differences compared to the fixed α = 0.2
configuration. Across all language pairs and both
tasks, the performance metrics remain nearly iden-
tical between HAL and HAL-DynamicAlpha, with
overlapping confidence intervals. This finding indi-
cates that the computational overhead introduced
by the dynamic schedule does not translate into
meaningful improvements in model performance.

The stability of our results across the dynamic
schedule further validates the robustness of the
HAL approach with a fixed mixing coefficient
of 0.2, as reported in the main paper. The dy-
namic strategy was motivated by the hypothesis
that gradually shifting focus from high-resource
to low-resource language knowledge during train-
ing might prevent negative transfer and improve
generalization. However, our experiments sug-
gest that a carefully tuned fixed mixing coefficient
is sufficient to balance knowledge transfer from
the high-resource language with preservation of
low-resource language characteristics, making the
added complexity of dynamic scheduling unneces-
sary. Note that while we implemented and evalu-
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HRL Method Sentiment Classification NER

Marathi as LRL Bangla as LRL Marathi as LRL Malayalam as LRL

English HAL 0.60 ± 0.001 0.64 ± 0.001 0.32 ± 0.001 0.30 ± 0.003
HAL-DynamicAlpha 0.60 ± 0.002 0.64 ± 0.002 0.32 ± 0.001 0.30 ± 0.002

Hindi HAL 0.80 ± 0.005 0.72 ± 0.004 0.38 ± 0.001 0.32 ± 0.003
HAL-DynamicAlpha 0.80 ± 0.004 0.72 ± 0.003 0.38 ± 0.001 0.32 ± 0.003

Table 3: Performance (Macro-F1 score) comparison of HAL and HAL-DynamicAlpha on Sentiment Classification
and NER tasks across different high-resource and low-resource language pairs. Results are reported with mean and
standard deviation based on independent runs.

ated a linear schedule for the dynamic mixing co-
efficient, more adaptive scheduling strategies such
as uncertainty-based, performance-driven, or non-
linear curricula were not explored in this work due
to time and scope constraints. This clarifies the
boundaries of our investigation for readers and fu-
ture follow-up studies.

B.2 Results on Sentiment Classification Task
and NER

We extensively evaluated our approach against mul-
tiple baselines, including parameter-efficient fine-
tuning methods and XLM-R variants. For XLM-
R, we tested: (1) XLMFT-LRL: fine-tuning only
on low-resource data; (2) XLMFT-HRLRL: joint
fine-tuning on both language datasets; (3) XLMFT-
HRL2LRL: sequential fine-tuning on high-resource
followed by low-resource data; and (4) XLMFT-
HRLAdapLRL: fine-tuning on high-resource data
followed by adapter-based fine-tuning on low-
resource data with frozen base weights. Addi-
tionally, we evaluated LoRA and AdaMergeX
as parameter-efficient alternatives, and HAL-LRL
which applies augmentation only within the low-
resource language. Our results show XLM-R vari-
ants perform comparably to Joint Training across
all configurations, while HAL-LRL shows no im-
provement over Joint Training due to limited aug-
mentation diversity in the extremely small low-
resource dataset.

To understand the impact of mixing coefficient
α in Hidden Augmentation Layer (HAL), we con-
ducted experiments with different α values ranging
from 0.1 to 0.8 (Table 5). For both English and
Hindi as high-resource languages, α=0.2 yields the
best performance, achieving accuracy/F1 scores of
0.610/0.590 and 0.860/0.860 respectively. The per-
formance gradually degrades as α increases, with
a more pronounced decline after α=0.5. This sug-
gests that while knowledge from the high-resource

language provides useful linguistic patterns and
Sentiment structures, excessive reliance on it di-
minishes the model’s ability to capture the unique
characteristics and nuances of the low-resource lan-
guage. The optimal performance at α=0.2 indi-
cates that a balanced approach, where the model
primarily learns from the low-resource language
while leveraging complementary features from the
high-resource language, is most effective. Notably,
even with declining performance at higher α val-
ues, the model maintains reasonable performance
(minimum accuracy of 0.590 for English and 0.830
for Hindi as HRL), indicating the robustness of the
HAL approach across different mixing ratios.

