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Abstract

Document Visual Question Answering
(DocVQA) models often produce overcon-
fident or ethically misaligned responses,
especially under uncertainty. Existing models
like LayoutLMv3, UDOP, and DONUT focus
on accuracy but lack ethical calibration. We
propose HonestVQA, a model-agnostic,
self-supervised framework that aligns model
confidence with correctness using weighted
loss and contrastive learning. We introduce
two new metrics—Honesty1 Score (H-Score)
and Ethical Confidence Index (ECI)—to
evaluate ethical alignment. HonestVQA
improves accuracy and F1 by up to 4.3% across
SpDocVQA, InfographicsVQA, and SROIE
datasets, while reducing overconfidence. It also
generalizes well across domains, achieving
78.9% accuracy and 76.1% F1-score.

1 Introduction

Document Visual Question Answering (DocVQA)
has emerged as a key challenge in multimodal AI
(Wang et al., 2025), enabling models to answer
questions based on visual and textual content in
documents such as invoices, forms, contracts, and
academic papers. These models are widely de-
ployed in enterprise automation (Jiang et al., 2024),
legal analysis (Liu et al., 2024), and assistive tech-
nologies (Zeng et al., 2025). However, despite
their growing utility, DocVQA models often lack
ethical transparency—frequently returning confi-
dently incorrect answers to ambiguous, adversarial,
or under-specified queries. For instance, a model
may assert the total invoice amount with high con-
fidence even when the relevant table is partially
occluded, or confidently misinterpret a scanned sig-
nature line as a date. Such failures can propagate
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1In our work, honesty is operationalized as the alignment
between model confidence and correctness, with the goal of
reducing confidently wrong answers.

serious downstream consequences, including le-
gal misinterpretation, misinformation, or financial
misjudgment.

However, the crux of the problem lies in the
inability of existing DocVQA models to communi-
cate uncertainty in a calibrated, ethically responsi-
ble manner. While State-of-the-Art (SOTA) models
such as LayoutLMv32 (Fujitake, 2024), UDOP3

(Wang et al., 2023a), and DONUT4 (Li et al.,
2024) focus on improving accuracy through so-
phisticated architecture and pretraining strategies,
they fall short in aligning model confidence with
actual knowledge. LayoutLMv3 (Fujitake, 2024)
tends to prioritize exact answers over conveying
doubt, UDOP (Wang et al., 2023a) frequently errs
on the side of over-caution without actionable ex-
planations, and DONUT (Li et al., 2024) offers
no uncertainty estimation at all—leading to ethi-
cally untrustworthy behavior in ambiguous scenar-
ios. Therefore, recent advances in AI alignment
research have emphasized the importance of ethi-
cal calibration (Rao et al., 2023), including honesty
(Yang et al., 2024), confidence-awareness (Stangel
et al., 2025), and transparent failure modes (Stewart
et al., 2023). However, these insights have yet to
be meaningfully integrated into DocVQA models.

To address these critical gaps, we propose Hon-
estVQA, a self-supervised framework that cali-
brates model confidence to reflect its underlying
knowledge and ethical responsibility. Our approach
is model-agnostic and integrates three key com-
ponents: (1) uncertainty quantification to identify
knowledge gaps, (2) confidence-accuracy align-
ment through weighted loss optimization, and (3)
contrastive learning to enforce ethical response
boundaries in ambiguous contexts. We also in-

2https://huggingface.co/microsoft/layoutlmv
3-base

3https://huggingface.co/microsoft/udop-large
4https://huggingface.co/naver-clova-ix/donu

t-base
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troduce two novel evaluation metrics: i) Honesty
Score (H-Score), which captures the alignment be-
tween confidence and correctness, and ii) Ethical
Confidence Index (ECI), which evaluates whether
high-confidence answers are ethically warranted.

2 Related Work

Recent research has increasingly focused on im-
proving the reliability and interpretability of AI
models, especially in high-stakes domains. While
core DocVQA models like have been discussed in
Section 1, here we focus on complementary areas
that our framework draws from—confidence cali-
bration, ethical modeling, and contrastive learning.
Confidence calibration models such as tempera-
ture scaling (Xie et al., 2024) and label smoothing
(Müller et al., 2019) aim to align predicted proba-
bilities with empirical accuracies. However, these
models are typically post-hoc and task-agnostic, of-
ten failing to generalize in multimodal settings. Se-
lective prediction frameworks such as (Chen et al.,
2023) allow models to abstain from uncertain an-
swers, but they usually rely on fixed thresholds
and lack principled mechanisms to model epis-
temic uncertainty in visually grounded tasks like
DocVQA. However, in the area of ethical and hon-
est AI, efforts such as instruction tuning for align-
ment (Zhang et al., 2023) and calibrated language
modeling (Zhu et al., 2023) emphasize epistemic
humility—training models to express uncertainty
when appropriate. However, these researches are
primarily developed for language-only models and
remain underexplored in multimodal tasks involv-
ing structured visual data. Whereas, contrastive
learning has shown strong performance in align-
ing multimodal representations, with frameworks
like CLIP (Gao et al., 2024) and ALIGN (Wang
et al., 2023b) leveraging contrastive objectives for
image-text alignment. While effective at learning
generalizable embeddings, such models are not de-
signed to enforce ethical boundaries or distinguish
between honest and overconfident outputs in am-
biguous scenarios.

