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Abstract

We introduce INTERCHART, a diagnostic
benchmark that evaluates how well vision-
language models (VLMs) reason across multi-
ple related charts, a task central to real-world
applications such as scientific reporting, finan-
cial analysis, and public policy dashboards.
Unlike prior benchmarks focusing on isolated,
visually uniform charts, INTERCHART chal-
lenges models with diverse question types rang-
ing from entity inference and trend correlation
to numerical estimation and abstract multi-step
reasoning grounded in 2-3 thematically or struc-
turally related charts. We organize the bench-
mark into three tiers of increasing difficulty:
(1) factual reasoning over individual charts, (2)
integrative analysis across synthetically aligned
chart sets, and (3) semantic inference over vi-
sually complex, real-world chart pairs. Our
evaluation of state-of-the-art open- and closed-
source VLMs reveals consistent and steep ac-
curacy declines as chart complexity increases.
We find that models perform better when we de-
compose multi-entity charts into simpler visual
units, underscoring their struggles with cross-
chart integration. By exposing these systematic
limitations, INTERCHART provides a rigorous
framework for advancing multimodal reason-
ing in complex, multi-visual environments.

1 Introduction

Real-world settings such as scientific publications,
business reports, and journalism dashboards rarely
communicate data through a single chart. Instead,
insight often emerges from comparing or synthe-
sizing information across multiple visualizations.
These charts may differ in type, styling, or even
semantic framing, yet they jointly convey trends,
correlations, and complex relationships. For hu-
mans, reasoning across such heterogeneous visual
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inputs is intuitive. However, vision-language mod-
els (VLMs) continue to face significant challenges
when required to integrate information across visu-
ally heterogeneous chart collections.

While recent VLMs have shown strong perfor-
mance on single-chart visual question answering
(VQA) tasks (Masry et al., 2022; Methani et al.,
2020), they perform inconsistently to aggregate
information across multiple charts. Existing bench-
marks (Li and Tajbakhsh, 2023; Kantharaj et al.,
2022) have begun exploring multi-chart reasoning,
but they often rely on simplified scenarios, syn-
thetic data, static chart styles, or limited visual vari-
ation. Consequently, these datasets fail to capture
key challenges in real-world chart reasoning: visual
inconsistency, semantic misalignment, temporal
discontinuity, and multi-step aggregation. More-
over, their evaluation metrics typically depend on
string matching, which inadequately reflects se-
mantic understanding.

We introduce INTERCHART, a diagnostic
benchmark designed to probe how well VLMs can
reason across multiple charts with increasing levels
of complexity. Unlike prior datasets, INTERCHART

spans both synthetic and real-world charts, and in-
troduces a structured tiering system to evaluate
performance under controlled and unconstrained
conditions. It targets a range of reasoning abilities-
from simple fact extraction to multi-step, cross-
domain inference-allowing researchers to disentan-
gle visual parsing errors from reasoning failures.

INTERCHART is organized into three structured
subsets, each designed to isolate distinct reason-
ing challenges rather than to establish a predictive
hierarchy. The first tier, DECAF (Decomposed
Elementary Charts with Answerable Facts), evalu-
ates atomic fact retrieval and localized comparisons
within visually simplified, decomposed charts. The
second tier, SPECTRA (Synthetic Plots for Event-
based Correlated Trend Reasoning and Analysis),
probes correlated trend reasoning across synthetic
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chart pairs that share axes and stylistic variations,
testing a model’s ability to align related quanti-
ties and interpret event-based trends. The third
and most advanced tier, STORM (Sequential Tem-
poral Reasoning Over Real-world Multi-domain
charts), examines semantic abstraction and tem-
poral alignment across visually and thematically
diverse real-world chart pairs. Collectively, these
subsets serve a diagnostic purpose revealing model-
specific failure modes tied to visual complexity, se-
mantic drift, and temporal aggregation rather than
implying transferable performance or ranking con-
sistency across tiers.

To ensure reliable assessment, we propose a
novel LLM-assisted evaluation pipeline. Instead of
relying solely on an exact string match, we employ
multiple LLMs as semantic judges and aggregate
their decisions through majority voting. It enables
evaluators to assess paraphrased answers, numeric
approximations, and equivalent units flexibly, pro-
ducing more robust performance estimates.
We summarize our contributions as follows:

1. We present INTERCHART, the first multi-tier
benchmark for multi-chart VQA, spanning de-
composed, synthetic, and real-world chart con-
texts.

2. We design structured reasoning tasks to bench-
mark on various closed and open-source
VLMs across three visual tiers, capturing lo-
calized and cross-visual dependencies, includ-
ing trend correlation and temporal abstraction.

3. We propose an LLM-assisted semantic evalua-
tion framework that improves alignment with
human judgment and enables fine-grained er-
ror analysis.

The dataset and resources are publicly avail-
able at https://coral-lab-asu.github.io/
interchart/.

2 The INTERCHART Benchmark

We introduce INTERCHART to systematically eval-
uate how reasoning difficulty, chart diversity, and
visual complexity affect performance in vision-
language models (VLMs). The benchmark con-
tains 5,214 validated question-answer (QA) pairs
divided into three subsets: DECAF, SPECTRA,
and STORM. These subsets represent distinct levels
of real-world chart interpretation difficulty. Ap-
pendix B summarizes the benchmark construction
and annotation workflow for all three subsets, with

detailed pipeline diagrams in Figures 3, 4, and 5,
and corresponding generation algorithms in Ap-
pendix C.

2.1 DECAF - Decomposed Elementary Charts
with Answerable Facts

The DECAF subset establishes a foundation for
evaluating baseline chart understanding. It includes
both real and synthetic charts that represent single
variables with minimal visual clutter. The QA tasks
focus on factual lookup, comparisons, and parallel
reasoning across clearly presented data.

DECAF Distributions

Chart Type Original Chart Sources

Line 22 ChartQA 153
Horizontal Bar 52 DVQA 70
Vertical Bar 149 ChartInfo 27
Box Plot 58 ChartLlama 105
Heat Map 37
Dot 37

QA Generation Methods Total

Original QA 665 QA Pairs 2,809
Table-LLM 1,467 Original Charts 355
Table-SQL-LLM 677 Decomposed Charts 1,188

Table 1: Summary of chart types, sources, QA genera-
tion, and totals for DECAF.

Chart Construction We selected compound
charts from ChartQA (Masry et al., 2022), ChartL-
lama (Han et al., 2023), ChartInfo (Davila et al.,
2025), and DVQA (Kafle et al., 2018), ensuring
diverse sources of real-world chart styles and se-
mantics. These charts span common types such as
vertical and horizontal bar plots, line charts, box
plots, dot plots, and heatmaps, covering a wide
spectrum of visual encodings frequently used in
analytical documents. To support reasoning at a
granular level, we aimed to isolate atomic facts
from multi-variable visuals. When necessary, we
used DePlot (Liu et al., 2023) to regenerate miss-
ing tables from raw chart images, ensuring data
fidelity and completeness. We then employed a
custom decomposition script that extracted individ-
ual rows from these tables, aligned them with chart
legends and axis labels, and rendered simplified
single-variable charts using Plotly. This transfor-
mation allowed us to break down dense compound
visuals into interpretable units, promoting focused
reasoning over elementary visual elements. The
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Figure 1: Illustrative examples from our INTERCHART benchmark: DECAF, SPECTRA, and STORM. The DECAF
example shows a decomposed version of a chart similar to one found in STORM.

complete data decomposition pipeline is illustrated
in Appendix - Figure 3 and Algorithm 1. This
resulted in 355 compound charts and 1,188 decom-
posed charts.

QA Generation We employed a SQL-based sam-
pling strategy to generate table slices. We then used
deterministic query templates and Gemini 1.5 pro
to create natural language QA pairs, including both
chart- and table-derived prompts. A filtering pro-
cess reduced over 36,000 pairs to 5,800 candidates,
followed by manual review to finalize 2,809 QA
pairs. Table 1 details the chart types, sources, and
QA generation methods in DECAF.