We analyzed the impact of HAL depth by vary-
ing the number of layers from 1 to 6 (Table 6).
For both English and Hindi as high-resource lan-
guages, 2 HAL layers yield optimal performance
(accuracy/F1: 0.610/0.590 and 0.860/0.860 respec-
tively), with secondary peaks at depth 4 for English
(0.598/0.582) and depth 5 for Hindi (0.848/0.845),
suggesting that while multiple HAL layers aid in
knowledge transfer, excessive depth might lead to
over-abstraction of features. Similarly, for both
GETR-GCN and GETR-GAT approaches, three
GNN layers demonstrated the best performance on
the test set metrics, indicating an optimal depth for
graph-based token interaction.

We extended our robustness evaluation to senti-
ment classification with Bangla as the low-resource
language, testing both Hindi and English as high-
resource languages (Table 7). The results reveal
consistent advantages for BhashaSetu across all
data configurations. With minimal low-resource
data (10 instances), Joint Training achieves only
0.33 macro-F1 for both HRLs, while BhashaSetu
reaches 0.61 with Hindi and 0.60 with English—an
approximately 85% improvement. This advantage
persists across all LRL sizes, though the gap nar-
rows as training data increases. Hindi consistently
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HRL Method Sentiment Classification NER

Marathi as LRL Bangla as LRL Marathi as LRL Malayalam as LRL

- Scratch Training 0.33 ± 0.000 0.33 ± 0.000 0.03 ± 0.073 0.03 ± 0.073

English

Joint Training 0.53 ± 0.002 0.63 ± 0.001 0.29 ± 0.001 0.26 ± 0.002
Adapter Finetuning 0.53 ± 0.001 0.63 ± 0.002 0.29 ± 0.001 0.26 ± 0.001
XLMFT-LRL 0.49 ± 0.002 0.60 ± 0.004 0.27 ± 0.005 0.23 ± 0.003
XLMFT-HRLRL 0.53 ± 0.002 0.63 ± 0.001 0.29 ± 0.001 0.26 ± 0.001
XLMFT-HRL2LRL 0.52 ± 0.002 0.63 ± 0.004 0.28 ± 0.003 0.24 ± 0.003
XLMFT-HRLAdapLRL 0.53 ± 0.001 0.63 ± 0.002 0.29 ± 0.002 0.26 ± 0.001
LoRA 0.54 ± 0.001 0.63 ± 0.001 0.29 ± 0.001 0.27 ± 0.001
AdaMergeX 0.55 ± 0.001 0.63 ± 0.001 0.29 ± 0.001 0.28 ± 0.002
HAL-LRL 0.52 ± 0.002 0.63 ± 0.001 0.29 ± 0.001 0.26 ± 0.001
HAL 0.60 ± 0.001 0.64 ± 0.001 0.32 ± 0.001 0.30 ± 0.003
HAL + TET 0.63 ± 0.001 0.65 ± 0.003 0.33 ± 0.001 0.31 ± 0.002
GETR-GCN 0.69 ± 0.002 0.68 ± 0.001 0.36 ± 0.001 0.37 ± 0.001
GETR-GCN + TET 0.68 ± 0.001 0.69 ± 0.003 0.36 ± 0.001 0.37 ± 0.002
GETR-GCN + HAL 0.70 ± 0.001 0.70 ± 0.002 0.39 ± 0.001 0.43 ± 0.003
GETR-GCN + HAL + TET 0.70 ± 0.002 0.70 ± 0.001 0.39 ± 0.001 0.43 ± 0.002
GETR-GAT 0.73 ± 0.001 0.72 ± 0.001 0.40 ± 0.001 0.46 ± 0.001
GETR-GAT + TET 0.74 ± 0.001 0.73 ± 0.002 0.40 ± 0.001 0.47 ± 0.003
GETR-GAT + HAL 0.75 ± 0.001 0.74 ± 0.001 0.40 ± 0.001 0.51 ± 0.002
GETR-GAT + HAL + TET 0.74 ± 0.001 0.75 ± 0.001 0.40 ± 0.001 0.52 ± 0.001

