Atomic Consistency Preference Optimization for Long-Form Question
Answering

Jingfeng Chen*
jingfenc@andrew.cmu.edu

Junlin Wang
junlin.wang2@duke.edu

Abstract

Large Language Models (LLMs) often pro-
duce factoid hallucinations - plausible yet in-
correct answers. A common mitigation strat-
egy is model alignment, which improves fac-
tual accuracy by training on curated (factual,
non-factual) pairs. However, this approach of-
ten relies on a stronger model (e.g., GPT-4) or
an external knowledge base to assess factual
correctness that may not always be accessible.
Addressing this, we propose Atomic Consis-
tency Preference Optimization (ACPO), a self-
supervised preference-tuning method that en-
hances factual accuracy without external su-
pervision. ACPO leverages atomic consistency
signals (i.e., the agreement of individual facts
across multiple stochastic responses) to iden-
tify high- and low-quality data pairs for model
alignment. Despite being fully self-supervised,
ACPO outperforms the strong supervised align-
ment baseline by 1.95 points averaged across
Phi-3 and Llama3 on the LongFact and BioGen
datasets, demonstrating its effectiveness in im-
proving factual reliability without relying on
external models or knowledge bases.

1 Introduction

Large Language Models (LLMs) have emerged as
powerful tools for accessing information through
natural language generation. Long-form factoid
question-answering (QA), in particular, plays a cru-
cial role in human interactions with LLMs for in-
formation retrieval (AlKhamissi et al., 2022). How-
ever, a significant concern with LLMs is their ten-
dency to produce content that appears plausible but
is factually incorrect, a phenomenon commonly re-
ferred to as hallucination (Rawte et al., 2023; Xu
et al., 2024; Huang et al., 2025). This issue is es-
pecially critical in the use of LLMs in domains
like medical diagnosing, news reporting, and edu-
cational tutoring. To mitigate this issue, numerous
strategies have been proposed.
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The most common way to mitigate hallucina-
tions involves a model alignment step to improve
its factual accuracy. This process leverages curated
(factual, non-factual) data pairs to align the model
toward generating more factual content (Zhang
et al., 2024; Tian et al., 2023). Typically, these
data pairs are identified using a retriever paired
with a knowledge base or a more advanced lan-
guage model (like GPT-4) (Huang and Chen, 2024;
Zhang et al., 2024). However, the applicability of
these techniques is often limited by two key factors.

First, the unavailability of robust structured
knowledge bases in many scenarios, particularly
in low-resource domains such as IT technical sup-
port (Yang et al., 2023), medicine, and law (Sen-
gupta et al., 2025) restricts the effectiveness of
these methods. Second, relying on advanced pro-
prietary APIs (e.g., GPT-4 or Gemini 2.5) to score
alignment data is very expensive. It also introduces
serious privacy risks, especially when scored data
includes sensitive information. These challenges
underscore the need for self-supervised approaches
that can enhance factual accuracy and reduce hal-
lucinations without relying on knowledge bases or
external models.

Conversely, several inference-time techniques,
such as ASC (Thirukovalluru et al., 2024), CoVe
(Dhuliawala et al., 2024), and USC (Chen et al.,
2024), operate in a fully self-supervised manner
(not relying on any external models/knowledge
bases) by evaluating an LLM’s output using self-
consistency or self-evaluation based mechanisms.
These methods are designed to identify and elim-
inate non-factual components, delivering a more
reliable final response. However, they are compu-
tationally intensive at inference time, often neces-
sitating multiple LLM calls (e.g., verifying each
individual fact) to improve performance.

Inspired by the success of these inference-time
hallucination reduction techniques in long-form
question answering, we propose a self-supervised

1951

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 1951-1963
December 20-24, 2025 ©2025 Association for Computational Linguistics



training approach that extends these principles to

the alignment phase, enabling models to learn in-

herent factuality without reliance on external su-
pervision. Although versions of self-supervised
preference tuning has been explored in prior works,

such as FactTune and SKT (Zhang et al., 2024;

Tian et al., 2023), these methods remain computa-

tionally expensive due to their heavy reliance on

GPT-3.5 for extracting individual atomic facts and

verification questions. Further, for factual calibra-

tion, self-consistency-based approaches have been
shown to outperform confidence estimation meth-
ods such as self-evaluation in SKT and atomic ques-

tion confidence in FactTune (Huang et al., 2024).

Recent work on reasoning tasks further highlights

that self-consistency-based alignment tuning out-

performs alternative methods (Prasad et al., 2024).
We propose Atomic Consistency Preference Op-

timization (ACPO), a scalable self-supervised frame-
work for enhancing factuality in long-form gen-
eration. Unlike prior methods, ACPO does not
depend on external knowledge bases or stronger
models. Instead, it relies solely on a base large
language model and a lightweight BERT-based
embedder. Specifically, ACPO applies atomic self-
consistency—the factual agreement across multiple
stochastically sampled responses (Thirukovalluru
et al., 2024)—to efficiently construct preference-
alignment pairs without supervision. Our contribu-
tions are:

* ACPO a novel, privacy-guaranteed, cost-efficient
self-supervised preference tuning method to im-
prove long-form factoid QA abilities without re-
liance on any stronger LLMs or knowledge bases.

