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Abstract

Large Language Models (LLMs) demonstrate
strong multilingual capabilities but are costly
to deploy due to their size and computational
demands. To mitigate this, compression tech-
niques such as pruning and quantization are
widely used. However, these methods face two
key limitations: (1) they assume access to high-
quality instruction or calibration data, which is
often unavailable for low-resource languages;
and (2) they aim to preserve multilingual gen-
erality, making them inefficient for language-
specific applications. We introduce LANG-
COMPRESS, a language-aware compression
framework that enhances existing compression
methods for targeted deployment. LANGCOM-
PRESS is method-agnostic and improves state-
of-the-art pruning and quantization approaches.
It features two core components: an iterative
self-supervised pipeline for generating instruc-
tion data in the target language, and a vocab-
ulary simplification strategy that reduces the
LM head to focus on key tokens. Experiments
on perplexity, translation, and summarization
tasks show that LANGCOMPRESS improves
performance in the target language. The code
and data are publicly available.

1 Introduction

Large Language Models (LLMs) are massive neu-
ral networks, often comprising billions of parame-
ters and trained on trillions of tokens. Due to the
immense cost of training such models from scratch,
the community has largely adopted the founda-
tion model paradigm, in which a single pre-trained
LLM is reused across a wide range of downstream
tasks. Despite their versatility, LLMs are computa-
tionally expensive to deploy, both in terms of mem-
ory usage and inference time. This high inference
cost has driven widespread interest in model com-
pression techniques to reduce the computational
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Ours: LangCompress Model Compression

Compressed

LLM

Original

LLM

Prune/Quantize

Recovered

LLM

Compressed

LLM

Original

LLM

Prune/Quantize

Recovered

LLM

Simplify LM Head Simplify LM Head

Recovery train

State-of-the-art Model Comression

Recovery train

Key Token
Analyze

Instruct Data
Synthesis

Calibrate onInstruct data

not available
Recovery on 

Instruct data

Calibrate on Recovery on 

Key Tokens

Figure 1: Model compression in a specific language
(Japanese in the example) using SOTA compression
approach and our LANGCOMPRESS approach.

and memory requirements of LLMs without signif-
icantly degrading performance.

Two of the most common model compression
strategies are pruning (Frantar and Alistarh, 2023;
Zhang et al., 2024; Sun et al., 2024) and quantiza-
tion (Frantar et al., 2023; Lin et al., 2024). While
pruning removes less important weights or neurons
from the model, quantization reduces the precision
of weights and activations. Pruning approaches
typically require recovery fine-tuning to maintain
performance, while quantization techniques often
need calibration data to determine optimal quantiza-
tion scales. While these approaches show great effi-
ciency in English, they are not designed to maintain
performance in other languages (Figure 1, Top). In
real-world applications—especially under resource-
constrained conditions—users often wish to de-
ploy LLMs for one or a few specific languages
rather than all languages supported by the LLM.
Unfortunately, current compression methods are
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not designed to be language-adaptive. For example,
abundant instruction-tuning datasets are available
in English, facilitating efficient recovery training
and calibration. In contrast, such data is scarce
or non-existent in many low-resource languages,
hindering the application of existing compression
techniques.

Another source of inefficiency lies in the final
layer of an LLM: the language modeling (LM)
head, which maps hidden representations to a large
vocabulary covering many languages. Our analy-
sis reveals that for a given language, a very small
subset of the full vocabulary is actually used. For
instance, just 5% of the model’s vocabulary can
often cover more than 95% of the tokens used in
a specific language. This insight motivates a new
approach to simplify the LM head and adapt it to
a specific language, both to reduce model size and
improve performance.

We propose LANGCOMPRESS, a language-
aware compression framework tailored for adapting
LLMs to a specific language or a small set of target
languages (Figure 1, Bottom). LANGCOMPRESS is
method-agnostic and can be integrated into state-of-
the-art compression methods, including structured
pruning techniques such as SliceGPT and LLM-
Pruner, semi-structured pruning like SparseGPT,
and quantization approaches such as GPTQ and
AWQ.