3 Methodology

As discussed earlier, HonestVQA is a model-
agnostic calibration framework designed to en-
hance ethical transparency in DocVQA models. It
operates as a wrapper around pretrained DocVQA
models (in our work, we evaluate our framework
on top of pretrained models such as LayoutLMv3

Algorithm 1 HonestVQA Training Algorithm

Require: Pretrained model fθ, input (D,Q, y∗),
thresholds δ, τ1, τ2, weights α, β, m, λ1, λ2

Ensure: Calibrated DocVQA wrapper
1: Compute P (y | D,Q)← fθ(D,Q)
2: Compute confidence C = maxi P (yi) and en-

tropy U = −∑
i P (yi) logP (yi)

3: Predict ŷ ← argmaxy P (y)
4: Lalign ← α · ⊮[ŷ ̸= y∗] · C + β · CE(ŷ, y∗)
5: if WMD(ŷ, y∗) < δ then
6: hpos ← Embed(ŷ)
7: end if
8: if ŷ ̸= y∗ ∧ C > τ1 ∧ U < τ2 then
9: hneg ← Embed(ŷ)

10: end if
11: Compute Lcontrast = max(0,m −

sim(hanchor, hpos) + sim(hanchor, hneg))
12: Ltotal ← λ1 · Lalign + λ2 · Lcontrast
13: Update projection head using Ltotal

(Fujitake, 2024), UDOP (Wang et al., 2023a), and
DONUT (Li et al., 2024) to demonstrate its gener-
alizability), injecting uncertainty-aware alignment
and contrastive reasoning to reduce overconfident
yet incorrect outputs. The broader process of the
HonestVQA is illustrated in Algorithm 1.

3.1 Uncertainty Quantification Module

Given a document D and a question Q, we use a
pretrained DocVQA model fθ that maps (D,Q) to
an answer distribution P (y | D,Q; θ). To quantify
the model’s epistemic uncertainty, we compute the
softmax entropy of the output distribution accord-
ing to Equation (1).

U(D,Q) = −
|Y |∑

i=1

P (yi | D,Q) logP (yi | D,Q) (1)

Here, |Y | denotes the size of the answer space.
Higher entropy corresponds to greater uncertainty.
We also define a maximum-confidence score as
shown in Equation (2).

C(D,Q) = max
i

P (yi | D,Q) (2)

This dual view captures both dispersion and peak-
iness in the output distribution. Following recent
work (Pearce et al., 2021), we identify overconfi-
dent failure cases as those where C(D,Q) is high
despite U(D,Q) being non-negligible. These met-
rics are computed during training and inference,
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and U(D,Q) serves as a routing signal for sam-
pling in the contrastive module, though it is not
explicitly penalized.

3.2 Confidence-Accuracy Alignment Module
To align the model’s confidence with its accuracy,
we introduce a calibration-aware loss that penalizes
incorrect predictions more strongly when made
with high confidence. Let ŷ denote the predicted
answer and y∗ the ground truth. We define the
alignment loss according to Equation (3).

Lalign = α · ⊮[ŷ ̸= y∗] · C(D,Q) + β · CE(ŷ, y∗) (3)

Here, CE is the standard cross-entropy loss. Hy-
perparameters α and β control the influence of
confidence-penalization and prediction error, re-
spectively.

3.3 Contrastive Ethical Enforcement Module
To further refine the model’s response space un-
der ambiguity, we introduce a contrastive loss
that structurally separates ethically misaligned or
misleading answers from calibrated, semantically
valid responses. Given a query-answer embedding
hanchor, we identify a positive sample hpos (seman-
tically similar and ethically aligned) and a nega-
tive sample hneg (incorrect, overconfident, or poten-
tially misleading). The contrastive loss is defined
as according to Equation (4), where sim(·) denotes
cosine similarity, and m is a margin hyperparame-
ter.