Hindi

Joint Training 0.75 ± 0.004 0.67 ± 0.003 0.35 ± 0.002 0.28 ± 0.002
Adapter Finetuning 0.74 ± 0.002 0.67 ± 0.002 0.34 ± 0.003 0.28 ± 0.002
XLMFT-LRL 0.71 ± 0.003 0.62 ± 0.005 0.30 ± 0.004 0.26 ± 0.004
XLMFT-HRLRL 0.75 ± 0.001 0.67 ± 0.001 0.34 ± 0.001 0.28 ± 0.001
XLMFT-HRL2LRL 0.75 ± 0.003 0.67 ± 0.004 0.34 ± 0.004 0.27 ± 0.001
XLMFT-HRLAdapLRL 0.74 ± 0.002 0.67 ± 0.002 0.34 ± 0.003 0.28 ± 0.002
LoRA 0.75 ± 0.001 0.68 ± 0.001 0.35 ± 0.002 0.28 ± 0.001
AdaMergeX 0.76 ± 0.001 0.69 ± 0.001 0.36 ± 0.001 0.28 ± 0.001
HAL-LRL 0.75 ± 0.003 0.67 ± 0.002 0.35 ± 0.001 0.27 ± 0.001
HAL 0.80 ± 0.005 0.72 ± 0.004 0.38 ± 0.001 0.32 ± 0.003
HAL + TET - 0.73 ± 0.002 - 0.32 ± 0.002
GETR-GCN 0.82 ± 0.001 0.75 ± 0.001 0.42 ± 0.002 0.38 ± 0.001
GETR-GCN + TET - 0.75 ± 0.002 - 0.38 ± 0.002
GETR-GCN + HAL 0.83 ± 0.002 0.76 ± 0.001 0.43 ± 0.001 0.44 ± 0.003
GETR-GCN + HAL + TET - 0.76 ± 0.002 - 0.44 ± 0.002
GETR-GAT 0.85 ± 0.001 0.79 ± 0.002 0.44 ± 0.001 0.48 ± 0.001
GETR-GAT + TET - 0.80 ± 0.001 - 0.49 ± 0.003
GETR-GAT + HAL 0.87 ± 0.001 0.80 ± 0.003 0.44 ± 0.001 0.53 ± 0.002
GETR-GAT + HAL + TET - 0.81 ± 0.002 - 0.55 ± 0.001

Table 4: Performance (Macro-F1 score) comparison of different training approaches on sentiment classification and
NER datasets when Hindi and English are considered as HRL and Marathi, Bangla and Malayalam as LRL. The
mean and standard deviation numbers are reported based on 5 independent runs.

outperforms English as the high-resource language,
with BhashaSetu reaching 0.94 F1 using Hindi ver-
sus 0.89 F1 using English at 8,000 LRL instances.

The fixed LRL experiments (100 instances) with
varying HRL size reveal BhashaSetu’s remarkable
resilience to limited high-resource data. With just
500 HRL instances, BhashaSetu maintains 0.62 F1
(Hindi) and 0.57 F1 (English), while Joint Training
drops to 0.43 and 0.41 respectively. Most impres-
sively, BhashaSetu with just 1,000 Hindi instances
(0.73 F1) outperforms Joint Training with the full
12,000 instances (0.67 F1). These results demon-
strate BhashaSetu’s exceptional data efficiency in
leveraging limited resources for cross-lingual trans-
fer and confirm its effectiveness across both NER

and sentiment classification tasks, regardless of the
specific high-resource language used.