To address the scarcity of instruction-tuning data
in many languages, LANGCOMPRESS uses the
LLM itself to iteratively generate synthetic instruc-
tion datasets in the target language. Furthermore,
we introduce a vocabulary simplification technique
that identifies key tokens sufficient for representing
the language and modifies the LM head accord-
ingly. This dual approach reduces the model’s size
and improves its focus on the target language. This
study has the following contributions.

• A self-supervised pipeline for generating in-
struction data in any language, enabling recov-
ery training and calibration in the absence of
publicly available resources.

• A method for analyzing and selecting core
vocabulary tokens in a target language, and
adapting the LM head of an LLM to focus on
these tokens.

• Empirical evaluations demonstrating that
LANGCOMPRESS can be effectively applied
to state-of-the-art pruning and quantization

techniques, yielding substantial performance
improvements on language-specific tasks.

2 Preliminaries

LLM and Vocabulary. Let M denote a pre-
trained LLM with vocabulary V . The model com-
prises transformer decoder layers that operate on
d-dimensional hidden states. The final layer’s out-
put is projected through a language modeling (LM)
head with weight matrix WLM ∈ R|V|×d, produc-
ing logits over the vocabulary.
M includes a vocabulary dictionary (tokenizer)

that bijectively maps tokens to their IDs. At each
generation step, the model outputs logits l ∈ R|V|

representing the next-token distribution. Generated
token IDs are subsequently mapped back to natural
language tokens via the vocabulary dictionary.

Unstructured Pruning. Pruning reduces model
size and computation by removing unimportant
weights or structures. It can be categorized into un-
structured, semi-structured, and structured pruning.
Unstructured and semi-structured pruning methods
(Hassibi et al., 1993; Li and Louri, 2021; Fran-
tar and Alistarh, 2023; Sun et al., 2024; Zhang
et al., 2024; Le et al., 2025) zero out weights in
the model, creating sparsity. Semi-structured prun-
ing imposes an N :M constraint, where at least N
out of every M consecutive weights are pruned.
In practice, only semi-structured pruning achieves
speedup on compatible NVIDIA hardware (Mishra
et al., 2021). We adopt SparseGPT (Frantar and
Alistarh, 2023) for semi-structured pruning in our
experiments. These methods rely on calibration
data, and the data’s domain or language can signifi-
cantly affect pruning outcomes.

Structure Pruning. Structured pruning removes
entire model components (layers, attention heads)
to reduce model size (Ashkboos et al., 2024; Ma
et al., 2023). This approach requires both calibra-
tion data during pruning and recovery fine-tuning
on task-specific data to restore performance.

Quantization. Quantization compresses models
by reducing parameter precision, typically convert-
ing 16/32-bit floats to 8/4-bit integers. For a weight
matrix W, each element w is mapped to integer
values ŵ = round(w/s) + z using scale s and
zero-point z, then dequantized as w̃ = s(ŵ − z)
during inference. Optimal scaling requires cali-
bration data, posing challenges for low-resource
languages where such data is scarce.
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Figure 2: Instruction data synthesis pipeline in the target language, with an example of Japanese language.

3 LANGCOMPRESS

3.1 Overview

LANGCOMPRESS is designed to be applied on
top of any existing compression technique—such
as structured pruning, semi-structured pruning, or
quantization—which we refer to as the backbone
method. The LANGCOMPRESS pipeline consists of
two main components: instruction data synthesis
and vocabulary simplification. At the beginning
of the compression process, we use the original
pretrained LLM to synthesize instruction data in
the target language. This synthetic dataset is sub-
sequently employed in the calibration and recov-
ery fine-tuning stages of the backbone method, en-
abling effective compression even in low-resource
language settings. Concurrently, we perform vo-
cabulary analysis to identify a compact set of key
tokens that cover the majority of the target lan-
guage’s usable vocabulary. After the compression
step is complete, we simplify the language mod-
eling (LM) head by retaining only the parameters
corresponding to these key tokens. This modifica-
tion reduces the model size and enhances its focus
on the target language.

