
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 2007–2022

December 20-24, 2025 ©2025 Association for Computational Linguistics

Characterizing Mamba’s Selective Memory using Auto-Encoders

Tamanna Hossain*† Robert L. Logan IV‡ Ganesh Jagadeesan‡

Sameer Singh† Joel Tetreault‡ Alejandro Jaimes‡

†University of California, Irvine ‡Dataminr Inc.
{tthossai,sameer}@uci.edu aj27@caa.columbia.edu
{rlogan,cjagadeesan,jtetreault}@dataminr.com

Abstract

State space models (SSMs) are a promising
alternative to transformers for language mod-
eling because they use fixed memory during
inference. However, this fixed memory usage
requires some information loss in the hidden
state when processing long sequences. While
prior work has studied the sequence length at
which this information loss occurs, it does not
characterize the types of information SSM lan-
guage models (LMs) tend to forget. In this
paper, we address this knowledge gap by identi-
fying the types of tokens (e.g., parts of speech,
named entities) and sequences (e.g., code, math
problems) that are more frequently forgotten
by SSM LMs. We achieve this by training
an auto-encoder to reconstruct sequences from
the SSM’s hidden state, and measure informa-
tion loss by comparing inputs with their recon-
structions. We perform experiments using the
Mamba family of SSM LMs (130M–1.4B) on
sequences ranging from 4–256 tokens. Our re-
sults show significantly higher rates of informa-
tion loss on math-related tokens (e.g., numbers,
variables), mentions of organization entities,
and alternative dialects to Standard American
English. We then examine the frequency that
these tokens appear in Mamba’s pretraining
data and find that less prevalent tokens tend to
be the ones Mamba is most likely to forget. By
identifying these patterns, our work provides
clear direction for future research to develop
methods that better control Mamba’s ability to
retain important information.1

1 Introduction

State space models (SSMs) have emerged as a
promising alternative to transformers (Vaswani
et al., 2017) for language modeling, with the
Mamba (Gu and Dao, 2023) SSM LMs achiev-

*Corresponding author. Work done while an intern at
Dataminr Inc.

1Our code is available at: https://github.com/
dataminr-ai/ouroboros.

Figure 1: Identifying Selective Memory Loss. We
train auto-encoders to reconstruct inputs directly from
Mamba’s hidden states, and measure information loss
by comparing inputs to their reconstructions. These
reconstructions act as probes of the hidden state’s infor-
mation retention: more faithful reconstruction implies
greater information retention.

ing comparable performance to similar sized trans-
former models while being substantially more
memory efficient at inference time. This mem-
ory efficiency arises from the fact that SSM next
token predictions are computed recurrently using a
fixed-size hidden state, whereas transformer next
token predictions are computed using a key-value
cache that grows linearly with the sequence length.

Recent work has shown that this efficiency
comes at the cost of some information loss when
processing long sequences. In particular, Jelassi
et al. (2024) establish an upper bound on the length
of sequences that can be exactly copied by Mamba,
while Wang et al. (2025b) prove that the influence
of an input token decays exponentially with in-
put length. To provide empirical support for these
theoretical results, these works measure Mamba’s
decline in accuracy as sequence length increases
on copying tasks that either use synthetic inputs,
or prime the model to memorize information using
cues in the prompt. While these results character-
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ize when Mamba begins to forget, they leave open
the question of what kinds of information is more
likely to be forgotten, particularly on natural inputs.

In this paper, we develop a methodology that al-
lows us to better understand the types of tokens and
sequences that the Mamba LM is likely to forget in
practical settings. The core idea of our approach
is to compare input texts with known properties—
such as named entity recognition (NER) and parts
of speech (POS) tags on the token level, and cat-
egorical labels on the sequence level—to recon-
structions obtained from Mamba’s hidden state. By
correlating reconstruction errors (measured using
F1 scores and token omission rates) with the in-
put properties we are able to obtain high-level in-
sights about Mamba’s selective memory. For ex-
ample, in Figure 1 we see that the number "42"
is reconstructed as "57", providing some evidence
that Mamba has a tendency to forget numbers.

To obtain input reconstructions, we train an auto-
encoder that decodes sequences from hidden states
produced by a frozen Mamba encoder. By using
pretrained checkpoints for our encoder, we are able
to examine the impact language model pretraining
on Mamba’s memory, rather than just the archi-
tecture. This approach additionally complements
the approaches used by prior works in that it al-
lows us to study reconstructions of any piece of
text without having to provide memorization cues.
In Section 4.2 we measure the performance of this
approach for a number of different model sizes
and sequence lengths, and validate that it replicates
findings from previous works.

In Sections 4.3 and 4.4 we then employ this ap-
proach to study token- and sequence-level charac-
teristics of reconstruction errors on a number of
datasets. We begin by looking at Mamba’s pre-
training dataset The Pile (Gao et al., 2020), which
allows us to understand how in-distribution errors
vary by the input source. Our results show that
Mamba is significantly more likely to forget to-
kens on math-related sequences, even for relatively
short sequence lengths (16+ tokens). We also per-
form experiments on Groenwold et al. (2020)’s
SAE/AAVE tweet pair dataset, and find signifi-
cantly elevated reconstruction errors on texts writ-
ten using African American Vernacular English.

We then study token-level NER and POS errors
on CoNLL-2003 (Tjong Kim Sang and De Meul-
der, 2003), and find significantly higher reconstruc-
tion errors on mentions of organizations, as well as
numerical tokens. To better understand this, we ex-

amine a 178M token sample from the Pile and find
an association between the categories that Mamba
tends to forget and the frequency that unique to-
kens belonging to those categories appear in the
Pile, suggesting that their rarity in Mamba’s pre-
training data may contribute to their omission. This
raises the question of whether conventional pre-
training pipelines are well suited for the inductive
biases of SSM-based language models. In sum,
our work establishes clear differences in the types
of information the Mamba LM tends to retain ver-
sus forget, providing direction for future research
into methods to improve the retention of important
information in its hidden state.