* ACPO effectively reduces hallucinations and out-
performs FactAlign, a strong supervised base-
line, by improving factual precision by an aver-
age of 4+1.95 points on Phi-3 and Llama3 over
fact-checking benchmarks: LongFact (Wei et al.,
2024) and BioGen (Min et al., 2023).

* Through systematic ablations, we show that
atomic self-consistency provides a strong and
effective signal for the reinforcement learning
step of large language models, outperforming its
direct application at inference time.

2 Related Work

This section provides a comprehensive overview
of inference-time methods and preference-tuning
approaches aimed at reducing hallucinations and
improving long-form question answering.

2.1 Inference Time Methods
2.1.1 Using Retrievers, Self-Evaluation

FactScore (Min et al., 2023) uses an external re-
triever to evaluate and improve response factu-
ality. LongFact (Wei et al., 2024) extends the
original FactScore metric by incorporating an F1-
based evaluation for recall level factual assessment.
Chain of Verification (CoVe) (Dhuliawala et al.,
2024) introduces a method that generates multiple
verification questions for a given response, retain-
ing only the segments that can be independently
verified. Similarly, Agrawal et al. (2024) filters
non-factual content from list-style answers using
indirect self-evaluation questions.

2.1.2 Using Self-Consistency

Consistency across stochastic responses has been
proven to be a strong signal for improving reason-
ing and code generation (Chen et al., 2024; Wang
et al., 2023). Building on this, SelfCheckGPT
(Manakul et al., 2023) uses agreement among di-
verse model outputs as an indicator of hallucination.
HaLo (Elaraby et al., 2023) used consistency-based
metrics to detect sentence-level hallucinations in
the generations. Atomic Self-Consistency (ASC)
(Thirukovalluru et al., 2024) extends consistency-
based methods by decomposing multiple stochastic
responses into atomic facts, clustering them to re-
duce redundancy, and using cluster strength as a
proxy for factual consistency. Inspired by ASC, we
leverage atomic-level consistency signals to con-
struct preference pairs for alignment.

2.2 Alignment Methods

Although inference-time methods have proven ef-
fective in reducing hallucinations, they are often
computationally expensive, typically relying on
multiple stochastic generations or repeated LLM
queries to verify individual atomic facts within a
response. To address this, recent work has focused
on alignment-based training approaches that aim
to induce factuality during training thus reducing
the inference-time costs.

FactAlign (Huang and Chen, 2024), a strong su-
pervised baseline, leverages Kahneman-Tversky
Optimization (KTO) to align models using atomic
fact labels from FactScore, which identifies individ-
ual facts using GPT-3.5 models and verifies them
via a Wiki-based retriever.

SKT (Zhang et al., 2024) uses GPT-3.5-models
to first generate atomic facts and then verifying
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questions from multiple stochastic responses. An
external retriever is then used to score each atomic
fact, with scores aggregated to produce response-
level ratings. Similarly, FactTune (Tian et al., 2023)
generates atomic claims and corresponding ques-
tions using GPT-3.5, and scores them with an exter-
nal retriever, aggregating claim-level scores to ob-
tain response-level scores. In both methods, these
scores are used to construct preference pairs—high-
scoring responses as preferred and low-scoring as
non-preferred. These pairs are then used for DPO-
based alignment training of the model.

SKT and FactTune also propose self-supervised
variants of their methods, wherein the base model
is directly used to score atomic factuality instead
of relying on an external retriever. However, these
variants are not truly self-supervised, as they still
depend on an additional GPT-3.5-based pipeline to
generate atomic claims and verification questions.
Assuming m stochastic responses are generated,
both methods require m base LLM calls for the ini-
tial generations. This is followed by approximately
(m x f x 2) GPT-3.5 calls for generating f atomic
claims and verification questions per response. Fi-
nally, the self-evaluation scores are computed using
an additional (k x m X f) base LLM calls, where
k ~ 1 for SKT and k =~ 20 for FactTune—making
the overall process extremely expensive. FactTune
(Tian et al., 2023) also offers a GPT-3.5—free vari-
ant using entity recognizers for fact extraction, but
it performs notably worse than the GPT-3.5-based
version.