2.2 SPECTRA - Synthetic Plots for
Event-based Correlated Trend Reasoning
and Analysis

The SPECTRA subset evaluates a model’s abil-
ity to integrate distributed information across vi-
sually distinct but thematically aligned synthetic
charts. These scenarios simulate real-world rea-
soning, such as interpreting relationships between
variables that evolve over time or across regions.

Chart Construction We created structured ta-
bles with shared axes to emulate real-world anal-
yses (e.g., linking urban green space with happi-
ness), ensuring that each table reflected plausible
entity relationships across dimensions such as time,
geography, or category. These base tables served
as input to a two-step synthetic chart construction

pipeline. First, we used Gemini 1.5 Pro to generate
tabular data with natural variability across rows and
columns, guided by template-based prompt scaf-
folds that preserved semantic consistency while
allowing domain shifts (e.g., GDP vs. life ex-
pectancy). Second, the structured tables were ren-
dered into visually diverse charts using a human-
in-the-loop chart generation module. This included
manual oversight to ensure balanced axis scales,
legend consistency, and type diversity (e.g., bar-
line overlays, multi-axis scales). The resulting
charts preserved shared axes across pairs, promot-
ing alignment in subsequent QA tasks. The corre-
sponding generation flow is detailed in Appendix -
Figure 4 and Algorithm 2. Through this pipeline,
we generated synthetic yet realistic chart combina-
tions that encouraged event-based correlation and
cross-variable reasoning.

QA Generation We prompted the model to gen-
erate questions targeting low-level reasoning, such
as computing totals or averages; trend analysis,
including directional inferences and value predic-
tions; and scenario-based inference, such as multi-
condition comparisons. We used a Python-enabled
LLM agent to validate answers through interme-
diate computation before converting outputs into
natural language. After validation, the SPECTRA
subset contains 1,717 QA pairs across 333 visual
context sets and 870 unique charts. Table 2 pro-
vides detailed distributions.
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Figure 2: Overview of the INTERCHART Benchmark Pipeline.

2.3 STORM - Sequential Temporal reasoning
Over Real-world Multi-domain charts

The STORM subset probes the upper limits of cur-
rent VLM capabilities. It contains complex real-
world line chart pairs with diverse styles and do-
mains. These chart combinations reflect realistic
analysis settings such as economic reports, environ-
mental trends, and public health dashboards.

SPECTRA & STORM Distribution

SPECTRA STORM

Correlated 1,481 Range Estimation 198
Independent 245 Abstract Numerical 275

Entity Inference 295

Totals

QA Pairs 1,717 QA Pairs 768
Context Sets 333 Original Charts 324
Unique Charts 870 Unique Images 648

Table 2: Distribution of question types and overall
counts in SPECTRA and STORM.

Chart Collection We crawled charts and associ-
ated metadata from the Our World in Data* reposi-
tory. Using semantic cues and metadata attributes,
we applied a semantic pairing module to group
charts into coherent visual contexts that share re-
lated entities across time. The pairing process iden-
tified candidate chart pairs with aligned topics or
axes, such as GDP and healthcare spending over the
same time period. Each candidate pair was manu-
ally reviewed to ensure contextual relevance and an-

* Our World in Data: https://ourworldindata.org/

alytical coherence. The chart construction pipeline
followed the STORM algorithmic design outlined
in Appendix - Algorithm 3, incorporating struc-
tured metadata extraction, entity alignment, and
refinement steps to yield 324 validated chart sets
comprising 648 distinct images. A visual overview
of this pipeline is provided in Appendix - Figure 5.

QA Curation We used Gemini 2.5 Pro to gener-
ate candidate QA pairs grounded in both the chart
images and their metadata, while Gemini 1.5 Pro
was consistently used across all subsets (DECAF,
SPECTRA, and STORM) for model evaluation to
maintain benchmarking uniformity. The QA gener-
ation process focused on multi-step reasoning that
spans both charts in a pair, including contextual
range estimation, numerical comparisons, temporal
trend evaluation, and entity-based inference. Hu-
man annotators refined the generated QA pairs to
ensure clarity, correctness, and depth of reason-
ing. Each pair was reviewed, categorized, and fi-
nalized through a collaborative validation loop, as
described in Algorithm 3. The resulting STORM
subset includes 768 QA pairs across the verified
chart sets. Table 2 summarizes the distribution of
question types and chart contexts.

Chart Type Rationale We focused the STORM
subset on line charts because they dominate real-
world analytical settings involving temporal rea-
soning. Domains such as public health, macroeco-
nomics, and environmental science often present
related time series (e.g., GDP vs. CO2 emissions)
using side-by-side line charts. By restricting to this
chart type, we ensured consistent axis alignment
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and minimized confounding factors from mixed
visual styles, allowing us to construct multi-step
aggregation and temporal inference questions while
preserving semantic interpretability.

2.4 INTERCHART Verification
We implemented a multi-stage verification pipeline
that combined automated filtering and human vali-
dation to ensure the quality of INTERCHART.

We first used LLM-based acceptability checks to
remove ambiguous or malformed QA pairs. Next,
a team of 6 graduate-level annotators manually re-
viewed each item in DECAF and SPECTRA, ensur-
ing correctness and diversity. Two graduate-level
annotators independently verified every QA pair of
STORM, with arbitration used to resolve disagree-
ments.

QA Samples DECAF SPECTRA

Pre 13,000 5,800 4,800
Post 5,214 2,809 1,717
% Drop 59.9% 51.6% 64.2%

Table 3: INTERCHART human filtering statistics show-
ing QA sample counts before and after manual verifica-
tion for subsets DECAF and SPECTRA.

Table 3 shows filtering statistics for the DECAF
and SPECTRA subsets, revealing retention rates
after manual curation. Table 4 shows the inter-
annotator agreement for the STORM subset, mea-
sured using Cohen’ Kappa. We achieved a agree-
ment score of 70.63%, reflecting consistent annota-
tions for complex multi-chart reasoning.

QA Samples Cohen’s κ Jaccard Index

Overall 768 70.63% 94.75%

Table 4: Overall inter-annotator agreement (Cohen’s κ)
for the STORM annotated subsets.

Final Dataset Overview: INTERCHART in-
cludes 5,214 validated QA pairs across 1,012
multi-chart contexts and 2,706 unique chart im-
ages. These examples span diverse reasoning types,
visual structures, and real-world complexities, mak-
ing INTERCHART a comprehensive diagnostic re-
source for evaluating multi-chart visual question
answering.

3 Experiments

We benchmark visual reasoning on INTERCHART

using a diverse set of vision-language models

(VLMs) and multiple input strategies. Our experi-
ments address four core questions: (1) Does chart
decomposition improve accuracy? (2) How does
visual complexity affect multi-chart reasoning? (3)
Can prompt engineering enhance performance? (4)
Do structured tables offer an advantage over direct
visual inputs?

VLMs We evaluate both closed- and open-
source VLMs. Closed-source models include
Google Gemini 1.5 Pro (Team, 2024) and Ope-
nAI GPT-4o Mini (OpenAI, 2024). Open-source
models include Qwen2-VL-7B-Instruct (Yang
et al., 2024b), MiniCPM-V-2_6 (Hu et al., 2024),
InternVL-2-8B (Chen et al., 2024), and Idefics3-
8B-LLaMA3 (Laurençon et al., 2024). We also
include DePlot (Liu et al., 2023) and Chart-to-
Text (Kantharaj et al., 2022) to assess reasoning
over structured outputs.

3.1 Evaluation Pipelines
We compare two reasoning pathways: direct chart-
based VQA and a chart-to-table pipeline using in-
termediate structured representations.

