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Abstract

Realignment is a promising strategy to improve
cross-lingual transfer in multilingual language
models. However, empirical results are mixed
and often unreliable, particularly for typologi-
cally distant or low-resource languages (LRLs)
compared to English. Moreover, word realign-
ment tools often rely on high-quality parallel
data, which can be scarce or noisy for many
LRLs. In this work, we conduct an extensive
empirical study to investigate whether realign-
ment truly benefits from using all available
languages, or if strategically selected subsets
can offer comparable or even improved cross-
lingual transfer, and study the impact on LRLs.
Our controlled experiments show that realign-
ment can be particularly effective for LRLs and
that using carefully selected, linguistically di-
verse subsets can match full multilingual align-
ment, and even outperform it for unseen LRLs.
This indicates that effective realignment does
not require exhaustive language coverage and
can reduce data collection overhead, while re-
maining both efficient and robust when guided
by informed language selection.1

1 Introduction

Multilingual pre-trained language models such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) enable cross-lingual transfer,
where models fine-tuned to a certain task with
an English dataset can be generalized to the same
task in other languages (Pires et al., 2019; Wu and
Dredze, 2019). However, their performance of-
ten degrades for typologically distant languages,
such as low-resource languages (LRLs) (Pires et al.,
2019). A promising strategy to address this is-
sue is to perform realignment, which explicitly re-
trains models to produce similar representations for
translated sentence pairs using objectives inspired

*Equal contribution.
1Our code can be found at https://github.com/

felixgaschi/multilingual-alignment-and-transfer.

by multilingual word embeddings (Conneau et al.,
2017; Artetxe et al., 2018).

Despite a strong correlation between alignment
and cross-lingual transfer (Gaschi et al., 2023),
results from realignment methods remain mixed.
While some studies report benefits of realign-
ment (Cao et al., 2020; Zhao et al., 2020), others
observe limited or even negative effects (Wu and
Dredze, 2020; Efimov et al., 2023). These findings
align with previous observations, where multilin-
gual models exhibit good alignment for closely
related languages, but remain more misaligned for
distant or LRLs (Dou and Neubig, 2021).

In addition, realignment is not always feasible
for all languages. It requires high-quality trans-
lation data, which may be unavailable for many
LRLs (Gu et al., 2018; Liu et al., 2021; Anugraha
et al., 2024). Even when resources exist, alignment
quality can vary significantly across languages, po-
tentially degrading downstream performance. This
raises a central question: Do we need to use all
available languages for a better realignment, or
could a carefully selected subset of languages
offer similar or improved cross-lingual transfer
performance?

In this work, we conduct an extensive empiri-
cal study to investigate whether realignment truly
benefits from using all available languages, or if
strategically selected subsets can offer comparable
or even improved cross-lingual transfer. In sum-
mary, our key contributions are:

1. We conduct the first large-scale, system-
atic evaluation of realignment across 65
languages, including 29 LRLs, 3 tasks, 4
seeds, and 2 models (with a strong focus on
low-resource scenarios). By introducing a
sentence-level averaging and contrastive ob-
jective that removes the need for word align-
ers, we show significant gains of up to 10
points in cross-lingual transfer, especially for
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Figure 1: Overall diagram of the realignment process. Our goal is to empirically investigate how language selection
within the realignment dataset impacts overall downstream task performance.

LRLs unseen during pre-training.

2. We systematically investigate language sub-
set selection for efficiency, demonstrating
that informed subsets chosen via heuristics
(like URIEL featural diversity) can match or
surpass full multilingual realignment. This
shows that linguistic diversity matters more
than the sheer number of languages.

3. We perform comprehensive ablation stud-
ies, including out-of-distribution robust-
ness. We evaluate on unseen, out-of-
distribution benchmarks (e.g., AmericasNLI)
to show that diverse subset selection gener-
alizes effectively. We also conduct ablations
by scaling the number of languages and vary-
ing initial language pools to reflect realistic
resource constraints, showcasing the impor-
tance of including LRLs in realignment.

To the best of our knowledge, we are the first to
evaluate realignment massively on truly LRLs.

2 Methodology

Recall that we perform realignment to explicitly
retrain multilingual encoders to produce similar
representations for translated sentence pairs. In
particular, we first perform realignment as a sepa-
rate training phase, which is then followed by full-
model fine-tuning on a downstream task, following
previous work Wu and Dredze (2020); Gaschi et al.
(2023); Bakos et al. (2025). For the realignment

phase, we adopt the method proposed by Wu and
Dredze (2020), which modifies the encoder to pro-
duce similar representations for semantically equiv-
alent words across languages. This is achieved
using a contrastive loss applied to word-level align-
ment pairs extracted from parallel corpora.

Prior work has typically relied on extracting
word pairs from parallel sentences using word
aligners such as FastAlign (Dyer et al., 2013) or
bilingual dictionaries Gaschi et al. (2023). How-
ever, these alignment resources are often unreli-
able or entirely unavailable, especially for LRLs,
and their use typically requires substantial com-
putational resources. Thus, we propose a simple
alternative that removes the dependency on word
aligners while requiring significantly less time and
computational resources. Our method instead aver-
ages the representations of words in each sentence
of a translation pair and directly minimizes the dis-
tance between these sentence-level representations.

Formally, let B denote the batch size, and let
H = {(hi, h̃i)}Bi=1 represent a batch of B aligned
sentences, where hi is the averaged embedding of
the words in a source (e.g., English) sentence and
h̃i is the embedding of its aligned counterpart in
the target language. The goal is to bring hi and
h̃i closer together in the embedding space while
pushing hi away from all other unaligned sentences
in the batch. This is achieved via the following
contrastive loss:
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L(θ) = 1

2B

∑

h∈H
log

exp (sim(h, aligned(h))/T )∑
h′∈H, h′ ̸=h

exp (sim(h, h′)/T )

(1)
where sim(h, h′) denotes cosine similarity be-

tween two representations and T is a temperature
hyperparameter, set to 0.1 in our experiments.

Note that the contrastive loss defined above im-
plicitly depends on the translation data used, par-
ticularly the set of languages involved. Prior work
typically performs realignment using all available
languages for their parallel data (Wu and Dredze,
2020; Gaschi et al., 2023; Bakos et al., 2025). In
contrast, we hypothesize that a carefully selected
subset of languages may suffice to achieve compa-
rable or even improved downstream cross-lingual
generalization.

Formally, let L = {ℓ1, ℓ2, . . . , ℓm} be the full
set of languages for which parallel corpora with
English are available. Let DS denote the parallel
data involving English and the languages in subset
S ⊆ L, and let MS denote the model after realign-
ment using this data. Let T = {T1, T2, . . . , Tk}
be a set of downstream tasks, and for each task
Ti ∈ T , we fine-tune the realigned model MS on
task-specific supervision to obtain the fine-tuned
model MTi

S . We then compute the corresponding
evaluation score ScoreTi(MTi

S ). Overall, our goal
is to find the subset S∗ ⊆ L that maximizes the
macro-average across all downstream tasks:2

S∗ = argmax
S⊆L

1

|T |
∑

Ti∈T
ScoreTi

(
MTi

S

)
(2)

Since the downstream evaluation metric is non-
differentiable and trying all possible subsets of
L is expensive, we do not optimize this objec-
tive directly. Instead, we construct subsets using
linguistic-motivated heuristics as will be described
in Section 3.1.

3 Experimental Setup

3.1 Language Subsets

We construct and evaluate subsets of languages
based on heuristics designed to capture different
dimensions of cross-lingual diversity and coverage.

2This performance evaluation setup follows prior work
in multi-task multilingual learning, such as by XTREME-
R (Ruder et al., 2021).

These heuristics consider factors such as linguis-
tic feature diversity, language family affiliation,
and script variation. To assess the effectiveness
of these heuristics, we also compare their perfor-
mance against randomly selected realignment lan-
guages, thereby evaluating the significance of each
heuristic.

All subsets are drawn from the same pool of
65 languages, which we denote as L65. This pool
consists of 47 languages from XTREME-R (Ruder
et al., 2021) together with 21 additional African lan-
guages, with some overlap between the two groups.
The sets of 21, 47, and 65 languages serve as our
baseline subsets. Details of the languages in L65

are provided in Table 5. For each heuristic, we
evaluate subsets of size n ∈ {5, 10, 20, 40}, corre-
sponding to increasing coverage when available.

Baselines. We include two types of baselines
to contextualize the performance of our subset
selection strategies. The first baseline uses the
fixed language sets of size 21, 47, and 65 as men-
tioned above. The second baseline consists of ran-
dom subsets sampled uniformly from L65 with
n ∈ {5, 10, 20, 40}. These baselines help dis-
tinguish the effect of informed linguistic heuris-
tics from arbitrary selection. All random subsets
are generated using fixed random seeds for repro-
ducibility.

Language Featural Diversity. This heuristic
aims to compute diversity for languages based on
their structural linguistic features. These features
are obtained using the URIEL+ database (Khan
et al., 2025), which is a language vector resource
that encodes languages based on typological, ge-
ographic, phonological, syntactic, and phonetic
inventory feature vectors. These representations
allow for the computation of pairwise distances be-
tween languages, using angular distance over their
vectorized representations. We compare two types
of subsets: (1) subsets where we have the most di-
verse set of languages from set L65, and (2) subsets
where we have the least diverse set of languages
from set L65. To construct our most diverse subsets,
we select languages that maximize their pairwise
featural distance from English, with English in-
cluded in the subset calculation but not considered
during realignment. We also constructed the least
diverse subsets to contrast with the diverse case
by minimizing the total pairwise featural distance.
The formal definition of the objective can be found
in Section A.1.
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Language Family Diversity. This heuristic in-
vestigates whether diversity in genetic lineage con-
tributes to effective realignment. We compare two
types of subsets: (1) subsets where each language
comes from a distinct language family other than
the Indo-European family, and (2) subsets that are
restricted to a single language family, specifically,
Indo-European languages, to contrast with the di-
verse case.