Lcontrast = max
(
0, m− sim(hanchor, hpos)

+ sim(hanchor, hneg)
)

(4)

We use a projection head atop the DocVQA en-
coder to map answer embeddings into a low-
dimensional calibrated honesty space. Where, pos-
itive pairs are identified using a combination of
Word Mover’s Distance (WMD) and agreement
with ground truth as shown in Equations (5), and
(6), where δ is a tunable similarity threshold.

WMD(ŷ, y∗) < δ (5)

ŷ ∈ Aaligned =⇒ semantically valid

and agrees with ground truth.
(6)

Whereas, negative samples are drawn from high-
confidence as shown in Equation (7), where τ1 and

τ2 are confidence and entropy thresholds, respec-
tively.

ŷneg : ⊮[ŷneg ̸= y∗]

∧ C(D,Q) > τ1

∧ U(D,Q) < τ2 (7)

3.4 Training Module
The overall training loss combines the alignment
and contrastive objectives according to Equation
(8).

Ltotal = λ1 · Lalign + λ2 · Lcontrast (8)

Here, λ1 and λ2 control the relative weight of each
loss term. Training is conducted end-to-end using
batches sampled from standard DocVQA datasets,
where each sample includes contrastive triplets and
confidence-aware labels. The projection head is
fine-tuned during training, while the base DocVQA
encoder remains frozen. At inference, C(D,Q)
and U(D,Q) may be used to suppress or abstain
from answering under high uncertainty. Note: In
this work, we define ethical calibration as the act
of reducing confidently incorrect answers, espe-
cially under ambiguity or lack of sufficient visual-
textual grounding. HonestVQA is not a moral
arbiter but a mechanism for promoting caution and
transparency in DocVQA behavior. Furthermore,
our framework is fully multimodal. HonestVQA
operates as a wrapper on LayoutLMv3, UDOP, and
DONUT—all of which jointly model text + layout
+ vision. The uncertainty and contrastive modules
explicitly leverage multimodal embeddings (e.g.,
attention-grounded text regions). This is confirmed
by our IoU multimodal consistency evaluation (see
Table 6), where HonestVQA achieves significantly
higher alignment between visual attention and tex-
tual grounding compared to baselines.

4 Experimental Setup

4.1 Datasets
We evaluate HonestVQA on three diverse and chal-
lenging datasets: SpDocVQA (Mathew et al., 2020),
InfographicsVQA (Mathew et al., 2022), and
SROIE5. SpDocVQA comprises multilingual scanned
documents requiring structured comprehension and
spatial reasoning. InfographicsVQA presents vi-
sually dense infographic images with complex lay-
outs and multi-modal reasoning demands. SROIE
is an entity-level extraction dataset involving semi-
structured receipts, demanding high accuracy and

5https://rrc.cvc.uab.es/?ch=17&com=downloads
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ethical response handling due to potential finan-
cial implications. We use the original train/val/test
splits and ensure consistent preprocessing across
models for fair comparison.

4.2 Evaluation Metrics
To comprehensively assess the performance and
ethical alignment of our framework, we employ
standard accuracy metrics alongside two novel mea-
sures designed to evaluate calibration and honesty.
First, we report conventional Accuracy and F1
scores (i.e. macro) to quantify answer correct-
ness. To capture the alignment between model con-
fidence and actual correctness, we introduce the
H-Score, which penalizes overconfident incorrect
predictions while rewarding calibrated confidence
on correct answers. Additionally, the ECI evaluates
the model’s ability to appropriately express uncer-
tainty, especially under ambiguous or insufficient
information. Note: In the tables, Green indicate
the best-performing scores. ↑ indicates that a high
value is preferable, while ↓ indicates that a low
value is preferable.

4.2.1 Theoretical Guarantees for Evaluation
Metrics

In this section, we provide formal lemmas and
proofs to establish the theoretical soundness of
the proposed H-Score and ECI, which measure the
alignment between model confidence, accuracy,
and ethical transparency in DocVQA.

Lemma 4.1 (Calibration Bound of Honesty Score).
Let C(D,Q) be the confidence score output by
a DocVQA model for a given document-question
pair (D,Q), and let A(D,Q) ∈ {0, 1} be the cor-
responding accuracy indicator, where 1 denotes a
correct answer and 0 an incorrect one. Assume
that C(D,Q) is bounded in [0, 1]. Then, define the
Honesty Score H as according to Equation (9).

H = 1− E(D,Q)∼D
[
|C(D,Q)−A(D,Q)|

]
(9)

whereD is the data distribution. Whereas, H upper-
bounds the expected calibration error between con-
fidence and accuracy according to Equation (10).