Direct Chart Question Answering We test two
visual formats: (i) Combined, where charts are
stitched into a unified image, and (ii) Interleaved,
where charts are passed sequentially. For DECAF,
we also evaluate original compound charts to quan-
tify gains from simplification.

Prompting styles include Zero-Shot, Zero-Shot
CoT (stepwise reasoning), and Few-Shot with Di-
rectives (Tannert et al., 2023), which gives struc-
tured step-level guidance. Due to input size lim-
its, InternVL and Idefics3 are excluded from inter-
leaved inputs.

Table as Intermediate Representation This
setup evaluates whether structured conversion aids
reasoning. It includes: (1) Chart-to-Table Con-
version, where models extract metadata and tables
from images, and (2) Table-Based QA, where mod-
els answer using these tables via CoT prompts.
We compare Gemini 1.5 Pro, Qwen2-VL, and
MiniCPM. To address DePlot’s title extraction is-
sues, we augment it using Gemini title generation,
yielding an improved hybrid we term DePlot++.
This isolates the benefit of structure vs. visual in-
puts under matched prompts.

Evaluation Strategy We use LLM-based seman-
tic judges to score answers beyond exact string
matching, supporting paraphrases, numerics, and
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Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM

Combined Visual Context Image

GPT-4o-mini 44.8 59.3 45.6 29.7 48.5 68.3 47.9 29.4 48.8 68.6 47.2 30.6
Gemini-1.5-Pro 53.0 65.2 59.1 34.8 55.0 71.6 58.5 34.9 56.3 73.9 61.5 33.7
Qwen2-VL-7B 37.3 50.2 32.8 28.9 41.8 59.9 37.3 28.4 40.4 56.3 37.0 27.9
MiniCPM-V-2_6 34.3 52.2 32.4 21.5 35.3 52.7 31.9 21.3 32.4 48.7 30.1 18.6
InternVL-2-8B 30.4 40.0 26.6 24.8 32.3 45.2 28.2 23.6 31.6 46.3 27.3 21.2
Idefics3-8B-Llama3 23.2 39.3 19.4 11.1 23.8 38.8 19.6 13.1 25.9 35.7 25.1 17.1

Mean 37.2 51.0 36.0 25.1 39.5 56.1 37.2 25.1 39.2 55.0 38.0 24.9

Interleaved Visual Context

GPT-4o-mini 41.9 44.4 50.0 31.5 44.5 51.5 50.3 31.9 44.4 51.7 50.4 31.1
Gemini-1.5-Pro 52.7 64.7 57.4 36.0 54.1 68.1 57.8 36.4 54.2 70.3 59.6 32.9
Qwen2-VL-7B 37.0 49.3 32.9 28.9 39.4 52.8 38.7 26.7 36.1 47.9 35.2 25.2
MiniCPM-V-2_6 37.1 49.3 36.8 25.2 36.6 49.6 36.2 24.2 35.5 48.1 35.1 23.5

Mean 42.2 51.9 44.3 30.4 43.7 55.5 45.8 29.8 42.6 54.5 45.1 28.2

Table 5: Accuracies using our evaluation method with majority voting of evaluators on all models and prompting
strategies. Results are grouped by visual context format (top: Combined, bottom: Interleaved), and broken down by
set type (DECAF, SPECTRA, STORM) and strategy (Zero-Shot, Zero-Shot CoT, Few-Shot CoT with Directives).
Net scores refer to the mean score of the model across different subsets.

unit variations if reasoning is correct. Evalua-
tors include Gemini 1.5 Flash (8B) (Team, 2024),
Phi 4 (Abdin et al., 2024), and Qwen2.5-7B-
Instruct (Yang et al., 2024a). These models were
selected to ensure architectural diversity across
families (Google Gemini, Microsoft Phi, and Al-
ibaba Qwen), balanced parameter scales between
7B-8B for efficiency and semantic depth, and em-
pirical reliability validated through agreement test-
ing. Each receives the question, reference answer,
and model output, and returns a binary correct-
ness score along with its reasoning. Final scores
use majority voting. A broader discussion com-
paring this evaluation framework with automatic
text-based metrics such as BLEURT, MoverScore,
and QuestEval is provided in Appendix H.

To validate the majority voting agreement, we
benchmarked 10,000 sampled responses. In over
78.67% of cases, all three evaluators agreed on a
common answer. Per-model breakdowns appear
in Appendix J.

4 Results and Analysis

We analyze performance on INTERCHART across
visual input formats, prompting strategies, and sub-
set difficulty levels by answering targeted questions
that highlight emerging trends, model strengths,
and failure modes. Tables 5 through 9 summarize
these results.

4.1 Performance across Chart Subsets

Do Interleaved Charts Help Models Perform
Better than Combined Charts? Not consis-
tently. As shown in Table 5, interleaving charts
sometimes improves performance but often leads to
minimal or negative changes. For example, Gemini-
1.5 Pro improves slightly in STORM from 34.8% to
36.0% but drops from 65.2% to 64.7% in DECAF.
Qwen2-VL decreases in DECAF (50.2% to 49.3%)
and SPECTRA (32.8% to 32.9%). MiniCPM im-
proves modestly in STORM (21.5% to 25.2%).
These results suggest interleaving may help with
visual clutter in complex charts but does not offer
consistent benefits across all subsets.

Does Decomposing Charts Improve Model Ac-
curacy? Yes. As shown in Table 6, converting
charts into structured tables improves accuracy in
many cases. Gemini-1.5 Pro achieves 69.9% accu-
racy using structured DECAF tables, outperform-
ing both DePlot (54.3%) and C2T (43.8%). De-
Plot++ further improves performance to 63.2% by
enhancing title and metadata alignment. Qwen2-
VL and MiniCPM also benefit modestly, though
their scores remain lower (50.1% and 33.8%, re-
spectively). These results suggest that SQL-based
decomposition paired with table-driven reasoning
can improve clarity and support more accurate in-
ference compared to image-only inputs.

Why Do Models Perform Poorly on Real-World
Multi-Chart Tasks? As seen in Table 5, accu-
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racy drops sharply in the STORM subset. Gemini-
1.5 Pro falls to 34.8%, Qwen2-VL to 28.9%, and
MiniCPM-V-2_6 to 21.5%. These real-world chart
pairs demand semantic alignment and temporal
synthesis. Table 9 shows abstract numerical rea-
soning is hardest (15.6%), followed by range es-
timation (33.4%) and entity inference (39.1%).
These declines reflect the challenge of integrating
misaligned metadata, irregular axes, and domain-
specific trends across diverse visual styles.

Do Models Generalize Well from Synthetic to
Real-World Chart Distributions? No. Table 5
shows a consistent drop in performance from
SPECTRA to STORM across all models. Gemini-
1.5 Pro declines from 59.1% in SPECTRA to
34.8% in STORM. Qwen2-VL drops from 32.8%
to 28.9%, and MiniCPM-V-2_6 from 32.4% to
21.5%. These results suggest that while models
handle synthetic trend-based reasoning to some
extent, they struggle to transfer those skills to real-
world chart pairs that involve domain shifts, visual
diversity, and temporal reasoning.

4.2 Effect of VLMs
Why Does Gemini-1.5 Pro leads within the
tested baseline suite? Gemini-1.5 Pro consis-
tently leads across all subsets and prompting strate-
gies. As shown in Table 5, it scores 65.2% in DE-
CAF, 59.1% in SPECTRA, and 34.8% in STORM-
well ahead of all other models. GPT-4o-mini is
the next best, but lags in STORM (29.7%). Open-
source models like Qwen2 and MiniCPM perform
reasonably in DECAF but decline sharply on harder
subsets. Gemini’s strength likely stems from its
training on structured inputs and strong instruction-
following capabilities. GPT-4o achieved perfor-
mance levels that closely approach those of Gemini-
1.5 Pro, particularly in the STORM subset that em-
phasizes semantic abstraction and temporal reason-
ing (see Appendix E).