To evaluate the robustness of our approach on
sentiment classification, we conducted extensive
experiments varying dataset sizes with both Hindi
and English as high-resource languages for Bangla
(Table 7). With Hindi as HRL, BhashaSetu demon-
strates remarkable effectiveness, achieving 0.61
macro-F1 with just 10 LRL instances compared
to Joint Training’s 0.33—an improvement of 28
percentage points. This advantage persists as LRL
size increases, maintaining improvements of 12-
21 percentage points up to 8,000 instances (the
maximum available in our Bangla dataset), where
BhashaSetu achieves 0.94 macro-F1 compared to
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HRL LRL α
Metrics

Accuracy F1

English Marathi

0.1 0.602±0.004 0.582±0.005
0.2 0.610±0.004 0.590±0.005
0.3 0.605±0.003 0.578±0.004
0.4 0.598±0.004 0.571±0.005
0.5 0.595±0.005 0.565±0.004
0.6 0.592±0.004 0.558±0.005
0.7 0.591±0.005 0.552±0.004
0.8 0.590±0.004 0.550±0.005

Hindi Marathi

0.1 0.852±0.004 0.848±0.005
0.2 0.860±0.003 0.860±0.005
0.3 0.848±0.004 0.845±0.004
0.4 0.842±0.005 0.840±0.005
0.5 0.838±0.004 0.835±0.004
0.6 0.834±0.005 0.832±0.005
0.7 0.832±0.004 0.831±0.004
0.8 0.830±0.005 0.830±0.005

Table 5: Performance comparison of HAL approach
with different high-resource languages and varying α
values. HRL: High Resource Language, LRL: Low
Resource Language

Joint Training’s 0.82.
Similar patterns emerge with English as HRL,

though with slightly lower absolute performance
due to script differences. BhashaSetu achieves 0.60
macro-F1 with 10 LRL instances (27 percentage
points over Joint Training) and maintains substan-
tial improvements through 8,000 instances (0.89 vs
0.78 macro-F1). The fixed LRL experiments (100
instances) reveal BhashaSetu’s superior resilience
to HRL data reduction: with Hindi, performance
drops from 0.81 to 0.62 macro-F1 as HRL size
decreases from 12,000 to 500, while Joint Train-
ing falls more sharply from 0.67 to 0.43. English
shows similar trends, with BhashaSetu maintain-
ing better performance (0.75 to 0.57) compared
to Joint Training’s steeper decline (0.63 to 0.41).

HRL LRL HAL Metrics
Depth Accuracy F1

English Marathi

1 0.592±0.004 0.575±0.005
2 0.610±0.004 0.590±0.005
3 0.588±0.003 0.562±0.004
4 0.598±0.004 0.582±0.005
5 0.575±0.005 0.545±0.004
6 0.570±0.004 0.540±0.005

Hindi Marathi

1 0.842±0.004 0.838±0.005
2 0.860±0.003 0.860±0.005
3 0.835±0.004 0.832±0.004
4 0.825±0.005 0.818±0.005
5 0.848±0.004 0.845±0.004
6 0.810±0.005 0.800±0.005

Table 6: Impact of HAL depth on model performance.
HRL: High Resource Language, LRL: Low Resource
Language

HRL HRL Size LRL Size Macro F1 + JT Macro F1 + BhashaSetu
Fixed HRL Size, Varying LRL Size

Hindi 12000 10 0.33± 0.001 0.61± 0.001
Hindi 12000 50 0.51± 0.002 0.72± 0.002
Hindi 12000 100 0.67± 0.001 0.81± 0.003
Hindi 12000 500 0.69± 0.001 0.83± 0.002
Hindi 12000 1000 0.73± 0.002 0.87± 0.001
Hindi 12000 5000 0.79± 0.002 0.92± 0.003
Hindi 12000 8000 0.82± 0.003 0.94± 0.002

English 12000 10 0.33± 0.001 0.60± 0.001
English 12000 50 0.49± 0.002 0.68± 0.002
English 12000 100 0.63± 0.001 0.75± 0.003
English 12000 500 0.65± 0.001 0.78± 0.002
English 12000 1000 0.69± 0.002 0.81± 0.001
English 12000 5000 0.74± 0.002 0.87± 0.003
English 12000 8000 0.78± 0.003 0.89± 0.002