Script Diversity. This heuristic investigates
whether diversity in language scripts contributes to
effective realignment. We compare three types of
subsets: (1) subsets where each language is drawn
from a distinct script other than Latin, (2) diverse
subsets (as defined in Language Featural Diversity)
but restricted to languages in L65 that use only the
Latin script, and (3) least diverse subsets restricted
to the Latin script, serving as a contrast to the di-
verse case.

All the language subsets and their languages are
listed in the Appendix.

3.2 Models and Datasets
Realignment dataset We use OPUS-100 (Zhang
et al., 2020) and NLLB (Costa-Jussà et al., 2022),
which contain parallel corpora with sentence pairs
across 100 and 200 languages, respectively. When-
ever a language is not covered by OPUS-100, we
fall back to the NLLB dataset.

Training and Downstream Task Datasets To
evaluate cross-lingual transfer, we fine-tune all
models exclusively on the English subset and eval-
uate them directly on other languages without addi-
tional fine-tuning. Our evaluation is mostly focused
on in-distribution datasets, where evaluation lan-
guages are part of the realignment language set.
However, we also included an out-of-distribution
(OOD) dataset scenarios, which contain languages
not seen during pre-training or realignment. De-
tailed dataset statistics are provided in Table 7.

In-Distribution Datasets. We consider three
downstream tasks: Part-of-Speech (PoS) tagging,
Named Entity Recognition (NER), and Natural
Language Inference (NLI), evaluated on datasets
covering both the XTREME-R language set and
their African counterparts. For each task, we eval-
uate on datasets covering both the XTREME-R
language set and African counterparts:

• For PoS tagging, we fine-tune on the UDPOS
dataset (De Marneffe et al., 2021) and evaluate

on both UDPOS and MasakhaPOS (Dione
et al., 2023).

• For NER, we fine-tune on the English subset
of WikiANN (Pan et al., 2017) and evaluate on
WikiANN and MasakhaNER (Adelani et al.,
2022).

• For NLI, we fine-tune on the English subset
of XNLI (Conneau et al., 2018) and evaluate
on four datasets: XNLI, IndoNLI (Mahendra
et al., 2021), Myanmar-XNLI (Htet and Dras,
2025a), and AfriXNLI (Adelani et al., 2024).
For AfriXNLI, we restrict evaluation to its
African languages.

Out-of-Distribution Datasets. To study gener-
alization beyond the languages present during pre-
training or realignment, we evaluate NLI perfor-
mance on AmericasNLI (Ebrahimi et al., 2021),
which covers 10 typologically diverse languages
absent from both the pre-training and realignment
language sets. This dataset serves as a challenging
out-of-distribution benchmark to assess zero-shot
cross-lingual transfer.

Models We use mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) as our multilingual
pre-trained language models. All experiments are
run on 4 different seeds. More details about the
hyperparameters can be found in Section A.6.

4 Results and Analysis

4.1 Results Overview
Figure 2 presents a comparison of the best average
performance across different tasks for both XLM-
R and mBERT, evaluated under different language
subset heuristics. Detailed per-task results are re-
ported in Tables 8 and 10.

First, Figure 2 shows that realignment provides
significantly better overall results than the fine-
tuning baseline. Except for two selection meth-
ods, realignment provides at minimum a one-point
improvement, indicating the benefits of having to
perform realignment.

However, performing realignment using all lan-
guages is not necessary to achieve comparable or
even better performance. Figure 2 shows that the re-
alignment strategy based on URIEL featural diver-
sity and URIEL featural diversity within languages
with Latin script consistently yields the best results,
achieving performance comparable to using the full
set of 65 realignment languages. This demonstrates
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Figure 2: Average performance across PoS Tagging, NER, and NLI for XLM-R and mBERT. The baselines are
compared against the best-performing configuration from each language subset heuristic.

that carefully selecting a smaller but linguistically
diverse subset of languages can be as effective as,
or even better than, using all languages. These
two heuristics also outperform other baselines, in-
cluding random selection, XTREME-R only, and
African-only subsets.

Our results further highlight, across all heuris-
tics, the least diverse subsets consistently underper-
form compared to their more diverse counterparts.
Language subsets selected to maximize diversity
in featural space outperform those that minimize
such diversity across both models. Likewise, se-
lecting languages from distinct families offers clear
benefits over limiting realignment to a single fam-
ily. These results show that realignment benefits
from the inclusion of languages that provide diverse
linguistic signals, probably because such signals
help to anchor multilingual representations more
robustly.

Finally, diversity affects realignment perfor-
mance in different ways depending on the dimen-
sion of diversity considered. For example, diver-
sity based on genetic lineage does not yield strong
results, while selecting languages with distinct
scripts, excluding Latin, produces the worst per-
formance. This suggests that script diversity can
be beneficial, but the absence of Latin script hurts
alignment performance, likely due to English being
the pre-training language.

4.2 Results Based on Language Resource
Level

To assess how different realignment methods im-
pact different languages in terms of the level of
resources, we categorize the evaluation languages
into four groups: high-resource languages (HRLs),
medium-resource languages (MRLs), low-resource

languages (LRLs) that are seen during pre-training,
and LRLs that are unseen during pre-training3. Fig-
ure 3 provides the detailed breakdown of overall
performance for XLM-R and mBERT across dif-
ferent subsets of evaluation languages.

Realignment yields substantial gains for LRLs,
particularly for languages unseen during pre-
training. For both models, the best realignment
configuration improves LRL-unseen performance
by up to 10 points over standard fine-tuning. These
results demonstrate that representation alignment
is especially effective when cross-lingual transfer
is weakest.

For HRLs and MRLs, the trends differ. Fine-
tuning alone remains competitive on these lan-
guages, and applying realignment leads to slight
performance drops. This pattern is consistent with
prior findings that realignment benefits do not al-
ways extend to higher-resource languages (Wu and
Dredze, 2020; Gaschi et al., 2023), which have
stronger initial cross-lingual representations.

We also compare different strategies for select-
ing realignment languages. While language choice
has little influence on HRLs or MRLs, it notice-
ably affects LRL performance. The advantage of
diversity-based over random selection observed in
aggregate results primarily stems from improve-
ments on LRLs.

Overall, these results highlight a key insight:
even though realignment may offer limited gains
for HRLs and MRLs, it provides consistent and sub-
stantial improvements for LRLs, especially those
absent from pre-training. This makes realignment
a promising direction for extending multilingual

3HRLs = Joshi class 5, MRLs = 3 and 4, LRLs = 0, 1, and
2 (Joshi et al., 2020)
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Figure 3: Heatmaps showing overall performance (averaged across four seeds) for different language subsets -
HRLs, MRLs, and LRLs - seen and unseen during pre-training of XLM-R and mBERT. The fine-tuning only
baseline remains strong for HRLs and MRLs, while realignment significantly improves performance on LRLs.
Diversity-based language selection further amplifies these gains for LRLs.

encoders to truly underrepresented languages.

4.3 Results on Out-of-Distribution Languages
To complement our in-distribution analysis, we
further evaluate different realignment approaches
on AmericasNLI, which contains LRLs that were
not used for realignment.

Figure 4 shows that the results on LRLs unseen
during realignment do not differ much from lan-
guages used for realignment. Similarly to Fig-
ure 2, realignment significantly outperforms the
fine-tuning only baseline. Diversity-based lan-
guage selection outperforms the random baseline,
and their homegenous counterparts, with the excep-
tion of maximizing URIEL diversity within Latin-
scripted languages, which suggests that diversity
should be enforced in all aspects (featural, script,
and family).

One key difference with in-distribution results
is that diversity-based selection, namely when us-
ing URIEL features, outperforms realignment on
the entire set of available languages. Thus, when it
comes to improving results across the board, includ-
ing languages unseen during realignment, diversity
might become more important than the number of
languages involved.

As shown in Figure 4, realignment again sub-
stantially outperforms the fine-tuning baseline, mir-
roring the in-distribution trends. Between language
subsets used for realignment, diversity-based se-
lection continues to outperform both random selec-
tion and homogeneous subsets, with one exception:
maximizing URIEL diversity within Latin-script
languages does not provide the same advantage,
suggesting that meaningful diversity must span
features, scripts, and families rather than being
constrained to a single script group. Furthermore,
URIEL-based selection outperforms realignment

on the full set of languages, demonstrating that
when the goal is broad cross-lingual improvement,
including languages never seen during realignment,
the type of diversity in the realignment set matters
more than the number of languages it contains.

5 Language-Scaling Behavior of
Realignment Methods

Figure 5 shows how performance changes as we
scale the number of languages used in each subset-
selection strategy for realignment, while keeping
the total computational budget fixed.

Across the board, every realignment strategy im-
proves over simple fine-tuning, even with only
five languages, indicating that cross-lingual re-
alignment is beneficial even at very small scales.
Among selection strategies, subsets based on dis-
tinct families or distinct scripts generally lag be-
hind random sampling, whereas URIEL-diverse
and diverse Latin-script language subsets provide
stronger gains. Interestingly, the diverse Latin-
script language subsets exhibit a non-monotonic
trajectory, dipping from 10 to 20 languages be-
fore rising again at larger scales, suggesting that
mid-scale expansions can occasionally introduce
detrimental interactions before recovering.

For XLM-R, most strategies plateau around 20
languages, implying that the model absorbs most
of the transferable signal once moderate coverage
is reached. The diverse Latin-script language selec-
tion strategy is an exception, since the performance
increases again at 40 languages and reversing its
earlier dip. This suggests that additional gains still
exist at large scales for strategies other than Latin-
script diversity, but other optimal subsets may exist
given a different language selection strategy.