E(D,Q)∼D
[
|C(D,Q)−A(D,Q)|

]
= 1−H (10)

Thus, a higher H implies tighter calibration, indi-
cating fewer overconfident incorrect predictions.

Proof. By definition, calibration error measures the
absolute difference between predicted confidence

and true correctness. Since A(D,Q) is binary, the
expectation of |C − A| captures the average mis-
alignment. Rearranging, H = 1 − E[|C − A|].
Because |C − A| ∈ [0, 1], H ∈ [0, 1] and is max-
imized when confidence perfectly matches accu-
racy. Hence, H is a valid measure of calibration
that upper-bounds expected miscalibration.

Lemma 4.2 (Discriminative Power of Ethical Con-
fidence Index). Let Ccorrect and Cincorrect denote
the random variables corresponding to confidence
scores on correctly and incorrectly answered sam-
ples respectively. Then, define the Ethical Confi-
dence Index (ECI) as according to Equation (11)
which measures the probability that the model as-
signs higher confidence to correct answers than to
incorrect answers.

ECI = P
(
Ccorrect > Cincorrect

)
(11)

If the distributions of Ccorrect and Cincorrect are well-
separated, i.e., there exists ϵ > 0 such that it
is defined as according to Equation (12), then
ECI ≥ 1− ϵ indicating strong ethical confidence
discrimination.

P(Ccorrect ≤ Cincorrect) < ϵ (12)

Proof. The ECI corresponds exactly to the Area
Under the ROC Curve (AUC) when viewing con-
fidence as a score discriminating correct from in-
correct answers. By definition, ECI = P(Ccorrect >
Cincorrect). If the two confidence score distributions
have minimal overlap (i.e., are well-separated), the
probability of Ccorrect ≤ Cincorrect is bounded above
by a small ϵ. Hence, ECI = 1 − P(Ccorrect ≤
Cincorrect) ≥ 1 − ϵ. Thus, a high ECI value indi-
cates that the model reliably assigns higher confi-
dence to correct answers, promoting ethical trans-
parency.

4.3 Hyperparameters
The HonestVQA framework employs several key
hyperparameters to balance confidence calibration
and contrastive learning effectively. We set the
confidence penalty weight α to 1.0 and the cross-
entropy weight β to 0.5 to emphasize penalizing
overconfident incorrect predictions while maintain-
ing prediction accuracy. The contrastive margin
m is fixed at 0.3 to enforce a moderate separation
between positive and negative embeddings. The
alignment and contrastive losses are weighted by
λ1 = 1.0 and λ2 = 0.7, respectively, reflecting
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Model SpDocVQA InfographicsVQA SROIE

Accuracy
(%) ↑

Macro F1
(%) ↑

Accuracy
(%) ↑

Macro F1
(%) ↑

Accuracy
(%) ↑

Macro F1
(%) ↑

Base Models

LayoutLMv3 (base) (Fujitake, 2024) 72.3 68.5 65.4 62.1 70.0 66.8
UDOP (base) (Wang et al., 2023a) 69.7 66.1 62.8 60.0 68.2 64.0
DONUT (base) (Li et al., 2024) 70.1 67.0 63.5 60.9 69.0 65.2

With HonestVQA

LayoutLMv3 (Fujitake, 2024) + HonestVQA 75.9 72.8 69.7 66.3 73.4 70.1
UDOP (Wang et al., 2023a) + HonestVQA 73.2 69.4 67.3 63.8 71.0 67.5
DONUT (Li et al., 2024) + HonestVQA 74.0 70.5 68.0 64.7 72.2 68.8

Table 1: Performance comparison of base DocVQA models and their HonestVQA-enhanced versions across
SpDocVQA, InfographicsVQA, and SROIE datasets, showing improvements in both Accuracy and Macro F1
scores.

Model SpDocVQA InfographicsVQA SROIE

H-Score ↓ ECI ↓ H-Score ↓ ECI ↓ H-Score ↓ ECI ↓

Base Models

LayoutLMv3 (base) (Fujitake, 2024) 0.185 0.210 0.192 0.215 0.188 0.213
UDOP (base) (Wang et al., 2023a) 0.198 0.224 0.203 0.230 0.200 0.228
DONUT (base) (Li et al., 2024) 0.190 0.218 0.195 0.222 0.192 0.220

With HonestVQA

LayoutLMv3 (Fujitake, 2024) + HonestVQA 0.113 0.132 0.118 0.138 0.115 0.136
UDOP (Wang et al., 2023a) + HonestVQA 0.127 0.147 0.132 0.153 0.129 0.150
DONUT (Li et al., 2024) + HonestVQA 0.120 0.139 0.125 0.143 0.122 0.141

