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Abstract

Predictive modeling of hospital patient data
is challenging due to its structured format, ir-
regular timing of measurements, and varia-
tion in data representation across institutions.
While traditional models often struggle with
such inconsistencies, Large Language Models
(LLMs) offer a flexible alternative. In this
work, we propose a method for verbalizing
structured Electronic Health Records (EHRs)
into a format suitable for LLMs and systemat-
ically examine how to include time-stamped
clinical observations—such as lab tests and
vital signs—from previous time points in the
prompt. We study how different ways of struc-
turing this temporal information affect pre-
dictive performance, and whether fine-tuning
alone enables LLMs to effectively reason over
such data. Evaluated on two real-world hos-
pital datasets and MIMIC-IV, our approach
achieves strong in-hospital and cross-hospital
performance, laying the groundwork for more
generalizable clinical modeling. Code and
models are available at https://github.com/
DanielFadlon/decode-1like-a-clinician.

1 Introduction

Electronic medical records (EMRSs) used in hos-
pitals are inherently complex, comprising both
structured data—such as demographic details and
lab results—and unstructured content like clinical
notes and diagnostic reports. Moreover, EMRs ex-
hibit sparsity and temporal irregularity, as medical
events and measurements are recorded intermit-
tently, reflecting the progression of the patient’s
condition and the timing of assessments, treat-
ments, and other clinical procedures.

Consider a patient admitted to an internal
medicine ward. Throughout the hospitalization,
the medical team periodically orders tests—such

*These authors jointly supervised this work.
#The authors contributed equally to this work.

as blood work or imaging—and continuously mon-
itors certain parameters like blood pressure or heart
rate. These data points are not recorded at uniform
intervals; rather, they arrive asynchronously, de-
pending on clinical decisions, test processing times,
and the patient’s evolving condition. Some mea-
surements, like vital signs, may fluctuate rapidly,
while others, such as lab values, change more grad-
ually. This presents a major challenge for training
machine learning models—such as XGBoost (Chen
and Guestrin, 2016) and neural networks—for clin-
ical outcome prediction, as these models typically
rely on regular, complete, and temporally aligned
inputs. Although XGBoost is widely used in medi-
cal prediction tasks, it struggles with heterogeneous
data, cross-hospital generalization, and the sparsity
and temporal irregularities characteristic of real-
world patient trajectories.

These challenges often require extensive data
preprocessing and constrain the models’ ability to
fully leverage the rich and dynamic information
available throughout hospitalization.

Recent advancements in generative large lan-
guage models (LLMs) present a promising avenue
for addressing these challenges. LLMs, with their
inherent flexibility and proficiency in processing
textual information, offer the potential to learn from
rich textual representations. This approach not only
simplifies the data preprocessing pipeline, but also
enhances the model’s ability to integrate diverse
data types, and develop a more comprehensive un-
derstanding of the patient’s journey.

In this work, we present a pipeline that encodes
the temporal aspects of structured EMRs into the
prompt for an LLM, followed by fine-tuning step
to predict a real-world clinical outcome.

We study the impact of different temporal ag-
gregation strategies, the role of time annotations
(absolute and relative timestamps), and the effect
of incorporating larger volumes of patient history
on prediction quality. We also explore whether
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LLMs can generalize across hospitals and patient
trajectories. Using real-world data from two lead-
ing hospitals and the publicly available MIMIC-IV
dataset (Johnson et al., 2022), we evaluate the gen-
eralizability of our method across varied clinical
settings and demonstrate their effectiveness in pre-
dicting clinical outcomes.

Our results show that aggregating time-sensitive
clinical events into the LLM prompt significantly
improves performance during fine-tuning for clin-
ical outcome prediction, highlighting the model’s
ability to capture temporal patterns in clinical
records.

To summarize, this work makes the following
contributions: (1) We propose a novel method
for encoding temporal EMRs into prompts for
LLMs, enabling effective fine-tuning for down-
stream clinical prediction tasks. Our approach
achieves strong performance in both in-hospital
and cross-hospital evaluations, validated on real-
world and open-source datasets. (2) We conduct a
comprehensive analysis of the strengths and limita-
tions of an LLM in modeling the temporal structure
of EMRs, examining how different event verbaliza-
tion strategies influence predictive performance.

2 Related Work

Early findings suggest that pre-trained LLMs re-
main less reliable than specialized models for struc-
tured clinical prediction tasks. The CLINICAL-
BENCH (Canyu Chen, 2024) shows that serializ-
ing EHRs into text and querying foundation mod-
els such as GPT-4 (OpenAl, 2024) and Llama-3
(Dubey et al., 2024) significantly underperforms
compared to gradient-boosted trees and LSTMs
on tasks like mortality prediction and length-of-
stay estimation. In a head-to-head comparison on
delirium prediction (Mohamed Rezk and Dahlweid,
2024), GPT-4 missed 38% of true-positive cases rel-
ative to the proprietary Clinicalytix neural network.
Similarly, Gao et al. (2024) report that XGBoost
trained on raw tabular data consistently outper-
forms a range of LLM-based embedding pipelines.

At the same time, a growing body of research
highlights the promise of LLMs when structured
data is carefully encoded. Hegselmann et al. (2023)
(TABLLM) show that with carefully designed
prompts, few-shot GPT-3 (Brown et al., 2020) can
outperform deep tabular baselines on small-scale
classification tasks. For relational data, the TALK
LIKE A GRAPH framework (Bahare Fatemi, 2024)

demonstrates that effective graph verbalization sig-
nificantly enhances LLM reasoning. LLMs are
also showing emerging competence in modeling
temporal structure: when prediction is framed as
a next-token generation task, GPT-3 and Llama-2
(Touvron et al., 2023) perform comparably to clas-
sical time-series models (Gruver et al., 2023), while
TABPFN further improves performance by incor-
porating explicit temporal annotations (Hollmann
et al., 2025).

Fine-tuning emerges as a promising alternative
when zero-shot LLMs fall short on clinical out-
come prediction tasks—such as in-hospital mortal-
ity or sepsis detection. Yet, the role of structured-
data representation (i.e., table-to-text) in the fine-
tuning process remains underexplored, especially
in non-ICU hospital settings where data sparsity
presents a major challenge.