For mBERT, the scaling behavior is more grad-
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Figure 4: Averaged out-of-distribution performance of XLM-R and mBERT on the AmericasNLI dataset, comparing
different language selection heuristics against three realignment baselines and a fine-tuning-only baseline. Realign-
ment with diversity-based language subsets outperforms both the realignment and fine-tuning-only baselines.

Figure 5: Scaling of average cross-lingual transfer performance with the number of languages used for realignment
for XLM-R (left) and mBERT (right).

ual and nearly linear. Several strategies, such as
URIEL-based and diverse Latin-script language se-
lection, even surpass the full 65-language baseline
at intermediate scales. This indicates that mBERT
continues to benefit from expanded cross-lingual
supervision over a wider range than XLM-R, and
that its saturation point occurs later.

Overall, realignment is consistently beneficial,
and that URIEL-based diversity and diverse Latin-
script language selection are the most reliable and
data-efficient approaches across different number
of languages. We also find that different models
follow distinct scaling dynamics: XLM-R saturates
early, whereas mBERT accumulates gains more
steadily across larger language sets.

6 Ablation study

In this ablation study, we focus specifically on ana-
lyzing the impact of including languages of differ-

ent resource levels in the realignment mix. Specifi-
cally, we consider the case where only limited re-
sources are available to collect high-quality parallel
data for realignment. Our goal is to to determine
whether, under such constraints, lower-resource
or unseen languages remain necessary for improv-
ing cross-lingual transfer, or if higher-resource lan-
guages can serve as effective substitutes. For the
sake of clarity, rather than reporting results for all
heuristics, we include only the random selection
heuristic, alongside two baselines: fine-tuning only,
and realignment using the entire L65 set. Random
language selection helps isolate the effect of dif-
ferent language pools on realignment performance,
which is the main objective of this ablation study.
Results for other selection heuristics can be found
in Tables 9 and 11 in the Appendix.

We compare performance when randomly sam-
pling 10 languages from different pools for realign-
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Language Pool POS NLI NER Avg.

XLM-R

Joshi 4 and 5 67.5 58.6 54.4 60.2
Joshi 3, 4, and 5 67.2 58.8 53.8 59.9
Joshi 3 67.0 58.9 51.0 59.0
Joshi 2 68.8 59.9 54.5 61.1
Unseen Languages 69.1 59.8 53.5 60.8
Seen Languages 67.1 58.8 53.3 59.7

Fine-tuning only 66.0 58.6 51.1 58.6
65 langs baseline 69.1 59.4 57.1 61.9

mBERT

Joshi 4 and 5 63.7 53.3 50.7 55.9
Joshi 3, 4, and 5 63.5 53.3 51.5 56.1
Joshi 3 62.9 53.2 50.3 55.5
Joshi 2 65.1 55.0 52.5 57.5
Unseen Languages 64.5 54.4 52.5 57.1
Seen Languages 63.7 53.4 51.2 56.1

Fine-tuning only 62.2 53.1 52.2 55.8
65 langs baseline 66.9 55.4 54.8 59.0

Table 1: Performance of different realignment strategies
for XLM-R and mBERT under a 10-language constraint.
Only the random language selection strategy is shown.
Bold indicates the highest result per task and model
(excluding baselines). Standard deviation and results
for other selection strategies are shown in Tables 9 and
11 in Appendix.

ment: higher-resource languages only (Joshi 4 and
5), MRLs only (Joshi 3), a mixed set of MRLs
and HRLs (Joshi 3, 4 and 5), and languages either
seen or unseen during pre-training. Our results
from Table 1 show that in most cases, perform-
ing realignment on only 10 languages leads to im-
proved cross-lingual transfer performance across
tasks compared to fine-tuning alone. While us-
ing a reduced set of 10 languages for realignment
does result in a performance drop relative to the 65-
language baseline, the decrease is modest, ranging
from 0.8% to 1.5%. This is a reasonable trade-
off given the over sixfold reduction in the number
of languages involved. On the other hand, com-
parisons among the ablation experiments reveal
that language pools composed of Joshi Class 2 lan-
guages and unseen pretraining languages tend to
yield better performance than other configurations.
This highlights the importance of including LRLs
and unseen languages in the realignment process
to improve transfer on these same categories.

Our ablation results also indicate that other lan-

guage pools - such as mid- to high-resource lan-
guages from Joshi Classes 4–5 in the case of XLM-
R, as well as seen pretraining languages - can serve
as practical substitutes for LRLs when the latter are
not applicable. Although there is a performance
drop, it remains relatively minor (less than 1%),
while the availability of high-quality parallel data
from these higher-resource language pools is con-
siderably more likely.

7 Related Work

Realignment Strategies Realignment typically
involves two components: the alignment tool,
which identifies word correspondences between
languages, and the training strategy, which updates
model parameters to enforce alignment (Hämmerl
et al., 2024). Different alignment tools can be used,
such as the statistical FastAlign (Dyer et al., 2013)
and the neural AwesomeAlign (Dou and Neubig,
2021). For our training strategy, we adopt the
method proposed by Wu and Dredze (2020), which
performs realignment to all layers by using a con-
trastive loss to word-level alignment pairs extracted
from parallel corpora. Alternative training strate-
gies include contrastive frameworks with different
loss formulations (Chen et al., 2020), or architec-
tural choices such as selectively realigning specific
model layers (Bakos et al., 2025).

Data Selection Strategies Multiple works across
machine learning research have been able to show
that strategic data selection, rather than using all
available data, can lead to better generalization, ef-
ficiency, and robustness (Wang and Neubig, 2019;
Albalak et al., 2024; Liu et al., 2024; Anugraha
et al., 2025b). In the context of cross-lingual trans-
fer, prior work has shown that linguistic similarity
between source and target languages is a strong
predictor of transfer success, often outperforming
naive or pivot-based strategies (Duong et al., 2015;
Eronen et al., 2023). However, the optimal set of
source languages depends heavily on the task, due
to divergences in features like morphology, syntax,
and script (Philippy et al., 2023). In contrast to
methods like LangRank (Lin et al., 2019), which
identify the best single transfer language per target
language and downstream task, our work seeks to
identify combinations of languages that optimize
the average downstream performance across multi-
ple target languages.
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8 Conclusion

In this paper, we investigate whether realigning
multilingual models with carefully selected lan-
guage subsets can match or even surpass align-
ment using the full language set using linguistic-
motivated heuristics. Our large-scale experiments
demonstrated that realignment with a smaller lan-
guage subsets often match the full set across mod-
els and tasks, especially when chosen based on
their linguistic diversity, and evaluated on out-of-
distribution languages. Moreover, our analysis
shows that realignment most benefits LRLs, sug-
gesting that realignment is particularly effective
for languages whose embeddings are not yet well
aligned. Our ablation studies further reveal that
when the number of languages is limited, having
LRLs in the language subset yields the strongest
improvements, although HRLs and MRLs can still
help enhance cross-lingual transfer. These results
demonstrate that strategic language selection not
only reduces computational and data overhead but
can also strengthen multilingual generalization,
pointing toward more efficient and targeted ap-
proaches to cross-lingual realignment.

Limitations

In this paper, we demonstrate the importance of lin-
guistic diversity as a more inclusive and effective
approach to improving cross-lingual generalization
in multilingual language models. Rather than sim-
ply collecting all available data, our work shows
that carefully selecting diverse subsets of languages
can enhance cross-lingual transfer, indicating that
our work is both more efficient in terms of data
collection overhead and more effective overall.

A limitation of this study is the absence decoder-
only models, which are increasingly prevalent in
current research. While the Appendix Section A.3
presents our tentative realignment results on Llama
3.1 8B using LoRA adapters, these results indicate
that the same realignment method does not straight-
forwardly transfer to decoder-only architectures,
highlighting the need for careful adaptation in such
settings. Moreover, encoder-only architectures re-
main highly relevant for cross-lingual classification
due to their efficiency, stable representations, and
strong transfer capabilities. Recent developments,
such as ModernBERT (Warner et al., 2025) and
LLM2Vec (BehnamGhader et al., 2024), which
adapt decoder-only models into encoder-style ar-
chitectures, further highlight their enduring impor-

tance. As shown in our small-scale experiment
in Section A.4, encoder-based models can even
outperform much larger multilingual decoder-only
models on several classification tasks. Future work
could also explore applying our algorithm-agnostic
heuristics to decoder-only model fine-tuning for
multilingual tasks (Anugraha et al., 2025a) or to
reinforcement learning setups in multilingual con-
texts (Dang et al., 2024).

Another is that although averaging does not ex-
plicitly target word-level alignment, we empirically
find that it provides results that are slightly lower
but still comparable to FastAlign (Appendix A.2).
Therefore, we opt for the averaging approach for
practical reasons, as FastAlign is significantly more
resource- and time-intensive.

Our exploration is also limited to heuristic-based
language selection, although we have shown that
such subsets do exist. A promising direction for fu-
ture work is to move beyond heuristics by develop-
ing predictive algorithms that estimate downstream
performance and dynamically determine both the
optimal languages and the appropriate subset size
(Anugraha et al., 2024).

We acknowledge that our full realignment lan-
guage set, L65, does not cover the entire spectrum
of global linguistic diversity, despite covering many
LRLs. We hope that our approach encourages the
creation of parallel corpora for underrepresented
languages, enabling greater diversity in alignment
sets and fostering more inclusive multilingual mod-
els. Ultimately, we aim for our work to contribute
toward broader and fairer access to language tech-
nologies, especially in the context of cross-lingual
NLP research and deployment.
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Patrick Lewis, Barlas Oğuz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2020. MLQA: Evalu-
ating Cross-lingual Extractive Question Answering.
In Proceedings of ACL 2020.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li,
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junx-
ian He, Zhisong Zhang, Xuezhe Ma, Antonios Anas-
tasopoulos, Patrick Littell, and Graham Neubig. 2019.
Choosing transfer languages for cross-lingual learn-
ing. In The 57th Annual Meeting of the Association
for Computational Linguistics (ACL), Florence, Italy.