In terms of scoring, SKT leverages the gen-
erated atomic claims to estimate self-evaluation
scores, while FactTune disregards the claims en-
tirely and bases its confidence estimation solely
on the calibration of atomic questions to estimate
a response confidence. Notably, for factual cal-
ibration, self-consistency-based approaches have
been shown to outperform self-evaluation-based
scoring—as used in SKT—and other methods like
atomic question confidence, as used in FactTune
(Huang et al., 2024). Recent work shows that
self-consistency—driven preference tuning signif-
icantly outperforms other baselines on reasoning
tasks (Prasad et al., 2024).

Motivated by these findings, we propose Atomic
Consistency Preference Optimization (ACPO),
which leverages atomic self-consistency—the
agreement of individual facts across stochastic re-
sponses—to score outputs and construct preference
data for DPO-based alignment. ACPO generates m

stochastic responses using only m base-LLM calls
and eliminates the need for costly atomic fact la-
beling or large-model verification (e.g., GPT-3.5).
Instead, it employs a lightweight embedding model
to cluster atomic facts and uses cluster strengths as
a measure of consistency. This design substantially
improves efficiency while fostering strong factual
consistency. Section 3 discusses basics of DPO
followed by our methodology in Section 4.

3 Background: DPO Alignment
Mechanism

Reinforcement Learning with Human Feedback
(RLHF) has become a foundational approach for
aligning large language models (LLMs) with hu-
man preferences and reducing hallucinations (Tian
et al., 2023; Zhang et al., 2024). This line of work
began with InstructGPT, which introduced a reward
model and Proximal Policy Optimization (PPO) for
fine-tuning (Ouyang et al., 2022). To reduce the
cost of human annotations and leverage the grow-
ing capabilities of LLMs, later approaches such
as Constitutional Al (Bai et al., 2022) and RLAIF
(Lee et al., 2024) replaced human preferences with
model-generated critiques. More recently, Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) simplified this process by eliminating the
need for a separate reward model and complex re-
inforcement learning, instead directly optimizing
log-likelihood ratios over preference pairs. In this
work, we create self-supervised preference data
and adopt DPO to perform alignment tuning.

We apply the standard DPO loss function, shown
in Equation 1.

ﬁDPO(”O% 7Tref) = _E(Lyw,yz)ND[

log o <ﬁ log %) —logo <6 log m)]
ey
The DPO approach fine-tunes a policy mg by
maximizing the preference margin between a pre-
ferred response ¥, and a less preferred one y;, rel-
ative to a reference policy ms. The 5 controls how
aggressively the model separates preferred from
non-preferred responses.

4 Methodology

In this section, we present our ACPO framework,
detailing the training data generation process and
the fine-tuning methodology.
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Figure 1: ACPO data curation pipeline. Steps 1-5 (Top): Generate stochastic responses for a question, Split and
extract atomic facts; Cluster the atomic facts; Identify consistent and non-consistent clusters; Score responses based
on cluster consistency. Step 6-7 (Bottom): Highest and lowest scoring curated as preference pairs; DPO alignment.

4.1 Overview

We leverage the model’s generation capabilities to
produce m stochastic responses for a given prompt
P. Following the ASC (Thirukovalluru et al., 2024)
framework, each response R; is decomposed into a
set of atomic facts a1, az ... ag]. All atomic facts
from all responses are then aggregated and clus-
tered. The core idea from ASC is that atomic facts
appearing in larger clusters are more likely to be
factual; we refer to these as consistent clusters C;,
while smaller clusters form Non-consistent clusters
NC;. For each atomic fact in a response R;, we
determine whether it belongs to a consistent or non-
consistent cluster. If the atomic fact belongs to a
consistent cluster, we reward its initial response (by
adding a positive score); if not, we apply a penalty.
This results in a consistency-based score for each
response I?;, allowing us to distinguish between
preferred and non-preferred responses. Next, we

describe the scoring mechanism and training data
generation for DPO alignment in detail.

4.2 Data Generation

4.2.1 Step 1: Initial Responses Generation

Given a question g, our objective is to prompt a
large language model L to generate a response that
is both accurate and informative. To achieve this,
we adapt the system prompt from FactTune (Tian
et al., 2023), modifying it to: “You are an intelli-
gent assistant who answers questions accurately”.
This modified prompt is then concatenated with
the input of the actual question ¢q. As a result,
we obtain m independent responses denoted as
[Ri,Ro,...,R;,..., Ry] by querying the model
L with q using the predefined prompt P.
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4.2.2 Step 2: Splitting Initial Responses for
Atomic Facts

We then decompose each candidate response into
a set of atomic statements. A single response I?;
to a question may contain multiple sentences, each
potentially expressing one or more atomic facts.
While prior work (Min et al., 2023; Zhang et al.,
2024; Huang and Chen, 2024) has employed large
instruction-tuned models, like GPT-3.5, to identify
atomic facts from long-form text, these methods
are often computationally expensive and lack scal-
ability. Inspired by Arslan et al. (2020); Thiruko-
valluru et al. (2024); Liu et al. (2023), we adopt a
simplified yet effective alternative: treating each
sentence in a generation as an atomic fact. Specifi-
cally, following the ASC paper, we apply standard
sentence tokenization techniques (Bird et al., 2009)
to segment each response into individual sentences,
which we regard as atomic facts. After tokeniza-
tion, the ¢-th response R; is represented as a list of
atomic sentences (atomic facts) [a;1, a;2, - . . , @ik,
where k is the atomic fact count. Note that although
ACPO uses sentences as atomic facts, it is compati-
ble with any atomic fact identification method (e.g.,
GPT-4), after which the subsequent steps can be
applied.