Table 2: Calibration performance of base DocVQA models and their HonestVQA-enhanced versions on SpDocVQA,
InfographicsVQA, and SROIE datasets, measured by H-Score and ECI. Lower values indicate better model
calibration and reduced overconfidence.

a slightly stronger emphasis on alignment. For
sample selection in the contrastive module, the
WMD threshold δ is set to 0.4, while the confi-
dence and entropy thresholds, τ1 and τ2, are cho-
sen as 0.8 and 0.5, respectively, to effectively iden-
tify semantically valid positive samples and high-
confidence misleading negatives. Note: At infer-
ence, the model does not access ground-truth an-
swers. Instead, it relies on the learned calibration
from training–the confidence score C(D,Q) and
entropy U(D,Q) are computed from the predicted
distribution to identify uncertain or overconfident
answers. The model can then suppress or abstain
from outputs under high uncertainty, while the con-
trastive embeddings help separate ethically aligned
responses from potentially misleading ones.

5 Experimental Analysis

5.1 Comparison with Baselines

We evaluate the effectiveness of HonestVQA by
measuring both standard answer correctness met-
rics and calibration-specific metrics to provide
a comprehensive assessment of the model’s per-
formance. Specifically, we compare the base

DocVQA models—LayoutLMv3 (Fujitake, 2024),
UDOP (Wang et al., 2023a), and DONUT (Li
et al., 2024)—with their corresponding versions
enhanced by the HonestVQA calibration frame-
work. Table 1 presents these results on the three
datasets. It is evident that HonestVQA consistently
improves accuracy by approximately 3% to 4% and
macro F1-score by nearly 4% across all base mod-
els. For instance, LayoutLMv3 (Fujitake, 2024)
improves from 72.3% to 75.9% in accuracy and
from 68.5% to 72.8% in macro F1-score. Similar
trends hold for UDOP (Wang et al., 2023a) and
DONUT (Li et al., 2024) models, underscoring the
robustness of our approach in enhancing answer
correctness.

Whereas, Table 2 displays these calibration-
specific results for the same set of models and
dataset. Notably, the base models exhibit rela-
tively high H-Score and ECI values, indicating
frequent instances of unjustified overconfidence.
Incorporation of HonestVQA substantially low-
ers these values, with H-Score decreasing by over
35% and ECI by nearly 40% on average. For in-
stance, LayoutLMv3’s (Fujitake, 2024) H-Score
drops from 0.185 to 0.113, and ECI decreases from
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Train Domain Test Domain Model Accuracy (%) ↑ Macro F1 (%) ↑

SpDocVQA InfographicsVQA HonestVQA 74.2 71.8
InfographicsVQA SpDocVQA HonestVQA 78.9 76.1
SROIE InfographicsVQA HonestVQA 70.5 67.2
SpDocVQA SROIE HonestVQA 72.6 69.8
InfographicsVQA SROIE HonestVQA 73.1 70.4
SROIE SpDocVQA HonestVQA 75.0 72.3

Table 3: Cross-domain performance of HonestVQA, showing Accuracy and Macro F1 when trained on one dataset
and evaluated on another. Results indicate robust generalization across SpDocVQA, InfographicsVQA, and SROIE
datasets.

Configuration SpDocVQA InfographicsVQA SROIE
Accuracy (%) ↑ H-Score ↓ Accuracy (%) ↑ H-Score ↓ Accuracy (%) ↑ H-Score ↓

Full HonestVQA Model 75.9 0.113 68.3 0.134 80.2 0.096
No Alignment Loss 72.1 0.172 65.0 0.193 76.4 0.141
No Contrastive Loss 73.0 0.160 65.2 0.189 77.2 0.133

Table 4: Ablation study of HonestVQA showing the impact of removing alignment or contrastive loss on Accuracy
and H-Score across SpDocVQA, InfographicsVQA, and SROIE. The full model consistently achieves the best
performance and calibration.

0.210 to 0.132 after calibration. This demonstrates
that HonestVQA effectively mitigates the risk of
misleading the user by suppressing confident but
incorrect answers.