Fixed LRL Size, Varying HRL Size

Hindi 12000 100 0.67± 0.001 0.81± 0.003
Hindi 5000 100 0.61± 0.002 0.76± 0.002
Hindi 1000 100 0.52± 0.023 0.73± 0.003
Hindi 500 100 0.43± 0.022 0.62± 0.006

English 12000 100 0.63± 0.001 0.75± 0.003
English 5000 100 0.55± 0.002 0.71± 0.002
English 1000 100 0.50± 0.023 0.65± 0.003
English 500 100 0.41± 0.022 0.57± 0.006

Table 7: Sentiment Classification performance compar-
ison based on Macro-F1 between Joint Training (JT)
and our approach (BhashaSetu) with Hindi and English
as high-resource and Bangla as low-resource language
under varying dataset sizes.

These results demonstrate BhashaSetu’s effective-
ness across different data regimes and language
pairs, with particularly strong performance when
languages share scripts.

LRL Size HRL Size Macro F1 + AdaMergeX Macro F1 + BhashaSetu
Fixed HRL Size, Varying LRL Size

10 12000 0.02± 0.001 0.11± 0.001
50 12000 0.13± 0.002 0.34± 0.002

100 12000 0.29± 0.001 0.40± 0.003
500 12000 0.34± 0.001 0.46± 0.002

1000 12000 0.39± 0.002 0.49± 0.001
5000 12000 0.51± 0.002 0.57± 0.002

10000 12000 0.64± 0.001 0.73± 0.001

Fixed LRL Size, Varying HRL Size

100 12000 0.29± 0.001 0.40± 0.003
100 5000 0.18± 0.002 0.34± 0.002
100 1000 0.07± 0.025 0.20± 0.034
100 500 0.03± 0.022 0.07± 0.031

Table 8: NER performance comparison based on Macro-
F1 between AdaMergeX and our approach (BhashaSetu)
with English as high-resource and Marathi as low-
resource language under varying dataset sizes.

C Detailed Ablation Studies

C.1 Effect of Batch Size on Training
Efficiency

To understand the relationship between batch size
and training efficiency, we trained GETR-GAT
models using batch sizes of 60, 120, and 4096 on
a p5en.48xlarge instance. Each batch of size B
contained all 100 low-resource language instances
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HRL Method Batch Training Sentiment Classification

Size Steps Marathi as LRL

English
GETR-GAT 60 7141 0.73± 0.001
GETR-GAT 120 5416 0.73± 0.001
GETR-GAT 4096 4610 0.73± 0.002

Hindi
GETR-GAT 60 7002 0.85± 0.001
GETR-GAT 120 5319 0.85± 0.001
GETR-GAT 4096 4220 0.85± 0.003

Table 9: GETR-GAT performance (Macro-F1 score) on
Sentiment Classification with Marathi as low-resource
language across different batch sizes.

HRL Method Batch Training Sentiment Classification

Size Steps Bangla as LRL

English
GETR-GAT 60 6981 0.72± 0.001
GETR-GAT 120 5501 0.72± 0.001
GETR-GAT 4096 4690 0.72± 0.002

Hindi
GETR-GAT 60 6993 0.79± 0.001
GETR-GAT 120 5561 0.79± 0.002
GETR-GAT 4096 4399 0.79± 0.002

Table 10: GETR-GAT performance (Macro-F1 score)
on Sentiment Classification with Bangla as low-resource
language across different batch sizes.

available in the epoch, with the remaining B-100
instances sampled from high-resource languages.
Of these high-resource samples, 70% were se-
lected based on maximum token overlap with low-
resource instances, while the remaining 30% were
randomly selected to ensure gradual establishment
of cross-lingual connections across epochs.

The motivation for larger batch sizes stems from
GETR’s graph-based token connection mechanism.
With batch size 4096, nearly all unique tokens
from low-resource languages can be connected to
high-resource tokens simultaneously, allowing the
model to learn global cross-lingual semantics di-
rectly. In contrast, smaller batches (e.g., 120) es-
tablish these connections incrementally through
successive epochs via the 30% random sampling
strategy, requiring more steps to achieve saturation.