4.2.3 Step 3: Clustering Atomic Facts

To address the high computational cost of verifying
the relevance of each atomic fact across multiple
generated responses, we follow the ASC frame-
work by clustering semantically similar atomic
units. ASC applies agglomerative clustering on
sentence embeddings obtained from SimCSE (Gao
et al., 2021) (a lightweight BERT-based sentence
embedder), leveraging the substantial semantic
overlap across generations to group atomic facts
with similar meanings. Although agglomerative
clustering has cubic worst-case complexity, it re-
mains substantially more efficient than knowledge-
base or LLM-based verification for each atomic
fact.

4.2.4 Step 4: Consistent (C) and
Non-consistent (A'C) Clusters

Our method leverages the inherent consistency of
model outputs that are quantified by the size of each
cluster. Clusters with count below a threshold ©
are determined as N'C;, while those above or equal
to the © are classified as C;. The hypothesis is that
LLMs are knowledgeable, and the high-frequency
information in responses is more factual than rare

ones (Wang et al., 2024). Therefore, information
in C; is more factual, and we utilize this property
to score the initial responses R.

4.2.5 Step 5: Scoring Function

We define a consistency-based scoring function for
each response R; based on the classification of its
atomic facts into consistent and non-consistent clus-
ters. Let the atomic facts extracted from response
R; be: R; = [a;1,a42,...,a;]. Let C; denote the
set of consistent clusters (with size > ©), and N'C;
denote the set of non-consistent clusters (with size
< ©). We score each response R; as:

k
Score(R;) = Z d(ai;); where
j=1

+1, ifay €C; )
6(aij) =4 —1, ifaij ENCZ
0, otherwise

This scoring mechanism rewards atomic facts
belonging to consistent clusters and penalizes those
from non-consistent clusters. For example, if R; =
[ail, a;2, aig], and ail1, a3 € Cz while a;9 € ./\/Cz,
then: Score(R;) =1+ (—1)+1=1.

4.2.6 Step 6: Preference Data Obtain

After Steps 1-5, each R; is assigned a consistency-
based score. To construct preference pairs, we
sort all responses by their scores and select the
top-1 response as preferred (F;) and the bottom-1
response as non-preferred (N F;). This results in a
training dataset: D = {(x;, P;, N P;)}, containing
|D| (dataset size) datapoints where z; is the prompt.

4.3 Step 7: DPO Alignment

The preference data pairs generated in § 4.2 are
subsequently used for DPO alignment, with the
detailed training setup described in § A.1.

S Experiments

5.1 Models and Baselines

We conduct a comprehensive comparison of our
proposed method, ACPO, against two key baselines.
The first is FactAlign (Huang and Chen, 2024), a
recently introduced alignment technique that lever-
ages fine-grained, atomic fact-level annotations pro-
vided by the FactScore benchmark to guide the
alignment process. The second baseline is the un-
aligned model, RawModel, which serves as a refer-
ence point to assess the impact of alignment strate-
gies. To ensure a fair and thorough evaluation, we
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Llama-3-8B-Instruct Phi-3-mini-4k-instruct
LongFact BioGen LongFact BioGen
Method Score #Claim | Score #Claim || Score #Claim | Score #Claim
RawModel 79.8 121.2 55.9 61 78 90.2 41.7 88.4
FactAlign || 83.3 119.9 57.1 56.7 81.2 113.8 47.1 100.9
ACPO 82.1 143.8 58 68 84.6 70.7 51.8 67.1

Table 1: Factscore accuracy for ACPO FactAlign and other baselines on LongFact, Bios datasets. FactAlign and
ACPO were trained on the train set of LongFact. #Claim is the average number of claims produced by the model.

perform experiments at two different model scales:
Phi-3 Mini (4B) and Llama3 (8B), allowing us to
assess performance across varying levels of model
capacity. ACPO uses m = 30 following Zhang et al.
(2024). B is set to 0.1 during ACPO training. More
details in §A.1. We are unable to compare with
SKT due to unavailable code, and with FactTune as
it requires 2M GPT-3.5 calls on LongFact dataset
and uses private datasets during their training, pre-
venting cross-evaluation.