How Do Open-Source Models Compare Across
Subsets? Open-source models perform well in
DECAF but struggle in SPECTRA and STORM.
Qwen2-VL-7B drops from 50.2% in DECAF
to 32.8% in SPECTRA and 28.9% in STORM.
MiniCPM-V-2_6 shows a similar decline: 52.2%
→ 32.4% → 21.5%. InternVL and Idefics3
perform lower across all subsets, particularly in
STORM. These trends point to challenges in gen-
eralization, especially when models face domain
shifts and complex temporal reasoning.

Model DECAF SPECTRA STORM DECAFo

C2T 43.8 46.3 14.7 62.6
Gemini-1.5-Pro 69.9 68.1 29.5 76.0
Deplot 54.3 57.9 22.2 63.8
Deplot++ 63.2 58.1 23.6 61.9
MiniCPM-V-2_6 33.8 22.1 12.2 35.6
Qwen2-VL-7B 50.1 34.3 18.4 52.4

Table 6: Accuracies from the chart-to-table prompt-
ing and rendering strategies for DECAF, SPECTRA,
STORM, and DECAF compound charts: DECAFo.

4.3 Effect of Strategies

Which Prompting Strategies Work Best Across
Subsets? Few-Shot Chain-of-Thought with Di-
rectives generally yields the highest accuracy
across models and subsets. Table 5 shows Gemini-
1.5 Pro improves from 65.2% (Zero-Shot) to 71.6%
(Zero-Shot CoT), and further to 73.9% using Few-
Shot CoTD in DECAF. Qwen2-VL follows a simi-
lar pattern, improving from 50.2% to 59.9%, before
dropping slightly to 56.3%. While MiniCPM sees
minor gains with CoT, it drops slightly under Few-
Shot CoTD. Overall, structured prompting helps
most in DECAF and SPECTRA, but offers limited
advantage in STORM due to its high complexity.

Does Chain-of-Thought (CoT) Consistently
Help? Mostly in simpler subsets. Table 5 shows
that CoT improves performance in DECAF and
SPECTRA but offers limited benefit in STORM.
For example, Gemini-1.5 Pro jumps from 65.2%
to 71.6% in DECAF and from 59.1% to 58.5%
in SPECTRA. Qwen2-VL improves from 50.2%
to 59.9% in DECAF, and MiniCPM sees only a
marginal gain (52.2% to 52.7%). In STORM,
scores remain largely unchanged or even decline
slightly, indicating that verbal reasoning alone can-
not compensate for high visual and semantic com-
plexity.

4.4 Effect of Intermediate Representation

How Do Different Table Extraction Methods
Compare? DePlot++ consistently outperforms
DePlot in DECAF and SPECTRA. As shown in
Table 6, DePlot++ achieves 63.2% in DECAF
and 58.1% in SPECTRA, compared to 54.3% and
57.9% with DePlot.
This improvement reflects better title and axis align-
ment, which helps structured models parse tabular
input more accurately. The gains are modest but
consistent, affirming the importance of clean pre-
processing and metadata fidelity.
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DECAF Chart Type Mean Best

DECAF-Decomposition
Line 39.66 57.76
Horizontal Bar 50.95 73.36
Vertical Bar 56.17 78.63
Box Plot 64.3 84.23
Heat Map 55.36 81.35
Dot 58.24 78.63

Table 7: Distribution of Accuracies for Chart Decompo-
sition Approach for DECAF.

SPECTRA Question Category Mean Best

DECAF-Decomposition
Correlated 39.49 67.43
Independent 43.22 73.47

Table 8: Distribution of Accuracies for Question Cate-
gorization Approach for SPECTRA.

When Do Structured Tables Hurt Performance
Instead of Helping? In STORM. As shown in
Tables 6 and 5, structured representations often
degrade accuracy on complex real-world charts.
Gemini-1.5 Pro drops from 34.8% with visual in-
puts to 29.5% using tables. C2T performs even
worse at 14.7%. These trends suggest that tables
cannot capture semantic and temporal alignment
across axes, which are critical for accurate reason-
ing in real-world multi-chart settings.

4.5 Effect of Chart Types, Question Category,
and Reasoning Type

Which Chart Types Are Easier or Harder in DE-
CAF? According to Table 7, box plots (64.3%)
and dot plots (58.24%) are the easiest for models to
interpret, followed by vertical bars (56.17%). Line
charts (39.66%) and horizontal bars (50.95%) yield
lower accuracy, likely due to visual ambiguity in
axis orientation and overlapping labels. These re-
sults suggest that models perform best when the
chart layout is clean and the data encoding is visu-
ally distinct.

Which Question Types Are Easier in SPEC-
TRA? Table 8 shows that independent questions
achieve higher accuracy (43.22%) than correlated
ones (39.49%).
This suggests that isolating variables in SPECTRA
makes reasoning easier for models, while corre-
lated questions introduce multi-step dependencies
across charts that are harder to track and align.

How Do Reasoning Demands Shift from SPEC-
TRA to STORM? Comparing Table 8 and Ta-

STORM Interleaved Combined

Reasoning Type Mean Best Mean Best

Abstract Numerical 13.6 23.7 15.6 25.5
Entity Inference 42.1 51.3 39.1 50.9
Range Estimation 31.2 52.3 33.4 47.5

Table 9: Distribution of accuracies for reasoning type
categorization in STORM, comparing interleaved and
combined visual formats.

ble 9 shows that models perform well on inde-
pendent trend analysis in SPECTRA but struggle
with STORM’s abstract and range-based questions.
This decline reflects a shift from visual correla-
tion to semantic and temporal abstraction, where
simple alignment no longer suffices. Even models
exceeding 70% accuracy on SPECTRA’s indepen-
dent questions drop below 35% on STORM’s range
estimation tasks, underscoring that INTERCHART

diagnoses distinct reasoning failures rather than
cross-tier ranking.

How Consistent Are VLMs Across Chart Types?
Model performance varies significantly across
chart types. Table 7 shows accuracies ranging from
39.66% for line charts to 64.3% for box plots. This
variation suggests VLMs lack consistent chart-type
generalization and are sensitive to layout complex-
ity, axis orientation, and label density. Even high-
performing models like Gemini show dips on dense
or ambiguous formats, highlighting the need for
chart-aware visual parsing.

How Do Reasoning Types Impact Performance
in STORM? As shown in Table 9, reasoning type
has a clear impact on accuracy in STORM. Entity
inference yields the highest mean accuracy (42.1%
interleaved), followed by range estimation (33.4%),
and abstract numerical reasoning is lowest (13.6-
15.6%). Interleaved visual formats offer modest
gains for entity and range tasks but have limited
effect on abstract numerical reasoning, where se-
mantic alignment and aggregation across charts
remain key challenges.

5 Comparison with Related Work

Understanding visualizations through natural lan-
guage has long been a goal in multimodal AI. Early
chart-based VQA datasets such as FigureQA (Ka-
hou et al., 2017), DVQA (Kafle et al., 2018),
PlotQA (Methani et al., 2020), ChartQA (Masry
et al., 2022), and ChartLlama (Han et al., 2023) in-
troduced benchmarks over synthetic or real-world

2053



plots, focusing on factual or reasoning questions in
isolated visual contexts. Recent efforts like Chart-
Info (Davila et al., 2024) and SciGraphQA (Li
and Tajbakhsh, 2023) extended this by incorpo-
rating structured data such as tables and graphs.
However, these datasets center on single-chart sce-
narios and do not evaluate a model’s reasoning
ability across multiple, semantically related charts.
Complementary work on multi-hop (Deng et al.,
2022) and graph-based QA (Jin et al., 2024) has
demonstrated that decomposing complex inputs
into smaller units improves reasoning and inter-
pretability. MultiChartQA (Zhu et al., 2025) takes
a step toward multi-chart reasoning through syn-
thetic chart triplets and four structured tasks: direct,
parallel, comparative, and sequential. While it of-
fers controlled diagnostics, the benchmark uses
uniformly styled charts with fixed layouts and se-
mantics. It does not assess model performance
under visual diversity, semantic drift, or layout
complexity, which are standard features in real-
world chart collections. Recent benchmarks such
as InfoChartQA (Lin et al., 2025), ChartMind (Wei
et al., 2025), and ChartQAPro (Masry et al., 2025)
have expanded chart understanding toward more re-
alistic visual and linguistic settings. These datasets
emphasize broader coverage and visual diversity
but primarily address single-chart or loosely con-
nected infographic reasoning. In contrast, INTER-
CHART particularly its STORM subset was ex-
plicitly designed to evaluate multi-chart reason-
ing that demands semantic drift handling, temporal
alignment, and multi-step integration across co-
occurring charts. An illustrative STORM exam-
ple involving temporally aligned chart pairs from
Our World in Data is provided in Appendix Ap-
pendix F, demonstrating how models must corre-
late trends across independent metrics to infer tem-
porally grounded answers.