2 Related Work

State Space Models State space models (SSMs)
are linear recurrent architectures with fixed-size
hidden states that enable linear-time training and
constant-time inference per step, making them a
more efficient alternative to transformers for se-
quence modeling (Gu et al., 2021, 2022a). Re-
cent models like Mamba (Gu and Dao, 2023) have
shown that SSMs can match transformers of sim-
ilar scale on standard NLP benchmarks, aided by
long-range initialization techniques from HiPPO
theory (Gu et al., 2022b) and time-dependent pa-
rameterization that allows selective attention over
inputs. Hybrid transformer-SSM architectures have
shown gains in both efficiency and accuracy over
pure transformers (Wang et al., 2025a), reinforc-
ing the value of SSM-based models—especially as
inference-time scaling is increasingly used to en-
hance LM reasoning through techniques like task
decomposition (Wei et al., 2022; Yao et al., 2023)
and increased sampling (Wang et al., 2023).

Although Mamba models offer improved compu-
tational efficiency over transformers, recent studies
have shown that this comes at the cost of informa-
tion degradation over long contexts. Jelassi et al.
(2024) derive a theoretic upper bound on the se-
quence length that Mamba can recall information
from, and Wang et al. (2025b) demonstrate that
token influence decays exponentially with input
distance, i.e., there is a recency bias to Mamba’s
memory. These findings are empirically supported
by experiments using input sequences with explicit
memorization cues and synthetic inputs (Waleffe
et al., 2024; Wang et al., 2025b). However, while
these prior works illuminate when forgetting occurs
in Mamba’s hidden state, it still remains unknown
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what is forgotten, especially for natural inputs. This
is the knowledge gap we address in our paper.

Interpreting Hidden States Our approach re-
lates to a large body of work using learned classi-
fiers to probe LM hidden states for the presence of
properties such as syntactic and semantic knowl-
edge (see Rogers et al. (2020) for an overview).
Our use of an auto-encoder to probe memorization
of input sequences is unique in this literature, how-
ever this likely stems from the fact that input com-
pression is not a concern for the transformer-based
LMs typically considered in these works. While
auto-encoders have a rich history of use to train
model hidden states to capture linguistic structures
e.g., syntax and semantics (Zhang et al., 2023),
negation and uncertainty (Vasilakes et al., 2022),
content and style (Li et al., 2022b; John et al.,
2018), and tense, verb style and gender (Mercatali
and Freitas, 2021), there is little existing literature
that uses auto-encoders to study hidden states for
existing language models. To our knowledge, the
closest comparison to our work is Templeton et al.
(2024), who train sparse auto-encoders to learn dis-
crete interpretable features captured by Claude’s
hidden states,2 however our work substantially dif-
fers from theirs in terms of both method and focus.

3 Method

In this section, we introduce a method for identi-
fying the types of tokens and sequences Mamba
is most likely to forget. In our approach, we re-
construct text from Mamba’s hidden states using
a trained auto-encoder and then compare the out-
put to the original input annotated with features
such as part-of-speech tags, named entities, and
sequence-level categories. This allows us to as-
sess information retention in the natural usage of
Mamba as a language model without relying on
memorization prompts like prior works.

3.1 Auto-Encoder

Given an input text, x, the encoder function fenc(·)
maps the input into a latent space representation β.
The decoder function fdec(·) then takes this latent
representation, β, and maps it back to the input
space of text as x̃. Formally:

β = fenc(x), x̃ = fdec(β)

2https://www.anthropic.com/claude

Encoder We use pretrained Mamba (Gu and Dao,
2023) language models with frozen weights3 to en-
code the input text into a latent space representation
with two parts: (i) an SSM State, βS , and (ii) a Con-
volutional State, βC .

The Mamba architecture passes embeddings of
an input sequence x = [x1, . . . , xn] through a con-
volutional filter, creating a convolutional hidden
state, βC . After applying a non-linear activation we
get an intermediate state, z = [z1, . . . , zn], which
is passed into an SSM. Within the SSM, recurrent
states are computed as follows for time-dependent
parameters Āt and B̄t for t ∈ {1, . . . , n},

ht = Ātht−1 + B̄tzt

The last recurrent state is taken as the SSM hid-
den representation of the input sequence, βS . Thus,
the encoder maps an input sequence, x, into a latent
state β = [βC , βS ].

Decoder Once the latent representation β is ob-
tained from the frozen Mamba encoder, the decoder
produces a reconstruction x̃ of the input text x. In
this work, we initialize the decoder using the same-
pretrained Mamba architecture as the encoder. The
decoder (i) sets the initial state, h0, of the decoder’s
SSM to the SSM state from the encoder, βS , and
(ii) similarly initializes the the decoder’s convolu-
tion with the convolutional state of the encoder, βC .
Given these initializations, the decoder autoregres-
sively reconstructs the input text token by token.

3.2 Measuring Information Loss

To measure information loss in Mamba’s hidden
state, we compare input texts with their reconstruc-
tions produced by a trained auto-encoder. These
reconstructions serve as probes into the informa-
tion retention capacity of the hidden state: the more
faithfully the input can be recovered, the more in-
formation must have been retained. We assess the
fidelity of reconstructions using two metrics: (i)
Omission Rate, and (ii) Rouge F1-Score.