3.2 Data Synthesis for Target Language

Figure 2 (left) shows the process of instruction data
synthesis for a target language with an example of
Japanese. Previous study shows that because of
the auto-regressive nature of LLM, with a suitable
system prompt, it can generate the instruction when
we input only the pre-query templates up to the
position reserved for user messages. One problem
is that the although the system prompt is in the
target language, the LLM does not guarantee to
generate the instruction in the target language. We
address this using an iterative pipeline to gradually

add few-shot examples to the chat template until
the LLM’s probability of generating instruction
data in the target language is stable.

Algorithm 1 Data Synthesis for Target Language
Require: Target language L
Require: System prompt in target language SL
Require: Original LLMM
Require: Language filter function ffilter
Require: Chat template function ftemplate
Require: Maximum few-shot examples K
Require: Number of examples to generate N
1: Initialize dataset D ← ∅
2: Initialize few-shot counter k ← 0
3: Initialize prompt p← ftemplate(SL)
4: while |D| < N do
5: Sample instructions I←M(p, temp = 1.0)
6: Filter instructions I← ffilter(I, target = L)
7: for i = 1 to |I| do
8: Ri ←M(Ii) ▷ Generate response
9: if k < K then ▷ Append few-shot example

10: p← p⊕ ftemplate(Ii,Ri)
11: k ← k + 1
12: end if
13: D ← D ∪ {(Ii,Ri)}
14: end for
15: end while
16: return D

Algorithm 2 Key Token for Target Language
Require: Target language L
Require: Original LLMM
Require: Tokenizer Ftoken ofM
Require: Raw corpus CL in language L
Require: Number of desired key tokens k
1: Tokenize corpus: T← Ftoken(CL)
2: Initialize frequency map: F ← ∅
3: for each token t ∈ T do
4: F [t]← F [t] + 1
5: end for
6: Sort tokens by frequency: S← SortDescending(F)
7: Select top-k tokens: Vsimplify ← {S1,S2, . . . ,Sk}
8: return Vsimplify

Algorithm 1 outlines the instruction data synthe-
sis process. We begin by initializing the system
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Figure 3: Few-shot Japanese count in the prompt ver-
sus probability of Japanese instruction generation on
Llama3-8B-Instruct

prompt in the target language and applying the
chat template. The LLM then samples a batch of
instructions using a temperature-based decoding
strategy. These instructions may appear in various
languages, commonly English or the target lan-
guage. A probabilistic N-gram language filter is
applied to retain only those in the target language.
The LLM subsequently generates responses for the
filtered instructions, forming instruction–response
pairs.

These pairs are stored as instruction data and
also appended to the prompt as few-shot examples
using the chat template, improving the quality of
future generations. The process iteratively repeats:
each round samples new instructions using the up-
dated prompt, continuing until a desired number of
samples is collected. During the early iterations,
new few-shot examples are continually added un-
til the probability of generating instructions in the
target language exceeds a set threshold. Figure 3
illustrates the relationship between the number of
few-shot Japanese examples and the probability of
generating instructions in Japanese. In most cases,
we use 10 as the maximum number of few-shot
examples.

3.3 Vocabulary Simplification

Figure 2 (right) and Algorithm 2 illustrate the vo-
cabulary analysis process used to select key tokens
for simplifying the LM head. Starting from a raw
target-language corpus (e.g., Wikipedia, multilin-
gual C4, FineWeb), we sample and tokenize the
data to compute token frequencies. Sorting these,
we select the top k most frequent tokens as key
tokens. Figure 4 shows that the top 5% of tokens
cover over 95% of tokens in FineWeb. We then
reshape the LM Head to retain only rows for these
key tokens.
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Figure 4: Coverage on FineWeb of the top 1% to 20%
highest-frequency vocabulary tokens, averaged across
six languages: German, Spanish, French, Japanese, Chi-
nese, and Vietnamese.