1887

https://doi.org/10.18653/v1/2023.acl-long.609
https://doi.org/10.18653/v1/2023.acl-long.609
https://doi.org/10.18653/v1/K15-1012
https://doi.org/10.18653/v1/K15-1012
https://aclanthology.org/N13-1073/
https://aclanthology.org/N13-1073/
https://doi.org/10.1016/j.ipm.2022.103250
https://doi.org/10.1016/j.ipm.2022.103250
https://doi.org/10.18653/v1/2024.findings-acl.649
https://doi.org/10.18653/v1/2024.findings-acl.649
https://arxiv.org/abs/2504.09645
https://arxiv.org/abs/2504.09645
https://arxiv.org/abs/2504.09645
https://arxiv.org/abs/2504.09645
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://aclanthology.org/2025.coling-main.463/
https://aclanthology.org/2025.coling-main.463/
https://aclanthology.org/2025.coling-main.463/


Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guang-
tao Zeng, Longxu Dou, Tianyu Pang, Jing Jiang, and
Min Lin. 2024. Regmix: Data mixture as regres-
sion for language model pre-training. arXiv preprint
arXiv:2407.01492.

Zihan Liu, Genta Indra Winata, and Pascale Fung.
2021. Continual mixed-language pre-training for
extremely low-resource neural machine translation.
arXiv preprint arXiv:2105.03953.

Rahmad Mahendra, Alham Fikri Aji, Samuel Louvan,
Fahrurrozi Rahman, and Clara Vania. 2021. IndoNLI:
A natural language inference dataset for Indonesian.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10511–10527, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Kelly Marchisio, Wei-Yin Ko, Alexandre Berard, Théo
Dehaze, and Sebastian Ruder. 2024. Understanding
and mitigating language confusion in LLMs. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6653–
6677, Miami, Florida, USA. Association for Compu-
tational Linguistics.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth-
man, Kevin Knight, and Heng Ji. 2017. Cross-lingual
name tagging and linking for 282 languages. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1946–1958, Vancouver, Canada. As-
sociation for Computational Linguistics.

Fred Philippy, Siwen Guo, and Shohreh Haddadan.
2023. Towards a common understanding of con-
tributing factors for cross-lingual transfer in multi-
lingual language models: A review. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5877–5891, Toronto, Canada. Association for
Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? arXiv
preprint arXiv:1906.01502.

Sebastian Ruder, Noah Constant, Jan Botha, Aditya Sid-
dhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie
Hu, Dan Garrette, Graham Neubig, and Melvin John-
son. 2021. XTREME-R: Towards more challenging
and nuanced multilingual evaluation. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10215–10245,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault,
Gabriel Mejia Gonzalez, Prangthip Hansanti, and

20 others. 2022. No language left behind: Scal-
ing human-centered machine translation. Preprint,
arXiv:2207.04672.

Jörg Tiedemann. 2009. News from OPUS - A Collec-
tion of Multilingual Parallel Corpora with Tools and
Interfaces, volume V, pages 237–248. University of
Helsinki.

Xinyi Wang and Graham Neubig. 2019. Target condi-
tioned sampling: Optimizing data selection for mul-
tilingual neural machine translation. arXiv preprint
arXiv:1905.08212.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallström, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Griffin Thomas Adams, Jeremy Howard, and
Iacopo Poli. 2025. Smarter, better, faster, longer:
A modern bidirectional encoder for fast, memory
efficient, and long context finetuning and inference.
In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2526–2547, Vienna, Austria.
Association for Computational Linguistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
bert. arXiv preprint arXiv:1904.09077.

Shijie Wu and Mark Dredze. 2020. Do explicit
alignments robustly improve multilingual encoders?
arXiv preprint arXiv:2010.02537.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019. PAWS-X: A cross-lingual adversar-
ial dataset for paraphrase identification. In Proceed-
ings of EMNLP 2019, pages 3685–3690.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1628–
1639.

Wei Zhao, Steffen Eger, Johannes Bjerva, and Is-
abelle Augenstein. 2020. Inducing language-
agnostic multilingual representations. arXiv preprint
arXiv:2008.09112.

Pierre Zweigenbaum, Serge Sharoff, and Reinhard Rapp.
2018. Overview of the third bucc shared task: Spot-
ting parallel sentences in comparable corpora. In
Proceedings of 11th Workshop on Building and Us-
ing Comparable Corpora, pages 39–42.

1888

https://doi.org/10.18653/v1/2021.emnlp-main.821
https://doi.org/10.18653/v1/2021.emnlp-main.821
https://doi.org/10.18653/v1/2024.emnlp-main.380
https://doi.org/10.18653/v1/2024.emnlp-main.380
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://doi.org/10.18653/v1/2025.acl-long.127
https://doi.org/10.18653/v1/2025.acl-long.127
https://doi.org/10.18653/v1/2025.acl-long.127


A Detailed Methodology and
Experimental Setup

A.1 Language Featural Diversity Calculation

Let L = {ℓ1, ℓ2, . . . , ℓm} be the list of all available
languages, vec(ℓ) denote the URIEL featural vector
of language ℓ, and let d(u, v) denote the angular
distance between vectors u, v ∈ Rd. The angular
distance is defined as:

d(u, v) =
arccos

(
u·v

∥u∥ ∥v∥

)

π

where:

• u · v is the dot product of u and v,

• ∥u∥ is the Euclidean norm of vector u,

• d(u, v) ∈ [0, 1] (normalized angle between
vectors).

In order to find the most diverse subset size n, we
try to maximize the total pairwise angular distance:

S∗ = argmax
S⊆L, |S|=n

∑

{ℓi,ℓj}∈(S2)

d (vec(ℓi), vec(ℓj))

Similarly, to find the least diverse subset size
n, we try to minimize the total pairwise angular
distance:

S∗ = argmin
S⊆L, |S|=n

∑

{ℓi,ℓj}∈(S2)

d (vec(ℓi), vec(ℓj))

A.2 Realignment using average words’
representations vs FastAlign

Model Task Avg. Tokens FastAlign

mBERT
NER 54.89 ± 0.93 55.39 ± 0.52

NLI 55.34 ± 0.28 56.58 ± 0.25

POS 66.85 ± 0.24 70.31 ± 0.15

XLM-R
NER 57.19 ± 0.79 56.72 ± 1.62

NLI 59.5 ± 0.27 60.65 ± 0.33

POS 69.1 ± 0.22 71.29 ± 0.25

Avg. Time (h) 0.35 ± 0.003 1.93 ± 0.039

Table 2: Comparison of Average and FastAlign perfor-
mance across 5 random seeds. Avg. Time reflects the
average time taken by realignment step only across all
tasks (in hours); each seed reused the same realignment
checkpoint.

Realignment methods introduced before this
work take a batch of pairs of translated sentences,
extract pairs of corresponding words across those
pairs using alignment tools like FastAlign and Awe-
someAlign, and compute an in-batch contrastive
loss on those pairs of words. Our work introduces
a simple “averaging trick”: instead of computing
the contrastive loss on word pairs extracted with
an aligner, we compute the average of all tokens
in a sentence and align sentences instead of words.
This change is not made to improve cross-lingual
transfer but rather to alleviate the need for a word
aligner, which considerably reduces the time nec-
essary to perform realignment.

We compare the time efficiency and performance
of the two realignment methods using a different
GPU type from that used in our main experiments,
with the results presented in Table 2. Overall,
FastAlign performs slightly better than the token
averaging method on most tasks. However, we
adopt the averaging approach for practical reasons,
as FastAlign is considerably more resource- and
time-intensive - even without accounting for the ad-
ditional preprocessing required to prepare datasets
for FastAlign across 65 languages - making it un-
suitable for large-scale experiments. It is important
to emphasize that we employ the averaging method
not to enhance the baseline performance, but
rather to reduce computational overhead, thereby
enabling large-scale comparisons across different
language selection strategies.

A.3 Tentative Decoder-only Results

Table 3: Comparison of Llama model performance with
and without realignment on downstream tasks.

Metric Llama w/o Llama w/
realignment realignment

PoS target acc. 38.8 41.9
NER target F1 31.6 30.2
NLI accuracy 56.5 57.8

We experimented with Llama 3.1 8B using
LoRA adapters to overcome computational lim-
itations. The adapters were trained for realign-
ment and then fine-tuned for the downstream task,
following a similar procedure as for encoder-only
models. The results are shown in Table 3.

While realignment improved PoS tagging and
NLI, we observed that it negatively impacted NER
performance for LLaMA, which suggests that re-
alignment does not transfer straightforwardly
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to decoder-only architectures.. Our preliminary
experiments are not conclusive on whether realign-
ment could ultimately benefit decoder-only models.
We plan to investigate this further in future work.

More broadly, applying realignment to decoder-
only LLMs for generative tasks raises unique chal-
lenges. In particular, making such models entirely
language-agnostic could exacerbate issues such
as language confusion (Marchisio et al., 2024),
where the model generates text in an unintended
language. This highlights an important avenue for
future work and motivates careful consideration of
how realignment should be adapted for decoder-
only settings.

A.4 Encoder-only models vs Decoder-only
models on cross-lingual transfer
classification

Task XLM-R Llama 3.1 Gemma 2

POS en 96.2 90.9 93.5
POS XL 62.0 38.8 49.1

NER en 82.0 72.5 73.9
NER XL 49.1 31.6 35.9

NLI en 83.5 90.2 91.3
NLI XL 54.6 56.5 55.0

Table 4: Performance comparison of XLM-R, Llama 3.1
8B, and Gemma 2 9B across various three downstream
tasks: POS Tagging, NER and NLI under the same
experimental settings. XL indicates cross-lingual.