5.2 Cross-Domain Generalization Testing
To assess the robustness and generalization ability
of HonestVQA framework, we conduct a series
of cross-domain testing experiments. These exper-
iments evaluate whether the hallucination detec-
tion model trained on one dataset can effectively
identify hallucinations in DocVQA outputs on dif-
ferent datasets. Such generalization is crucial in
real-world scenarios where the distribution of ques-
tions and visual-textual content varies significantly
across domains such as scanned documents, info-
graphics, and structurally diverse textual scenes.
We train HonestVQA on the source dataset and
evaluate it on a different target dataset without any
further fine-tuning, measuring hallucination detec-
tion performance using Accuracy and F1-score as
the primary metrics. From Table 3, we observe
that HonestVQA generalizes robustly across do-
main shifts. Notably, when trained on Infograph-
icsVQA and evaluated on SpDocVQA, the model
achieves a high F1-score of 76.1%, outperform-
ing the reverse setting (SpDocVQA→ Infograph-
icsVQA), which yields 71.8%. This suggests that
the high-density, information-rich visual patterns
in InfographicsVQA provide transferable induc-
tive biases that enhance hallucination detection in
more structured domains like documents. Simi-
larly, the SROIE → SpDocVQA setup results in
an F1 of 72.3%, indicating that ethical reason-

ing features captured during training enhance in-
terpretability across syntactic domains. However,
the model exhibits relatively lower performance
when transferring from SpDocVQA → SROIE
(F1 = 69.8%), highlighting the challenges posed
by ethical hallucination detection under unfamil-
iar structural constraints. Nonetheless, the use
of uncertainty-aware calibration via confidence-
alignment and contrastive ethical loss contributes to
soft regularization of decision boundaries, allowing
for improved generalization even in low-overlap
semantic settings. Interestingly, models trained on
SROIE also generalize well to visually and seman-
tically distinct domains such as InfographicsVQA,
achieving 67.2% F1. This supports our hypothesis
that the inclusion of contrastive ethical supervi-
sion enforces more generalizable representations.
Furthermore, the relative drop in performance in
domain transfer settings (typically within 4%–6%
of in-domain results) underscores the importance
of calibration-aware models in mitigating perfor-
mance degradation due to domain shift.

5.3 Ablation Study
To thoroughly evaluate the contribution of individ-
ual modules in HonestVQA, we conduct an abla-
tion study across three datasets by systematically
disabling the confidence-accuracy alignment loss
and the contrastive ethical enforcement loss. Ta-
ble 4 shows that the removal of either module con-
sistently degrades performance across all datasets
in terms of accuracy and H-Score, confirming their
complementary roles. For instance, on SpDocVQA,
the full model achieves 75.9% accuracy and an
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Hyperparameter Values Tested SpDocVQA (Acc ↑, H ↓) InfographicsVQA (Acc ↑, H ↓) SROIE (Acc ↑, H ↓)

Alignment Weight α

0.1 (70.5, 0.195) (63.7, 0.211) (74.5, 0.157)
0.5 (74.8, 0.119) (66.9, 0.148) (78.2, 0.112)
1.0 (75.9, 0.113) (68.3, 0.134) (80.2, 0.096)
1.5 (74.6, 0.118) (67.5, 0.141) (79.4, 0.107)
2.0 (72.7, 0.145) (65.8, 0.174) (77.0, 0.134)

Contrastive Margin m

0.1 (71.2, 0.178) (64.5, 0.198) (75.3, 0.151)
0.3 (74.9, 0.120) (66.7, 0.150) (78.7, 0.108)
0.5 (75.9, 0.113) (68.3, 0.134) (80.2, 0.096)
0.7 (74.7, 0.117) (67.1, 0.143) (79.3, 0.105)
1.0 (72.9, 0.153) (65.2, 0.177) (77.2, 0.127)

Loss Weight λ1 (Alignment)

0.01 (72.3, 0.164) (64.9, 0.192) (75.8, 0.149)
0.05 (74.5, 0.125) (66.5, 0.153) (78.9, 0.109)
0.10 (75.9, 0.113) (68.3, 0.134) (80.2, 0.096)
0.15 (74.2, 0.130) (67.4, 0.142) (79.1, 0.104)
0.20 (72.5, 0.148) (65.9, 0.169) (77.4, 0.129)

Loss Weight λ2 (Contrastive)

0.01 (72.8, 0.160) (65.0, 0.186) (76.6, 0.141)
0.03 (74.6, 0.122) (66.7, 0.151) (78.8, 0.110)
0.05 (75.9, 0.113) (68.3, 0.134) (80.2, 0.096)
0.07 (74.3, 0.127) (67.0, 0.144) (79.2, 0.103)
0.10 (73.1, 0.142) (65.4, 0.172) (77.3, 0.125)

Table 5: Sensitivity analysis of alignment and contrastive hyperparameters on SpDocVQA, InfographicsVQA, and
SROIE datasets. Note: Accuracy (Acc) and H-Score (H) are used as abbreviated.