5.2 Datasets and Evaluation

The training split of the LongFact dataset (Wei
et al., 2024), consisting of 2,097 examples, was
used to align both FactAlign and the proposed
model, ACPO. Evaluation was conducted on the
test splits of the LongFact and BioGen datasets
(Min et al., 2023), with results reported for all
models and baselines. Both LongFact and Bio-
Gen are English-language datasets. As FactScore
relies on topic names—which are not available for
LongFact—GTR-XL was used to retrieve the most
relevant documents from the full Wikipedia cor-
pus to support factual grounding during evaluation.
FactScore reports two key metrics: the factual pre-
cision of the claims present in the output and the
total number of factual claims identified in the out-
put. The former is the more important metric.

5.3 Main Results

Table 1 shows the comparison between ACPO and
other methods. Despite not relying on any exter-
nal signals like FactAlign, ACPO outperforms it
in three of the four settings, achieving an aver-
age gain of +1.95 points on Phi-3 and Llama3
across the LongFact and BioGen benchmarks. With
Llama3-8B, ACPO also produces outputs containing
a greater number of claims. This stems from its
use of the ASC principle to identify preferred and
non-preferred responses for training. As noted by
Huang et al. (2024), models vary in their calibra-

tion (i.e., consistency across stochastic responses),
which we believe explains why Phi-3 generates
fewer claims.

5.3.1 Which Models Benefit Most from
ACPO?

We used a very small threshold (©=2) for identify-
ing consistent clusters for both Phi-3 and Llama3.
Note that ACPO leverages the confidence of a
model in generated responses to pick preferred/non-
preferred data. Not all models are equally cali-
brated (confident about their responses). Some
models are more calibrated than others (Huang
et al., 2024). Hence, some models might perform
better with ACPO than others.

Table 2 shows the ratio of the number of con-
sistent clusters and non-consistent ones. Despite
the same small threshold (©), we note that Phi-
3 has a much higher number of non-consistent
clusters. Fewer consistent clusters suggest that
the model is less calibrated compared to Llama3.
Hence, Phi-3 tends to pick smaller responses as
preferred ones (this can avoid the negative score
from non-consistent clusters). As shown in Table 3,
one can relax the constraint from ACPO to balance
the length of the training dataset.

.. (#Consistent:
Training Data #Non-Consistent)
Phi-3-mini-4k-instruct (1:3)
Llama-3-8B-Instruct (1:1.8)

Table 2: Ratio of consistent to non-consistent data
across training sets.

5.4 Analysis 1: Can Length Balancing
Alignment data help?

Our analysis of the alignment training data revealed
distinct trends in preference behavior across the
Phi-3 and Llama3 datasets. Specifically, in Phi-
3, preferred responses were generally shorter than
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LLama-3-8b-Instruct Phi-3-mini-4k-instruct
Length LongFact BioGen Length LongFact BioGen
Method P NP | Score #C | Score #C P NP | Score #C | Score #C
ACPO 478 457 | 82.1 1438 58 68 || 307 327 | 84.6 70.7| 51.8 67.1
ACPO (5,5) 466 449 | 79.6 150.6 | 57.3 83.2 || 287 295 | 851 725 | 494 643
ACPO (5,4+1) || 466 461 | 80.2 1402 | 582 739 || 287 285 | 854 756 | 50.5 654
ACPO (5,3+2) || 466 468 | 814 127.8 | 59.7 68 || 287 279 | 849 752 | 50.6 67.1

Table 3: Using length as an additional criterion to balance preferred and non-preferred data leads improves #Claims,
thereby increasing recall. Results are better for Llama3 on BioGen and for Phi-3 on LongFact.

Method F1 #Claim
RawModel 75.88  100.85
FactAlign 80.32 103.33
ACPO (Ours) 83.84 120.17

Table 4: Longfact F1 score with Llama-3-8b-Instruct

Phi-3-mini-4k-instruct
BioGen
Model Inf. ‘ Score(R;) | Score #Claims
RawModel Direct -5.61 429 85.3
ASC 4.10 45.7 84.5
ACPO (It. 1) Direct 1.27 51.8 67.1
' ASC 7.97 54 70.7
Direct 2.30 48.2 80.5
ACPO (It. 2)
ASC 10.83 51.8 934

Table 5: Performance with ASC at inference time. ACPO
with direct inference outperforms RawModel, showing
the importance of ASC in training. Applying ASC at
inference further boosts performance, with Iteration 1
performing best. Later iterations add no gains but still
beat RawModel while generating more #Claims, high-
lighting ASC’s value for alignment data.

non-preferred ones, whereas in Llama3, the op-
posite trend was observed—preferred responses
tended to be longer. To evaluate whether explic-
itly incorporating response length into the training
signal could enhance the performance of ACPO, we
explored several variants that adjusted the length
of non-preferred responses in alignment with these
trends—shortening them for Phi-3 and lengthening
them for Llama3.