We fine-tuned LLaMA 3.1 8B on PoS, NER,
and NLI under the same setup. Our results on
Table 4 show that XLM-R (encoder-only) not only
significantly outperforms Llama and Gemma on
cross-lingual transfer for some tasks, but can even
surpass them in English. Interestingly, this seems
to be true for word-level tasks (POS and NER), but
not sentence-level ones (NLI). This finding aligns
with prior work suggesting that small fine-tuned
encoder-only models often outperform prompted
LLMs on classification tasks (Ahuja et al., 2023).

In conclusion, adapting realignment methods to
encoder-only models and generative tasks is a mod-
ern and exciting direction for future research. Nev-
ertheless, we focus on encoder-only models, which
remain a relevant contribution for cross-lingual
classification, especially for multilinguality.

A.5 Languages

Table 5 contains the full list of the 65 languages
used in Gaschi et al. (2023). Table 6 contains the
list of languages used in each experiment.

Table 6 shows the languages chosen within each
experiment. All experiments are run with seeds
of 17, 23, 42, and 66, including the selection of
languages in the Random Subsets (Seeded) setting.

Figures 6, 7, and 8 show the language trees of
the 65 languages used.

A.6 Hyperparameters and Resources

For both tasks, we follow the experimental setup
used in Gaschi et al. (2023); Bakos et al. (2025).
All experiments are conducted using NVIDIA
H100 GPUs and run with 4 random seeds to ac-
count for variability. Realignment is performed for
24,544 steps. This is followed by task-specific fine-
tuning: 5 epochs for PoS tagging and 2 epochs for
NLI. We use a learning rate of 2e-5, a batch size
of 32 for both training and evaluation, and a max-
imum input length of 200 tokens for source and
target sequences. During the realignment stage, we
use a reduced maximum sequence length of 96 and
a smaller batch size of 16.

A.7 Statistics about the datasets used

The size of the datasets used for training and evalu-
ating are reported in Table 7.

A.8 Licenses for artifacts used

Below is a list of the datasets under study:

• The XNLI corpus (Conneau et al., 2018) has
the CC BY-NC 4.0 license.

• The AfriXNLI dataset (Adelani et al., 2024)
has the Apache 2.0 license.

• The IndoNLI dataset (Mahendra et al., 2021)
has the CC-BY-SA 4.0 license.

• The Myanmar-XNLI dataset (Htet and Dras,
2025b) has the Apache 2.0 license.

• The UDPOS dataset (De Marneffe et al., 2021)
has the CC0-1.0 license.

• The MasakhaPOS dataset (Dione et al., 2023)
has the MIT license.

• The WikiANN dataset (Pan et al., 2017) has
the Apache 2.0 2.0 license.
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• The MasakhaNER 2.0 dataset (Adelani et al.,
2022) has the AFL 3.0 license.

• The OPUS-100 dataset (Zhang et al., 2020)
has no explicit license; it is a filtered subset of
OPUS (Tiedemann, 2009), which aggregates
translation corpora that is generally consid-
ered redistributable.

• The NLLB dataset (Team et al., 2022) has the
ODC-By license.

• The XTREME-R benchmark suite (Ruder
et al., 2021) does not have a unified license;
it aggregates multiple datasets, each with its
own license or terms of use:

– The XNLI corpus (Conneau et al., 2018)
has the CC BY-NC 4.0 license.

– The PAWS-X dataset (Yang et al., 2019)
is free to use for any purpose.

– The UDPOS dataset (De Marneffe et al.,
2021) has the CC0-1.0 license.

– The WikiANN dataset (Pan et al., 2017)
has the Apache 2.0 2.0 license.

– The XQuAD dataset (Artetxe et al.,
2020) has the CC BY-SA 4.0 license.

– The MLQA dataset (Lewis et al., 2020)
has the CC BY-SA 3.0 license.

– The TyDiQA-GoldP dataset (Clark et al.,
2020) has the Apache 2.0 license.

– The BUCC 2018 dataset for the shared
task on bitext mining (Zweigenbaum
et al., 2018) is available for academic
research use only; redistribution may be
restricted.

– The Tatoeba dataset (Artetxe and
Schwenk, 2019) has the CC BY 2.0 li-
cense.

Below is a list of the other artifacts under study:

• The code for realignment comes from Gaschi
et al. (2023) and has the MIT license.

• The URIEL+ knowledge base and distance
calculation functions (Khan et al., 2025) have
the CC BY-SA 4.0 license.

• The weights of XLM-R Base (Conneau et al.,
2020) have the MIT license.

• The weights of mBERT Base (Devlin et al.,
2019) have the Apache 2.0 license.

All artifacts were thus used in accordance with their
open-source or non-commercial licenses.

A.9 Use of AI
For the writing of this paper, AI was solely used to
reformulate some text, and as an autocompletion
tool for writing the code used in the experiments.

B More Detailed Results

This section contains the full results of the experi-
ments in this paper.
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Language Language Code‡ Script Language Family Joshi Class† Vitality

Afrikaans afr Latin Germanic 3 MRL
Akan twi Latin Atlantic-Congo 1 LRL
Amharic amh Amharic Semitic 2 LRL
Arabic ara Arabic Semitic 5 HRL
Azerbaijani aze Latin Oghuz 1 LRL
Bambara bam Latin Mande 1 LRL
Basque eus Latin N/A 4 MRL
Bengali ben Bengali Indo-Iranian 3 MRL
Bulgarian bul Cyrillic Balto-Slavic 3 MRL
Burmese mya Burmese Sino-Tibetan 1 LRL
Chinese zho Chinese Sino-Tibetan 5 HRL
Dholuo luo Latin Nilo-Saharan 0 LRL
Dutch nld Latin Germanic 4 MRL
Eastern Punjabi pan Gurmukhi Indo-Iranian 2 LRL
Estonian est Latin Finnic 3 MRL
Ewe ewe Latin Atlantic-Congo 1 LRL
Finnish fin Latin Finnic 4 MRL
Fon fon Latin Atlantic-Congo 0 LRL
French fra Latin Romance 5 HRL
Ganda lug Latin Atlantic-Congo 1 LRL
Georgian kat Georgian Kartvelian 3 MRL
German deu Latin Germanic 5 HRL
Greek ell Greek Hellenic 3 MRL
Gujarati guj Gujarati Indo-Iranian 1 LRL
Hausa hau Latin Chadic 2 LRL
Hebrew heb Hebrew Semitic 3 MRL
Hindi hin Devanagari Indo-Iranian 4 MRL
Hungarian hun Latin Ugric 4 MRL
Igbo ibo Latin Atlantic-Congo 1 LRL
Indonesian ind Latin Malayic 3 MRL
Italian ita Latin Romance 4 MRL
Japanese jpn Japanese Japonic 5 HRL
Javanese jav Latin Javanic 1 LRL
Kazakh kaz Cyrillic Kipchak 3 MRL
Kinyarwanda kin Latin Atlantic-Congo 1 LRL
Korean kor Korean Koreanic 4 MRL
Lingala lin Latin Atlantic-Congo 1 LRL
Lithuanian lit Latin Balto-Slavic 3 MRL
Malay msa Latin Malayic 3 MRL
Malayalam mal Malayalam Southern Dravidian 1 LRL
Marathi mar Devanagari Indo-Iranian 2 LRL
Mossi mos Latin Gur 0 LRL
Nyanja nya Latin Benue-Congo 1 LRL
Oromo orm Latin Cushitic 1 LRL
Persian fas Arabic Indo-Iranian 4 MRL
Polish pol Latin Balto-Slavic 4 MRL
Portuguese por Latin Romance 4 MRL
Romanian ron Latin Romance 3 MRL
Russian rus Cyrillic Balto-Slavic 4 MRL
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Shona sna Latin Atlantic-Congo 1 LRL
Spanish spa Latin Romance 5 HRL
Swahili swa Latin Atlantic-Congo 2 LRL
Tagalog tgl Latin Philippine 3 MRL
Tamil tam Tamil Southern Dravidian 3 MRL
Telugu tel Telugu South-Central Dravidian 1 LRL
Thai tha Thai Kra–Dai 3 MRL
Tswana tsn Latin Atlantic-Congo 2 LRL
Turkish tur Latin Oghuz 4 MRL
Ukrainian ukr Cyrillic Balto-Slavic 3 MRL
Urdu urd Arabic Indo-Iranian 3 MRL
Vietnamese vie Latin Austroasiatic 4 MRL
Wolof wol Latin Atlantic-Congo 2 LRL
Xhosa xho Latin Atlantic-Congo 2 LRL
Yoruba yor Latin Atlantic-Congo 2 LRL
Zulu zul Latin Atlantic-Congo 2 LRL

Table 5: The 65 languages used for the realignment phase with their vitality class mapping. The language codes
follow ‡ISO639-3 coding. Languages are mapped to their †rarity taxonomy based on Joshi et al. (2020) vitality
classes: Low Resource Language (LRL, 0-2), Medium Resource Language (MRL, 3-4), and High Resource
Language (HRL, 5).
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Method # Languages‡

Baseline

All 65 languages 65 afr, amh, ara, aze, bul, ben, deu, ell, spa, est, eus, fas,
fin, fra,
guj, heb, hin, hun, ind, ita, jpn, kat, kaz, kor, lit, mal,
mar, msa,
mya, nld, pan, pol, por, ron, rus, tam, tha, tur, ukr,
urd, vie, zho,
bam, ewe, fon, hau, ibo, kin, lin, lug, luo, mos, nya,
gaz, sna, swh,
tsn, twi, wol, xho, yor, zul, jav, tgl, tel

