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Abstract

In this work, we address the challenge
of generalizable audio deepfake detection
(ADD) across diverse speech synthesis
paradigms—including conventional text-to-
speech (TTS) systems and modern diffusion
or flow-matching (FM) based generators.
Prior work has mostly targeted individual
synthesis families and often fails to gener-
alize across paradigms due to overfitting to
generation-specific artifacts. We hypothesize
that synthetic speech, irrespective of its gen-
erative origin, leaves behind shared structural
distortions in the embedding space that can
be aligned through geometry-aware modeling.
To this end, we propose RHYME, a unified
detection framework that fuses utterance-level
embeddings from diverse pretrained speech
encoders using non-Euclidean projections.
RHYME maps representations into hyperbolic
and spherical manifolds—where hyperbolic
geometry excels at modeling hierarchical
generator families, and spherical projections
capture angular, energy-invariant cues such
as periodic vocoder artifacts. The fused
representation is obtained via Riemannian
barycentric averaging, enabling synthesis-
invariant alignment. = RHYME outperforms
individual PTMs and homogeneous fusion
baselines, achieving top performance and
setting new state-of-the-art in cross-paradigm
ADD.

1 Introduction

The field of speech synthesis has undergone a
paradigm shift over the past few years with the
emergence of neural text-to-speech (TTS) and
diffusion-based models, delivering human-level au-
dio realism that is increasingly difficult to distin-
guish from genuine speech Yi et al. (2023). While
these technological advances have enabled bene-
ficial applications in accessibility and entertain-
ment, they have simultaneously paved the way
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for malicious applications. Recent high-profile
cases—such as voice clones used in emotional
blackmail and scam calls—highlight the urgent
need for reliable detection mechanisms, since hu-
man listeners are no longer able to consistently
identify deepfake audio Barrington et al. (2025).
In response, audio deepfake detection (ADD) has
emerged as a crucial research domain within speech
security and digital forensics. Despite notable ad-
vances in audio deepfake detection, most existing
systems are trained on speech generated by conven-
tional TTS or vocoder-based models and demon-
strate strong performance under seen conditions.
However, these systems often exhibit degraded per-
formance when exposed to synthetic speech gen-
erated using unseen paradigms or under distribu-
tional shift. Chen et al. (2020) identified this issue
early on, showing that detectors often fail even
within the same benchmark when exposed to un-
familiar spoofing techniques. Extending this anal-
ysis, (Kulkarni et al., 2024) evaluated a range of
self-supervised models across datasets and synthe-
sis types, reporting consistent performance drops
in cross-domain settings. These findings highlight
a fundamental limitation in existing ADD pipelines
and point toward the need for detection strategies
that are resilient to synthesis diversity and adapt-
able to new generation mechanisms. Although
neural speech generators differ widely in architec-
ture and training objectives, we hypothesize that
synthetic speech—regardless of whether it is pro-
duced by TTS, vocoder, or diffusion-based mod-
els—shares certain latent artifacts that distinguish
it from natural speech. These artifacts may not
be easily perceptible in the waveform or spectro-
gram, but they can manifest as distortions in the
underlying feature space. By leveraging diverse
pre-trained speech encoders, it is possible to cap-
ture complementary representations that highlight
different aspects of these synthesis-induced irregu-
larities. The central challenge lies in aligning these
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heterogeneous embeddings in a way that preserves
discriminative cues while minimizing overfitting
to a specific synthesis family. This motivates our
exploration of a shared, synthesis-invariant repre-
sentation space for generalized detection; in this
work, we emphasize acoustic evidence, analyzing
signal-level artifacts while remaining independent
of language or text.