While LLMs excel at processing text, their per-
formance on structured data is often less robust.
Most recent efforts focus on combining structured
EHR data with textual inputs (e.g., clinical notes)
to improve predictive performance. For exam-
ple, HEALTH-LLM (Yubin Kim, 2024) leverages
context-rich prompts incorporating user profiles
and temporal cues to adapt LLMs to wearable
sensor data. Unlike their emphasis on continu-
ous data streams, we address the challenges of
sparse, irregular clinical events. Alba (2025) fine-
tune BioClinicalBERT(Alsentzer et al., 2019) and
BioGPT (Rengian Luo, 2022) on clinical notes,
demonstrating that textual summaries and temporal
cues enhance predictions of 30-day mortality and
Deep Vein Thrombosis (DVT). Battula et al. (2024)
integrate LLM-generated “expert summaries” of
ICU notes with structured time-series data, using
the 70B-parameter Med42-v2 model (Christophe,
2024). Similarly, Supreeth P. Shashikumar (2025)
show that LLM-generated text can reduce false
alarms by over 50% in emergency department sep-
sis models. In a related work, Naik et al. (2022) pro-
pose BEEP, a system that retrieves patient-specific
medical literature to augment clinical notes for pre-
dictive modeling.

A smaller body of work focuses exclusively on
structured data. LLAMACARE (Li et al., 2024)
uses GPT-4-generated summaries to enrich clinical
features and instruction-tunes Llama-2 via LoRA.
Likewise, CPLLM (Shoham. and Rappoport.,
2025) leverages LLMs to verbalize structured in-
puts before fine-tuning with binary labels. Al-
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though these methods outperform baseline LLMs
such as PMC-LLaMA (Wu C, 2024) and LLama-2
Chat, they lack benchmarking against robust tab-
ular models such as XGBoost. Moreover, LLA-
MACARE’s human evaluation suggests that LLM-
generated data is useful but still limited. To the
best of our knowledge, no study has demonstrated
that LLLMs trained solely on clinical tabular data
outperform XGBoost in outcome prediction tasks.
Together, these works highlight the importance of
data representation in LLM fine-tuning—whether
through verbalization or data integration. However,
none of them systematically evaluate how different
representation strategies affect model performance
or whether fine-tuning alone can rival traditional
tabular models. Our work directly addresses this
gap. We systematically evaluate LLMs’ ability to
learn and reason over verbalized structured data
using various prompting strategies in sparse, non-
ICU hospital settings. We also propose a straight-
forward yet effective framework for verbalizing
temporal structured hospital data.

3 Methodology

We address the task of clinical outcome prediction
(e.g., mortality) using structured temporal data de-
rived from patient admissions.

3.1 Structured Temporal Dataset

The dataset consists of structured clinical records,
organized by individual patient admissions. Each
admission is represented by a table that captures
the patient’s clinical state over time. The ta-
ble is structured with rows representing consec-
utive, non-overlapping six-hour intervals—an ap-
proach commonly used in non—intensive care unit
(non-ICU) datasets—and columns corresponding
to clinical parameters (e.g., diastolic blood pres-
sure, hemoglobin levels). Therefore, the first row
of each admission represents the values of parame-
ters measured during the first 6 hours of admission,
the second row from 6 to 12 hours, and so on, each
summarizing a distinct six-hour interval.

Each parameter may be measured multiple times
within a six-hour interval. To consolidate these
measurements into a single value per parame-
ter per interval, we apply an aggregation func-
tion—either the maximum or the average of the
values—depending on the specific dataset config-
uration. For example, if diastolic blood pressure
(DBP) is measured three times during the first six-

hour window with values 70, 75, and 80, and the
aggregation function is max, the resulting value for
that interval will be 80.

Each patient admission is also associated with a
single binary label indicating whether a predefined
clinical outcome (e.g., mortality, length of stay in
the hospital) will occur at any point in the future
during the current admission. This label serves as
the prediction target.

To construct instances for classification, we seg-
ment each admission into snapshots. Each snapshot
includes the data from the beginning of the admis-
sion (i.e., interval 0) up to a specified cutoff time,
where the cutoff time ¢ increases in multiples of 6
hours (e.g., 6h, 12h, 18h). Each snapshot is treated
as an independent instance for training or evalua-
tion purposes. So, for each patient admission that
contains 7' time slots, we generate T' snapshot in-
stances, each using a different interval as its cutoff
(see Figure 8 in Appendix A).

3.2 Verbalizer

Since LLMs require textual input, we introduce a
verbalizer that converts each structured snapshot
into natural language, enabling LL.M-based train-
ing and inference.

The goal of the verbalizer is to faithfully express
the content of each snapshot—including the mea-
sured clinical parameters, their values, and the time
intervals in which they were recorded—in a way
that can be interpreted by the LLM. To this end,
we explore several prompting strategies, each dif-
fering in how they organize temporal information,
refer to parameter names, and present the values.
By designing and comparing multiple verbaliza-
tion schemes, we aim to evaluate how different
prompt formats influence model performance and
to identify which approaches best support predic-
tion based on structured temporal clinical input.

To systematically explore the space of possible
prompts, we define four key dimensions of varia-
tion in our verbalization process:

3.2.1 Data Aggregation Strategy

This dimension determines how values are grouped
and presented in the prompt. We have three ap-
proaches:

Forward-Fill (FF). A common method for han-
dling sequential clinical data, where each parameter
is represented by its most recent observed value at
each time snapshot. For example, if hemoglobin
was measured sometimes during hour 6 and not
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Clinical Snapshot

(30h post-admission) QA template

Time|SBP| DBP|Hgb | HR
0 125 88

6 [10] 70 —D

Given the health condition of a patient:
patient Information

Verbalizer

D

outcome of the hospitalization.

24 1.2{105

The task s to predict the presence of composite clinical

Is the composite clinical outcome expected to be present?

7 Parameter

/ Efficient Fine \

Tuning

C ==

30 |82 |55 A | 0-No, the composite clinical outcome will be absent
1 - Presence of the composite clinical outcome will occur

l =0

Fill Forward

S8P: 82, DBP: 55, Hgb: 11.2, TimeFromHosp: 30, HR: 105 |

Inference

Per Indicator Per Event

Absolute Position Encoding - Exact Date -
The patient's hospital journey began at time t=0 and has now
reached to t=30 hours.

SBP: 110 (t=6), 85 (t=18), 82 (t=30).

DBP: 70 (t=6), 55 (t=30).

Hgb: 12.5 (t=0), 11.2 (t=24).

HR: 88 (t=0), 115 (t=18), 105 (t=24).

has now reached to 2022-12-13 at 18:00:00.
Latest Aggregated Mesurment:
SBP: 82, DBP: 55, Hgb: 1.2, TimeFromHosp: 30, HR: 105.