3.4 LANGCOMPRESS’s Compression
With both the instruction data D and key tokens
Vsimplify in the target language, we compress the
LLM using a chosen backbone method. To simplify
the LM head, we follow prior work on vocabulary
reduction (Zhao et al., 2025) by constructing a new
matrix W̃LM ∈ R|Vsimplify|×d from the original LM
head WLM ∈ R|V|×d:

W̃LM[i, :] = WLM[Vsimplify[i], :]

where i = 1, . . . , |Vsimplify|. We then replace the
original LM head with W̃LM.

Finally, we perform compression using the back-
bone method and the instruction dataset D. For
pruning methods, D is used for recovery training;
for quantization methods, it serves as the calibra-
tion set.

4 Experiments

4.1 Models
We evaluate the following model families:

Llama 3 Llama-3-8B, Llama-3-8B-Instruct, and
Llama-3.1-8B (Grattafiori et al., 2024), each with
a 128K-token vocabulary.

Llama 2 Llama-2-7B with a 32K vocabulary.
Qwen 2.5 Qwen-2.5-7B (Bai et al., 2023) with

a vocabulary of approximately 152K tokens.
Phi 3 Phi-3-mini-4k-instruct (Abdin et al., 2024)

with a 32K-token vocabulary.

4.2 Tasks and Datasets
Perplexity. We measure the perplexity of LLMs
using Wikipedia in the target language. Lower

2071



Method DE ES FR JA ZH VI

Llama3-8B
Original 5.08 5.13 5.40 6.34 8.46 6.44

GPTQ 49.25 64.52 781.84 14.79 36.60 67.48
GPTQ-LC 30.22 6.41 71.61 9.56 14.45 47.15

AWQ 5.62 5.64 5.90 7.22 9.52 7.34
AWQ-LC 5.55 5.52 5.82 7.16 9.47 7.22

SparseGPT 32.60 22.85 25.01 130.19 136.78 61.87
SparseGPT-LC 14.81 12.60 16.55 22.04 29.28 17.87

SliceGPT 156.19 162.34 86.33 65K 41K 2K
SliceGPT-LC 17.57 14.80 15.25 37.41 87.13 22.48

LLM-Pruner 8.06 7.62 8.03 10.18 14.90 11.25
LLM-Pruner-LC 7.84 7.53 7.87 9.78 13.52 10.17

Llama3.1-8B
Original 5.03 5.09 5.37 6.34 8.39 6.36

LLM-Pruner 7.87 7.40 7.81 10.10 14.26 10.99
LLM-Pruner-LC 7.62 7.26 7.65 9.78 13.03 9.59

Qwen2.5-7B
Original 6.22 5.75 6.02 7.31 10.15 6.32

GPTQ 6.68 6.13 6.33 8.36 11.88 7.07
GPTQ-LC 6.47 5.98 6.27 7.68 10.76 6.58

AWQ 6.62 6.05 6.35 7.82 10.73 6.69
AWQ-LC 6.61 6.04 6.05 7.80 10.72 6.68

SparseGPT 17.97 13.39 14.28 45.22 40.11 29.12
SparseGPT-LC 9.97 8.63 10.24 12.51 19.32 9.65

Llama2-7B
Original 5.67 5.06 5.32 3.43 4.26 2.53

SliceGPT 233.12 329.72 171.28 5K 8K 12.17
SliceGPT-LC 16.20 16.32 15.50 11.20 15.45 6.14

LLM-Pruner 8.74 7.50 7.60 5.18 6.70 3.69
LLM-Pruner-LC 8.29 7.26 7.52 4.86 6.70 3.32

Llama3-8B-Instruct
Original 6.71 6.95 7.18 9.16 12.39 9.22

SliceGPT 171.88 160.23 488.79 58K 29K 3K
SliceGPT-LC 20.92 15.23 15.67 86.33 103.96 28.62

LLM-Pruner 9.82 9.18 9.66 12.97 19.81 15.20
LLM-Pruner-LC 9.18 8.68 9.10 11.53 17.11 12.32

Phi3-Instruct
Original 5.83 5.15 5.49 6.63 7.80 4.77

SliceGPT 196.46 181.20 397.88 5K 3K 16.00
SliceGPT-LC 20.19 14.53 14.52 14.73 27.02 9.47

Table 1: Perplexity (lower is better) on target-language
Wikitext. ‘LC’ = LANGCOMPRESS applied. Original
models in gray , baselines in red , and LANGCOM-

PRESS results in blue .

perplexity indicates better language modeling per-
formance.