To this end, we propose RHYME: Riemannian
fusion of HYperbolic and sphErical embeddings
a unified and geometry-aware audio deepfake
detection framework. RHYME fuses utterance-
level embeddings from multiple frozen speech
PTMs and projects them into two complementary
non-Euclidean manifolds:  hyperbolic space
(to capture hierarchical generative traces) and
spherical space (to model periodic and spectral
anomalies). These projections are then fused
using Riemannian barycentric averaging in the
Poincaré ball, forming a synthesis-agnostic
representation space. Each of these geometric
components serves a distinct purpose—hyperbolic
projection models generator hierarchies, spherical
projection highlights periodic artifacts, and
barycentric fusion unifies them while preserving
their respective curvatures. Hyperbolic curvature
compactly encodes tree-like generator lineages
(e.g., vocoder — autoregressive TTS (AR-TTS)
— diffusion/flow) with low distortion, placing
related synthesizers along nearby geodesics
while genuine speech occupies distinct regions.
Consequently, the hyperbolic branch separates
synthetic from real speech by tracing these
geodesic hierarchies (model families/versions).
As newer diffusion or flow-based methods still
follow a structured progression of architectural
improvements, their embeddings naturally fall on
new branches of this learned hyperbolic hierarchy.
In parallel, the spherical branch captures angular,
energy-invariant cues associated with periodicity
artifacts, such as those introduced by vocoders or
diffusion sampling (See Section 4.1 for details).
Even though waveform-level characteristics
vary, these models still imprint subtle periodic
distortions, which manifest as consistent angular
deviations on the hypersphere. By fusing these
complementary cues via Riemannian averaging,
RHYME ensures that unseen synthetic speech cannot
simultaneously satisfy both the hierarchical and
periodic constraints of genuine speech—resulting
in robust generalization across synthesis fami-
lies. We hypothesize that this geometry-aware

fusion encourages synthesis-invariant alignment
while preserving discriminative cues necessary
for deepfake detection.  We validate RHYME
through comprehensive experiments on two
widely-used benchmark datasets—ASVspoof and
DFADD—which include speech synthesized using
TTS, vocoder, and diffusion-based models. Our
evaluation covers zero-shot, cross-corpus, and
unseen-generator scenarios to rigorously test gen-
eralization. Across all settings, RHYME consistently
delivers strong performance, even when faced with
synthetic speech from generators it has never seen
during training. Unlike previous methods that
tend to overfit to specific synthesis families, our
geometry-aware fusion strategy enables RHYME to
learn shared structural cues across different types
of fake speech. This shows that RHYME handles
both familiar and previously unseen generators
well, making it a strong candidate for practical
deployment in deepfake detection systems.

Main Contributions: To this end, in this paper,
we present the following key contributions:

* We introduce RHYME, a unified and
geometry-aware framework for generalizable
audio deepfake detection across TTS, vocoder,
and diffusion-based speech generators.

* We leverage non-Euclidean projections, where
hyperbolic geometry captures hierarchical re-
lationships among generators, and spherical
space models angular, periodic artifacts com-
monly introduced by vocoding and diffusion
processes.

* We propose a novel Riemannian fusion strat-
egy that uses barycentric averaging in the
Poincaré ball to align heterogeneous pre-
trained embeddings into a shared, synthesis-
invariant representation space.

* We demonstrate that RHYME consistently
outperforms individual PTMs and homoge-
neous fusion baselines, achieving state-of-
the-art performance under cross-corpus and
unseen-generator conditions.

* We extend the DFADD benchmark by adding
two new diffusion-based generators, provid-
ing a more rigorous testbed for evaluating out-
of-distribution generalization in future work.

The source code and models can be accessible at !

1https: //github.com/Helixometry/
RHYME-IJCNLP-AACL.git.
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2 Related Work