INTERCHART addresses these gaps with a
broader diagnostic lens. It introduces three sub-
sets DECAF, SPECTRA, and STORM spanning
single-chart to real-world multi-chart reasoning
under increasing difficulty and diversity. Unlike
prior benchmarks, it combines synthetic and real-
world charts to evaluate robustness to visual het-
erogeneity and abstraction. Additionally, it incor-
porates an LLM-based evaluation framework that
assesses semantic correctness beyond string over-
lap. INTERCHART thus serves both as a bench-
mark for evaluating performance and a diagnostic
framework for identifying where current models

fail in complex, multi-chart reasoning scenarios.
To further clarify these distinctions, Appendix Ap-
pendix I presents a comparative table summarizing
chart type coverage, reasoning scope, multi-chart
design, semantic drift, temporal reasoning, and
evaluation protocols across recent benchmarks (In-
foChartQA, ChartMind, ChartQAPro, and INTER-
CHART). This structured comparison highlights
that INTERCHART uniquely couples real-world
multi-chart reasoning with semantic and temporal
abstraction while maintaining diagnostic granular-
ity through its LLM-based majority-voting evalua-
tion.

6 Conclusion and Future Directions

We introduced INTERCHART, a diagnostic bench-
mark for evaluating vision-language models
(VLMs) on multi-chart visual reasoning. Struc-
tured across three progressively complex subsets
DECAF, SPECTRA, and STORM. INTERCHART

enables detailed analysis of model behavior un-
der controlled visual transformations. Our find-
ings show that while current VLMs perform well
on simplified, decomposed visuals, their accuracy
drops significantly when required to integrate or
infer across visually complex, semantically mis-
aligned chart sets. Rather than treating VQA as
a binary success metric, INTERCHART provides a
controlled setting to explore why models succeed or
fail by varying presentation while holding semantic
content constant. This enables diagnostic analysis
of model robustness, attention mechanisms, and
failure modes-offering insights relevant to model
design, training strategies, and interface develop-
ment.

In future work, we plan to expand INTERCHART

beyond traditional charts to include infographics,
annotated scientific plots, and hybrid layouts. We
also plan to extend the STORM subset to het-
erogeneous chart combinations (e.g., line-bar or
heatmap-scatter) to support broader reasoning anal-
ysis. We also aim to explore multilingual question
sets and incorporate neuro-symbolic or retrieval-
augmented approaches to support structured ab-
straction and cross-domain transfer. Furthermore,
we plan to evaluate advanced prompting strategies
such as self-consistency, reflection, and tree-of-
thought (ToT) to assess their effectiveness in en-
hancing inter-chart reasoning. These directions can
advance model transparency, scalability, and appli-
cability in real-world decision-support settings.
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Limitations

INTERCHART offers a flexible diagnostic frame-
work but comes with limitations. First, our evalua-
tions rely entirely on zero- and few-shot prompting
due to resource constraints. This setup does not
capture the full potential of models that might ben-
efit from fine-tuning on chart-specific data. Second,
all questions and visual content are English-only,
which limits multilingual applicability. Addition-
ally, the current version does not support spatial
reasoning tasks such as bounding box grounding
or region referencing. While we plan to add fine-
grained annotations and structured parsing outputs
in future versions, this study focuses solely on
answer-level reasoning. Several potential exten-
sions such as dynamic chart distillation, symbolic
chart indexing, or JSON-based parsing supervision
remain conceptual due to scope limitations. De-
spite these constraints, INTERCHART lays a foun-
dation for expanding multimodal evaluation toward
structured, visual-first tasks. Future extensions
could include layout-aware fine-tuning pipelines,
grounded CoT prompting, and multimodal summa-
rization agents tailored for multi-chart analytics.

Ethics Statement

This work adheres to ethical standards in data col-
lection, annotation, and reproducibility. All visual
data used in INTERCHART originate from publicly
available or synthetically generated sources under
permissible licenses. No sensitive or personally
identifiable information is included. Annotations
were conducted by graduate-level volunteers based
in the United States and India, all of whom pro-
vided informed consent. To promote transparency
and reproducibility, we will publicly release the
full dataset, evaluation scripts, prompt templates,
and annotation guidelines. All filtering heuristics
and design decisions have been carefully docu-
mented to facilitate future research and benchmark-
ing efforts. We also employed AI tools, including
large language models, to assist with aspects of the
project such as prompt development and explana-
tory text generation. All AI-generated outputs were
reviewed and refined by human authors to ensure
accuracy and clarity. Overall, this project reflects
our commitment to data privacy, transparency, an-
notator welfare, and the responsible integration of
AI tools throughout the research process.
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Appendix A Prompt Templates

Zero-Shot Prompt

Zero-Shot Prompt

Your task is to answer the question based on
the given {img_word}. Your final answer to
the question should strictly be in the format
"Final Answer:" <final_answer>.
Question: {question}

Zero-Shot Chain-of-Thought Prompt

Zero-Shot Chain-of-Thought Prompt

Your task is to answer the question based on
the given {img_word}. Your final answer
to the question should strictly be in the for-
mat "Final Answer:" <final_answer>.
Let’s work this out in a step by step way to
be sure we have the right answer.
Question: {question}

Data Extraction Prompt

Data Extraction Prompt

Your task is to extract all data from the chart
image provided. Make sure to include the
chart’s title. Output the data in a structured
format. Ensure every data point is accu-
rately captured and represented. Be meticu-
lous and do not omit any information.
Think step by step. Identify the chart type
to extract data accordingly.

Table-Based Question Answering Prompt

Table-Based QA Prompt

You are tasked with answering a specific
question. The answer must be derived solely
from information provided, which is ex-
tracted from image(s) of chart(s). This in-
formation will include the data extracted
from the chart, including the chart title.
Your final answer to the question should
strictly be in the format "Final Answer:"
<final_answer>. Let’s work this out in a
step-by-step way to be sure we have the
right answer.
Data extracted from charts: {tables}
Question: {question}

Chart Title Extraction Prompt

Chart Title Extraction Prompt

Your task is to extract the main title of the
chart image. The main title is typically lo-
cated at the top of the chart, above the chart
area itself, and describes the overall subject
of the chart. The title usually describes what
data is being presented, the time period, or
the geographic location, if applicable.
If the chart does not have a discernible
main title, your response should be "Title:
None". Otherwise, your response should be
in the format "Title: <title>".