Present in XTREME-R 47 afr, ara, aze, bul, ben, deu, ell, spa, est, eus, fas, fin,
fra, guj,
heb, hin, hun, ind, ita, jpn, jav, kat, kaz, kor, lit, mar,
mal, msa, mya,
nld, pan, pol, por, ron, rus, swh, tam, tel, tgl, tha, tur,
ukr, urd,
vie, wol, yor, zho

Present in Africa 21 amh, bam, ewe, fon, hau, ibo, kin, lin, lug, luo, mos,
nya, gaz, sna,
swh, tsn, twi, wol, xho, yor, zul

Featural Diversity

Most diverse from English 5 fon, kat, kaz, lin, gaz
10 afr, ara, fon, kat, jpn, kaz, lin, gaz, sna, vie
20 afr, ara, aze, eus, zho, fon, lug, kat, ell, hau, heb, ibo,

jpn, kaz,
kor, lin, luo, gaz, sna, twi, vie, yor

40 afr, ara, aze, eus, mya, zho, ewe, fon, fra, lug, kat, ell,
hau, heb
ibo, jpn, kaz, kin, kor, lin, msa, mal, mar, nya, gaz,
fas, rus, sna
spa, tgl, tam, tel, tha, tur, twi, urd, vie, xho, yor, zul

Least diverse from English 5 ita, por, ron, spa, ukr
10 bul, deu, ell, spa, fra, ita, nld, por, ron, ukr
20 bul, nld, est, fin, fra, deu, ell, guj, hin, hun, ita, lit,

fas, pol
por, pan, ron, rus, spa, ukr

40 amh, ara, aze, bam, eus, ben, bul, nld, est, fin, fra,
deu, ell, guj
hau, heb, hin, hun, ind, ita, jav, lit, luo, mal, mar,
mos, fas, pol
por, pan, ron, rus, spa, tgl, tam, tel, tur, ukr, urd, wol

Phylogenetic Diversity

Most diverse families 5 kat, kaz, lin, gaz, vie
10 ara, zho, kat, jpn, kaz, lin, msa, gaz, tam, vie
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20 ara, aze, eus, zho, fra, kat, ell, hau, jpn, kaz, kor, lin,
luo, msa,
mar, gaz, rus, tam, tha, vie

25 ara, aze, bam, eus, zho, fin, fra, kat, ell, hau, hun, jpn,
kaz, kor
lin, luo, msa, mar, mos, gaz, rus, tam, tel, tha, vie

Most diverse families within
Indo-European

5 afr, nld, deu, ita, por

10 afr, bul, nld, fra, deu, ita, por, ron, spa, ukr
20 afr, ben, bul, nld, fra, deu, ell, guj, hin, ita, lit, mar,

pol, por
pan, ron, rus, spa, ukr, urd

Script Diversity

Most diverse using distinct
scripts

5 ara, kat, jpn, kaz, tha

10 ara, mya, zho, kat, ell, heb, jpn, kaz, tam, tha
18 amh, ara, ben, mya, zho, kat, ell, guj, heb, hin, jpn,

kaz, kor, mal,
pan, tam, tel, tha

Most diverse using Latin scripts 5 aze, fon, lin, gaz, tgl
10 afr, aze, eus, fon, lin, gaz, sna, tgl, twi, vie
20 bam, nld, est, fin, fra, deu, hau, hun, ind, ita, jav, lit,

luo, msa,
pol, por, ron, spa, tgl, wol

41 afr, aze, bam, eus, nld, est, ewe, fin, fon, fra, lug, deu,
hau, hun
ibo, ind, ita, jav, kin, lin, lit, luo, msa, mos, nya, gaz,
pol, por
ron, sna, spa, swh, tgl, tsn, tur, twi, vie, wol, xho, yor,
zul

Least diverse using Latin scripts 5 nld, fra, deu, ita, por
10 nld, est, fin, fra, deu, hun, ita, por, ron, spa
20 afr, aze, eus, ewe, fon, fra, lug, lin, lit, msa, gaz, pol,

sna, spa
tgl, tur, twi, vie, yor, zul

Ablation Languages

Joshi Class = 2 (Random) 10 amh, aze, bam, ewe, fon, gaz, guj, hau, ibo, jav
Joshi Class = 2 (Most URIEL) 10 aze, mya, fon, kin, lin, mar, gaz, sna, tel, yor
Joshi Class = 2 (Most Family) 10 aze, mya, hau, jav, lin, luo, mar, mos, gaz, tel
Joshi Class = 2 (Most Script) 10 amh, mya, guj, lin, mal, mar, gaz, pan, tel, yor

Joshi Class = 3 (Random) 17 afr, bul, ben, ell, est, heb, ind, kat, kaz, lit, msa,
ron, tam, tgl, tha, ukr, urd

Joshi Class = 3 (Most URIEL) 10 afr, kat, ell, heb, kaz, msa, tgl, tam, tha, urd
Joshi Class = 3 (Most Family) 10 est, kat, ell, heb, kaz, lit, msa, tam, tha, urd
Joshi Class = 3 (Most Script) 10 ben, bul, kat, ell, heb, kaz, tam, tha, ukr, urd

Joshi Class = 3,5 (Random) 23 afr, ara, bul, ben, deu, ell, spa, est, eus, fas, fin,
fra, heb, hin, hun, ind, ita, jpn, kat, kaz, kor, lit, msa,
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nld, pan, pol, por, ron, rus, tam, tgl, tha, tur, ukr, urd,
vie, zho

Joshi Class = 3,5 (Most URIEL) 10 afr, ara, eus, zho, kat, jpn, kaz, msa, tam, vie
Joshi Class = 3,5 (Most Family) 10 ara, zho, kat, ell, jpn, kaz, msa, tam, tha, vie
Joshi Class = 3,5 (Most Script) 10 ara, zho, kat, ell, heb, jpn, kaz, kor, tam, tha

Joshi Class = 4,5 (Random) 20 ara, deu, spa, eus, fas, fin, fra, hin, hun, ita, jpn,
kor, nld, pol, por, rus, tam, tur, vie, zho

Joshi Class = 4,5 (Most URIEL) 10 ara, eus, zho, fra, jpn, kor, fas, rus, tur, vie
Joshi Class = 4,5 (Most Script) 10 ara, eus, fra, hin, jpn, kor, fas, rus, tur, vie

Seen by mBERT (Random) 47 afr, ara, aze, bul, ben, deu, ell, spa, est, eus, fas,
fin, fra, guj, heb, hin, hun, ind, ita, jpn, jav, kat, kaz,
kor,
lit, mar, mal, msa, mya, nld, pan, pol, por, ron, rus,
swh,
tam, tel, tgl, tha, tur, ukr, urd, vie, yor, zho

Seen by mBERT (Most URIEL) 10 afr, ara, zho, kat, jpn, kaz, swh, tam, vie, yor
Seen by mBERT (Most Family) 10 ara, aze, zho, kat, jpn, kaz, msa, tam, vie, yor
Seen by mBERT (Most Script) 10 ara, mya, zho, kat, ell, heb, jpn, kaz, tam, tha

Seen by XLM-R (Random) 51 afr, amh, ara, aze, bul, ben, deu, ell, spa, est, eus,
fas, fin, fra, gaz, guj, hau, heb, hin, hun, ind, ita, jpn,
jav,
kat, kaz, kor, lit, mar, mal, msa, mya, nld, pan, pol,
por,
ron, rus, swh, tam, tel, tgl, tha, tur, ukr, urd, vie, xho,
zho

Seen by XLM-R (Most URIEL) 10 afr, ara, zho, kat, jpn, kaz, msa, gaz, swh, vie
Seen by XLM-R (Most Family) 10 ara, zho, kat, jpn, kaz, msa, gaz, tam, vie, xho
Seen by XLM-R (Most Script) 10 ara, mya, zho, kat, ell, heb, jpn, kaz, tam, tha

Unseen by mBERT (Random) 34 amh, bam, ewe, fon, gaz, hau, ibo, kin, lin, lug,
luo, mos, nya, sna, tsn, twi, wol, xho, yor, zul

Unseen by mBERT (Most
URIEL)

10 amh, ewe, fon, hau, lin, luo, gaz, sna, twi, xho

Unseen by mBERT (Most Fam-
ily)

10 amh, bam, fon, hau, lin, luo, mos, gaz, sna, twi

Unseen by XLM-R (Random) 30 bam, ewe, fon, ibo, kin, lin, lug, luo, mos, nya,
sna, tsn, twi, wol, yor, zul

Unseen by XLM-R (Most
URIEL)

10 ewe, fon, lin, luo, mos, sna, twi, wol, yor, zul

Unseen by XLM-R (Most Fam-
ily)

10 bam, fon, lin, luo, mos, sna, twi, wol, yor, zul

Table 6: List of languages used for each experiment and selection strategy. Language codes follow ‡ISO639-3
coding .
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Figure 6: Phylogenetic tree for Indo-European languages (including Basque as an isolate) used in realignment.
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Figure 7: Phylogenetic trees for Niger-Congo languages, and Dholuo (from the Nilo-Saharan family, due to its
proximity) used in realignment.
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Figure 8: Residual phylogenetic trees for all other languages languages used in realignment (Non-Indo-European,
Non-Niger-Congo, Non-Nilo-Saharan, Non-Basque).
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Seen by