The patient's hospital journey began at 2022-12-12 at 12:00:00 and |

Medical Updates from 2022-12-13 at 18:00:00: SBP: 82, DBP:55.
Medical Updates from 2022-12-13 at 12:00:00: Hgb: 11.2, HR:105.
Medical Updates from 2022-12-13 at 06:00:00: SBP: 85, HR:115.

b First Token o

Figure 1: Pipeline — Given a clinical snapshot of a patient’s condition at time ¢ hours from admission, the Verbalizer
component aggregates and formats the data. This processed information is then wrapped into a structured QA
template and used to fine-tune a large language model (LLM). During inference, the same verbalization method is
applied to raw input data to generate a prompt for the fine-tuned LLM. The model’s output is used to compute a
risk probability, obtained by extracting the logits of the first generated token and normalizing over the vocabulary
probabilities of the predefined outcome tokens: “No” (0) and “Presence” (1).

again until hour 24, then for all intermediate time
slots (e.g., 12 and 18), the value from interval 6
would be used as the most recent observation.

Per-indicator. The prompt groups all mea-
surements of a single clinical parameter, high-
lighting how it evolves over time. For example,
Hemoglobin: 13.2 at hour 6, 12.7 at hour 18, and
13.0 at hour 30. This format emphasizes the tra-
jectory of a single indicator across multiple time
points. We adopt this representation to reflect the
natural time-series structure of clinical data and
to focus the model’s attention on the progression
of individual indicators—an approach that may be
particularly effective when the temporal pattern of
a specific parameter is clinically meaningful. The
exact format of the prompt may vary depending
on other dimensions of the verbalizer, such as the
choice of time annotation and narrative style, which
we describe below.

Per-event. The prompt focuses on co-occurring
values—that is, all clinical parameters recorded to-
gether within the same time interval—capturing
their joint configuration. For example, a prompt
based on a single six-hour interval might read: At
hour 12, the patient’s hemoglobin was 12.7, dias-
tolic blood pressure (DBP) was 70, and glucose
was 140. We adopt this representation because it
mirrors the way clinicians naturally assess patient
status—by interpreting multiple measurements in
context—and allows the model to attend to mean-
ingful joint updates across parameters. Addition-
ally, since clinical events are often documented in

this format, it simplifies preprocessing and aligns
closely with the native structure of the data.

3.2.2 Time annotation

Each value or group of values may be annotated
with a time reference. The goal is to evaluate
whether different representations of time affect the
model’s ability to integrate clinical information and
accurately predict the clinical outcome. We experi-
ment with several temporal formats:

No time. Values of parameters are listed without
any reference to time.

Absolute time from admission. Each observa-
tion is marked by its offset from admission time.
For example, Hemoglobin: 12.5 (¢ = 12), 11.2
(t = 24).

Relative time from cutoff. Time is expressed
relative to the current moment (e.g., Hemoglobin:
12.5 (24 hours ago), 11.2 (36 hours ago)).

Exact timestamps. Inspired by prior work
(Shi Bin Hoo, 2025), measured values are anno-
tated with full timestamps (e.g., “2022-12-13 at
18:00:00"). Because the original timestamps were
removed during the de-identification process, we
standardize each admission to begin at 2022-12-02.

3.2.3 History Length

This dimension defines how much past informa-
tion is included in the prompt. In the per-indicator
mode, it controls how many previous values of each
parameter are included. For example, if the history
length is set to 2, the prompt for Hemoglobin might
read: Hemoglobin: 13.2 (t=6), 12.7 (t=18). In the
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per-event mode, it specifies how many past events
are verbalized into the prompt. For example, with
a history length of 2, the prompt might include:
Medical Updates from t=12: Heart Rate: 78, Dias-
tolic Blood Pressure: 70.
Medical Updates from t=18: Hemoglobin 13.0.
Notably, with the per-indicator approach and a
history length of 2, we can incorporate more com-
plete historical information for each indicator. In
contrast, the per-event setting limits the historical
context for a given parameter to the two most recent
recorded events.

3.2.4 Narrative Style

We vary the tone and structure of the text used to
describe the snapshot:

Technical. Compact and schema-driven descrip-
tions (e.g., Hemoglobin at t=12: 13.2).

Descriptive Richer, more narrative forms (e.g.,
Twelve hours into the admission, the patient’s
hemoglobin level was measured at 13.2 grams per
deciliter). The procedure for constructing descrip-
tive prompts is outlined in detail in Appendix D.

Each snapshot can thus be rendered in multiple
ways depending on the configuration along these
axes. We provide several examples in Appendix G.

3.3 Fine-Tuning and Inference

We use a generative LLM to predict clinical out-
comes from verbalized snapshots of patient admis-
sions. Our experiments focus on the fine-tuning
setting, where the LLM is fine-tuned using text
prompts generated by the verbalizer as input, paired
with a corresponding output text representing the
prediction. We also refer to this step as instruction
tuning.

To guide the model toward generating structured
responses, we append a final paragraph to each
prompt, as illustrated in Figure 1, which frames the
task as a question. This helps elicit a more natural
and consistent response format from the model.
Since all prediction tasks in our setup are binary
classification, we map the two possible outcomes
to the following canonical textual responses:

e 0: “No, the composite clinical outcome will
be absent.”

e 1: “Presence of the composite clinical out-
come will occur”

During fine-tuning, the model is optimized to
predict the next token in a sequence. At inference

time, to determine the model’s prediction, we ana-
lyze the token-level probability distribution of the
first generated token and compare the probability
of the tokens presence and no. The final label is
assigned based on the token with the higher prob-
ability. We normalize the probabilities of the two
target tokens to obtain a standard binary classifi-
cation distribution, allowing the computation of
probability-based evaluation metrics as described
in Section 4.

3.4 Datasets

Our study is based on three datasets of patient ad-
mission electronic health records (EHRs). Two
datasets were collected from two different medical
centers in Israel as part of an ongoing collabora-
tion: Tel Aviv Sourasky (Ichilov) Medical Center
(TASMC) and Sheba Medical Center (ShibaMC).
The third dataset is MIMIC-IV, a publicly avail-
able resource. All data usage was approved by
the relevant institutional review boards, and all
records were de-identified prior to analysis. For
all three datasets, we extracted a structured set of
clinical parameters, including demographics, lab-
oratory results, vital signs, medication orders, and
procedures.

While there is some overlap, the specific set of
parameters varies across the three datasets, reflect-
ing differences in clinical practices and data record-
ing protocols.

The TASMC cohort comprises 7,004 admissions
from 6,679 unique patients, recorded between 1
February 2014 and 30 June 2021. We partition the
data into 5,623 admissions for training, 693 for
validation (all on or before 31 May 2020), and 688
for testing (on or after 1 June 2020). To avoid data
leakage, each patient appears in only one partition.
For computational efficiency, we randomly sample
20% of the training set for model training while
preserving the label ratio.

The ShebaMC dataset was extracted using the
same pipeline, contributing an additional 1,388 ad-
missions collected between 2021 and 2023. This
cohort is used exclusively for cross-hospital eval-
uation to assess model performance on out-of-
distribution (OOD) data.