Omission Rate is a token-level metric that mea-
sures the frequency that specific input tokens are
forgotten or omitted in reconstructions. Let fin(t)
and frec(t) denote the frequency of token t in the
original input and reconstructed output, respec-
tively. The omission rate for token t is:

3We use frozen weights in the encoder because our goal is
to study the pre-trained Mamba checkpoints directly, evaluat-
ing the information preserved in their hidden states through
standard language modeling.
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Omission Rate(t) = 1− frec(t)

fin(t)

An omission rate of 0 indicates that the perfect
retention of a token, while a rate of 1 implies com-
plete information loss.

ROUGE F1-Score (Lin, 2004) provides a mea-
sure of reconstruction quality at the sequence
level by measuring the overlap between the re-
constructed text and the original input. Specifi-
cally, it balances precision—how many of the re-
constructed tokens are correct—with recall—how
many of the original tokens are reproduced.

Together, these two metrics allow us to measure
information loss at the token level (e.g., named
entities, parts of speech) and the sequence level
(e.g., math problems, emails). By measuring this
information loss on subsets of data with known
token- and sequence-level metadata (e.g., tokens
with certain NER tags, or sequences from a par-
ticular source) we are able to extract high-level
insights about the kinds of information Mamba is
more likely to forget.

4 Experiments and Results

4.1 Training
We train the auto-encoder with Mamba
models ranging from 130M-1.4B param-
eters to reconstruct sequences of lengths
l ∈ {4, 8, 16, 32, 64, 128, 256}. We initialize the
autoencoders with pretrained Mamba checkpoints
and freeze the encoder to ensure that we are
evaluating the representations produced by the
original model.

We train on the Pile—Mamba’s pretraining
dataset—to mitigate issues of distribution shift.
However, since the full Pile is no longer publicly
available due to copyright restrictions, we use a ver-
sion with all copyright-protected content removed,
Pile Uncopyrighted.4 We train auto-encoders to
reconstruct texts at various fixed lengths in order
to study how information is lost as the sequence
length changes. To control for sequence length as a
potential confounding factor in auto-encoder train-
ing and evaluation, we train separate auto-encoders
for each fixed sequence length and evaluate them
only on sequences of the corresponding length.

The encoder weights are frozen because the goal
of our work is to study how Mamba, off the shelf,

4https://huggingface.co/datasets/monology/
pile-uncopyrighted
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Figure 2: Reconstruction Performance Across Se-
quence Lengths. ROUGE F1-score for reconstruct-
ing text using Mamba (130M). Performance declines
sharply as sequence length increases.

compresses information into its hidden state for
its pre-training objective of next token prediction,
while the decoder weights are trained specifically
for the task of input reconstruction from the en-
coder’s hidden states. The state sizes of different
models are shown in Table A1. We adopt a con-
stant learning rate of 1× 10−5, matching the final
learning rate of Mamba pre-training. We train un-
til convergence with a batch size calibrated to the
model size and GPU memory constraints. We use
200K instances (282M tokens) from Pile Uncopy-
righted to train the decoder.

During the data preprocessing step, the train-
ing corpus is tokenized, concatenated into a sin-
gle stream, and then divided into chunks of each
sequence length. Additionally, a beginning-of-
sentence (BOS) token is appended at the start of
each sequence before it is provided to the encoder.
For the decoder, an end-of-sequence (EOS) token
is added to the end of each sequence.

We optimize our model parameters using a lan-
guage modeling objective with cross-entropy be-
tween the input and reconstructed texts as the loss
function. Training is halted using the following
early stopping criterion evaluated on a validation
set of 128 instances sampled from Pile Uncopy-
righted. The encoder maps each validation in-
stance to Mamba’s latent space, and the decoder
generates tokens autoregressively until an end-of-
sequence (EOS) token is produced or the maximum
set threshold of 300 tokens is reached. Every 1000
steps, we measure the validation ROUGE F1-score.
If it does not improve by at least 0.1 over 5000
training steps, then training is stopped.

4.2 Replicating Existing Findings

We validate our approach on 700 held-out instances
from Pile Uncopyrighted, evaluating whether it
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Figure 3: Performance vs. Model Size. ROUGE F1-
score as a function of model size, broken down by se-
quence length. Shorter sequences achieve high perfor-
mance with fewer parameters, while longer sequences
benefit significantly from increased model capacity.

replicates existing findings on Mamba’s informa-
tion loss as a function of sequence length, model
size, and token position. To measure information
loss across sequence length and model size we use
the ROUGE F1-score. To measure information loss
across token position we use omission rate.

Sequence Length Like prior work (Jelassi et al.,
2024; Waleffe et al., 2024), we see a decline in
reconstruction fidelity as sequence length increases
across model sizes (Figure 3). For instance, for a
130M size model, the reconstruction for the short-
est sequence (length 4) is not perfect; it remains
very high at 98.6 (Figure 2). However, starting at
sequence length 16, the scores begin to drop, with
sequences of length 128 and 256 showing notably
poor performance, with ROUGE F1-scores of 85.0
and 66.6, respectively.

Model Size As the number of parameters in-
creases, the performance generally improves, with
larger sequence lengths benefiting more from in-
creased model size (Figure 3). For smaller se-
quence lengths (<16), even the smallest models
learn the reconstruction effectively, achieving high
performance. However, for longer sequences (128
and 256), performance improves substantially with
an increase in model parameters, showing a much
steeper rise in the ROUGE F1-score as the model
size grows. This suggests that longer sequence
lengths require more capacity in the models to ade-
quately encode and decode the sequence informa-
tion required for reconstruction, reinforcing prior
theoretical results (Jelassi et al., 2024).

For sequence lengths 64 and 256, we observe
that Mamba 790M outperforms Mamba 1.4B. Such
non-monotonic behavior has been noted in prior
work—for example, Lester et al. (2021) report

that a T5-Small model can outperform larger
T5-Base/Large/XL models under certain prompt-
tuning conditions. Nonetheless, the overall trend
supports the conclusion that larger models are bet-
ter equipped to handle longer sequences.