The field of audio deepfake detection (ADD)
originated from the vulnerabilities identified in
automatic speaker verification (ASV) systems.
Early countermeasures utilized handcrafted spec-
tral features such as constant-Q cepstral coeffi-
cients (CQCC) and mel-frequency cepstral coef-
ficients (MFCC), often paired with Gaussian mix-
ture models or support vector machines. Early re-
search in this area primarily leveraged handcrafted
spectral features such as constant-Q cepstral co-
efficients (CQCC) and linear frequency cepstral
coefficients (LFCC), often in combination with tra-
ditional machine learning classifiers for spoofing
detection tasks (Todisco et al., 2017; Kinnunen
et al., 2017). The advent of the ASVspoof chal-
lenge series (Todisco et al., 2019; Wang et al., 2020)
propelled the field toward deep learning solutions,
with convolutional and recurrent neural networks
trained on spectrograms or raw waveforms becom-
ing standard for text-to-speech (TTS) and voice
conversion (VC) based deepfake detection (Cai
et al., 2023). However, most of these methods
are tailored to specific synthesis techniques and
struggle to generalize to audio produced by newer
paradigms such as diffusion and flow-matching
models. The emergence of self-supervised learn-
ing (SSL) has significantly advanced the capabili-
ties of audio deepfake detection. Models such as
wav2vec 2.0 (Baevski et al., 2020), HuBERT (Hsu
et al., 2021) and WavLM (Chen et al., 2022) have
demonstrated robust performance across various
paralinguistic and spoofing benchmarks, including
ASVspoof and ADD tasks. These models have
since been adapted to a range of spoofing detection
tasks. (Tak et al., 2022) investigated the efficacy
of wav2vec 2.0 in detecting synthetic audio under
various ASVspoof 2021 conditions, highlighting
the potential of SSL models in practical ADD sce-
narios. Building on this line of work, (Guo et al.,
2024a) proposed a multi-level fusion framework
based on WavLM, achieving competitive perfor-
mance across multiple spoofing benchmarks in-
cluding ASVspoof 2019 and 2021. Building on this
body of work, (Kheir et al., 2025) conducted a de-
tailed layer-wise study of multiple SSL models and
found that lower transformer layers consistently
offer the most discriminative features for deepfake
detection across languages and tasks. These in-
sights reinforce the potential of lightweight, gen-
eralizable detection pipelines. Nevertheless, most

existing methods remain limited to single-model
fine-tuning, restricting their adaptability to unseen
synthesis techniques—an issue our work seeks to
address through a fusion-driven, synthesis-agnostic
approach. Despite progress in ADD, a key limita-
tion persists in generalizing across diverse synthe-
sis paradigms. Most existing detectors are trained
primarily on speech generated by conventional text-
to-speech (TTS) systems and struggle to maintain
performance when exposed to speech produced us-
ing newer generative methods such as diffusion or
flow-matching (FM) models. To address this shift,
recent studies have proposed fusion-based frame-
works that leverage multimodal foundation models
(Phukan et al., 2025) and paralinguistic speech en-
coders (Girish et al., 2025) to improve robustness
in source attribution tasks. These approaches have
shown the benefit of combining heterogeneous pre-
trained models to capture generator-specific char-
acteristics. Motivated by this direction, our work
targets the detection problem under similar distri-
bution shifts, specifically focusing on bridging gen-
eralization gaps across synthesis families. We aim
to learn synthesis-invariant embeddings by fusing
multiple speech encoders and projecting their repre-
sentations into a hyperspherical space. This allows
our model to detect synthetic speech reliably across
both known and unseen generation mechanisms, in-
cluding diffusion-based generators.

3 Pre-trained Models

In this section, we describe the speech representa-
tion models considered in our study.

USAD? (Chang et al., 2025) is a universal audio
representation model trained using multi-teacher
distillation across speech, music, and sound do-
mains, and we adopt its Base variant (94M pa-
rameters). PaSST® (Koutini et al., 2021) adapts
vision transformers for spectrograms with patch-
masking for regularization; we use the PaSST-S
model (87M). Whisper4 (Radford et al., 2023), a
multilingual ASR model trained on 680k hours of
weakly supervised audio-text data, is used in its
Base variant (74M), and we extract encoder em-
beddings. x-vector® (Snyder et al., 2018), a 4.2M
parameter TDNN trained for speaker recognition,

2https://huggingface.co/collections/MIT—SLS/
usad-models-68491d4c7d0978b85d0c4299

Shttps://github.com/kkoutini/PaSST

4https://huggingface.co/openai/whisper—base

5https://huggingface.co/speechbrain/
spkrec-xvect-voxceleb
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Figure 1: Working flow of the proposed RHYME framework.