Few-Shot with Directives Prompt

Few-Shot with Directives Prompt

Your task is to answer a question based on
a given {img_word}. To ensure clarity and
accuracy, you are required to break down
the question into steps of extraction and rea-
soning. Your final answer should strictly
rely on the visual information presented in
the {img_word}.
Here are a few directives that you can follow
to reach your answer:
Step 1: Identify Relevant Entities First,
identify the key entities or data points
needed to answer the given question. These
could be labels, categories, values, or trends
in the chart or image.
Step 2: Extract Relevant Values Extract
all necessary values related to the identified
entities from the image. These values might
be numerical (e.g., percentages, quantities)
or categorical (e.g., labels, categories).
Step 3: Reasoning and Calculation Using
the extracted values, apply logical reason-
ing and calculations to derive the correct
answer. Explicitly state the reasoning pro-
cess to ensure the steps leading to the final
answer are understandable and correct.
Step 4: Provide the Final Answer Based
on your reasoning, provide the final answer
in the following format: Final Answer:
<final_answer>
Question: {question}
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LLM-as-a-Judge Prompt

LLM-as-a-Judge Prompt

You will be given a question, the correct
answer to that question (called the "Ground
Truth answer"), and a student’s attempt to
answer the same question (called the "Stu-
dent Written Answer"). Your task is to de-
termine if the Student Written Answer is
correct when compared to the Ground Truth
answer.
Instructions:

• The answer should be based solely on
the provided information in the ques-
tion and the Ground Truth answer.

• An answer is correct if it contains the
same information as the Ground Truth
answer, even if phrased differently.

• Ignore minor differences in wording or
phrasing that do not change the mean-
ing.

• If the Ground Truth answer is a num-
ber, consider the Student Written An-
swer correct if it is approximately
equal (e.g., 20.24553 vs 20.24). State
assumptions clearly.

• For range-based questions, accept an-
swers within the correct range.

• Provide a short explanation inside
<reasoning> tags.

• Output <answer> 1 </answer> if cor-
rect, or <answer> 0 </answer> if in-
correct.

Example: Question: What is the color of
water? Ground Truth answer: Pink Stu-
dent Answer: Final Answer: Water is
colorless.
Response: <reasoning> The student
answer does not match the ground
truth. </reasoning> <answer> 0
</answer>
Now, answer the following: Ques-
tion: {question} Ground Truth answer:
{ground_truth} Student Written Answer:
{student_answer}

Appendix B Flowcharts

Figure 3: Pipeline for DECAF: Decomposing complex
charts into simplified single-entity visuals and generat-
ing fact-based QA pairs.
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Figure 4: Pipeline for SPECTRA: Generating synthetic
multi-chart contexts for correlated trend and scenario-
based reasoning.

Figure 5: Pipeline for STORM: Constructing real-world
chart pairs and QA for multi-step reasoning across mis-
aligned domains.
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Figure 6: Evaluation pipeline overview: Combining
chart-question inputs with different prompting strategies
and judging model outputs via majority voting from
multiple LLMs.

Appendix C Data Generation Algorithms

Algorithm 1 DECAF Constrained SQL Sampling
-Multi-Entity Chart Decomposition

1: Input: Table T , Level L, Operators OPnum,
OPstr, FLops, STRops, Cnj

2: Output: SQL Query S
3: for each column C in T do
4: Identify C.dataType
5: end for
6: while not ValidSQL(S, T ) do
7: Initialize empty SQL Query S ▷ Chart

Decomposition via SQL
8: select_col← Random Column from T
9: if L = 1 and Random(0,1) = 0 then

10: Skip Selection Operation
11: else
12: if select_col is Numerical then
13: Apply Numerical Operator
14: else
15: Apply String Operator
16: end if
17: end if ▷ WHERE Clause - Linked Data

Points Selection
18: if Random(0,1) = 1 then
19: Choose Column C, Value V , Operator

OP
20: Add Condition COPV
21: end if ▷ WHERE Clause - Multi-Row and

Multi-Column Reasoning
22: Extract Numeric Columns
23: Choose Number of Conditions Based on L
24: for each Condition do
25: Pick Two Numeric Columns CA, CB

26: Add Condition CAOPCB

27: end for ▷ Combine Conditions with
Conjunctions for Complex Queries

28: for each Condition do
29: Merge using Cnj (AND, OR)
30: end for ▷ ORDER BY Clause (For L = 2)
31: if select_col is Numerical and not in Con-

ditions then
32: Apply ORDER BY with ASC/DESC
33: end if
34: end while
35: Filter by Human ▷ Ensuring Logical

Consistency and Quality
36: return S
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Algorithm 2 Synthetic Simulation - Multi-Chart
Reasoning with LLM-Generated Contexts

1: Input: LLM Model MLLM , Human Annota-
tors A, Chart Generator Gchart

2: Output: Dataset D with Context Pairs and QA
Pairs

▷ Step 1: Context Table and Chart
Generation

3: Tcontexts ← ∅
4: for each scenario S generated by MLLM do
5: Extract structured entity relationships ES

6: Construct context tables TS based on ES

7: Tcontexts ← Tcontexts ∪ TS

8: end for
9: Csynthetic ← ∅

10: for each table T in Tcontexts do
11: Convert T into chart C using Gchart

12: Perform human review for accuracy and
readability

13: Csynthetic ← Csynthetic ∪ C
14: end for

▷ Step 2: Multi-Chart QA Generation
15: QA← ∅
16: for each related chart pair (C1, C2) in

Csynthetic do
17: for each annotator a in A do
18: Generate Questions
19: Use LLM-based prompt chaining for

QA refinement
20: end for
21: end for

▷ Step 3: Dataset Filtering and
Compilation

22: Perform Human Validation for Correctness and
Clarity

23: Remove Low-Quality QA Pairs
24: D ← {Csynthetic, QA}
25: return D

Algorithm 3 STORM: Chart and QA Generation
1: Input: Chart Repository C, Semantic Pairing

Module Psem, VLM Model MV LM , Annota-
tors A

2: Output: Dataset D = {(Ci, Cj , q, a)}

3: // Chart Generation Phase
4: Initialize paired chart set Pfinal ← ∅
5: for each chart Ci in repository C do
6: Extract metadata MCi

7: Use Psem to find matching chart Cj with
aligned entities

8: if valid alignment exists then
9: Add (Ci, Cj) to candidate pairs

10: end if
11: end for
12: for each pair (Ci, Cj) in candidate pairs do
13: Manually review for relevance and coher-

ence
14: if pair is contextually valid then
15: Add to Pfinal
16: end if
17: end for

18: // QA Generation Phase
19: Initialize QA set Q ← ∅
20: for each chart pair (Ci, Cj) in Pfinal do
21: Generate candidate QA pairs using MV LM

22: Annotators review and refine each (q, a)
23: Classify QA into one of:

• Contextual Range Estimation
• Abstract Numerical Analysis
• Entity Inference

24: Add (Ci, Cj , q, a) to Q
25: end for
26: return Final dataset D ← Q
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Appendix D Model and Compute Details

Model Sizes. We evaluated a mix of closed- and
open-source vision-language models (VLMs), as
well as structured reasoning baselines:

• Gemini 1.5 Pro: 56B parameters (proprietary,
estimate based on public disclosures).

• GPT-4o-mini: Parameter size not publicly
disclosed.

• Qwen2-VL-7B-Instruct: 7B parameters.

• MiniCPM-V-2_6: 2.6B parameters.

• InternVL-2-8B: 8B parameters.

• Idefics3-8B-LLaMA3: 8B parameters.

• DePlot (Liu et al., 2023): Built on encoder-
decoder transformer with tabular rendering;
400M parameters.

• Chart-to-Text (Kantharaj et al., 2022): In-
cludes rule-based visual parsing + generation
via T5 (220M to 3B parameters, depending on
version).

Compute Infrastructure. Model inference and
evaluation were performed using:

• NVIDIA A100, NVIDIA H200 GPUs on
a high-memory compute cluster for open-
source model inference and table-based
prompting.

• Google Cloud and OpenAI APIs for Gemini
1.5 Pro and GPT-4o-mini, respectively.

Approximate Compute Budget.

• Open-source model inference: ∼320 GPU-
hours (covering 5,214 QA pairs × 3 prompting
strategies × multiple visual formats).