Token Position In line with prior work (Wang
et al., 2025b), we observe a recency bias in
Mamba’s memory, i.e., earlier tokens are omitted
at higher rates than recent ones. We observe this
phenomenon across sequence lengths and model
sizes. For example, in Figure 4 we see tokens at
the beginning of a sequence being forgotten up to
6 times more than ones at the end of sequences.

4.3 Token-Level Trends

To understand what types of tokens Mamba tends
to retain versus forget in its hidden state, we look
at (i) tokens with the top omission rates in natural
text, and (ii) omission rates across part-of-speech
and named entity categories in annotated data.

Top Omitted Tokens in Natural Text To inves-
tigate what tokens are most frequently omitted in
natural text reconstruction, we again use the Pile
evaluation dataset across all sequence lengths, and
measure ommission rates per token. To prevent ar-
tifacts due to data scarcity, tokens appearing fewer
than 100 times in the dataset are excluded.

Table 1 lists the top omitted tokens for a model
size of 130M (results for the 1.4B model can be
found in Table A5). We find that the top 50 omit-
ted tokens include many numbers, letters, and stop
words across model sizes. This provides our first
piece of evidence that Mamba has memory issues
with math-related texts as numbers and letters corre-
spond to tokens that often take the role of variables.

Part-of-Speech and Named Entities To investi-
gate how well different parts-of-speech (PoS) and
Named Entities (NE) are retained by Mamba, we
use the test split of CoNLL-2003. It contains 3,453
instances of English newswire text, with token-
level annotations for PoS and NE tags. To ensure
consistency in sequence length, instances are con-
catenated up to a fixed length of 256 as it has the
highest omission rate. After excluding categories
with less than 100 instances, we compute omission
rates across PoS and NE categories, and assess
differences between categories using t-tests. We
apply Bonferroni correction to adjust p-values for
multiple comparisons (α = 0.05).
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Figure 4: Error Positions. We count the number of reconstruction errors per position in a sequence to assess
whether token position impacts reconstruction accuracy. We find that later positions have more reconstruction errors
than earlier positions. 130M model errors by position are shown here.

Token Omit Rate Token Omit Rate Token Omit Rate Token Omit Rate Token Omit Rate

(- 23.5 times 14.6 z 13.5 b 12.2 less 11.6
13 18.7 s 14.3 20 13.4 further 12.1 21 11.6
11 18.3 k 14.3 15 13.1 Suppose 12.0 62 11.5
4 15.9 17 14.3 four 13.0 however 12.0 16 11.4

Suppose 15.4 l 14.2 12 12.8 8 11.9 )) 11.4
u 15.3 7 14.1 31 12.8 9 11.9 either 11.3
w 15.0 with 14.1 30 12.7 d 11.8 18 11.2
o 14.9 3 13.7 List 12.6 y 11.7 similar 11.0

Category 14.9 6 13.6 j 12.6 58 11.7 above 10.9
14 14.6 5 13.5 n 12.2 c 11.7 and 10.9

Table 1: Top 50 Omitted Tokens. The 50 most forgotten tokens by Mamba (130M) on the Pile across sequence
lengths.

For PoS tags, we find numbers have the high-
est omission rate across model sizes. For a 130M
model, the omission rate is 50.8% and for a 1.4B
model the omission rate is 22.7% (Figure 5). We
find a statistically significant difference between
numbers and all other PoS categories across model
sizes (Tables A2 and A6 in the Appendix). This
reinforces our result from the previous experiment
that Mamba’s hidden state struggles to retain num-
bers. For the 130M model, we also find statisti-
cally significant differences between a few other
PoS pairs. For the 1.4B model we find statisti-
cally significant differences in omission rates for
punctuations, particles, and nouns (which are the 3
categories that rank just below numbers as the most
frequently omitted) and many other categories.

For named entities, we find organizations have
the highest omission rate across model sizes. For
the 130M model, the omission rate is 35.8% while
it is 12.3% for the 1.4B model (Figure 6). We
find a statistically significant difference between
organizations and other NE categories (Tables A3

0 10 20 30 40 50
Omission Rate

NUM
PUNCT

PRT
NOUN

SYM
VERB

ADJ
CONJ

ADV
PRON

ADP
DET

1.4B
130M

Figure 5: Part-of-Speech. Omission rates by PoS type
on CoNLL-2003. Numbers have the highest omission
rate across model sizes.

and A7 in the Appendix). For the 1.4B model,
we also find statistically significant differences be-
tween Location, which had the lowest omission
rate, and non-named entities.
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Figure 6: Named Entities. Omission rates by NE type
on CoNLL-2003. Organizations have the highest omis-
sion rate for both models.

4.4 Sequence-Level Trends

In order to understand what types of sequences
Mamba tends to retain versus forget in its hidden
state, we look at reconstruction fidelity across (i)
different subsets of Pile Uncopyrighted, (ii) differ-
ent dialects, and (iii) synthetic datasets.

Pile Subsets We test how well Mamba’s hid-
den state preserves different types of information
by evaluating reconstruction performance across
diverse textual domains. We sample 700 se-
quences each from nine subsets of the Pile Uncopy-
righted—Common Crawl, ArXiv, NIH, GitHub,
PubMed Central, Stack Exchange, Enron Email,
Free Law, and DM Mathematics—capturing a
broad range of linguistic characteristics, including
web text, scientific writing, code, legal documents,
and mathematical content.