is included as a lightweight yet strong baseline
and has proven effective for deepfake-related tasks.
WavLM?¢ (Chen et al., 2022) builds on Wav2Vec 2.0
with masked prediction and mixture modeling and
we use its Base version (94M) pretrained on 94K
hours of audio. HuBERT’ (Hsu et al., 2021) is in-
cluded for its phonetic and prosodic modeling abil-
ity, and we adopt the Base version (95M) trained
on 960h of LibriSpeech. Lastly, Wav2Vec 2.08
(Baevski et al., 2020) is a contrastive SSL model
for speech representation learning; we use the Base
variant (94M), which provides strong acoustic mod-
eling directly from raw waveforms and serves as a
solid backbone for capturing subtle synthetic pat-
terns in speech.

We extract representations from the last hidden
state of the frozen PTMs using average pooling.
The resulting representation dimensions are: 768
for USAD and PaSST; 768 for WavLM, Wav2Vec2,
and HuBERT; 512 for x-vector; and 768 for Whis-
per (Base). All audio samples are resampled to
16kHz before feeding into the PTMs.

4 Modeling Pipeline

4.1 Proposed Framework: RHYME

We propose, RHYME for generalizable audio deep-
fake detection across diverse synthesis models. The
architecture is presented in Figure 1.

We begin by encoding the input waveform. Let x(¢)
be the raw audio waveform. We first encode z(t)
using a frozen self-supervised speech-foundation

®https://huggingface.co/microsoft/wavlm-base

"https://huggingface.co/facebook/
hubert-base-1s960

8https://huggingface.co/facebook/
wav2vec2-base

model g:
s(t) =g(=(t)) € RP, 7=1,....T. (1)

We then pass the frame-level embeddings through
a 1D convolutional encoder ®;p to model local
temporal patterns:

H(p,7") = ®ip(s(r)) € R (2)

We apply global average pooling over the time axis
to obtain an utterance-level representation:

T/
1
u:i;E:H@H)eR¢ (3)
=1

We learn a gating scalar « using a sigmoid activa-
tion to adaptively control the separation into geo-
metric branches:

a=oc(w,u+by) € (0,1) 4)
We then split u into two components:

up = au, us = (1 —a)u.

These gated components are subsequently pro-
jected into distinct non-Euclidean manifolds for
geometry-aware fusion.

Hyperbolic branch We project the gated vector
uy, into the Poincaré ball BY using the exponential
map with curvature ¢ > 0O:

Uh d
_ B .
Vellunll < 7
Spherical branch We normalize the component
us onto the unit sphere and map it into the same
Poincaré ball via stereographic projection:

zp = exp(up) = tanh(ﬁ”uhﬂ) ©)

ge = —= g g1, ©)
[ls |l

()]

— T ¢
Ys =0 1(7‘55): 1 = 4

——— € B_.
+ V1= [l |2 ‘
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Riemannian Barycentric Fusion We compute
the Riemannian barycenter of the projected embed-
dings xj;, and y, to perform non-Euclidean fusion
in the hyperbolic space:

2" = exp(alog®(zn) + (1 - a) log°(y,)) € BY,  ®

where log®(-) denotes the inverse exponential map
at the origin.

Euclidean Representation and Classification
We project the fused representation z* back to Eu-
clidean space using the logarithmic map:

r=log(z*) € RY 9)

We pass this vector through a lightweight linear
classifier to obtain prediction logits:

l= Wcls T+ bcls;
y = softmax(¢),

(10)
1D

We train the entire model—including ®1p, wy, b,
curvature ¢, and classifier weights—end-to-end us-
ing cross-entropy loss:

K
L==" yk logi. (12)
k=0

Ensuring that ||2*|| < 1 maintains numerical sta-
bility within the hyperspherical fusion space. A
fully connected classifier with a dense layer is at-
tached to the Euclidean representation r, followed
by a softmax output that predicts the probability
of the input being real or synthetic. RHYME has a
parameter footprint ranging from 8 to 14 million,
depending on the combination and dimensionality
of the pretrained speech encoders used.