Summarization. For summarization, we use the
MLSum dataset (Scialom et al., 2020) and evaluate
performance with ROUGE scores.

Translation. For translation, we use the FLO-
RES dataset (Goyal et al., 2022), translating from
English to the target language. Performance is eval-
uated using BLEU scores.

4.3 Model Compression Baselines
LANGCOMPRESS can be integrated with various
model compression methods to enhance perfor-
mance in a target language. We evaluate the fol-
lowing techniques:

Structured Pruning. We use LLM-
Pruner (Ma et al., 2023) (20%–50% sparsity) and
SliceGPT (Ashkboos et al., 2024) (10%–50%
sparsity).

Semi-Structured Pruning. We adopt
SparseGPT (Frantar and Alistarh, 2023) with a 2:4
sparsity ratio—the only scheme known to yield
actual speedups (Mishra et al., 2021).

Quantization. We use GPTQ (Frantar et al.,
2023) and AWQ (Lin et al., 2024), quantize weights
to 4 bits while keeping activations at 16 bits, bal-
ancing efficiency and accuracy.

4.4 Languages
We conduct experiments on Latin-based
scripts—German (DE), Spanish (ES), French (FR),
and Vietnamese (VI)—as well as logographic
scripts—Japanese (JA) and Chinese (ZH).

4.5 Experimental Settings
Instruction Data Synthesis. For LANGCOM-
PRESS, we use the Alpaca instruction tem-
plate (Taori et al., 2023) for foundation models
(e.g., LLaMA-3-8B, Qwen2.5-7B), and the default
chat templates for instruction-tuned models (e.g.,
LLaMA-3-8B-Instruct, Phi3-Instruct). We apply
lingua-py* as a probabilistic N-gram language fil-
ter. We set the few-shot maximum to K = 10. For
fair comparison, we generate the same amount of
instruction data as used in the recovery settings of
each baseline compression method.

Vocabulary Simplification. We use the
FineWeb2 corpus (Penedo et al., 2025) as the raw
data source. For LLaMA-3 and Qwen2.5 models,
we set the number of key tokens to k = 32,000,
and for LLaMA-2 and Phi3 models, we use
k = 16,000.

5 Results

5.1 Main Results
Perplexity. Table 1 reports the perplexity results.
LANGCOMPRESS consistently improves the per-
plexity of compressed models across various lan-
guages and architectures. For each compression

*https://github.com/pemistahl/lingua-py
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Method DE ES FR JA VI

Llama3-8B
Original 17.42 17.92 25.01 21.73 27.70

GPTQ 23.11 16.13 31.91 6.24 25.65
GPTQ - LC 23.55 18.57 32.98 17.93 35.31

AWQ 10.14 15.67 11.71 4.12 29.17
AWQ - LC 13.65 15.93 25.98 4.64 30.59

SparseGPT 0.60 0.56 0.62 0.00 0.26
SparseGPT - LC 1.26 13.34 1.06 0.00 1.23

SliceGPT 0.78 0.67 0.88 0.0 0.20
SliceGPT - LC 3.60 5.57 5.93 8.08 5.63

LLM-Pruner 13.89 18.67 25.74 24.12 23.09
LLM-Pruner - LC 17.88 19.81 26.53 32.45 30.83

Llama3.1-8B
Original 18.26 21.38 32.31 37.30 25.39

LLM-Pruner 8.87 16.87 15.58 24.17 11.47
LLM-Pruner - LC 15.51 21.87 29.18 31.73 21.16

Qwen2.5-7B
Original 19.88 15.61 12.69 39.56 13.63

GPTQ 10.98 19.60 36.35 16.86 13.29
GPTQ - LC 22.59 22.01 38.28 19.06 17.95

AWQ 3.15 16.70 11.14 6.94 11.38
AWQ - LC 3.94 31.04 36.11 15.80 13.13

SparseGPT 7.27 10.24 17.85 4.15 6.18
SparseGPT - LC 18.50 18.95 25.41 22.63 25.02