Across model sizes, we find that the fidelity of
reconstruction deteriorates the most for mathemat-
ical data as sequence length increases. For the
130M model, the ROUGE F1-score for the DM
Mathematics subset is 99.9 for a sequence length
of 4, which is on par with the other subsets. At
a sequence length of 256, reconstruction perfor-
mance on DM Mathematics drops sharply, with an
F1-score of 41.6—substantially lower than other
subsets, such as Common Crawl, which achieves
69.7 (Figure 8). In contrast, the remaining subsets
show relatively similar performance to one another.
This further supports our finding from token-level
experiments that Mamba’s hidden state struggles
to retain information from mathematical inputs.

Dialects To evaluate if dialect impacts Mamba’s
retention, we use the AAVE/SAE paired dataset
(Groenwold et al., 2020), which contains parallel
instances in African American Vernacular English
(AAVE) and Standard American English (SAE).
For consistency, instances are concatenated to a
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Figure 7: Dialect. Compared to Standard American
English (SAE), the reconstruction fidelity of African
American Vernacular (AAVE) degrades more with in-
creased sequence length.

fixed maximum length, ranging from 4–256 tokens.
For short sequences, ROUGE F1-scores for re-

construction are high and nearly identical for SAE
and AAVE. For a 130M model at a sequence length
of 4, SAE achieves 99.7 while AAVE is at 99.6
(∆ = 0.1; Figure 7). However, as sequence length
increases, the performance gap between the two
widens. At a sequence length of 256 tokens, SAE
reconstruction F1 declines to 65.3, while AAVE
falls further to 59.7 (∆ = 5.6). We see similar
trends across model sizes (Figure 7).

Synthetic Numeric Sequences We assess how
well purely numerical sequences can be recon-
structed by creating a synthetic evaluation dataset.
For each sequence length (4–256 tokens), we ran-
domly sample numeric tokens from Mamba’s vo-
cabulary to generate 1K instances of the corre-
sponding length.

We found that accuracy declines significantly
more with length compared to natural text. For a
130M-parameter model at 256 tokens, the F1-score
drops from 66.5 for standard text to just 0.5 for
numbers (Figure 9). We see similar trends across
model sizes.

Difference Between Reference and Generated
Numbers To understand the character-level devi-
ations involved in retaining numeric information,
we compute the Levenshtein distance between in-
correctly generated numeric tokens and their corre-
sponding references on the CoNLL-2003 and Pile
evaluation sets. Across datasets and model sizes,
the median reference token length ranged from 2–
3, with a median edit distance of 2 (Appendix D).
These values show that for errors on numerical
tokens, most characters do not match.

To understand the magnitude of this difference
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Figure 8: Reconstruction Errors by Input Source. Reconstruction fidelity across subsets of Pile for Mamba. As
sequence length increases, reconstruction for the DM Math subset deteriorates the most compared to other subsets.
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Figure 9: Numerical Sequences. Comparison of re-
construction fidelity of randomly sampled numeric se-
quences versus natural sequences from the Pile.

between reference and generated numbers, we ex-
tract numbers from incorrect instances and com-
pute the Mean Absolute Percentage Error (MAPE),
which expresses the mean absolute error as a
ratio of the reference values, providing a scale-
independent metric for error. On the CoNLL-2003
test set, the generated numeric token magnitudes
for the 130M model deviate from the reference to-
kens by an average of 8.4× their magnitude. The
MAPE decreases steadily with increasing model
size, reaching 1.9 at 1B parameters. When evalu-
ated on the Pile dataset, the MAPE increases with
chunk length across model sizes, rising from ap-
proximately 0 at a chunk size of 4 to 38.2 at a chunk
size of 256 (Appendix D). These results suggest
that larger models better preserve the magnitudes of
numeric tokens, whereas numeric tokens in longer
sequences are retained poorly with high deviation.

Repeated Tokens We test whether Mamba’s hid-
den state retains both token identity and repetition
count by creating a synthetic dataset of 2K ran-
domly sampled tokens from its vocabulary. Each
token is repeated n times, where n ranges from 4 to

256. For a 130M model, repeated tokens were cor-
rectly generated > 90% of times across chunk sizes
(Table A4). However, only at a sequence length
of 4 did the model consistently reproduce the cor-
rect number of repetitions. For larger sequence
lengths, the model instead continuing generation
until reaching the maximum token limit of 300.

Memory and Perplexity We then examine
whether Mamba’s hidden state has more difficulty
retaining information about sequences that are less
likely under the model, i.e., higher perplexity, by
correlating reference perplexity with omission rates
in the evaluation subset of the Pile. For a 130M
Mamba model at a sequence length of 256, we
observe that as the perplexity of input sequences
increases, so does the omission rates of their recon-
structions (Figure 10). Thus, it is harder for Mamba
to accurately store information about higher per-
plexity sequences.
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Figure 10: Perplexity vs. Omission Rates. We observe
that as the perplexity of input sequences increases, so
does the omission rate of their reconstructions.

4.5 Training Corpus Analysis

To investigate why certain types of tokens and se-
quences are more prone to omission in Mamba, we
examine its training data. We randomly sample
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200K instances from Pile Uncopyrighted by first
randomly selecting a partition of the dataset, and
then applying reservoir sampling. We annotate this
sample using the Stanza part-of-speech tagger.

We find that numerical tokens (NUM) exhibit the
lowest count per unique token among all categories
evaluated, while, determiners (DET)—which have
the lowest omission rates—have the highest count
per unique token (Table 2). This shows an asso-
ciation between omission rates and pre-training
frequencies.

PoS Total Unique Ratio

DET 14M 887 16K
PRON 7.6M 2.4K 3.1K
ADP 18M 5.9K 3.0K
PUNCT 43M 73K 584
ADV 5.6M 17K 325
SYM 6.0M 21K 293
VERB 16M 79K 205
ADJ 12M 93K 130
NOUN 47M 158K 30
NUM 9.0M 643K 14

Table 2: Part-of-Speech Distribution in Pile Sample.
In a 200K random sample of the Pile Uncopyrighted,
numbers (NUM) have the lowest count per unique token,
which may contribute to their poor retention.