5 Experiments

5.1 Benchmark Dataset

Our study is grounded in experiments on two
datasets:

DFADD (Du et al., 2024)°: Tt introduces a new gen-
eration of highly realistic spoofed audio samples
generated using diffusion and flow-matching (FM)
text-to-speech models. It includes over 163,500
synthetic samples paired with 44,455 bonafide ut-
terances from the VCTK corpus, covering 109
speakers. The spoofed audio is synthesized using
Diffusion-based and Flow-matching-based speech
generation models.

*https://github.com/isjwdu/DFADD

PTMs | Baseline | RHYME
| TR-A TE-D | TR-D TE-A | TR-A TE-D | TR-D TE-A

Xvector 33.27 22.71 28.09 16.96
WavLM 29.37 20.05 21.87 13.17
HuBERT 33.52 25.56 28.66 16.63
Whisper 30.36 24.38 27.54 17.45
Wav2Vec 28.42 19.89 22.81 12.46
PaSST 27.24 17.23 20.38 11.59
USAD 20.51 15.19 14.12 10.26

Table 1: EER (%) comparison of pretrained models
(PTMs) under mismatched training-testing conditions.
TR-A TE-D: Train on ASVP, Test on DFADD; TR-D
TE-A: Train on DFADD, Test on ASVP. Lower EER
indicates better performance.

ASVSpoof 2019 (ASV) (Wang et al., 2020)'%: The
dataset is a widely adopted benchmark for evalu-
ating spoof detection systems under both logical
access (LA) and physical access (PA) scenarios. In
our work, we utilize the LA subset, which contains
speech spoofed using traditional TTS and voice
conversion (VC) methods—primarily waveform
concatenation, parametric synthesis, and neural
vocoders. The subset consists of bonafide utter-
ances from 20 speakers sourced from the VCTK
corpus Spoofed audio generated using 17 different
TTS and VC systems, including some previously
unseen systems in the evaluation set. We adopt the
original train/test split of the LA subset as specified
in the paper.

Dataset Usage Protocol: In our study, we use these
datasets to simulate cross-paradigm generalization.
Specifically, we train on traditional TTS data from
ASV and evaluate on DFADD to measure forward
generalization from older to newer synthesis meth-
ods. Conversely, we also train on DFADD and
evaluate on ASV to assess backward generalization
from modern diffusion/FM generators to legacy
TTS systems. This bidirectional setup allows us
to rigorously test the synthesis-invariance of our
proposed approach.

Training Details: All models are trained using
the Adam optimizer with cross-entropy loss. The
learning rate is set to 1e-3, with a batch size of 32
for 50 epochs. Dropout and early stopping are ap-
plied to prevent overfitting. We use five-fold cross-
validation within each dataset and report average
metrics. For cross-dataset evaluation, no target data
is used during training.

https://datashare.ed.ac.uk/handle/10283/3336
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Synthesizer ‘

RHYME USAD

| ASVP | DFADD | D1 | D2 | D3 | F1 | F2
VoiceBox (Le et al., 2023) 3132 10.38 48.17 56.83 4491 24.26 3145
VoiceFlow (Guo et al., 2024b) 2478 4.02 29.62 27.39 28.55 38.04 10.93
NaturalSpeech3 (Ju et al., 2024) 11.63 1.79 2745 50.07 57.89 10.38 8.56
Causal Multi-scale TTS (Li et al., 2024) 20.92 0 14.14 1.09 0.69 0.019 0.02
DiffProsody (Oh et al., 2024) 19.18 3.46 53.77 20.85 17.66 14.51 13.24
Diffar (Benita et al., 2023) 3247 0 67.38 48.22 19.84 13.79 0.13
DiTTo-TTS (Lee et al., 2024) 1034 037 24.51 23.07 14.88 1692 537
ReFlow-TTS (Guan et al., 2024) 13.69 0 29.02 26.85 16.43 15.27 3.08

Table 2: Performance on RHYME framework using the USAD backbone, evaluated under the proposed unseen-
synthesis generalization protocol. Each row corresponds to a different speech synthesizer, while columns represent
test domains: ASVspoof, DFADD, and five held-out subsets (D1-D3: diffusion-based; F1-F2: flow-matching
based). All values are reported as Equal Error Rate (EER %), where lower scores indicate better generalization and

spoof detection capability.