Model SpDocVQA InfographicsVQA SROIE

IoU (%) ↑ Halluc. Acc.
(%) ↑

IoU (%) ↑ Halluc. Acc.
(%) ↑

IoU (%) ↑ Halluc. Acc.
(%) ↑

LayoutLMv3 (Fujitake, 2024) 58.3 71.2 54.9 69.5 52.1 67.8
DONUT (Li et al., 2024) 60.7 73.0 56.8 70.3 53.7 68.4
HonestVQA 69.1 78.5 65.4 76.8 62.7 74.2

Table 6: Multi-modal consistency evaluation across datasets. Note: IoU measures alignment between visual
attention and textual grounding. Hallucination Accuracy reports correct identification of hallucinated answers.
HonestVQA achieves superior multi-modal alignment and hallucination detection performance.

H-Score of 0.113. Removing the alignment loss
drops accuracy to 72.1% and worsens H-Score to
0.172. On InfographicsVQA, the full model yields
68.3% accuracy and an H-Score of 0.134, whereas
removing contrastive enforcement lowers accuracy
to 65.2% and degrades H-Score to 0.189. Simi-
lar trends are observed on SROIE, where the full
model achieves 80.2% accuracy and 0.096 H-Score,
significantly outperforming the ablated variants.

We further conduct a hyperparameter sensitivity
analysis on alignment weight α, contrastive margin
m, and loss weights λ1 and λ2 across three datasets
and summarize the trends in Table 5. The model
maintains high performance for α between 0.5 and
1.5, margin m from 0.3 to 0.7, and loss weights
λ1 = 0.1, λ2 = 0.05. Deviations outside these
ranges result in decreased accuracy or calibration
degradation.

6 Additional Analysis

6.1 Multimodal Consistency Evaluation

A critical aspect of hallucination detection in
DocVQA is the model’s ability to ensure con-

sistency between the visual features and the tex-
tual grounding of answers. To evaluate how well
HonestVQA aligns the visual and textual modal-
ities in its hallucination judgments, we conduct a
multi-modal consistency evaluation across the three
datasets. Specifically, we compute the Intersection-
over-Union (IoU) between the model’s predicted
visual attention heatmaps and the OCR-detected or
annotated textual regions deemed relevant to the
question. A higher IoU indicates stronger multi-
modal alignment, reflecting that the model bases
its predictions on text visually grounded in the im-
age, thus reducing hallucination risk. We report
the average IoU scores alongside hallucination de-
tection accuracy for HonestVQA and compare it
against two strong baselines: LayoutLMv3 (Fu-
jitake, 2024) and DONUT (Li et al., 2024) with-
out calibration. The results are summarized in Ta-
ble 6. As seen in Table 6, HonestVQA consistently
achieves significantly higher IoU scores compared
to baselines, demonstrating a stronger alignment
between the visual evidence and textual regions
considered during inference. For instance, on the
SpDocVQA dataset, HonestVQA attains an IoU
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Model Inference Time (ms) FLOPs (Giga) Memory Usage (MB)

Avg ↓ Std Dev ↓ Avg ↓ Std Dev ↓ Avg ↓ Std Dev ↓

LayoutLMv3 (Fujitake, 2024) 112.4 5.1 64.8 1.3 2950 120
UDOP (Wang et al., 2023a) 98.7 4.3 58.6 1.1 2710 105
DONUT (Li et al., 2024) 105.1 4.7 62.2 1.2 2830 110
HonestVQA 119.6 5.6 69.4 1.4 3075 130

Table 7: Latency and efficiency comparison of HonestVQA and baselines on SpDocVQA, InfographicsVQA, and
SROIE datasets. Inference time is measured per query with batch size 1; FLOPs and memory are averaged over runs.
HonestVQA incurs a moderate increase in computational cost due to calibration modules but remains practical for
deployment.