5 Discussion

Our main contribution is an evaluation of the se-
lective memory of the pretrained Mamba language
models. We emphasize this term to highlight our
focus on the impact language model pretraining has
on information retention, as opposed to fundamen-
tal limitations of the Mamba architecture. Our find-
ings show that Mamba LMs are especially prone
to forgetting certain types of information (e.g., nu-
meric tokens) and this appears to be driven in part
by occurrence in pretraining data. In addition to
our analysis, our work contributes a general frame-
work for diagnosing memory limitations in LMs
with fixed-size hidden states, offering a tool for fu-
ture research. As LMs are often used as black-box
systems, understanding their limitations is a critical
first step toward mitigating them. This paper aligns
with existing evaluation-focused research in NLP
(Hessel et al., 2023; Lin et al., 2022; Moghe et al.,
2023; Selvam et al., 2023) that sheds light on issues
and guides future work.

Building on our findings, we suggest that the con-
ventional pretraining pipeline may not be ideally
suited to the inductive biases of SSM-based lan-

guage models. One aspect to reconsider is tokeniza-
tion. Recent work has demonstrated that byte-level
SSM language modeling can outperform transform-
ers on various benchmarks (Wang et al., 2024), in-
dicating that tokenization-free approaches may pro-
vide a more natural inductive bias for SSMs (Gu,
2025). Tokenization choice also impacts numerical
reasoning; Singh and Strouse (2024) demonstrate
that tokenizing numbers as single digits yields bet-
ter performance on mathematical tasks. Similarly,
Yang et al. (2025) show that right-to-left tokeniza-
tion can enhance numeracy.

The pretraining objective itself is yet another di-
rection to revisit. Auxiliary reconstruction losses
and memory-augmenting self-supervised objec-
tives improve memory retention in RNN and LSTM
models (Zhang et al., 2021; Trinh et al., 2018). Sim-
ilarly, arithmetic-aware pretraining strategies, such
as contrastive learning and task-specific auxiliary
losses, enhance numerical reasoning in LLMs (Pe-
trak et al., 2023; Li et al., 2022a). We hope that fu-
ture work will address the selective memory issues
in SSM language models by exploring pre-training
strategies tailored to SSM architectures.

6 Conclusion

In this work, we characterized the types of to-
kens (e.g., parts of speech, named entities) and
sequences (e.g., code, mathematical content) that
are most susceptible to being forgotten by Mamba
LMs. By training auto-encoders to reconstruct in-
puts directly from Mamba’s hidden states, we were
able to assess information retention without rely-
ing on explicit memorization cues like previous
works. Our results showed substantially greater
information loss for math-related tokens as well as
for organization names and non-standard English
dialects. These findings highlight that Mamba’s
memory is clearly selective, which could pose a
problem for applying it to tasks that require ex-
actly recalling the types of tokens it has a ten-
dency to forget, e.g., math reasoning, informa-
tion retrieval, and open-domain dialogue tasks. By
identifying these weaknesses, our work provides
motivation and direction for future research into
methods that control Mamba’s selective memory
so that it is able to better retain pertinent informa-
tion. We release our full implementation at https:
//github.com/dataminr-ai/ouroboros to sup-
port future work.
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7 Limitations

Decoder Errors A limitation of our methodol-
ogy is the potential for confounding between de-
coder errors and information loss in Mamba’s hid-
den states. Since we train a decoder for text recon-
struction, it is possible some of the reconstruction
omissions we find are due to decoder errors as well
as information lacking in Mamba’s hidden states.
Nevertheless, the successful replication of prior
work with our method provides strong validation
of our approach, suggesting that any impact from
decoder errors is not significant enough to invali-
date our core findings.

Single SSM Language Model Family We only
evaluate on one SSM language model family,
Mamba. The reason we chose these models is
that, similar to how ChatGPT has been studied as a
representative of state-of-the-art transformer LLMs
(Gao et al., 2023; Laskar et al., 2023; Bang et al.,
2023; Jang and Lukasiewicz, 2023), the pretrained
Mamba models are representatives of state-of-the-
art SSM LLMs. Additionally, there are no other
reasonable pure SSM language models available
for comparison.

Single Linear Architecture Our study focuses
solely on one linear recurrent architecture, SSMs,
though our approach can be applied to other archi-
tectures as well, such as RWKV (Peng et al., 2023).
While exploring information retention across these
different architectures is an important direction for
future research (and if our paper is accepted, we
will make our code publicly available to facilitate
such work), this paper already required a substan-
tial amount of resources to produce. For instance
training the 1.4B decoder required multiple weeks
on a 48GB A6000 GPU.

Solutions We do not attempt to solve the selec-
tive memory issues we find in Mamba, though we
discuss some possible options in Section 5. How-
ever, identifying a problem is an essential first step
toward developing an effective solution. Develop-
ing solutions, particularly for complex behaviors in
large language models, is non-trivial and typically
requires targeted, follow-up research. Our paper
falls within the well-established tradition in NLP
of evaluation-focused work (Hessel et al., 2023;
Lin et al., 2022; Moghe et al., 2023; Selvam et al.,
2023), and aims to shed light on an important is-
sue that can guide future efforts toward mitigate
identified issues.

Downstream Task We do not evaluate on down-
stream tasks. However, we identify a fundamental
issue with Mamba: its difficulty in retaining cru-
cial information, such as numbers, from context.
This is an essential skill for techniques that are now
standard in LLM reasoning, such as task decompo-
sition (Wei et al., 2022; Yao et al., 2023). While
downstream evaluation is beyond the scope of this
paper, we encourage future researchers to explore
this area.