Llama2-7B
Original 23.01 25.57 38.03 21.84 34.01

SliceGPT 0.42 0.19 0.00 0.05 0.00
SliceGPT - LC 4.32 13.02 5.34 9.03 12.88

LLM-Pruner 4.06 4.46 6.21 6.82 1.76
LLM-Pruner - LC 5.64 6.65 11.26 10.47 2.36

Llama3-8B-Instruct
Original 8.56 3.97 15.35 27.46 19.04

SliceGPT 2.94 0.59 0.37 0.62 2.04
SliceGPT - LC 13.18 4.36 4.13 9.40 0.00

LLM-Pruner 1.71 5.41 7.39 7.54 9.74
LLM-Pruner - LC 20.13 17.67 12.47 20.95 17.50

Phi3-Instruct
Original 27.25 25.35 43.09 34.15 12.08

SliceGPT 2.60 1.70 2.57 1.13 0.58
SliceGPT - LC 3.26 4.95 6.02 5.18 0.00

Table 2: Translation performance (BLEU) on FLO-
RES from English to target languages. ‘LC’ indicates
LANGCOMPRESS applied to the respective compression
method. Original model results are in gray , baselines

in red , and LANGCOMPRESS results in blue .

Method DE ES FR

Llama3-8B
Original 11.36 11.18 11.08

GPTQ 12.15 10.64 14.02
GPTQ - LC 13.36 10.82 14.27

AWQ 11.80 10.78 13.85
AWQ - LC 12.62 10.62 13.31

SparseGPT 11.27 9.26 12.44
SparseGPT - LC 13.62 10.51 13.25

SliceGPT 3.38 2.36 3.49
SliceGPT - LC 10.87 11.13 11.14

LLM-Pruner 12.00 10.54 11.72
LLM-Pruner - LC 12.19 10.59 13.30

Llama3.1-8B
Original 11.15 10.91 14.91

LLM-Pruner 11.70 10.44 11.63
LLM-Pruner - LC 11.78 10.73 13.98

Llama2-7B
Original 12.56 11.82 13.97

SliceGPT 3.31 2.51 2.47
SliceGPT - LC 9.58 10.97 11.54

LLM-Pruner 8.19 10.44 10.78
LLM-Pruner - LC 8.19 10.64 10.99

Llama3-8B-Instruct
Original 16.09 13.53 14.97

SliceGPT 4.09 3.12 3.65
SliceGPT - LC 14.58 10.94 12.18

LLM-Pruner 14.52 11.87 14.82
LLM-Pruner - Ours 14.32 12.57 15.97

Phi3-Instruct
Original 14.30 12.02 13.30

SliceGPT 2.07 1.97 2.16
SliceGPT - LC 8.20 10.59 11.63

Table 3: Summarization performance (ROUGE-Lsum)
on DE, ES, and FR. ‘LC’ denotes LANGCOMPRESS
applied to the corresponding compression method. Orig-
inal models are highlighted in gray , baselines in red ,

and LANGCOMPRESS results in blue .

method—GPTQ, AWQ, SparseGPT, SliceGPT,
and LLM-Pruner—integrating LANGCOMPRESS

yields significant gains, especially for non-English
languages. Improvements span multiple language
families, including European (e.g., German, Span-
ish, French), East Asian (e.g., Japanese, Chinese),
and Southeast Asian (e.g., Vietnamese), demon-
strating the method’s language-agnostic effective-
ness. These gains hold across diverse base models
such as LLaMA variants, Qwen2.5, and Phi3, con-
firming the robustness and general applicability of
LANGCOMPRESS under compression.

Downstream Tasks. Table 2 presents translation
performance (BLEU) on the FLORES benchmark
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from English to various target languages. LANG-
COMPRESS consistently enhances the performance
of existing compression methods across languages.
These improvements are observed across differ-
ent techniques—pruning and quantization—and
remain robust across diverse model architectures,
including LLaMA-2, LLaMA-3, Qwen2.5, and Phi-
3. Similarly, Table 3 reports summarization perfor-
mance (ROUGE-Lsum). LANGCOMPRESS again
achieves consistent gains over baseline compres-
sion methods across languages, with improvements
that persist across both pruning and quantization,
as well as across multiple architectures.