Language NLI PoS-tagging NER XLM-R mBERT OPUS-100 NLLB

English (training) 392,702 21,787 20,000 ✓ ✓ ✓ ✓
Afrikaans - 425 1000 ✓ ✓ ✓ ✓
Arabic 5010 1680 10000 ✓ ✓ ✓ ✓
Azerbaijani - - 1000 ✓ ✓ ✓ ✓
Basque - 1799 10000 ✓ ✓ ✓ ✓
Bengali - - 1000 ✓ ✓ ✓ ✓
Bulgarian 5010 1116 10000 ✓ ✓ ✓ ✓
Burmese 5010 - 100 ✓ ✓ ✓ ✓
Chinese 5010 3455 10000 ✓ ✓ ✓ ✓
Czech - 10159 - ✓ ✓ ✓ ✓
Dutch - 1471 10000 ✓ ✓ ✓ ✓
English (evaluation) 5010 5440 10000 ✓ ✓ ✓ ✓
Estonian - 4127 10000 ✓ ✓ ✓ ✓
Finnish - 6544 10000 ✓ ✓ ✓ ✓
French 5010 7542 10000 ✓ ✓ ✓ ✓
Georgian - - 10000 ✓ ✓ ✓ ✓
German 5010 22358 10000 ✓ ✓ ✓ ✓
Greek 5010 456 10000 ✓ ✓ ✓ ✓
Gujarati - - 100 ✓ ✓ ✓ ✓
Hebrew - 491 10000 ✓ ✓ ✓ ✓
Hindi 5010 2684 1000 ✓ ✓ ✓ ✓
Hungarian - 449 10000 ✓ ✓ ✓ ✓
Indonesian 2984 1931 10000 ✓ ✓ ✓ ✓
Italian - 3518 10000 ✓ ✓ ✓ ✓
Japanese - 2365 10000 ✓ ✓ ✓ ✓
Javanese - - 100 ✓ ✓ ✗ ✓
Kazakh - 1047 1000 ✓ ✓ ✓ ✓
Korean - 4276 10000 ✓ ✓ ✓ ✓
Lithuanian - 739 10000 ✓ ✓ ✓ ✓
Malay - - 1000 ✓ ✓ ✓ ✓
Malayalam - - 1000 ✓ ✓ ✓ ✓
Marathi - 47 1000 ✓ ✓ ✓ ✓
Persian - 2055 10000 ✓ ✓ ✓ ✓
Polish - 4942 10000 ✓ ✓ ✓ ✓
Portuguese - 2680 10000 ✓ ✓ ✓ ✓
Eastern Punjabi - - 100 ✓ ✓ ✓ ✓
Romanian - 2272 10000 ✓ ✓ ✓ ✓
Russian 5010 8973 10000 ✓ ✓ ✓ ✓
Spanish 5010 3147 10000 ✓ ✓ ✓ ✓
Tagalog - - 1000 ✓ ✓ ✗ ✓
Tamil - 654 1000 ✓ ✓ ✓ ✓
Telugu - 146 1000 ✓ ✓ ✓ ✓
Thai 5010 1000 10000 ✓ ✓ ✓ ✓
Turkish 5010 6647 10000 ✓ ✓ ✓ ✓
Ukrainian - 892 10000 ✓ ✓ ✓ ✓
Urdu 5010 535 1000 ✓ ✓ ✓ ✓
Vietnamese 5010 800 10000 ✓ ✓ ✓ ✓
Akan - 628 1211 ✗ ✗ ✗ ✓
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(continued)

Language NLI PoS-tagging NER XLM-R mBERT OPUS-100 NLLB

Amharic 600 - - ✓ ✗ ✓ ✓
Bambara - 619 1274 ✗ ✗ ✗ ✓
Chichewa - - 1785 ✗ ✗ ✗ ✓
Dholuo - 606 1474 ✗ ✗ ✗ ✓
Ewe 600 582 1001 ✗ ✗ ✗ ✓
Fon - 646 1228 ✗ ✗ ✗ ✓
Ghomala - 599 966 ✗ ✗ ✗ ✗

Hausa 600 601 1633 ✓ ✗ ✓ ✓
Igbo 600 642 2181 ✗ ✗ ✓ ✓
Kinyarwanda 600 604 2235 ✗ ✗ ✓ ✓
Lingala 600 - - ✗ ✗ ✗ ✓
Ganda 600 586 1412 ✗ ✗ ✗ ✓
Mossi - 604 1294 ✗ ✗ ✗ ✓
Naija - - 1613 ✗ ✗ ✗ ✗

Oromo 600 - - ✓ ✗ ✓ ✗

Setswana - 602 996 ✗ ✗ ✗ ✓
Shona 600 596 1773 ✗ ✗ ✗ ✓
Southern Sotho 600 - - ✗ ✗ ✗ ✓
Swahili 600 553 1883 ✓ ✓ ✗ ✓
Wolof 600 625 1312 ✗ ✗ ✗ ✓
Xhosa 600 601 1633 ✓ ✗ ✓ ✓
Yoruba 600 713 1964 ✗ ✓ ✓ ✓
Zulu 600 601 1670 ✗ ✗ ✓ ✓
Aymara 750 - - ✗ ✗ ✗ ✓
Asháninka - - - ✗ ✗ ✗ ✗

Bribri 750 - - ✗ ✗ ✗ ✗

Guaraní 750 - - ✗ ✗ ✗ ✓
Nahuatl 750 - - ✗ ✗ ✗ ✗

Otomí 750 - - ✗ ✗ ✗ ✗

Quechua 750 - 100 ✗ ✗ ✗ ✓
Rarámuri 750 - - ✗ ✗ ✗ ✗

Shipibo-Konibo 750 - - ✗ ✗ ✗ ✗

Wixárika 750 - - ✗ ✗ ✗ ✗

Table 7: The size of the combined datasets. The table is split into 3 sections: 1) The original 44 languages used for
realignment 2) African languages exclusive to AfriXNLI and MasakhaPOS, 3) South American languages exclusive
to AmericasNLI.
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Method #Languages NLI PoS-Tagging NER

Baseline

All 65 languages 65 55.43 ± 0.29 66.87 ± 0.27 54.75 ± 1.02

Present in XTREME-R 47 53.51 ± 0.27 65.06 ± 0.38 52.54 ± 1.41

Present in Africa 21 54.94 ± 0.38 65.79 ± 0.18 53.72 ± 0.86

Fine-tuning only 0 53.12 ± 0.25 62.20 ± 0.78 52.25 ± 1.05

Featural Diversity

Most diverse from English 5 53.86 ± 0.24 64.08 ± 0.30 50.73 ± 0.73

10 54.40 ± 0.31 64.87 ± 0.27 53.64 ± 0.59

20 54.94 ± 0.31 65.66 ± 0.06 54.38 ± 1.05

40 55.94 ± 0.24 66.24 ± 0.07 54.82 ± 0.45

Least diverse from English 5 53.22 ± 0.17 62.57 ± 0.33 51.43 ± 1.41

10 53.26 ± 0.52 63.14 ± 0.60 52.70 ± 1.14

20 53.26 ± 0.12 63.33 ± 0.39 51.58 ± 0.69

40 53.69 ± 0.28 65.83 ± 0.08 52.85 ± 0.49

Phylogenetic Diversity

Most diverse families 5 54.03 ± 0.30 63.53 ± 0.06 49.69 ± 1.06

10 53.86 ± 0.25 63.85 ± 0.51 51.92 ± 0.82

20 53.98 ± 0.34 63.87 ± 0.18 53.98 ± 0.84

25 54.25 ± 0.19 65.13 ± 0.37 54.73 ± 0.85

Most diverse families within
Indo-European

5 52.86 ± 0.35 61.89 ± 0.48 50.20 ± 0.68

10 53.18 ± 0.45 62.40 ± 0.49 52.52 ± 1.56

20 53.06 ± 0.29 63.59 ± 0.87 51.08 ± 0.80

Script Diversity

Most diverse scripts 5 52.80 ± 0.25 61.74 ± 0.66 51.19 ± 1.55

10 52.54 ± 0.34 62.11 ± 0.87 50.41 ± 1.14

18 52.69 ± 0.13 62.82 ± 0.74 50.59 ± 0.73

Most diverse using Latin script 5 53.94 ± 0.31 63.92 ± 0.38 51.38 ± 0.50

10 54.75 ± 0.13 64.95 ± 0.40 53.28 ± 0.73

20 53.89 ± 0.12 65.25 ± 0.15 53.10 ± 0.89

41 55.96 ± 0.15 67.23 ± 0.20 54.00 ± 0.48

Least diverse using Latin script 5 53.20 ± 0.56 61.36 ± 0.13 49.22 ± 0.47

10 53.14 ± 0.31 62.89 ± 0.51 51.04 ± 0.33

20 55.73 ± 0.19 66.05 ± 0.25 53.60 ± 0.91

Random Selection

Random Seeded 5 54.21 ± 0.86 63.61 ± 0.55 51.76 ± 1.90

10 54.24 ± 0.88 64.78 ± 0.34 51.45 ± 0.51

20 54.64 ± 0.76 65.27 ± 0.42 52.92 ± 1.14

40 55.36 ± 0.24 66.06 ± 0.63 53.42 ± 0.48

Table 8: Accuracy of XLM-R on NLI, PoS-Tagging, NER tasks. Results are averaged across 4 seeds along with the
standard deviation.
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Method #Languages NLI PoS-Tagging NER