Specifically, ACPO selects the single highest-
and lowest-scoring responses as the preferred and
non-preferred examples, respectively. In contrast,
ACPO (5,5) expands this selection to the top five
and bottom five responses while keeping the num-
ber of training steps unchanged. Building on this
variant, we introduced a length-based modification,

W ACPO Sentence | GPT-4
Stages +GPT-4 (SKT)
Embedding 29s -

Clustering 0.39 s - -
Generating Atomic Facts - - 5949 s
Verifying Atomic Facts - 922.1s 781.1s
Total 33s 922.1s | 1376.0s

Table 6: Comparison of computational time across dif-
ferent methods for preference pair construction. Our
ACPO employs a clustering-based approach, whereas
Sentence+GPT-4 treats sentences as atomic facts and
verifies them using GPT-4, and GPT-4 (SKT) both gen-
erates and verifies atomic facts through GPT-4.

replacing one or two of the non-preferred responses
with alternatives chosen by length—favoring
longer responses for Phi-3 and shorter ones for
Llama3. As shown in Table 3, this adjustment
yields performance improvements. Additionally,
length balancing increases the #Claims, which is
valuable in scenarios prioritizing high recall. This
is because ACPQO’s selection process does not con-
strain response length, while the factual precision
metric is length-sensitive—short responses can in-
flate precision scores (Huang and Chen, 2024).

5.5 Analysis 2: Measuring Recall

While Table 1 reports results for factual precision,
recall is also critical in certain scenarios. Therefore,
we additionally compute the F1 score of different
models under LongFact using their custom API. It
is important to note that FactScore does not provide
an F1 metric; hence, we do not report it. As shown
in Table 4, ACPO outperforms other methods.

5.6 Analysis 3: ACPO’s Efficiency in Preference
Pair Construction

Compared to LLM-based alignment approaches,
ACPO achieves a substantial improvement in com-
putational efficiency. As reported in Table 6, ACPO
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processes and constructs preference data in just
3.3 seconds per example (2.9 s for embedding and
0.39 s for clustering), whereas Using Sentences as
Atomic Facts and Verifying Them Using GPT-4 re-
quires 922.1 s, and Generating Atomic Facts Using
GPT-4 and Verifying Them Using GPT-4 (SKT) re-
quires 1376.0 s. This corresponds to an efficiency
gain exceeding two orders of magnitude, primarily
due to ACPO’s fully self-supervised design, which
eliminates the need for factual verification via large
language models.

5.7 Ablation 1: ACPO compared with Inference
time ASC

This ablation study investigates whether explicit
alignment training is necessary or if the ASC prin-
ciple can be effectively applied directly at inference
time to achieve performance comparable to or bet-
ter than ACPO. Although applying ASC at inference
time is computationally more expensive, we assess
its effectiveness relative to aligned models. Results
are shown in Table 5. Direct refers to generating re-
sponses from the raw or trained model without any
additional sampling, whereas ASC generation in-
volves sampling multiple stochastic outputs and se-
lecting the highest-scoring one based on Score(R;).
As observed, ACPO with direct decoding outper-
forms ASC applied to the unaligned RawModel,
suggesting that incorporating ASC into the train-
ing process to construct a preference dataset leads
to more substantial improvements than applying
it only at inference time. Moreover, applying the
ASC on top of ACPO yields further gains. Moti-
vated by the improvements from ACPO+ASC, we
conducted an additional round of self-supervised
training using the already-aligned model. But this
attempt did not improve test performance—likely
due to overfitting after 25 epochs of ACPO training
(§A.1). Iteration 2 had a higher Score(R;) score
than Iteration 1, which suggests that, although the
model became more internally consistent, the im-
provement did not generalize to the test set, likely
due to overfitting on the LongFact training data.

5.8 Ablation 2: Dissecting ACPO Scoring
Mechanism

To understand the contribution of individual com-
ponents within ACPO, we conduct a series of studies,
with results summarized in Table 7. In its full form,
ACPO rewards responses that include atomic facts
from consistent clusters and penalizes those con-
taining atomic facts from non-consistent ones.

BioGen
Method Score #Claim
ACPO 51.8 67.1
ACPO (5,5) 49.4 64.3
ACPOw/0o NC Penalty | 46.9 99.7
Longest Preferred 41.3 97.6
Shortest Preferred 42.8 10.6

Table 7: Stronger preference signals in ACPO perform
better than weaker ones in ACPO(5,5). Not penalizing
non-consistent atomic facts yields worse alignment. Fa-
voring short or long responses harms factual precision,
highlighting the value of ACPO’s alignment strategy.