Dataset We use samples from Pile Uncopy-
righted to train our autoencoder and estimate the
part-of-speech composition of Mamba’s training
data. However, there might be some distribution
shift between Pile Uncopyrighted and The Pile, the
original training dataset for the Mamba language
models. However, this is unavoidable as the full
Pile is no longer available for use.

Training Corpus Analysis While we demon-
strate a strong connection between the forgetting
of numerical data and the occurrence of numbers
in Mamba’s training corpus, we are unable to es-
tablish a similar connection for all types of infor-
mation loss, such as non-standard dialects. This is
due to the lack of available taggers for dialects, in
contrast to the well-established taggers for parts-of-
speech.
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A Mamba Details

Model Layers βS βc

130M 24 [1536, 16] [1536,4]
370M 48 [2048,16] [2048,4]
790M 48 [3072,16] [3072,4]
1.4B 48 [4096,16] [4096,4]

Table A1: Hidden State Sizes. The encoder maps input
texts into a hidden state with two parts: (i) an SSM State,
βS , and (ii) a Convolutional State, βC . The sizes βS

and βC per layer for encoders of various sizes between
130m and 1.4B are shown.

B Additional 130M Results

Pair T-Statistic Adjusted P-Value

NUM - SYM -4.4 8.8e-04
NUM - ADJ -15.4 5.1e-51
NUM - NOUN -25.1 1.8e-135
NUM - ADV -11.3 1.9e-27
NUM - VERB -20.8 4.6e-92
NUM - PUNCT -22.8 1.6e-110
NUM - PRON -12.3 1.1e-32
NUM - PRT -8.8 7.8e-17
NUM - CONJ -11.7 1.3e-29
NUM - ADP -26.1 3.0e-144
NUM - DET -24.8 1.1e-129
SYM - DET -3.8 1.1e-02
ADJ - ADP -5.6 1.9e-06
ADJ - DET -7.3 2.1e-11
NOUN - ADP -7.6 1.7e-12
NOUN - DET -9.1 4.6e-18
ADV - ADP -3.5 2.7e-02
ADV - DET -5.1 1.9e-05
VERB - ADP -5.3 6.6e-06
VERB - DET -7.2 3.4e-11
PUNCT - ADP -4.2 1.9e-03
PUNCT - DET -6.3 2.4e-08
PRON - DET -3.9 5.6e-03

Table A2: Statistical Tests (Part-of-Speech). Part-of-
speech categories that have statistically different omis-
sion rates based on pair-wise t-tests at α = 0.05 with
Bonferroni corrected p-values for Mamba (130M).

Pair T-Statistic Adjusted P-Value

Organization - Location -3.4 6.3e-03
Organization - Misc -3.2 1.5e-02

Table A3: Statistical Tests (Named Entity Recogni-
tion). Named entity categories that have statistically
different commission rates based on pair-wise t-tests
at α = 0.05 with Bonferroni corrected p-values for
Mamba (130M).

Length Present (%) Repeat Mode

4 99.9 4
8 99.8 300

16 100.0 300
32 100.0 300
64 99.9 300
128 99.7 300
256 92.1 300

Table A4: Repeated Tokens. The percentage of genera-
tions that contained the correct repeated tokens and the
modal repetition count observed in those generations.

C Additional 1.4B Results

Pair T-Statistic Adjusted P-Value

NUM - PUNCT -8.6 6.5e-16
NUM - PRT -5.2 1.2e-05
NUM - NOUN -28.0 1.0e-167
NUM - SYM -5.0 3.4e-05
NUM - VERB -23.3 5.4e-115
NUM - ADJ -18.7 2.4e-74
NUM - CONJ -11.0 7.4e-26
NUM - ADV -12.7 5.4e-35
NUM - PRON -12.8 2.4e-35
NUM - ADP -26.5 1.2e-148
NUM - DET -21.5 8.6e-98
PUNCT - NOUN -15.9 7.7e-55
PUNCT - VERB -15.1 2.4e-49
PUNCT - ADJ -12.8 2.5e-35
PUNCT - CONJ -7.7 9.5e-13
PUNCT - ADV -9.0 2.6e-17
PUNCT - PRON -9.1 8.1e-18
PUNCT - ADP -18.7 2.4e-75
PUNCT - DET -15.3 1.6e-50
PRT - VERB -4.0 3.6e-03
PRT - ADJ -4.7 2.2e-04
PRT - CONJ -4.0 5.1e-03
PRT - ADV -4.3 1.1e-03
PRT - PRON -4.5 4.6e-04
PRT - ADP -6.4 1.4e-08
PRT - DET -6.1 9.0e-08
NOUN - VERB -4.0 4.1e-03
NOUN - ADJ -4.5 5.1e-04
NOUN - ADV -3.4 4.7e-02
NOUN - PRON -3.6 1.8e-02
NOUN - ADP -8.5 1.1e-15
NOUN - DET -6.9 3.4e-10
VERB - ADP -4.2 2.2e-03
VERB - DET -3.6 2.1e-02

Table A6: Statistical Tests (Part-of-Speech). Part-of-
speech categories that have statistically different omis-
sion rates based on pair-wise t-tests at α = 0.05 with
Bonferroni corrected p-values for Mamba (1.4B).
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Token Omit Rate Token Omit Rate Token Omit Rate Token Omit Rate Token Omit Rate

(- 43.8 w 15.1 7 13.2 four 10.7 w 9.6
What 23.5 Suppose 14.8 l 13.0 d 10.6 t 9.5
Suppose 23.0 z 14.6 5 12.7 20 10.4 prime 9.5

List 21.9 17 14.4 b 12.4 n 10.3 Let 9.4
What 17.8 6 13.9 21 11.4 15 10.3 f 9.4
13 17.0 u 13.7 9 11.4 )) 10.0 g 9.1
11 17.0 14 13.6 12 11.2 16 9.9 h 9.1
4 16.8 j 13.3 3 11.2 2 9.9 ? 8.7
times 15.6 y 13.3 c 11.0 18 9.7 ** 8.7
o 15.1 s 13.2 k 10.8 8 9.6 1 8.4

Table A5: Top 50 Omitted Tokens. The top 50 tokens most forgotten words in natural text across sequence lengths
for Mamba (1.4B).