Both hospital datasets include patients admitted
with hip fractures and share the same prediction
task, allowing controlled cross-hospital evaluation.
Admissions are divided into six-hour intervals, with
each clinical parameter aggregated using the maxi-
mum value within each interval. The clinical out-
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come is defined as a composite event including
in-hospital mortality, transfer to an intensive care
unit (ICU) or step-down unit (SDU), administra-
tion of inotropic medications, readmission within
30 days, re-operation, or a hospital length of stay
(LOS) exceeding 15 days. An interval is labeled as
1 if any of these events occur later during the same
admission.

MIMIC-IV (Johnson et al., 2022; Goldberger
et al., 2000). We use the standardized, publicly
available MIMIC-IV-Data-Pipeline repository” to
preprocess the dataset (Gupta et al., 2022). Our
pipeline largely follows the original extraction pro-
cedures, including feature selection, time interval
definitions, and labeling strategies, with only mini-
mal modifications. Specifically, we define a unified
clinical outcome by combining three predefined
tasks from the original pipeline—in-hospital mor-
tality, heart failure in 30 days, and extended length
of stay (LOS > 15 days). This composite outcome
was designed to align MIMIC-1V with the datasets
of the hospitals, facilitating a more comparable ex-
perimental setup. Mortality events are considered
from the first observable event onward, prolonged
LOS assessments are tracked starting day two, and
heart failure diagnoses are evaluated starting day
three to accommodate variability in phenotyping
and the coexistence of acute and chronic conditions.
Consequently, our deterioration task formulation
captures a broader, clinically diverse representation
of patient deterioration.

We use only the first 15 days of hospitalization
for each admission, as admissions exceeding this
duration are, by definition, assigned a positive out-
come label. The data is aggregated into four-hour
intervals using the mean of the observed values, fol-
lowing the methodology established in the MIMIC-
IV-Data-Pipeline.

Like with the other two datasets, we partitioned
the data chronologically into distinct training, val-
idation, and test sets, ensuring that each patient
appears in only one set to prevent data leakage.
This process yields 808,183 instances derived from
33,618 admissions. However, to ensure computa-
tional feasibility, we use only 5% of these instances
for training.

Table 1 summarizes the sizes of the three
datasets we work with in this study, and how we
split them into train/validation/test.

#https://github.com/healthylaife/
MIMIC-IV-Data-Pipeline

Dataset Split # Admissions  # Instances
TASMC Train (all) 5,623 188,155
Train 5,583 45,159
Validation 693 20,242
Test 688 19,148
ShebaMC Train (all) 11,444 248,528
Train 10,274 49,706
Validation 1,145 30,953
Test 1,388 36,072
MIMIC-IV  Train (all) 29,751 808,183
Train 19,988 40,409
Validation 1,788 50,542
Test 2,079 56,000

Table 1: Dataset sizes. Train(all) refers to training on
the full dataset, while Train refers to the actual subset
training data we used for the generative models.

4 Experimental Settings

For all experiments, we fine-tuned the
LLaMa-3-8B-Instruct model on the train-
ing set and evaluated on both validation and test
sets. Training ran for up to five epochs with
early stopping based on validation performance
measured at the end of each epoch. Each exper-
iment was repeated with three random seeds for
robustness. See Appendix B for training details.

4.1 Evaluation

Our primary evaluation considers all snapshots
per admission, reflecting real-world scenarios
where predictions are made throughout hospital-
ization. Furthermore, we assess performance at
specific time points by selecting a single snap-
shot—corresponding to the relevant interval—per
admission (see Appendix F).

We evaluate model performance using ROC-
AUC, as it effectively captures the model’s discrim-
inative ability across all thresholds. Probabilistic
outputs are derived from the first generated token
(see Figure 1). Initial evaluations are conducted on
the test split (in-hospital). Top-performing config-
urations further assessed on the independent She-
baMC dataset to evaluate out-of-hospital general-
ization.

4.2 Baseline

Using the Forward-Fill method for our baselines,
we include XGBoost as a strong benchmark due
to its success with tabular clinical data, consistent
with Gao et al. (2024) and Canyu Chen (2024). The
XGBoost model is trained on the entire training set.
Key hyperparameters are tuned on the validation
set.
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Model Aggregation Time History AUC-ROC
Method Annotation Length (mean = std)
TASMC  MIMIC-1V
Baselines
Me-LLaMA (ZSL) Forward-Fill 58.26 62.34
XGBoost Forward-Fill 76.03 84.09
Logistic-Regression ~ Forward-Fill 75.31 81.83
LSTM (see the text) 73.78 84.19
Forward-Fill 75.82+1.14 84.13+0.37
Per Indicator  No time 3 75.300.16 84.18+0.51
Relative time 3 76.66+0.48 84.72+0.04
2 76.80+0.12 84.23+0.16
LLaMA-3-8B Absolute time 3 77.80+0.17 84.93+0.12
-Instruct 4 77.93+0.33 85.28+0.12
(ours) Exact timestamps 3 76.69+0.47 84.54+0.27
Per Event No time 3 76.02+1.05 87.48+0.06
Relative time 3 76.33+0.40 88.06+0.22
Absolute time 3 76.87+0.37 88.16+0.27
3 77.06+0.23 88.23+0.15
Exact timestamps 6 77.94£0.31 89.76x0.19
8 77.97+0.33 90.26+0.06

Table 2: Main results.

To ensure comprehensive coverage of modeling
paradigms, we further include a Logistic Regres-
sion baseline representing a simple linear model,
and a Long short-term memory recurrent neural net-
work (LSTM) baseline capturing temporal depen-
dencies in patient trajectories. The LSTM model
aggregates information from the last five recorded
time points for each indicator. As the input is
a structured table, all indicators are temporally
aligned. For additional training details and the final
used hyperparameter configuration see Appendix
B

Finally, to assess the necessity of fine-
tuning—we use Me-LLaMA-13B (Xie, 2024) (Xie
et al., 2024), a medical LLM fine-tuned for clin-
ical and biomedical text. Pre-trained on domain-
specific data, including MIMIC-1V, it outperforms
other open-source models in both zero-shot and
supervised settings. We evaluate it in a zero-shot
setting; full prompt and evaluation details are pro-
vided in Appendix C.

5 Results

The results are reported in Table 2. We organize
the table such that each column reflects a specific
component of the prompting strategy described in
Section 3.2. Following the subpar performance of
Me-LLaMA zero-shot learning compared to XG-
Boost and our fine-tuned models, we conclude that
fine-tuning is necessary for these tasks, and we
focus our analysis comparing to the XGBoost base-
line. Below, we highlight several key observations

drawn from the results.