5.2 Experimental Results

Table 1 shows the EER (%) results for each
model across two cross-domain setups: training on
ASVspoof and testing on DFADD (TR-A — TE-
D), and the reverse (TR-D — TE-A). Each PTM is
assessed in both its original form (Baseline) and its
RHYME-enhanced version (Novel). From the results,
we observe that across both settings, the RHYME-
enhanced models consistently achieve lower EERs
than their baseline counterparts. For instance,
WavLM benefits from a noticeable EER drop from
29.37% to 21.87% (TR-A — TE-D), and from
20.05% to 13.17% (TR-D — TE-A). Similarly,
models like HuBERT, Whisper, and Wav2Vec2
also show clear improvements under both config-
urations. These trends confirm that RHYME ef-
fectively helps in aligning diverse cues, leading to
better generalization under unseen conditions. A
consistent observation is that training on DFADD
and testing on ASVspoof (TR-D — TE-A) results
in relatively lower EERs than the reverse direction.
This suggests that the diverse spoofing methods
and higher-quality generation found in DFADD
lead to more transferable representations. Among
all models, USAD achieves the strongest results
with EERs of 14.12% (TR-A — TE-D) and 10.26%
(TR-D — TE-A), showcasing RHYME’s ability to
handle significant domain shifts. It is also impor-
tant to note that the DFADD paper (Du et al., 2024)
reports an average 32.44% EER for the state-of-the-
art end-to-end model AASIST-L under the TR-A
— TE-D setup. While our framework does not
perform full model fine-tuning and instead relies
on frozen pretrained embeddings, our framework
achieves a substantially lower EER of 14.12%—un-
derscoring the efficacy of geometry-aware fusion
for robust and synthesis-invariant detection.

In Table 2, we evaluate the performance of RHYME,
which is specifically designed to assess general-
ization in truly unseen conditions. In this setup,
we first extract embeddings using USAD backbone
PTMs from both ASVspoof and DFADD datasets.
These embeddings are used to train downstream
models using our RHYME framework. The testing
phase involves audio samples synthesized from
various TTS models—which were not part of the
training data. These samples were collected from
official demo pages of each model, introducing a
strong domain shift due to differences in speaker
identity, acoustic environments, and generation fi-
delity. Since the model was only trained on the
curated subsets from DFADD, it did not encounter
any of the demo-sourced speech samples during
training, making this a challenging and realistic
generalization test. Despite the difficulty of this
setting, RHYME achieves strong performance across
several domains. Among the generators, CMTTS
consistently shows the lowest EERs, including 0%
on DFADD, 14.14% on D1, and as low as 0.019%
on F1. DiTTo-TTS and ReFlow-TTS also perform
well across most domains, indicating RHYME’s
ability to handle both autoregressive and diffusion-
based synthesis techniques. On comparatively
more variable systems like Diffr and DiPro, we ob-
serve a wider spread in EERs across domains; how-
ever, RHYME still maintains stability, with EERs well
below 20% in most cases. To further understand
our framework robustness, we conduct an addi-
tional set of experiments where the model is trained
on data generated from a single synthesizer—such
as D1, D2, D3, F1, or F2—and tested on unseen
samples from other models like Voicebox and Natu-
ralSpeech3. This controlled setup isolates how well
the model can transfer from one generator’s char-
acteristics to another. Even with such limited train-
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ing data, RHYME generalizes effectively in many
cases, suggesting that the learned representations
are transferable across diverse generation styles.
We further investigate the representational quality
and decision reliability of RHYME using t-SNE
visualizations and calibration plots. Figure 2 illus-
trates the distribution of embeddings using t-SNE.
In subfigure 2a, we visualize raw USAD embed-
dings extracted from DFADD and ASVspoof. The
overlap between real and fake samples suggests
weak discrimination in the original embedding
space. While, subfigure 2b shows RHYME-fused
embeddings when trained on DFADD and evalu-
ated on both DFADD and ASVspoof. Here, the real
and fake classes form visibly distinct clusters, high-
lighting RHYME's ability to disentangle domain-
invariant and spoof-discriminative cues through
geometric fusion. To evaluate how well model
confidence aligns with actual correctness, we use
calibration diagrams shown in Figure 3. Subfigure
3a depicts the calibration curve when the model is
trained on DFADD and tested on both DFADD and
ASVspoof. The curve closely follows the diago-
nal, indicating good calibration between predicted
probabilities and true outcome frequencies, more
importantly, the reliability curve remains closely
aligned for the out-of-domain ASVspoof test split.
This demonstrates that the model’s softmax outputs
remain trustworthy even under out-of-domain de-
tection. On the other hand, subfigure 3b, where the
model is trained on ASVspoof, shows larger devia-
tions—highlighting miscalibration. These results
reinforce that RHYME not only improves detection
accuracy but also produces more reliable probabil-
ity estimates, a key requirement for deployment in
risk-sensitive applications.