We examine ACPO (5,5) alongside ACPO w/o
Non-Consistent  Penalty, which removes
the penalty for selecting atomic facts from
non-consistent clusters. To probe the effect of re-
sponse length on alignment, we further extend our
ablation by explicitly preferring either the longest
or shortest responses, using a randomly selected
response as the negative in both cases. Without
the penalty, the model tends to favor longer re-
sponses, often ranking them more highly. The sim-
ilarity in the number of factual claims between
the penalty-free variant and Longest Preferred
suggests that removing the penalty encourages be-
havior akin to explicitly favoring longer responses,
underscoring the penalty’s role in guiding align-
ment toward more precise and reliable outputs. No-
tably, the Shortest Preferred variant produces
very few factual claims and performs poorly on
FactScore precision, indicating that simply favor-
ing brevity is not an effective strategy for improv-
ing factual alignment.

Method Score #Claims
ACPO(® =2) 51.8 67.1
ACPO(© =3) 504 48.7

Table 8: ACPO performance under different © values.

Temp. | 0 03 06 09 12 15 |ACPO

429 432 417 384 363 333 | 51.8
853 852 884 93 999 111 | 67.1

Score
#Claim

Table 9: Self-supervised alignment in ACPO (temp=0)
outperforms temperature scaling—a simple post-hoc
calibration method—across multiple temperatures.

5.9 Ablation 3: Effect of ©

A higher value of © encourages the model to favor
highly consistent responses, which often leads to
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Question | "What is the De Beers diamond monopoly controversy?

Preferred

Non-Preferred

The De Beers diamond monopoly controversy centers ... by the De Beers
company, ... had a near-complete monopoly over the global diamond market.
Several key details and examples include: 1. De Beers’ monopoly began in the
late 19th century when Cecil Rhodes, a British businessman and mining
magnate, founded the company in South Africa in 1888. 2. By the early 20th
century, De Beers ... and controlled over 90% of the world’s rough diamond
production and trade. 3. The company’s ... stockpiling diamonds and
controlling ... to maintain high prices and ensure a stable supply. ... 7. In 2005,
the Antitrust Division of the United States Department of Justice filed an
antitrust lawsuit ... price-fixing and maintaining a monopoly in the diamond
market....

The De Beers diamond monopoly controversy revolves around the company’s
control over the global diamond market in the ... early 21st centuries. De Beers,
a British company founded in 1888 by Cecil Rhodes, came to dominate the
diamond industry by controlling diamond production and distribution. ... De
Beers’ monopoly was challenged by a South African-based company, Cut
Stone, led by Ernest Oppenheimer, grandson of ..., Cecil Rhodes. Cut Stone
accused De Beers of fixing diamond prices and controlling the market. The
controversy intensified when the South African government, ..., announced
plans to nationalize the diamond industry in 1981. ... In 1998, a class action
lawsuit was filed against De Beers in the United States by the American
Antitrust Institute (AAI)....

Table 10: Preferred and Non-Preferred responses curated by ACPO. Green highlights indicate phrases verified as
correct, while red highlights mark incorrect ones according to Wikipedia. In this example, terms like Cutstone, the

nationalization claim, AAI are hallucinated.

the selection of shorter responses, as maintaining
consistency is easier with fewer facts. Results are
shown in Table 8.

5.10 Analysis 4: Can simple calibration
techniques match ACPO performance?

ACPO is a simple self-supervised algorithm that uses
the atomic consistency principle to align the model
to generate better responses. Temperature scaling
is another way of model calibration (Renze, 2024).
We investigate if the gains in ACPO can be achieved
by simple temperature scaling of the RawModel.
Table 9 shows the results. ACPO significantly out-
performs all temperature settings of the RawModel.

5.11 Analysis 5: Qualitative Analysis

Preferred and non-preferred examples curated by
ACPO are shown in Table 10. As the highlights indi-
cate, ACPO identifies high-quality examples without
relying on external signals.

6 Conclusion

We introduce Atomic Consistency Preference Op-
timization (ACPO), a self-supervised method for
aligning LLMs to improve factual accuracy in
long-form question answering. ACPO leverages the
atomic self-consistency principle to curate high-
quality preference data, eliminating the need for ex-
ternal supervision or strong LLMs. By identifying
preferred and non-preferred generations based on
internal consistency signals, ACPO enables efficient
and scalable DPO training. Our extensive evalua-
tions on LongFact and BioGen show that ACPO not
only outperforms a strong supervised baseline (Fac-
tAlign), but also surpasses all temperature-tuned
variants of unaligned models. Furthermore, we
show that using atomic consistency during train-
ing leads to better factual precision than applying
it solely at inference time. Additional ablations

validate the length penalties and the robustness of
ACPO across different model sizes. In summary,
ACPO presents a simple, effective, and efficient self-
supervised approach to enhance factual alignment
in LL.Ms, leading to more trustworthy and factual
generation capabilities.