• Evaluation with LLM-as-a-Judge: ∼60
GPU-hours (Gemini 1.5 Flash, Qwen2.5-7B,
and Phi-4; each example judged by 3 models).

• Chart-to-Table + Table-based QA (DePlot,
DePlot++, Gemini, MiniCPM, Qwen2):
∼120 GPU-hours for rendering, metadata gen-
eration, and table-based prompting.

All experiments were implemented in Python ≥
3.10 using PyTorch ≥ 2.0. Evaluation workflows
used batch inference pipelines with structured log-
ging, and charts were rendered or parsed using
Plotly, DePlot, and in-house scripts.

Appendix E STORM Results: GPT-4o

GPT-4o Performance STROM

Combined Interleaved

Zero-Shot 37.1 36.7
Zero-Shot CoT 35.3 36.0
Directives (Few-Shot CoTD) 36.1 33.3

Table 10: Detailed accuracies for GPT-4o across
prompting strategies and visual contexts. These results
highlight that GPT-4o’s scores approach Gemini-1.5
Pro, particularly within the STORM subset emphasizing
semantic and temporal reasoning.

Comparison Between Gemini-1.5 Pro and
GPT-4o on STORM.

Gemini-1.5 Pro and GPT-4o exhibit comparable
trends on the STORM subset, which emphasizes
semantic abstraction and temporal reasoning. Un-
der the combined visual context, Gemini-1.5 Pro
achieves accuracies of 34.8%, 34.9%, and 33.7%
across Zero-Shot, Zero-Shot CoT, and Directive
prompting, respectively, while GPT-4o attains
37.1%, 35.3%, and 36.1% under the same con-
ditions. In the interleaved format, Gemini-1.5 Pro
records 36.0%, 36.4%, and 32.9%, compared to
GPT-4o’s 36.7%, 36.0%, and 33.3%. These results
indicate that GPT-4o performs on par with Gemini-
1.5 Pro within STORM, showing slightly higher
stability across prompting strategies and marginally
better outcomes under the combined context. Both
models, however, display limited gains from chain-
of-thought prompting, underscoring the persistent
difficulty of multi-chart temporal abstraction even
for top-tier proprietary VLMs.

Appendix F Example of STROM

The STORM subset draws from real-world chart
pairs curated from Our World in Data, where au-
thors frequently embed two thematically linked line
charts within the same figure. These pairs mirror
authentic analytical practices in domains such as
public health, economics, and climate reporting.

This question requires cross-chart temporal rea-
soning: identifying overlapping time windows in
two charts, correlating independent metrics, and
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Figure 7: Question: During the approximate period
from 2015 to 2020, when the share of overweight or
obese adults in India was approaching and surpassing
that of Japan, what was the corresponding range for the
share of adults in Norway who smoke or use tobacco?
Answer: 15.8-20.5%

estimating a numerical range tasks that demand
visual alignment and contextual interpretation be-
yond local fact retrieval.

Appendix G Annotation Instructions

To ensure consistency and reliability, all annotators
received standardized written guidelines outlining
task objectives, labeling rules, and arbitration poli-
cies. Below is a condensed version of the instruc-
tion set provided during dataset construction.

Objective. Annotators were asked to verify
question-answer (QA) pairs for correctness, clarity,
and grounding in the associated chart(s). Each QA
pair should be answerable directly from the visual
and textual content of the chart without requiring
external knowledge.

Procedure. 1. Read the question carefully and
locate all referenced visual elements in the chart
(axes, legends, data points, text). 2. Identify the
correct answer span or value directly from the chart.

Figure 8: Visual input formats in INTERCHART: Com-
bined (stitched multi-chart image) vs. Interleaved (sep-
arate sequential chart images).

3. For numerical answers, record values up to one
decimal precision; for textual answers, reproduce
the label verbatim. 4. If a question is ambiguous,
inconsistent, or unanswerable, flag it for arbitration
rather than guessing.

Annotation Policy. 1. Each item was indepen-
dently annotated by two annotators. 2. Disagree-
ments were reviewed by a senior annotator follow-
ing predefined arbitration rules. 3. Only consensus
or majority-agreed entries were retained in the final
dataset.

Examples Provided. Annotators were given rep-
resentative examples covering: (i) single-chart fac-
tual QA, (ii) trend-based correlation QA, and (iii)
multi-chart temporal inference QA.

All instruction documents, example templates,
and arbitration notes will be released as part of
the supplementary materials for transparency and
reproducibility.

Appendix H Discussion on Evaluation
Metrics

While this work primarily relies on large lan-
guage models (LLMs) as semantic judges for eval-
uating answer correctness, we also considered
whether conventional automatic metrics such as
BLEURT (Sellam et al., 2020), MoverScore (Zhao
et al., 2019), and QuestEval (Scialom et al., 2021)
could be applied to vision-language model (VLM)
evaluation.
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Limitations of Token- and Embedding-Based
Metrics. Metrics like BLEURT and MoverScore
depend on lexical or embedding-level similarity be-
tween the generated and reference answers. How-
ever, multi-chart visual question answering often
involves paraphrased numerical expressions (e.g.,
“around 25%” vs. “roughly one-fourth”), varied
unit conversions, or inferred temporal relations that
cannot be captured reliably through surface-level
similarity. These metrics thus underestimate cor-
rectness when models provide semantically valid
but lexically diverse responses.

Advantages of LLM-Based Semantic Evalua-
tion. Our LLM-judge framework allows contex-
tual reasoning and flexible comparison through
majority voting across multiple evaluators. This
setup accounts for approximate numeric equiva-
lence, synonymous phrasing, and task-specific con-
ditions such as tolerance for rounding or unit mis-
matches. It better aligns with human judgment for
multi-step reasoning tasks involving quantitative
and relational inference.

Complementary Role of Automatic Metrics.
Although limited, BLEURT, MoverScore, and
QuestEval can still serve as lightweight indicators
of linguistic fidelity or surface coherence, particu-
larly in benchmarking language fluency rather than
reasoning correctness. In future work, integrating
these metrics alongside semantic judges could yield
a hybrid evaluation pipeline combining automatic
reproducibility with reasoning-aware assessment
to improve the interpretability and comparability
of VLM performance.

Appendix I Benchmark Comparison

As summarized in Table 11, INTERCHART comple-
ments recent benchmarks such as InfoChartQA and
ChartQAPro by explicitly introducing controlled
multi-chart reasoning under real-world visual con-
ditions. While InfoChartQA and ChartMind fea-
ture high visual diversity through infographics and
mixed formats, their tasks primarily test factual
or single-chart reasoning without requiring tempo-
ral alignment or semantic aggregation across fig-
ures. ChartQAPro focuses on single-plot factual
reasoning with limited variation in visual structure,
making it less diagnostic of multi-source reasoning
failures. In contrast, INTERCHART isolates spe-
cific sources of difficulty semantic drift, temporal
reasoning, and cross-chart integration through its

tiered subsets (DECAF, SPECTRA, and STORM).
This layered design enables ablation-style analysis
of reasoning failure modes: models that perform
well on single-chart subsets (e.g., DECAF) often
degrade sharply on STORM, revealing deficits not
in visual extraction but in temporal synthesis and
semantic correlation. INTERCHART complements
existing single-chart datasets by serving as a diag-
nostic benchmark rather than a direct performance
leaderboard.

Appendix J Individual Evaluation
Results

Tables 12, 13, and 14 present accuracy distributions
when using Phi-4, Gemini-1.5-Pro, and Qwen-2.5-
Instruct as independent semantic judges. Across
all evaluators, trends remain consistent DECAF
achieves the highest accuracy, followed by SPEC-
TRA, with a pronounced decline on STORM, con-
firming the benchmark’s difficulty gradient. How-
ever, absolute scores vary by evaluator due to dif-
ferences in model size, reasoning strength, and
sensitivity to paraphrased answers.