5.2 Analysis
Perplexity Across Sparsity. We evaluate LANG-
COMPRESS under varying sparsity levels using
two structured pruning methods—SliceGPT and
LLM-Pruner on LLaMA-3-8B (Figure 5). LANG-
COMPRESS consistently reduces perplexity across
all sparsity settings. Notably, improvements with
LLM-Pruner become more significant at higher
sparsity, indicating that LANGCOMPRESS is es-
pecially effective in high-sparsity regimes. For
SliceGPT, gains are substantial and stable across
all levels.

Comparison with Raw Text Calibration. Quan-
tization methods such as GPTQ and AWQ can use
raw text (e.g., C4) for calibration. However, our
results show that instruction-formatted data yields
better calibration. As shown in Figure 6a, LANG-
COMPRESS-generated instruction data consistently
outperforms raw text, leading to improved perplex-
ity and demonstrating its effectiveness for quanti-
zation.

Ablation Study. We examine the individual con-
tributions of instruction data synthesis and vocabu-
lary simplification in LANGCOMPRESS. Figure 6b
shows the perplexity results using LLM-Pruner and
SliceGPT. Both components contribute to perfor-
mance gains, with the combination yielding the
best results.

Other Analysis. We evaluate the performance
and runtime across different LM head sizes after
simplification, with detailed results provided in
Appendix A.

6 Related Work

Unstructured and Semi-Structured Pruning.
Model pruning techniques include unstructured,

semi-structured, and structured pruning. Unstruc-
tured and semi-structured pruning (Hassibi et al.,
1993; Li and Louri, 2021; Frantar and Alistarh,
2023; Sun et al., 2024; Zhang et al., 2024; Le et al.,
2025) introduce sparsity by zeroing out weights
in the model. Semi-structured pruning imposes
an N :M constraint, requiring N zeros in every
M consecutive elements. In practice, only semi-
structured pruning with hardware support (e.g.,
NVIDIA GPUs) provides real speedup (Mishra
et al., 2021).

Structured Pruning. Structured pruning re-
moves entire components (e.g., layers, atten-
tion heads) from the model, reducing both size
and inference cost. LLM-Pruner (Ma et al.,
2023) prunes based on gradient importance, while
SliceGPT (Ashkboos et al., 2024) replaces full
weight matrices with smaller dense matrices. Un-
like unstructured methods, structured pruning phys-
ically removes parameters, reducing memory and
computation. We experiment with both LLM-
Pruner and SliceGPT.

Quantization. Quantization reduces model size
and computation by lowering the precision of
weights. GPTQ (Frantar et al., 2023) is a post-
training method using approximate second-order
information to preserve accuracy with 3–4 bit
weights. AWQ (Lin et al., 2024) introduces
an activation-aware approach, selecting salient
weights based on activation statistics. We experi-
ment with both GPTQ and AWQ.

7 Conclusions

We presented LANGCOMPRESS, a language-aware
compression framework that improves the effi-
ciency and performance of LLMs in language-
specific settings. By integrating self-supervised
instruction data generation with vocabulary simpli-
fication, LANGCOMPRESS overcomes key limita-
tions of existing compression methods, especially
in low-resource scenarios. It is compatible with
various pruning and quantization techniques and
consistently enhances performance on target lan-
guages while reducing model size. These results
highlight its potential for practical, multilingual,
and domain-specific LLM deployment.

8 Limitations

While LANGCOMPRESS demonstrates strong po-
tential for language-specific compression, some
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Figure 5: Perplexity (lower is better) of pruning methods using normal recovery and LANGCOMPRESS recovery,
measured with Llama3-8B on target-language Wikitext.
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Figure 6: Ablation study of LANGCOMPRESS on Quantization and Pruning. (a) GPTQ with different calibration data;
(b) Pruning methods with recovery schemes: no recovery, English data recovery (Alpaca), and LANGCOMPRESS
with/without vocabulary simplification.

limitations remain, primarily related to the trade-
off introduced by the language-specific LM head
and the preprocessing overhead in the compression
steps, as detailed below.