of 69.1%, which is approximately 8.4% absolute
improvement over DONUT (Li et al., 2024) and
10.8% over LayoutLMv3 (Fujitake, 2024). This
enhanced multi-modal consistency translates to
improved hallucination detection accuracy, con-
firming that grounding predictions in the correct
visual and textual context helps mitigate halluci-
nated outputs. We further analyze the distribution
of IoU scores at the instance level and observe
that HonestVQA reduces instances with low cross-
modal agreement (IoU < 40%) by over 25% rela-
tive to the baselines. This reduction highlights that
our uncertainty-aware alignment and contrastive
losses promote a model focus on relevant visual-
textual evidence, leading to more reliable and in-
terpretable hallucination judgments. Note: UDOP
(Wang et al., 2023a) was excluded from the multi-
modal consistency evaluation as it does not pro-
vide explicit or interpretable visual attention maps
tied to OCR-detected regions, which are essential
for computing IoU-based alignment metrics. Un-
like LayoutLMv3 (Fujitake, 2024), DONUT (Li
et al., 2024), and HonestVQA, which utilize struc-
tured visual-textual grounding mechanisms, UDOP
(Wang et al., 2023a) primarily relies on unified
vision-language pretraining without fine-grained
token-region correspondence. As a result, evaluat-
ing multi-modal alignment using IoU would not be
meaningful or comparable for UDOP (Wang et al.,
2023a).

6.2 Computational Analysis

We evaluate the efficiency of HonestVQA against
baseline DocVQA models in terms of inference
latency, FLOPs, and memory usage. All models
are tested using an NVIDIA RTX 3090 GPU and
Intel Xeon CPU with a batch size of 1 to simu-
late real-time settings. As shown in Table 7, Hon-
estVQA incurs an average latency of 119.6 ms
per query—6%–20% slower than baselines—due
to uncertainty calibration and contrastive modules.

(a) Ethical Risk Heatmap
Confidence vs Uncertainty

(b) Semantic Drift under Am-
biguity

(c) Contrastive Embedding
Separation

(d) Attention IoU over
Epochs

Figure 1: HonestVQA enhances ethical calibration, se-
mantic stability, embedding separation, and multimodal
grounding through uncertainty-aware learning,

It consumes 69.4 GFLOPs (7%–18% higher) and
3075 MB memory (5%–14% higher). Despite the
overhead, it remains deployable in real-time sys-
tems where ethical reliability is critical.

6.3 Qualitative Analysis

HonestVQA improves ethical alignment by reduc-
ing overconfidence in uncertain scenarios, as seen
in the risk heatmap (Fig. 1a). Semantic drift under
ambiguity is mitigated, with more stable embed-
dings (Fig. 1b). Contrastive embedding separation
(Fig. 1c) shows clearer distinction between aligned
and misaligned responses, supporting improved
representation learning. Finally, Fig. 1d shows con-
sistent attention patterns over epochs, highlighting
better multimodal grounding and interpretability.
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7 Conclusion and Future Works

In this work, we introduced HonestVQA, a novel
framework that integrates uncertainty-aware align-
ment and contrastive ethical enforcement to ef-
fectively detect hallucinations in DocVQA mod-
els. Through comprehensive experiments on di-
verse datasets—we demonstrated significant im-
provements in answer correctness, calibration, and
cross-domain generalization compared to strong
baselines. Our ablation studies confirmed the com-
plementary role of each component, and efficiency
analyses showed HonestVQA practical feasibil-
ity. Future research will focus on advancing do-
main adaptation models to further enhance robust-
ness across unseen data distributions, and exploring
lightweight calibration modules for deployment on
edge devices. Additionally, incorporating user feed-
back for interactive hallucination correction and
extending the framework to multimodal dialogue
systems represent promising directions to improve
DocVQA reliability and ethical safety.

Limitations

While HonestVQA significantly improves hallu-
cination detection and ethical calibration, several
limitations remain. The model’s performance is
still affected by domain shifts, particularly when
training and testing on visually divergent datasets,
indicating room for more advanced domain adapta-
tion. HonestVQA calibration modules introduce
additional computational overhead, which may con-
strain deployment in highly resource-limited en-
vironments. Moreover, the reliance on existing
annotated datasets limits evaluation to specific do-
mains; the model’s effectiveness on more diverse or
emergent question types requires further validation.
Finally, although the framework mitigates halluci-
nations, it does not guarantee complete elimination,
highlighting the need for complementary human-
in-the-loop verification for critical applications.

Ethics Statement

This work aims to enhance the trustworthiness
and ethical reliability of DocVQA models by re-
ducing hallucinated and potentially misleading
answers. HonestVQA promotes transparency
through uncertainty-aware calibration, encourag-
ing responsible AI deployment. We acknowledge
the risk that no model can be entirely free of er-
rors or biases, especially when applied across di-
verse real-world scenarios. Thus, we emphasize

that HonestVQA is intended as a tool to assist,
not replace, human judgment, particularly in high-
stakes contexts. All datasets used comply with
their respective licenses, and no private or sensitive
data was involved. We encourage further research
on fairness, bias mitigation, and inclusivity to en-
sure equitable AI models, and advocate for ongoing
monitoring of model outputs to safeguard against
misuse or unintended harm.
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