Our experiments across sentiment classification
and NER tasks with Hindi and English as high-
resource languages and Marathi and Malayalam as
low-resource languages reveal consistent patterns.
Training with batch size 4096 achieved compara-
ble performance to batch size 120 while requiring
approximately 14% fewer training steps to reach
convergence. Batch size 60 required the most steps
but maintained similar final performance, confirm-
ing that GETR’s effectiveness is robust across dif-
ferent batch sizes. However, due to computational
constraints, most practitioners will be limited to
smaller batch sizes. Tables 9, 10, 11 and 12 present
detailed results across all tasks and language pairs.

HRL Method Batch Training NER

Size Steps Marathi as LRL

English
GETR-GAT 60 6981 0.40± 0.001
GETR-GAT 120 5501 0.40± 0.001
GETR-GAT 4096 4690 0.40± 0.002

Hindi
GETR-GAT 60 6993 0.44± 0.001
GETR-GAT 120 5561 0.44± 0.001
GETR-GAT 4096 4399 0.44± 0.001

Table 11: GETR-GAT performance (Macro-F1 score)
on NER with Marathi as low-resource language across
different batch sizes.

HRL Method Batch Training NER

Size Steps Malayalam as LRL

English
GETR-GAT 60 6882 0.46± 0.001
GETR-GAT 120 5483 0.46± 0.001
GETR-GAT 4096 4552 0.46± 0.002

Hindi
GETR-GAT 60 7114 0.48± 0.001
GETR-GAT 120 5632 0.48± 0.001
GETR-GAT 4096 4781 0.48± 0.003

Table 12: GETR-GAT performance (Macro-F1 score)
on NER with Malayalam as low-resource language
across different batch sizes.

C.2 Robustness to Incomplete Bilingual
Lexicons

To evaluate GETR’s resilience to incomplete or
noisy cross-lingual edge information, we systemat-
ically ablated the percentage of cross-lingual token
connections in the graph. In our standard imple-
mentation, each batch typically contains 600–1000
token connections established through our transla-
tion mappings (using pymultidictionary and man-
ual verification). We conducted experiments re-
taining 100%, 70%, 50%, 30%, and 0% of these
connections through random removal.

The 0% condition serves as a critical baseline:
when all cross-lingual edges are removed, GETR-
GAT reduces to standard Joint Training, as tokens
are only connected within sentences (not across
languages). This allows us to quantify the precise
contribution of cross-lingual knowledge transfer to
overall performance.

The results demonstrate that GETR’s perfor-
mance degrades gracefully as fewer edges are re-
tained. With 70% edge retention, performance
typically drops by only 2–5 percentage points, in-
dicating substantial robustness to incomplete lex-
icons. Even at 50% retention, models maintain
meaningful improvements over Joint Training base-
lines. The gradual degradation pattern confirms
that the approach does not rely on perfect bilingual
lexicons and can function effectively with partial
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translation information. At 0% edge retention, per-
formance converges precisely to the Joint Training
baseline across all tasks and language pairs, vali-
dating our hypothesis that cross-lingual edges are
the key mechanism enabling GETR’s knowledge
transfer capabilities. Table 13 presents compre-
hensive results across sentiment classification and
NER tasks.

C.3 Computational Cost and Environmental
Impact

GETR-GAT incurs modest computational over-
head compared to Joint Training while delivering
substantial performance gains. Training on AWS
p4de.24xlarge instances requires approximately
11% additional time per epoch (≈ 50 minutes vs.
≈ 45 minutes for Joint Training) and 8% more
peak GPU memory (≈ 41 GB vs. ≈ 38 GB) due
to graph neural network computations and neigh-
borhood construction. Over 50 training epochs, the
total training time increases from 37.5 hours to 41.7
hours. Inference is approximately 6.3% slower per
sample (0.0101 vs. 0.0095 seconds on p3.2xlarge
V100 GPUs). The increased energy consumption
(≈ 2.2 kWh vs. ≈ 2.0 kWh per full run) results
in approximately 10% higher CO2 emissions ( ≈
0.99 kg CO2 vs. ≈ 0.90 kg CO2), corresponding
to roughly 0.09 kg additional CO2 per model train-
ing. These modest computational costs are justified
by the significant performance improvements as
shown in Table 1. Detailed report is presented in
Table 14.
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HRL Method Edge % Sentiment Classification NER