Aggregation Strategy. Encoding lab results
and medications using per-indicator or per-event
formats outperforms the forward-fill strategy used
by XGBoost and Llama-3-8B-Instruct. The per-
event approach yields the best results (TASMC:
77.97 £ 0.03; MIMIC-1V: 90.26 £ 0.04), demon-
strating the value of capturing fine-grained tem-
poral structure. In contrast, fine-tuning an LLM
with the forward-fill method does not surpass XG-
Boost trained on the same input, instead yielding
similar performance. This highlights the critical
role of data representation in the prompt for the
fine-tuning process.

On the TASMC dataset, per-indicator and per-
event performed similarly, while on MIMIC-1V,
per-event outperformed per-indicator by 5.33%
(90.26 vs. 84.93). This performance gap, as
concluded from the label-specific analysis in Ap-
pendix E, emphasizes the effectiveness of the per-
event aggregation method for heart failure predic-
tion—a label exclusive to the MIMIC-IV task.

Time Annotation. Annotating events with the
absolute hour improves AUC-ROC by 2.5 percent-
age points over the no-time approach in the per-
indicator setting (75.30 vs. 77.80) and consistently
outperforms relative-time. While time annotation
plays a key role in per-indicator aggregation, its
impact is less pronounced in the per-event setting.

History Length. Performance improves rapidly
up to an inflection point—three indicator windows
or six event windows—after which gains level off.
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Figure 2: TASMC AUC-ROC Analysis. The figure compares AUC-ROC scores over time, with the x-axis showing
hours and the y-axis showing cumulative AUC-ROC from time O to . (a) Aggregation method performance on
TASMC. (b) Time annotation results for per-indicator on TASMC. (c) History length analysis for per-event on

TASMC.

Notably, longer input histories do not degrade per-
formance, indicating the model’s ability to scale
with added clinical context up to a certain thresh-
old.

In summary, combining per-event aggregation,
exact-timestamps time annotation, and a moderate
history window yields consistent gains and offers
practical guidance for EHR representation in LLM
fine-tuning.

5.1 Narrative Style

The descriptive approach—recasting technical in-
put into a more descriptive clinical style—had
mixed results. It slightly lowered performance
on the TASMC dataset (-0.3 pp vs. the technical
approach) but improved results in the MIMIC-1V
setting (+0.7 pp) (full results are provided in Ap-
pendix D). We therefore remain inconclusive about
the overall benefit of using descriptive prompts.

5.2 Cross Hospital Results

Table 3 summarizes the cross-hospital results,
showing that LLM-based models generalize better
than XGBoost. They effectively handle inconsis-
tencies in feature naming and units, with the per-
event representation achieving 74.67% AUC-ROC
on ShebaMC, outperforming the per-indicator ap-
proach (73.03%) and XGBoost (68%).

While XGBoost trained in-hospital reaches
80.02%, the best fine-tuned LLM achieves 81.03%,
showing that cross-hospital performance remains
strong despite a drop from the top in-hospital re-
sult. Due to XGBoost’s need for a fixed feature set,
cross-hospital evaluations used only intersected fea-
tures (30). LLMs, by contrast, maintained strong
performance even with the full feature set (40),

demonstrating greater flexibility and robustness to
feature mismatches.

Experiment ShebaMC
IF AF
cross-hosp  in-hosp  cross-hosp
Baselines
Me-LLaMA (ZSL) 59.43 57.80
XGBoost (FF) 68.02 80.02
LLaMA (ours)
Forward-Fill 70.88 79.94 72.88
Per Indicator best 73.03 81.03 72.97
Per Event best 74.67 80.93 74.41

Table 3: Cross-hospital results using intersected fea-
tures (IF) and all features (AF). ZSL = Zero-shot learn-
ing. cross-hosp: trained on TASMC, evaluated on She-
baMC. in-hosp: trained and evaluated on ShebaMC.

5.3 Time-Based Performance Evaluation

To assess robustness over time, we evaluate cu-
mulative performance at different time intervals,
integrating data up to each point t. As shown in
Figure 2, the model consistently improves across
all intervals. While our main results use a 15-day
cutoff, performance remains strong from 1 day (24
hours) to 15 days (360 hours).

6 Discussion

Our findings show that representation design de-
termines how effectively LLMs reason over struc-
tured temporal data. The success of the per-event
strategy highlights that aligning co-occurring ob-
servations within temporally grounded textual units
enables LLMs to capture the dynamics of clinical
trajectories without losing the precision of tabular
input.

It is also instructive to consider how other do-
mains handle similar challenges when translating
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structured or temporal information into language
that LLLMs can process. We group existing ap-
proaches into three main categories and position
our work in relation to them.

Structured-based approaches [e.g., JSON or key-
value linearization (Gao et al., 2024; Gupta et al.,
2023; Shankarampeta et al., 2025)] rely on the as-
sumption that data are static and complete—where
each record represents a full, consistent snapshot of
the world. These methods preserve schema fidelity
and interpretability but ignore the temporal rela-
tionships between observations, making them less
suited for dynamic, partially observed processes
such as patient trajectories.

Temporal-aware approaches [e.g., TIME-LLM,
LLMS ARE ZERO-SHOT TIME SERIES FORE-
CASTERS, AAD-LLM (Jin et al., 2024; Gruver
et al., 2023; Russell-Gilbert et al., 2024)] assume
dense and regularly sampled time series. They
aggregate information within fixed windows or de-
terministic statistics (mean, max, z-score), produc-
ing compact summaries suitable for continuous
signals such as sensors or financial feeds. How-
ever, these assumptions break down in settings like
EHRs, where updates are sparse, asynchronous,
and event-triggered rather than uniformly sampled.

Narrative-based approaches [e.g., PROMPT-
CAST, HEALTHLLM (Xue and Salim, 2023; Yu-
bin Kim, 2024)] assume that the underlying data
stream is regular and coherent enough to be ver-
balized fluently as a story (e.g., “The temperatures
are 77, 68, and 66. ..”). While this style improves
interpretability, it sacrifices quantitative precision
and temporal anchoring—two aspects essential in
irregular, multi-sourced hospital data.

Our work lies at the intersection of these
paradigms. We preserve structure through explicit
event anchoring while maintaining linguistic coher-
ence that facilitates reasoning. This event-centric
verbalization framework is particularly suited to
domains where events occur asynchronously and at
low frequency—such as long-term hospitalizations
or periodic customer support interactions—where
each update carries substantial semantic informa-
tion. We believe the approach can generalize to
such settings, though its behavior in high-velocity
environments remains an open question. In do-
mains characterized by rapid, continuous updates,
such as intensive care monitoring or financial mar-
kets, it will be important to examine whether sim-
ply updating temporal resolution or context win-

dow length suffices, or whether new aggregation
and alignment mechanisms are needed to capture
fine-grained temporal dynamics.