DFADD:
+ Bona

Figure 2: t-SNE of (a) Raw USAD embeddings on
DFADD+ASY, (b) fused embeddings (RHYME) trained
on DFADD and tested on DFADD and ASVspoof; col-
ors indicate real vs. fake labelsRHYME

Figure 3: (a) Trained on DFADD, then tested on both
DFADD and ASV test splits. (b) Trained on ASVspoof,
then tested on both ASVspoof and DFADD test splits.

5.3 Evaluation Setup

We evaluate the effectiveness and generalization
ability of RHYME under two settings, we use multi-
ple pretrained models (PTMs). We extract embed-
dings from these PTMs and train models on dataset
(ASVspoof or DFADD), then test on the other. This
helps us understand how well each model adapts to
changes in data distribution and spoofing style. In
the second setup, we test the model on deepfakes
generated by a variety of TTS systems not seen dur-
ing training. These samples are collected from the
official demo pages of VoiceBox (Le et al., 2023),
VoiceFlow (Guo et al., 2024b), NaturalSpeech 3
(Ju et al., 2024), CMTTS (Li et al., 2024), Diff-
Prosody (Oh et al., 2024), DiffAR (Benita et al.,
2023), DiTTo-TTS (Lee et al., 2024), and ReFlow-
TTS (Guan et al., 2024). VoiceBox and VoiceFlow
use flow-matching, while the others are diffusion-
based. The model was trained only on DFADD and
ASVspoof data, so this setup gives us a clear view
of how well it performs in truly unseen scenarios.
We also perform a focused experiment where the
model is trained on samples (D1, D2, D3, F1, F2)
and then tested on other synthesizers. This helps
isolate how well proposed framework generalizes
across different types of generators.

5.4 Ablation Study

To quantify the impact of individual components
within the proposed RHYME framework, we perform
a detailed ablation study along three dimensions:
architectural geometry (spherical and hyperbolic
branches), fusion strategy (with and without geom-
etry), and integration mechanism (gating). Results
are reported in Table 3 under two cross-domain se-
tups: training on ASVspoof and testing on DFADD
(TR-A — TE-D), and vice versa (TR-D — TE-
A). The full RHYME configuration achieves the best
performance, with EERs of 14.12% and 10.26%,
clearly outperforming all ablated variants. When
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the geometry-aware branches are removed, perfor-
mance degrades—removing the spherical branch
increases EER to 18.01% (TR-A — TE-D), and
removing the hyperbolic branch results in 17.88%.
This confirms that both geometric projections con-
tribute complementary and discriminative infor-
mation for detecting synthetic speech. Replac-
ing the RHYME fusion mechanism with a naive
Euclidean fusion further degrades performance
(19.33%, 15.12%), indicating that conventional fea-
ture concatenation fails to capture the curved mani-
fold structure inherent in speech embeddings across
domains. We also examine the role of the gated
fusion mechanism. Disabling it by fixing the gating
scalar to a = 0.5 leads to higher EERs (19.94%,
14.78%), suggesting that the learned weighting be-
tween the two branches is crucial for adaptively
balancing domain cues. Finally, using a single
PTM (USAD only) without any fusion results in the
weakest performance (20.51%, 15.19%), reinforc-
ing the importance of RHYME multi-geometry, multi-
PTM architecture. Together, these results highlight
that each component of RHYME contributes mean-
ingfully, and that their combination yields a sub-
stantial gain in generalization under mismatched
and unseen conditions.