• Language-Specific Trade-off. Vocabulary
simplification enhances performance in the
target language but reduces multilingual ca-
pabilities. This makes LANGCOMPRESS

most suitable for deployment in resource-
constrained, language-specific scenarios.

• Preprocessing Overhead. Although infer-
ence remains lightweight, compression in-
volves additional steps such as instruction data
synthesis and vocabulary analysis, requiring
moderate computational resources and prepro-
cessing time.

• Limited Evaluation Scale. Our experiments
focus on smaller models (7B–8B) due to re-
source constraints. Future work will explore
scalability to larger models and evaluate per-
formance across more tasks and domains.
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A Vocabulary Simplification Sizes

During the vocabulary simplification step in the
LM head, we can control the vocabulary size, i.e.,
the number of key tokens retained. We experiment
with different vocabulary sizes and report the cor-
responding performance in Table 4 and the runtime
results in Table 5.

Performance of different vocabulary sizes . We
conducted an ablation study on vocabulary size and
its effect on the perplexity of LLAMA3 (128K full
vocabulary). As shown in Table 4, reducing the vo-
cabulary size can occasionally improve perplexity;
however, setting it too low leads to performance
degradation. Based on these results, a size of 32K
offers a balanced trade-off between compression
and performance.

Runtime in LM head. The primary objective
of the LM head simplification module is to guide
the LLM to focus on the target language vocab-
ulary while maintaining performance after prun-
ing or quantization. As a secondary benefit, it re-
duces the effective size of the LM head, leading to
lower latency and memory usage during inference.
We further measured the LM head runtime using
LLAMA3-8B (hidden size 4096, sequence length
2048, vocabulary size 128K) on 1,000 examples.
The results, shown in Table 5, demonstrate the effi-
ciency gains achieved through simplification.

Method Vocabulary Size JA ZH VI

Original Model - 6.34 8.46 6.44

SliceGPT Full 39.46 91.59 22.53
32K 37.41 87.13 22.48
16K 38.14 88.96 26.61
8K 39.85 101.44 30.47

GPTQ Full 9.92 18.43 79.88
32K 9.56 14.45 47.15
16K 10.21 18.52 89.52
8K 11.82 22.45 102.94

AWQ Full 7.36 9.59 8.21
32K 7.16 9.47 7.22
16K 7.57 10.26 9.18
8K 8.08 12.63 10.84

Table 4: Perplexity of models across languages (JA,
ZH, VI) under varying vocabulary sizes. Lower val-
ues indicate better performance. Original models are
highlighted in gray , full vocabulary as baselines in

red , and LANGCOMPRESS results with 32K vocabu-
lary in blue , representing the best perplexity within
each method.

Vocab Time Params Speedup LM Head Mem Saved

NVIDIA A100-PCIE-40GB

16K 1.50 65M 7.41× 88%
32K 2.88 131M 3.87× 75%
64K 5.54 262M 2.01× 50%
128K 11.13 525M 1.00× 0%

NVIDIA A40

16K 2.38 65M 7.70× 88%
32K 4.54 131M 4.04× 75%
64K 9.14 262M 2.01× 50%
128K 18.35 525M 1.00× 0%

NVIDIA RTX A6000

16K 2.34 65M 7.68× 88%
32K 4.43 131M 4.06× 75%
64K 8.89 262M 2.02× 50%
128K 17.95 525M 1.00× 0%

NVIDIA A100-80GB-PCIe

16K 1.27 65M 7.41× 88%
32K 2.52 131M 3.75× 75%
64K 4.73 262M 1.99× 50%
128K 9.43 525M 1.00× 0%

Table 5: LM head runtime and efficiency compari-
son across different GPUs and vocabulary sizes using
Llama3-8B. Full vocabulary as baselines in red .

2077