7 Conclusion

This work presents the first comprehensive evalu-
ation of LLMs for interpreting sparse, temporally
structured clinical data. By systematically compar-
ing verbalization strategies, we identify a prompt
configuration—per-event aggregation combined
with exact-timestamps time annotation—that con-
sistently enhance fine-tuning performance across
different datasets and clinical tasks. These findings
emphasize the importance of structured data rep-
resentation in enabling LLMs to predict clinical
outcome over longitudinal records.

To the best of our knowledge, this is also the
first study to evaluate and compare cross-hospital
generalization using structured clinical data. We
show that with well-designed verbalization strate-
gies, LLMs can match or even exceed traditional
models like XGBoost in out-of-hospital settings.

Overall, our work provides a foundation for in-
tegrating structured data into LLM-based clinical
pipelines. We encourage future research to build on
these findings by expanding verbalization methods,
incorporating multimodal inputs, and evaluating
across broader clinical prediction tasks.

Limitations

This study has several limitations. First, we uti-
lize a single pipeline for retrieving and preprocess-
ing data from the MIMIC-IV dataset (Gupta et al.,
2022). While this ensures consistency across ex-
periments, it may limit the generalizability of our
findings, as different preprocessing strategies or
cohort definitions could yield different results.

Second, we conduct all experiments using a sin-
gle model. This decision stems from the resource-
intensive nature of fine-tuning large language mod-
els across multiple configurations. Given the sub-
stantial computational and financial cost involved,
extending the study to include additional models
was beyond our current scope, though it remains
an important direction for future work.

Third, our method relies on supervised fine-
tuning, which requires labeled data. While ob-
taining high-quality annotated datasets in clinical
settings can be challenging, many real-world clini-
cal outcomes are routinely recorded during patient
care. These naturally occurring labels present op-
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portunities for broader adoption of supervised ap-
proaches in healthcare contexts.

Finally, due to privacy and ethical constraints,
we are unable to release the datasets from the
two participating hospitals. To partially address
this limitation and support reproducibility, we in-
cluded parallel experiments using the publicly
available MIMIC-IV dataset. This allows external
researchers to validate key aspects of our method-

ology.
Ethical Statement

This study was conducted in collaboration with
two partner hospitals and was approved by the re-
spective institutional ethics committees (Helsinki
Committees). All data used in this research were
handled in accordance with relevant ethical guide-
lines and institutional policies to ensure patient
privacy and data protection.
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A Appendix: Datasets

The MIMIC-IV dataset is made available under
the PhysioNet Credentialed Health Data License
(CHDL), which requires data access approval and
adherence to specific ethical guidelines. Access to
the dataset can be requested via PhysioNet #. We
ensured that our use of MIMIC-IV aligns with their
intended purpose as specified by their respective
licenses. Specifically, we used it only for research-
oriented use.

In-addition, We provide additional information
about the data, including label distributions for
each dataset (Table 4) and a snapshot tabular data
example with synthetic data (Table 8).

Feature Set We utilized a comprehensive set of
clinical features derived from structured EHR data,
encompassing demographic information, medica-
tion administrations, procedural interventions, vi-
tal signs, and laboratory measurements. The se-
lected features include age, gender, insurance type,
and specific clinical markers such as pH, pCO,,
pO,, oxygen saturation, lactate, hemoglobin, white
blood cells, and platelet count.

#https ://physionet.org/content/mimiciv/2.0/.

Dataset Split # Instances Positive
0 1 Ratio
TASMC Train (all) 112,021 76,134 0.40
Train 26,898 18,261 0.40
Validation 14,191 6,051 0.30
Test 12,653 6,495 0.34
ShebaMC Train (all) 152,765 95,763 0.38
Train 30,553 19,153 0.38
Validation 20,982 9,971 0.32
Test 23,203 12,869 0.35
MIMIC-IV  Train (all) 490,407 317,776 0.39
Train 24,520 15,889 0.39
Validation 29,711 20,831 0.41
Test 34,781 21,219 0.38

Table 4: Label Distributions.

Additionally, we included a range of laboratory
values such as creatinine, glucose, albumin, C-
reactive protein, and alkaline phosphatase, as well
as interventions like vasopressor and antibiotic ad-
ministration, endotracheal intubation, and urinary
filtration procedures. The complete list of features
is detailed in Table 7.

B Appendix: Training Setup

Training was performed on a server equipped with
an NVIDIA A10G GPU (96GB VRAM). A sin-
gle experiment (seed), including training and infer-
ence, took approximately 4 days on a single 24GB
GPU. In total, we utilized around 9000 hours of
96GB GPU. To improve memory efficiency and
training speed, we applied Low-Rank Adaptation
(LoRA) (Hu et al., 2022) with 4-bit quantization
for all LLM experiments. The fine-tuning process
was conducted using a dual approach, where the
model was trained on both the context and the re-
sponse. The number of tokens varied across dif-
ferent verbalization configurations, ranging from
approximately 1,000 tokens for the Forward-Fill
aggregation method to 3,000 tokens for the per-
event method.

To determine the best-performing setup, we con-
ducted a grid search over our core generative con-
figuration using the validation set. The optimal
hyperparameters were then fixed and used in all
subsequent experiments. Specifically, we tuned
the learning rate, batch size, LoORA rank, LoRA
alpha, and weight decay. Final values for these
hyperparameters are shown in Figure 3.

A grid search was also performed to optimize
the baseline models. For Logistic Regression, we
tuned regularization strength, solver type, and con-
vergence parameters. For LSTM, we optimized net-
work architecture (depth and layer sizes), sequence
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num_train_epochs: 5
learning_rate: 2e — 04
gradient_accumulation_steps: 16
per_device_train_batch_size: 2
per_device_eval_batch_size: 2
max_seq_length: 3000
lora_rank: 64

lora_alpha: 32

weight_decay: 0.01
warmup_ratio: 0.06
max_grad_norm: 0.3

Figure 3: Final parameters for Llama-3-8B-Instruct fine-
tuning process.

length, learning rate, batch size, and regularization
parameters (L2, dropout). For XGBoost, we tuned
tree depth, learning rate, and regularization param-
eters. Final selected hyperparameters are provided
in the following figure 4.

Logistic Regression
penalty: L2

C: 0.001

solver: liblinear
max_iter: 1000

LSTM

layers: [16,16,16,1]
history: 5 steps
learning_rate: 103
batch_size: 512
L2:0.03

dropout: 0.2

XGBoost

learning_rate: 0.05
n_estimators: 100
max_depth: 5
subsample: 1.0
reg_lambda: 10

Figure 4: Final hyperparameters for baseline models
selected via grid search.