Among the three, Gemini-1.5-Pro yields the
most lenient yet semantically consistent judgments,
particularly on STORM, where its accuracy remains
higher for both zero-shot and CoT strategies. Phi-
4 produces moderate scores with stable cross-tier
variance, reflecting balanced precision and recall
for numerical and textual reasoning tasks. In con-
trast, Qwen-2.5-Instruct exhibits a stricter inter-
pretation of correctness, often penalizing minor
phrasing or unit mismatches leading to slightly
lower absolute accuracies but higher alignment
with human annotation consistency observed in
Section 3.1.

Together, these results demonstrate that the
multi-judge setup captures complementary evalua-
tion perspectives: Gemini offers semantic flexibil-
ity, Phi-4 ensures numerical reliability, and Qwen
enforces syntactic rigor. This diversity supports
the robustness of our majority-voting framework,
where aggregate correctness judgments remain sta-
ble despite evaluator-level variability.
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Dimension InfoChartQA ChartMind ChartQAPro INTERCHART

Chart Type Infographics Mixed Plots Plots

Multi-Chart No Limited No Yes

Real-World Data Yes Yes Yes Yes

Semantic Drift Medium Medium Low High

Temporal Reasoning Low Medium Low High

Visual Diversity High High Low High

QA Type Factoid Hybrid Factual Fact + Inference

Evaluation Method BLEURT BLEU / LLM Exact Match LLM Majority Voting

Table 11: Comparison of recent benchmarks across diagnostic dimensions. INTERCHART uniquely supports
rigorous multi-chart reasoning with high semantic and temporal complexity, particularly through its STORM subset.

Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM

Combined Visual Context Image

GPT-4o-mini 47.5 61.8 49.4 31.3 53.3 73.8 55.8 30.5 53.0 74.8 53.2 31.0

Gemini-1.5-Pro 53.0 67.1 61.1 30.9 54.6 73.9 58.6 31.4 57.8 78.4 64.4 30.5

Qwen2-VL-7B 38.3 52.2 35.7 27.0 46.0 66.5 45.4 27.0 44.2 63.1 46.8 22.8

MiniCPM-V-2_6 38.9 57.9 37.6 21.3 38.6 58.7 37.2 20.0 36.6 50.2 39.0 20.6

InternVL-2-8B 34.1 44.6 32.5 25.0 37.9 53.6 36.6 23.7 36.9 53.4 35.5 21.9

Idefics3-8B-Llama3 27.7 41.6 19.9 21.8 28.9 40.6 21.4 24.6 27.7 38.6 27.8 16.7

Mean 39.9 54.2 39.4 26.0 43.2 61.2 42.5 26.2 42.0 59.8 44.4 23.9

Interleaved Visual Context

GPT-4o-mini 55.1 68.5 53.6 33.8 56.0 77.6 56.6 33.5 55.8 77.7 55.6 34.1

Gemini-1.5-Pro 55.3 74.5 58.4 33.1 55.9 76.4 57.9 33.4 57.1 78.0 63.5 29.9

Qwen2-VL-7B 37.3 49.4 35.2 27.3 45.9 64.6 44.6 28.6 42.0 55.3 44.3 26.4

MiniCPM-V-2_6 45.0 66.0 44.0 25.0 43.4 64.1 42.0 24.2 44.0 63.3 44.4 24.3

Mean 48.2 64.6 47.8 29.8 50.3 70.7 50.3 29.9 49.7 68.6 51.9 28.7

Table 12: Baseline Accuracies using our evaluation method with Microsoft Phi4 Eval Engine on All Models and
Strategies, broken down by Set Type (S1, S2, S3) and Strategy type (Zero-Shot, Zero-Shot CoT, Few-Shot CoTD).
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Table 13: Baseline Accuracies using our evaluation method with Gemini-1.5 Eval Engine on all models and
prompting strategies. Results are grouped by visual context format (top: Combined, bottom: Interleaved), and
broken down by set type (DECAF, SPECTRA, STORM) and strategy (Zero-Shot, Zero-Shot CoT, Few-Shot CoTD).

Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM

Combined Visual Context Image

GPT-4o-mini 45.8 60.9 48.5 27.9 48.0 69.8 47.2 27.1 48.0 69.4 45.5 29.0

Gemini-1.5-Pro 56.3 66.3 61.7 40.8 59.3 73.8 62.0 42.2 59.1 74.6 62.9 39.9

Qwen2-VL-7B 48.7 50.3 33.8 35.2 51.0 60.7 36.6 33.9 47.8 55.6 34.5 33.3

MiniCPM-V-2_6 38.0 53.4 34.0 26.5 38.4 53.9 33.5 27.8 33.5 50.8 27.7 22.1

InternVL-2-8B 33.2 40.3 27.8 31.6 31.6 43.4 26.2 28.6 31.4 44.3 22.4 27.6

Idefics3-8B-Llama3 22.2 38.2 19.6 8.9 23.0 38.1 18.3 12.8 29.0 33.5 27.0 26.6

Mean 40.7 51.6 37.6 28.2 42.2 56.6 37.3 28.9 41.5 54.7 36.7 29.8

Interleaved Visual Context

GPT-4o-mini 49.3 66.1 52.2 29.7 51.8 74.0 50.9 30.6 50.6 73.0 49.8 29.0

Gemini-1.5-Pro 59.0 74.2 62.9 43.0 60.0 75.0 61.9 43.0 58.4 76.1 61.3 39.4

Qwen2-VL-7B 47.5 47.6 34.1 30.8 50.3 59.6 38.8 32.5 45.1 52.5 32.5 30.2

MiniCPM-V-2_6 41.7 59.1 36.6 29.3 41.0 57.1 37.2 28.9 38.2 53.3 32.2 29.1

Mean 49.4 61.7 46.5 33.2 50.8 66.4 47.2 33.8 48.1 63.7 43.9 31.9

Table 14: Baseline Accuracies using our evaluation method with Qwen 2.5 Eval Engine on all models and prompting
strategies. Results are grouped by visual context format (top: Combined, bottom: Interleaved), and broken down by
set type (S1, S2, S3) and strategy (Zero-Shot, Zero-Shot CoT, Few-Shot CoTD).

Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM

Combined Visual Context Image

GPT-4o-mini 41.4 55.3 38.8 30.1 44.2 61.2 40.8 30.6 45.2 61.7 42.8 31.1

Gemini-1.5-Pro 51.1 66.1 54.5 32.6 51.1 67.0 54.9 31.4 52.1 68.6 57.1 30.7

Qwen2-VL-7B 33.8 48.0 29.0 24.5 35.5 52.5 29.8 24.3 34.5 50.1 29.8 23.7

MiniCPM-V-2_6 29.1 45.2 25.6 16.6 28.9 45.4 25.2 16.2 27.3 45.2 23.4 13.2

InternVL-2-8B 24.3 35.1 19.6 18.2 26.3 38.6 21.8 18.5 26.6 41.4 24.1 14.2

Idefics3-8B-Llama3 19.8 38.1 18.8 2.5 19.5 37.7 18.9 2.0 19.7 34.9 20.4 3.9

Mean 33.2 48.0 31.1 20.8 34.6 50.4 31.9 20.5 34.2 50.3 32.9 19.5

Interleaved Visual Context

GPT-4o-mini 45.6 61.3 44.1 31.4 47.3 65.8 44.3 31.8 48.0 65.6 47.2 31.1

Gemini-1.5-Pro 50.0 67.0 51.0 31.9 51.6 68.1 53.8 32.9 51.3 70.3 54.1 29.5

Qwen2-VL-7B 33.5 46.3 29.5 24.7 36.4 51.4 32.6 25.1 34.1 48.7 28.8 24.7

MiniCPM-V-2_6 34.4 52.3 29.6 21.3 32.9 49.9 29.4 19.4 32.2 49.8 28.7 18.2

Mean 40.9 56.7 38.6 27.3 42.1 58.8 40.0 27.3 41.4 58.6 39.7 25.9

2067