The observed non-linear improvement when both
geometric branches are combined stems from their
complementary roles rather than redundancy. The
hyperbolic branch captures hierarchical genera-
tor relationships, while the spherical branch en-
codes periodic and energy-invariant synthesis ar-
tifacts; these cues occupy largely orthogonal rep-
resentational subspaces. When fused through Rie-
mannian barycentric averaging, the interaction be-
tween curvature-aware embeddings yields a super-
additive gain—greater than the sum of their individ-
ual effects. We confirmed this consistency across
five random seeds, reporting mean + standard-
deviation values in Table 3 to ensure statistical
reliability.

6 Conclusion

In this work, we presented RHYME, a unified and
geometry-aware framework for generalizable au-
dio deepfake detection across diverse synthesis
paradigms, including TTS, vocoder, and diffusion-
based generators. By leveraging hyperbolic and
spherical projections to model complementary syn-
thesis artifacts and fusing them via Riemannian
barycentric averaging, the proposed method learns

Configuration | TR-A — TE-D | TR-D — TE-A

RHYME 14.12 10.26
No Gating (o = 0.5) 19.94 14.78
No Spherical Branch 18.01 14.22
No Hyperbolic Branch 17.88 13.89
Euclidean Fusion (No Geometry) 19.33 15.12
Baseline (USAD only) 20.51 15.19

Table 3: Equal Error Rate (EER %) evaluation under
distribution shift. We assess the effect of removing
RHYME components: gating, spherical and hyperbolic
branches, and geometry-aware fusion. Results demon-
strate that each module contributes to performance, with
the RHYME configuration achieving the lowest EERs.

a synthesis-invariant embedding space that sup-
ports strong generalization. The outcomes confirm
that uniting hyperbolic hierarchy modeling with
spherical artifact encoding through Riemannian fu-
sion yields a geometry-driven, synthesis-invariant
detector that generalizes across unseen generators.
Extensive experiments show that it consistently out-
performs existing detectors and fusion baselines un-
der cross-corpus, zero-shot, and unseen-generator
settings. These findings demonstrate the effective-
ness of our approach and highlight its potential as
areliable and scalable solution for audio deepfake
detection under diverse and previously unseen con-
ditions. Our work also calls upon researchers to
build on our extended benchmarks to further ad-
vance performance in generalizable audio deepfake
detection.

Limitations

Our framework achieves strong generalization
across diverse synthesis paradigms—including
TTS, vocoder, and modern diffusion or flow-
matching generators—but there are certain limi-
tations to our study. First, our evaluation is re-
stricted to English-language datasets; generaliza-
tion to multilingual and accented speech, including
cross-lingual and code-switched scenarios, remains
unexplored.

Broader Impact and Ethics

This work aims to support the growing need for
detecting synthetic speech by introducing a gener-
alizable deepfake detection framework. As audio
generation models become more realistic, tools
like RHYME can help protect against misuse in areas
such as voice fraud, impersonation, and misinfor-
mation. At the same time, we recognize the impor-
tance of using such detection systems responsibly.
Our current study is limited to English datasets,
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and we encourage future research to consider more
diverse languages and speaker populations. We
also acknowledge that deepfake detection technol-
ogy could be misused, for example, in surveillance
or censorship. To reduce such risks, our work is
shared for research purposes only and does not in-
volve any sensitive or private data. We believe this
study provides a step forward in building safer and
more trustworthy speech systems.
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