Pair T-Statistic Adjusted P-Value

Organization - Person -3.9 1.0e-03
Organization - Misc -3.6 3.7e-03
Organization - Location -5.2 1.8e-06
Not NE - Location -4.4 9.8e-05

Table A7: Statistical Tests (Named Entities). Named
entity categories with statistically different omission
rates based on pair-wise t-tests at α = 0.05 with Bon-
ferroni corrected p-values for Mamba (1.4B).
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D How Different are Reference and
Generated Numbers?

Character difference The lengths of reference
numeric tokens that are incorrectly reconstructed
are shown in Table A9, and the Levenshtein dis-
tance between reference and generated tokens are
showns in Table A8.

Magnitude difference The Mean Absolute Per-
centage Error (MAPE) for numbers in incorrectly
generated numeric tokens across CoNNL-2003 and
Pile evaluation datasets are shown in Table A10.

Dataset Model Chunk Mean Median

connl 130m 256 1.9 2.0
connl 370m 256 1.9 2.0
connl 790m 256 1.8 2.0
connl 1b 256 1.9 2.0

pile 130m 4 4.1 2.0
pile 130m 8 1.7 2.0
pile 130m 16 1.8 2.0
pile 130m 32 2.0 2.0
pile 130m 64 2.0 2.0
pile 130m 128 2.2 2.0
pile 130m 256 2.2 2.0

pile 370m 4 0.0 0.0
pile 370m 8 1.6 2.0
pile 370m 16 2.0 2.0
pile 370m 32 2.2 2.0
pile 370m 64 1.9 2.0
pile 370m 128 2.1 2.0
pile 370m 256 2.2 2.0

pile 790m 4 2.0 2.0
pile 790m 8 1.7 2.0
pile 790m 16 1.8 2.0
pile 790m 32 1.9 2.0
pile 790m 64 1.9 2.0
pile 790m 128 2.0 2.0
pile 790m 256 2.2 2.0

pile 1b 4 1.8 2.0
pile 1b 8 1.8 2.0
pile 1b 16 2.0 2.0
pile 1b 32 2.1 2.0
pile 1b 64 1.9 2.0
pile 1b 128 2.0 2.0
pile 1b 256 2.2 2.0

Table A8: Edit Distance. Levenshtein distance between
mismatching reference and generated numeric tokens
on the CoNNL-2003 and Pile evaluation datasets

Dataset Model Chunk Mean Median

connl 130m 256 2.5 3.0
connl 370m 256 2.6 3.0
connl 790m 256 2.5 3.0
connl 1b 256 2.5 2.0

pile 130m 4 2.1 2.0
pile 130m 8 2.0 2.0
pile 130m 16 1.9 2.0
pile 130m 32 2.1 2.0
pile 130m 64 2.1 2.0
pile 130m 128 2.2 2.0
pile 130m 256 2.1 2.0

pile 370m 4 0.0 0.0
pile 370m 8 2.1 2.0
pile 370m 16 2.2 2.0
pile 370m 32 2.2 2.0
pile 370m 64 1.9 2.0
pile 370m 128 2.0 2.0
pile 370m 256 2.1 2.0

pile 790m 4 3.0 3.0
pile 790m 8 2.1 2.0
pile 790m 16 2.1 2.0
pile 790m 32 2.0 2.0
pile 790m 64 1.9 2.0
pile 790m 128 1.9 2.0
pile 790m 256 2.1 2.0

pile 1b 4 2.4 2.5
pile 1b 8 2.1 2.0
pile 1b 16 2.0 2.0
pile 1b 32 2.2 2.0
pile 1b 64 1.8 2.0
pile 1b 128 2.0 2.0
pile 1b 256 2.0 2.0

Table A9: Length of Error Instance. Length of incor-
rectly reconstructed reference tokens in CoNNL-2003
and Pile evaluation datasets
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Dataset Model Chunk MAPE

connl 130m 256 8.4181
connl 370m 256 5.9192
connl 790m 256 2.7187
connl 1b 256 1.9930
connl Avg 256 4.7622

pile 130m 4 0.0005
pile 370m 4 0.0000
pile 790m 4 0.0000
pile 1b 4 0.0002
pile Avg 4 0.0002

pile 130m 8 0.0013
pile 370m 8 0.0032
pile 790m 8 0.0026
pile 1b 8 0.0036
pile Avg 8 0.0027

pile 130m 16 0.0439
pile 370m 16 0.0455
pile 790m 16 0.0214
pile 1b 16 0.0620
pile Avg 16 0.0432

pile 130m 32 0.2199
pile 370m 32 0.1697
pile 790m 32 0.2208
pile 1b 32 0.1671
pile Avg 32 0.1944

pile 130m 64 0.6067
pile 370m 64 0.2211
pile 790m 64 0.2175
pile 1b 64 0.4596
pile Avg 64 0.3762

pile 130m 128 2.5763
pile 370m 128 1.0526
pile 790m 128 0.5142
pile 1b 128 0.4900
pile Avg 128 1.1583

pile 130m 256 89.7517
pile 370m 256 5.9819
pile 790m 256 3.2479
pile 1b 256 53.8413
pile Avg 256 38.2057

Table A10: Magnitude Differences. Mean Absolute
Percentage Error (MAPE) for numbers in incorrectly
generated numeric tokens across CoNNL-2003 and Pile
evaluation datasets.
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