7 Limitations

The self-consistency principles employed in this
work present opportunities for integration with
self-evaluation strategies, potentially enabling the
development of hybrid self-supervised alignment
frameworks that combine the strengths of both
paradigms.  Such approaches could leverage
self-consistency for generating reliable preference
signals while incorporating self-evaluation mecha-
nisms to further refine alignment quality. How-
ever, in this study, we deliberately focus on
self-consistency-based methods to isolate and rig-
orously assess their effectiveness.

8 [Ethics Statement

While our model is not tied to any specific appli-
cations, it could be used in sensitive contexts such
as health-care, etc. Any work using our method is
requested to undertake extensive quality-assurance
and robustness testing before applying in their set-
ting. To the best of our knowledge, datasets used in
our work do not contain any sensitive information.

9 Reproducibility Statement

Code: https://github.com/JingfengSteven/ACPO
License: Datasets and methods utilized in this
study are under the Apache License 2.0 or the MIT
License. This research adheres to the respective
licensing terms. Outputs of this work are released
under the Apache License 2.0.
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A Appendix

A.1 Training Details

The alignment procedure is adapted from Tian et al.
(2023). For training, we set the batch size to 32
for the Phi-3-mini-4k-instruct model and 64 for
the LLaMA-3-8B-Instruct model. We use a linear
warmup learning rate schedule, with 100 warmup
steps for the LLaMA model and 150 for the Phi
model, followed by cosine decay. The learning rate
is kept as default=1e~%, and 3 is set as 0.1. Rather
than using a fixed number of epochs, training is
controlled by the total number of steps. Given that
we use either ACPO (5,5) (5 x 5 = 25) preference
pairs per question or ACPO (1,1) (1 x 1 = 1) pref-
erence pairs per question, we ensure 1 complete
epoch for the 25-pair case. Consequently, for the
1-pair case, we train for 25 epochs to maintain step
parity. Gradient clipping is applied with a default
threshold of 10. The total training time is approxi-
mately 1 hour for the Phi model and 2.5 hours for
the LLaMA model, using 4 NVIDIA H800 GPUs
with 80 GB of memory each.

We used the default temperature values - 0.5
for FactAlign (Huang and Chen, 2024) and 0.6
for RawModel. For ACPO, we use greedy decoding
(temperature = 0) to ensure reproducibility and to
evaluate the model’s capability without introducing
randomness. Results for greedy decoding of all
models present in §11. ACPO beats FactAlign even
in this setup.

A.2 Clustering Details

We employ Agglomerative Clustering with aver-
age linkage and cosine distance as the similarity
metric. The number of clusters is determined dy-
namically by setting n_clusters = None and ap-
plying a distance_threshold = 0.15, such that
clusters are continuously merged until the pairwise
inter-cluster distance exceeds the specified thresh-
old. The © value for consistent and non-consistent
filtering is set as 2.

A.3 Results with Greedy (temperature=0)

Table 11 shows the results for all models at tem-
perature=0. ACPO beats baselines and FactAlign
even at greedy decoding (temperature=0).

A.4 Data Sheet

We present the dataset details along with key statis-
tics relevant to the clustering process in Table 12.

A.5 Data Generation, Training, Evaluation
Prompts

The system prompt we use for the initial response
generation is modified from FactTune (Tian et al.,
2023), The User Prompt (questions) is kept the
same as FactAlign (Huang and Chen, 2024).

Initial Response Generation (Training Data
Creation)

System Prompt:
"You are an intelligent assistant who an-
swers questions accurately."

User Prompt:

"What is the geographical importance of the
Strait of Gibraltar? Provide as many spe-
cific details and examples as possible (such
as names of people, numbers, events, loca-
tions, dates, times, etc)."

The training prompt for DPO alignment is kept
as the default, which is the same question prompt
as the generation part.

For the test data generation, The actual question
exactly follows FactScore (Min et al., 2023) official
repository:

Test Response Generation

System Prompt:
"You are an intelligent assistant who an-
swers questions accurately."

User Prompt:
"Answer this question. Question: Tell me a
bio of Kourosh Zolani."
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Llama-3-8B-Instruct Phi-3-mini-4k-instruct
LongFact BioGen LongFact BioGen
Method Score #Claim | Score #Claim || Score #Claim | Score #Claim
RawModel 79.5 121.6 55.3 61.1 79.8 91.1 42.9 85.3
FactAlign 83.1 118.2 57.6 58.1 82.6 112.2 48.4 97.3
ACPO 82.1 143.8 58 68 84.6 70.7 51.8 67.1
Table 11: ACPO vs other methods at temperature=0 during inference
Datasets Model (Train Test) Response Number ACS ARC
LLaMA-3 200 23
LongFact Phi_3.5-mini (2097,233) 30 245 14

Table 12: Summary of the training dataset statistics. Response Number denotes the number of initial responses
generated per question. ACS (Average Cluster Size) represents the average number of clusters formed per question

based on atomic fact clustering. ARC (Average Response Coverage) indicates the average number of clusters that
each response contributes to
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