C Appendix: Me-LLaMA Baseline

To validate the effectiveness of our fine-tuning pro-
cess, we use Me-LLaMA as a baseline, as it has
demonstrated notable improvements over other
open-source models, such as GPT-4 and LLaMA,
through continued domain-specific training on clin-
ical datasets, including MIMIC-IV. Optimized for
biomedical and clinical text analysis, Me-LLaMA

leverages extensive pre-training to enhance medi-
cal reasoning and diagnostic capabilities, making
it a robust reference for evaluating our fine-tuning
approach in healthcare contexts.

Establishing a reliable baseline involves two key
steps: (1) clearly defining the task for the model, as
itis employed in a zero-shot setting, and (2) clearly
specifying the response format to ensure that the
binary label is among the top two predicted tokens
for accurate evaluation. After several iterations, we
identified the prompt in Figure 10 as the optimal
formulation to align with our objectives. Then, we
apply the same inference process outlined in Figure
1.

As a further step, we evaluated Me-Llama using
the verbalization variants proposed in our paper.
Although we observe an improvement when ap-
plying per-event aggregation with exact timestamp
annotations and a history length of six, the results
remain far below the performance achieved by the
fine-tuned XGBoost or generative model. Specifi-
cally, Me-Llama with this configuration achieved
an AUC of 68.1% on MIMIC-IV and 66.48% on
TASMC.

D Appendix: Narrative Style

The objective of the narrative strategy is to leverage
the inherent strengths of LLMs in processing tex-
tual data while maintaining the aggregation frame-
works developed for structured data. The aim is to
transform structured data into a more descriptive,
narrative form, allowing for a nuanced representa-
tion of indicator or event trajectories.

Per Indicator Narrative Approach. For the
per-indicator aggregation method, the objective
is to present the trajectory of each indicator in a
time series format. The narrative is structured de-
terministically, focusing solely on the start and end
times of the observed period. This approach pre-
serves the chronological order while emphasizing
key changes.

Per Event Narrative Approach. In contrast,
the per-event narrative strategy aims to provide a
more descriptive account of each indicator. The
approach introduces two risk thresholds to classify
the risk level for each indicator. Using these thresh-
olds, GPT-o1 generates a descriptive sentence for
each indicator, outlining its observed value and
the associated risk level. These sentences serve as
templates and are applied deterministically to all
instances. This narrative can vary in complexity,
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ranging from a straightforward low-risk statement
to a more detailed account that may include poten-
tial diagnoses or critical observations. See Figure
9 for an illustrative example.

Table 5 presents the results for the two narrative
prompting approaches.

Experiment AUC-ROC
TASMC  MIMIC-IV
Technical
Per Indicator best ~ 77.78+0.13  84.93+0.12
Per Event best 77.94+0.31 89.68+0.18
Descriptive
Per Indicator best  77.51+0.13 84.47+0.41
Per Event best 77.44+0.02  90.400.04

Table 5: Comparison between the best-performing tech-
nical narrative and the descriptive narrative.

E Appendix: Analyzing the Impact of
MIMIC’s Composite Label on the
Performance of the Model

We found that both per-indicator and per-event
aggregation methods outperformed the forward-
fill baseline across tasks, with per-event consis-
tently achieving better results in the MIMIC-1V
task—showing an approximate 5% improvement
across all prompt configurations.

To better understand the impact of per-event,
we evaluated its performance on individual la-
bels—heart failure and mortality—while keeping
all negative instances intact and isolating positive
instances for each label (see Figure 6).

In the composite MIMIC-IV task, which in-
cludes 30-day heart failure, Per Event aggrega-
tion method remained the top performer. However,
when focusing on individual outcomes, Per Indica-
tor was competitive for mortality prediction, while
the performance gap widened for 30-day heart fail-
ure prediction.

These results suggest that although both aggre-
gation methods improve the mortality outcome pre-
diction, Per Event provides a clear advantage for
heart failure.

F Appendix: Single Snapshot per
Admission Evaluation

In this section, we evaluate the models using a
single time point (snapshot) per admission to assess
robustness at the admission level.

We consider two settings as presented in Figure
7: the first selects a snapshot taken 84 hours after
admission, while the second uses the last available

Experiment AUC-ROC
In-Hospital =~ Heart
Mortality  Failure
Forward-fill (XGBoost) 78.25 80.08
Forward-fill (Llama) 79.64 80.45
Per Indicator best 80.57 81.35
Per Event best 81.01 87.91

Table 6: Evaluating the Mimic-IV composite task on
specific outcomes separately, we observe improvements
from both per-indicator and per-event methods for mor-
tality prediction. However, a larger performance gap
emerges in heart failure prediction, highlighting the ad-
vantage of the per-event approach.

time-point for each admission (for positive cases
we use the last positive snapshot).

The findings indicate consistency with our pri-
mary evaluation setting across both datasets. Fur-
thermore, we observed that the per-event method
outperforms other aggregation strategies on the
MIMIC-1IV dataset, particularly in early detection
scenarios, achieving a 13% performance gain at the
84-hour post-admission setting.

Additionally, in Figure 5, we present results for
the TASMC dataset using alternative timestamps
(54, 108 and 156 hours). The results further con-
firm the robustness of the per-event method, with a
consistent improvement, highlighting the method’s
effectiveness regardless of the specific timestamp.

AUC-ROC over Time

o7 074 075 075

Figure 5: Single snapshot evaluation per admission at
54, 108, and 156 hours, selected as 6-hour interval mul-
tiples in TASMC.

G Appendix: Verbalizer Examples

We provide examples of the verbalizer output based
on our configurations (Figure 8), along with the
prompt template (Figure 6) and a fully populated
prompt example for the descriptive approach (Fig-
ure 9). Due to ethical considerations, all examples
use synthetic values.
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Feature Category | Features

Demographics Age, Gender, Insurance
Medications Vasopressors, Antibiotics, Diuretics, Analgesics
Procedures Endotracheal Airway Insertion, Infusion Device Insertion, Nutritional Sub-

stance Introduction, Urinary Filtration, Coronary Artery Fluoroscopy

Vitals and Labs pH, pCO,, pO,, Oxygen Saturation, Lactate, Hemoglobin, Hematocrit, White
Blood Cells, Platelet Count, Eosinophils, Creatinine, Urea Nitrogen, Sodium,
Potassium, Bicarbonate, Anion Gap, Glucose, Albumin, Calcium, Alkaline
Phosphatase, C-Reactive Protein, D-Dimer

Table 7: Selected Clinical Indicators from MIMIC-IV Used in Model Training

TimeFromHosp | Lactate pH | Hemoglobin WBC Creatinine | Bicarbonate | Calcium
(mmol/L) (g/dL) (103/pL) (mg/dL) (mEq/L) (mg/dL)
0 days 04:00 1.4 7.36 9.8 13.3 0.9 24 8.1
0 days 12:00 10.1 12.9
1 days 00:00 1.2 10.4 16.1 1.1 9.6
1 days 12:00 7.35 22
2 days 00:00 14.2 1.3 8.7
2 days 08:00 0.9 7.38 10.6 14.8 20 9.1
2 days 16:00 12.4
3 days 04:00 10.3 10.8 23 9.7
3 days 12:00 1.1 1.0
4 days 00:00 1.3 10.0 25

Table 8: A synthetic example representing a snapshot, instance, of patient data over 96 hours post-admission,
illustrating the sparsity and varying update frequencies across clinical indicators. Empty cells are missing values

Given the health condition of a patient:
{patient_information}

The task is to predict the presence of composite
clinical outcome of the hospitalization.