Marathi Bangla Marathi Malayalam

English

Joint Training - 0.53± 0.002 0.63± 0.001 0.29± 0.001 0.26± 0.002
AdaMergeX - 0.55± 0.001 0.63± 0.001 0.29± 0.001 0.28± 0.002
GETR-GAT 100% 0.73± 0.001 0.72± 0.001 0.40± 0.001 0.46± 0.001
GETR-GAT 70% 0.67± 0.002 0.68± 0.001 0.38± 0.001 0.41± 0.001
GETR-GAT 50% 0.64± 0.001 0.66± 0.003 0.35± 0.003 0.38± 0.001
GETR-GAT 30% 0.58± 0.002 0.63± 0.001 0.31± 0.001 0.32± 0.002
GETR-GAT 0% 0.55± 0.003 0.62± 0.001 0.28± 0.002 0.28± 0.002

Hindi

Joint Training - 0.75± 0.004 0.67± 0.003 0.35± 0.002 0.28± 0.002
AdaMergeX - 0.76± 0.001 0.69± 0.001 0.30± 0.001 0.28± 0.001
GETR-GAT 100% 0.85± 0.001 0.79± 0.002 0.44± 0.001 0.48± 0.001
GETR-GAT 70% 0.83± 0.002 0.76± 0.002 0.40± 0.001 0.43± 0.001
GETR-GAT 50% 0.80± 0.001 0.72± 0.003 0.36± 0.002 0.35± 0.001
GETR-GAT 30% 0.77± 0.002 0.71± 0.002 0.31± 0.001 0.32± 0.003
GETR-GAT 0% 0.75± 0.001 0.69± 0.001 0.30± 0.002 0.29± 0.001

Table 13: Robustness of GETR-GAT to incomplete bilingual lexicons (Macro-F1 score). Performance is measured
when retaining 100%, 70%, 50%, 30%, and 0% of cross-lingual token connections. Sentiment Classification spans
Marathi and Bangla low-resource languages, while NER spans Marathi and Malayalam. Average token connections
per batch are shown for each edge retention percentage.

Metric Joint Training GETR-GAT

Training Configuration
Training Instance AWS p4de.24xlarge (8× A100 80GB) Same
Batch Size 128 120
Number of Epochs 50 50

Training Efficiency
Training Time per Epoch ≈ 45 min ≈ 50 min (+11%)
Total Training Time (50 epochs) ≈ 37.5 hours ≈ 41.7 hours
Peak GPU Memory Usage ≈ 38 GB ≈ 41 GB (+8%)

Inference Metrics
Inference Instance AWS p3.2xlarge (1× V100 16GB) Same
Inference Time per Sample 0.0095 sec 0.0101 sec (+6.3%)

Energy & Environmental Impact
Energy Consumption per Run ≈ 2.0 kWh ≈ 2.2 kWh (+10%)
CO2 Emissions per Run ≈ 0.90 kg CO2 ≈ 0.99 kg CO2 (+10%)

Performance Improvements
Macro-F1 (Sentiment Marathi) 0.75 0.87 (+12 pp)
Macro-F1 (Sentiment Bangla) 0.63 0.75 (+12 pp)
Macro-F1 (NER Marathi) 0.35 0.44 (+9 pp)
Macro-F1 (NER Malayalam) 0.28 0.52 (+24 pp)

Table 14: Computational cost and environmental impact comparison between Joint Training and GETR-GAT. All
training conducted on AWS p4de.24xlarge instances and inference on p3.2xlarge instances. Percentage increases are
shown in parentheses. Despite 10–11% overhead in training time and energy consumption, GETR-GAT achieves
substantial performance improvements across all tasks.
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