Is the composite clinical outcome expected to be
present?

Presence of the composite clinical outcome will occur

Figure 6: Predicting a patient’s risk of a clinical outcome
using an LLM. Given a prompt containing the patient’s
journey data from hospitalization, our fine-tuned model
generates a response with a binary phrase classification.
The predicted probability of the first token determines
the patient’s risk for a clinical outcome.
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Figure 7: Evaluation of a single snapshot per admission. (1) First Snapshot (84 hours): We select the snapshot at 84
hours or the last available snapshot for shorter admissions. (2) Last Snapshot: We define the last positive snapshot
(prior to treatment initiation). If no positive snapshot is present, we use the final snapshot.

Status&Event-Wise

Date Format.

The patient's hospital journey began at 2022-12-12 at 12:00:00
and has now reached to 2022-12-13 at 18:00:00.

Latest Aggregated Mesurment:

SBP: 82, DBP: 55, Hgb: 11.2, HR: 105.

Medical Updates from 2022-12-13 at 12:00:00; Hgb: 11.2, HR:105.
Medical Updates from 2022-12-13 at 06:00:00; SBP: 85, HR:115.

Medical Updates from 2022-12-13 at 18:00:00; SBP: 82, DBP:55. /

Status&Event-Wise

A Time From A

The patient's hospital journey began at time t=0 and has now
reached to t=30 hours.

Latest Aggregated Mesurment:

SBP: 82, DBP: 55, Hgb: 11.2, HR: 105.

Medical Updates from t=30; SBP: 82, DBP:55.

Medical Updates from t=24; Hgb: 11.2, HR:105.

Medical Updates from t=18; SBP: 85, HR:115.

Status&Event-Wise

No Time.

The patient time from hospitalization is 30 hours.
Latest Aggregated Mesurment:

SBP: 82, DBP: 55, Hgb: 11.2, HR: 105.

Medical Updates; SBP: 82, DBP:55.

Medical Updates; Hgb: 11.2, HR:105.

Medical Updates; SBP: 85, HR:115.

Clinical Snapshot
(30h post-admission)

Indicator-Wise

Time | SBP|DBP |Hgb| HR

o 12.5| 88

6 (10| 70

12

18 | 85 s 7
24 1.2 {105 r
30 | 82| 55 I

No Time.

The patient time from hospitalization is 30 hours.
SBP: 110, 85, 82.

DBP: 70, 55.

Hgb: 12.5, 11.2.

HR: 88, 115, 105.

Indi Wi
Wise

A

Forward-Fill

Time From A

The patient's hospital journey began at time t=0 and
has now reached to t=30 hours.

SBP: 110 (t=6), 85 (t=18), 82 (t=30).

DBP: 70 (t=6), 55 (t=30).

Hgh: 12.5 (t=0), 11.2 (t=24).

HR: 88 (t=0), 115 (t=18), 105 (t=24).

Indicator-Wise

Relative Position Encoding -

The patient time from hospitalization is 30 hours.

SBP: 110 (24 hours ago), 85 (12 hours ago), 82 (now).
DBP: 70 (24 hours ago), 55 (now).

Hgb: 12.5 (30 hours ago), 11.2 (6 hours ago).

HR: 88 (30 hours ago), 115 (12 hours ago), 105 (6 hours
ago).

SBP: 82, DBP: 55, Hgb: 11.2, TimeFromHosp: 30, HR:
105

Figure 8: Examples of the verbalizer output based on our configurations.
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Per Event Narrative Strategy Example

The patient’s hospital journey began on 2022-12-02 at 12:00:00 and has now reached
2022-12-06 at 16:00:00.

Latest Aggregated Measurement:

Lactate is within or near normal range at 1.2 mmol /L.

Blood pH is normal at 7.25.

pO2 is above 100 mmHg at 108.0, possibly due to high oxygen supplementation.
Oxygen saturation is adequate or high at 98.0%.

Hemoglobin is low at 9.0 g/dL, suggesting anemia.

Hematocrit is low at 26.2%, indicating possible anemia.

WBC is elevated at 16.8 2103 /u L, suggesting infection or inflammation.
Platelet count is low at 88.0 K/uL (thrombocytopenia).

Creatinine is elevated at 1.3 mg/dL, suggesting renal impairment.

BUN is within normal range at 11.0 mg/dL.

Anion gap is normal at 12.0 mEq/L.

Sodium is within normal range at 135.0 mEq/L.

Potassium is within normal range at 4.3 mEq/L.

Glucose is within normal range at 130.0 mg/dL.

Medical updates from 2022-12-06 at 12:00:00: Sodium is low at 133.0 mEq/L
(hyponatremia). Potassium is within normal range at 4.1 mEq/L.

Medical updates from 2022-12-06 at 00:00:00: Blood pH is normal at 7.25. pCO2 is
within normal range at 36.0 mmHg. pO2 is above 100 mmHg at 106.5, possibly
due to high oxygen supplementation. Oxygen saturation is adequate or high at 98.0%.

Figure 9: Illustration of Narrative Strategy for per-event Aggregation.

For MIMIC-1V task
Your task is to predict whether a composite

clinical outcome will occur based on the
patient’s health condition.

A composite clinical outcome is consid-
ered present if any of the following clinical
outcomes are observed:

1 - In hospital mortality

2 - Heart failure in 30 days

3 - Length of stay > 15 days

Patient’s health condition: text

Indicate the composite -clinical out-
come: 0 - absent, 1 - presence.

The composite clinical outcome is ex-
pected to be

For TASMC and ShebaMC task
Your task is to predict whether a composite

clinical outcome will occur based on the
patient’s health condition.

A composite clinical outcome is consid-
ered present if any of the following clinical
outcomes are observed:

1 - In hospital mortality

2 - Transfer to ICU/SDU

3 - Administration of inotropic medica-
tions

4 - Length of stay > 15 days

Indicate the composite -clinical out-
come: 0 - absent, 1 - presence.

The composite clinical outcome is ex-
pected to be

Figure 10: Me-LLaMA prompt template for zero-shot inference.
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