Most featural diversity from English

Joshi Class = 2 10 54.88 ± 0.18 64.72 ± 0.26 51.42 ± 0.30

Joshi Class = 3 17 53.06 ± 0.36 63.30 ± 0.64 50.17 ± 0.81

Joshi Class = 3,4,5 37 53.20 ± 0.47 63.35 ± 1.02 51.13 ± 1.74

Joshi Class = 4,5 20 53.24 ± 0.30 63.84 ± 0.52 50.66 ± 0.41

Seen by mBERT 47 53.85 ± 0.32 64.50 ± 0.88 52.96 ± 1.14

Seen by XLM-R 51 54.27 ± 0.28 64.39 ± 0.26 52.71 ± 0.87

Unseen by mBERT 34 55.14 ± 0.40 64.02 ± 0.23 52.63 ± 0.44

Unseen by XLM-R 30 54.88 ± 0.34 64.70 ± 0.58 52.80 ± 0.73

Most Phylogenetic Diversity

Joshi Class = 2 10 54.11 ± 0.60 63.96 ± 0.18 51.23 ± 0.68

Joshi Class = 3 17 52.96 ± 0.39 63.60 ± 0.49 50.73 ± 1.91

Joshi Class = 3,4,5 37 53.10 ± 0.29 63.68 ± 0.23 52.53 ± 1.67

Seen by mBERT 47 53.57 ± 0.25 64.06 ± 0.67 52.52 ± 1.12

Seen by XLM-R 51 54.42 ± 0.58 64.26 ± 0.17 53.34 ± 0.80

Unseen by mBERT 34 54.59 ± 0.37 64.02 ± 0.33 53.37 ± 0.82

Unseen by XLM-R 30 54.59 ± 0.38 65.04 ± 0.47 52.54 ± 0.97

Most Script Diversity

Joshi Class = 2 10 54.20 ± 0.17 63.92 ± 0.28 50.50 ± 0.66

Joshi Class = 3 17 52.67 ± 0.18 61.73 ± 1.00 49.46 ± 0.31

Joshi Class = 3,4,5 37 52.60 ± 0.19 62.46 ± 0.57 52.24 ± 1.45

Joshi Class = 4,5 20 53.16 ± 0.13 63.54 ± 0.35 51.61 ± 0.35

Seen by mBERT 47 52.73 ± 0.16 61.95 ± 0.37 49.73 ± 0.79

Seen by XLM-R 51 52.73 ± 0.16 61.95 ± 0.37 49.73 ± 0.79

Random Seeded

Joshi Class = 2 10 55.03 ± 0.65 65.06 ± 0.53 52.46 ± 0.97

Joshi Class = 3 17 53.28 ± 0.25 62.94 ± 0.49 50.31 ± 2.05

Joshi Class = 3,4,5 37 53.36 ± 0.21 63.54 ± 0.40 51.51 ± 0.70

Joshi Class = 4,5 20 53.30 ± 0.15 63.69 ± 0.14 50.67 ± 1.50

Seen by mBERT 47 53.43 ± 0.37 63.67 ± 0.81 51.25 ± 0.40

Seen by XLM-R 51 53.86 ± 0.48 63.84 ± 0.62 51.08 ± 0.65

Unseen by mBERT 34 54.45 ± 0.87 64.55 ± 0.25 52.48 ± 1.19

Unseen by XLM-R 30 54.87 ± 0.20 65.11 ± 0.29 52.62 ± 0.53

Table 9: Ablation studies: Accuracy of mBERT on NLI, POS-Tagging, NER tasks. Results are averaged across 4
seeds along with the standard deviation.
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Method #Languages NLI PoS-Tagging NER

Baseline

All 65 languages 65 59.43 ± 0.17 69.14 ± 0.24 57.07 ± 0.86

Present in XTREME-R 47 59.44 ± 0.39 67.32 ± 0.59 57.24 ± 0.73

Present in Africa 21 59.90 ± 0.33 69.92 ± 0.15 54.10 ± 1.14

Fine-tuning only 0 58.61 ± 0.10 65.98 ± 0.73 51.09 ± 0.96

Featural Diversity

Most diverse from English 5 58.97 ± 0.28 67.99 ± 0.37 53.39 ± 1.17

10 58.87 ± 0.19 68.48 ± 0.43 56.11 ± 0.77

20 59.27 ± 0.07 68.57 ± 0.40 56.51 ± 1.16

40 59.64 ± 0.24 68.89 ± 0.26 56.39 ± 0.98

Least diverse from English 5 58.59 ± 0.17 66.04 ± 0.79 52.80 ± 0.58

10 58.53 ± 0.09 65.99 ± 0.80 52.87 ± 1.47

20 58.74 ± 0.11 67.10 ± 0.25 53.96 ± 1.34

40 58.75 ± 0.17 68.10 ± 0.36 56.21 ± 0.42

Phylogenetic Diversity

Most diverse families 5 58.81 ± 0.20 67.20 ± 0.37 51.63 ± 0.72

10 58.91 ± 0.29 67.31 ± 0.22 53.81 ± 1.04

20 59.15 ± 0.31 66.64 ± 0.10 55.53 ± 0.77

25 59.06 ± 0.12 67.87 ± 0.26 54.99 ± 0.66

Most diverse families within
Indo-European

5 58.74 ± 0.30 66.39 ± 0.94 51.90 ± 1.23

10 58.59 ± 0.24 67.14 ± 0.64 53.81 ± 2.65

20 58.92 ± 0.10 67.15 ± 0.33 52.35 ± 1.42

Script Diversity

Most diverse scripts 5 58.76 ± 0.03 67.26 ± 0.46 49.89 ± 1.18

10 58.70 ± 0.27 67.04 ± 0.73 51.40 ± 1.97

18 58.77 ± 0.20 67.04 ± 0.92 50.83 ± 1.50

Most diverse using Latin script 5 58.75 ± 0.35 67.88 ± 0.26 53.74 ± 0.80

10 59.15 ± 0.30 68.11 ± 0.15 56.27 ± 0.34

20 58.75 ± 0.23 67.75 ± 0.09 55.47 ± 1.45

41 59.88 ± 0.06 69.62 ± 0.30 56.94 ± 0.44

Least diverse using Latin script 5 58.86 ± 0.28 65.49 ± 1.16 51.00 ± 1.02

10 58.77 ± 0.22 65.82 ± 1.30 53.27 ± 1.10

20 59.75 ± 0.04 68.65 ± 0.29 56.44 ± 0.22

Random Selection

Random Seeded 5 59.49 ± 0.44 67.46 ± 1.51 54.18 ± 1.44

10 59.13 ± 0.50 67.91 ± 0.78 54.29 ± 1.59

20 59.27 ± 0.54 68.26 ± 0.46 56.66 ± 1.18

40 59.49 ± 0.20 68.69 ± 0.32 56.04 ± 0.73

Table 10: Accuracy of mBERT on NLI, PoS-Tagging, NER tasks. Results are averaged across 4 seeds along with
the standard deviation.
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Method #Languages NLI PoS-Tagging NER

Most featural diversity from English

Joshi Class = 2 10 59.49 ± 0.25 68.83 ± 0.40 52.75 ± 1.66

Joshi Class = 3 17 59.00 ± 0.21 67.46 ± 0.36 51.90 ± 2.04

Joshi Class = 3,4,5 37 58.79 ± 0.15 67.13 ± 0.12 53.95 ± 1.32

Joshi Class = 4,5 20 58.75 ± 0.24 67.27 ± 0.37 54.26 ± 1.83

Seen by mBERT 47 59.04 ± 0.38 68.04 ± 0.55 55.39 ± 0.98

Seen by XLM-R 51 59.00 ± 0.38 67.58 ± 0.54 52.55 ± 1.75

Unseen by mBERT 34 59.86 ± 0.22 68.25 ± 0.30 54.70 ± 0.57

Unseen by XLM-R 30 59.68 ± 0.44 68.62 ± 0.22 54.78 ± 1.39

Most Phylogenetic Diversity

Joshi Class = 2 10 59.01 ± 0.12 67.59 ± 0.19 53.02 ± 1.29

Joshi Class = 3 17 58.88 ± 0.21 67.62 ± 0.34 51.15 ± 0.83

Joshi Class = 3,4,5 37 58.63 ± 0.20 67.91 ± 0.43 52.44 ± 0.68

Seen by mBERT 47 58.79 ± 0.20 68.38 ± 0.25 56.23 ± 0.43

Seen by XLM-R 51 59.07 ± 0.17 67.99 ± 0.22 55.08 ± 1.52

Unseen by mBERT 34 59.77 ± 0.10 68.58 ± 0.27 54.10 ± 1.09

Unseen by XLM-R 30 59.34 ± 0.37 68.73 ± 0.13 53.34 ± 0.98

Most Script Diversity

Joshi Class = 2 10 59.11 ± 0.23 67.48 ± 0.15 54.33 ± 0.30

Joshi Class = 3 17 58.47 ± 0.21 67.48 ± 0.35 50.89 ± 1.63

Joshi Class = 3,4,5 37 58.66 ± 0.22 67.52 ± 0.28 51.64 ± 0.85

Joshi Class = 4,5 20 58.65 ± 0.16 67.07 ± 0.29 53.26 ± 0.61

Seen by mBERT 47 58.67 ± 0.20 66.91 ± 1.18 50.46 ± 0.65

Seen by XLM-R 51 58.67 ± 0.20 66.91 ± 1.18 50.46 ± 0.65

Random Seeded

Joshi Class = 2 10 59.93 ± 0.05 68.84 ± 0.68 54.54 ± 1.80

Joshi Class = 3 17 58.95 ± 0.19 67.05 ± 0.79 51.00 ± 0.98

Joshi Class = 3,4,5 37 58.80 ± 0.24 67.16 ± 0.43 53.80 ± 1.23

Joshi Class = 4,5 20 58.69 ± 0.29 67.47 ± 0.70 54.38 ± 1.82

Seen by mBERT 47 58.74 ± 0.13 67.39 ± 0.90 52.39 ± 2.13

Seen by XLM-R 51 58.88 ± 0.21 67.10 ± 0.44 53.26 ± 2.65

Unseen by mBERT 34 59.78 ± 0.38 69.01 ± 0.23 53.26 ± 1.33

Unseen by XLM-R 30 59.82 ± 0.26 69.09 ± 0.14 53.54 ± 1.42

Table 11: Ablation studies: Accuracy of XLM-R on NLI, PoS-Tagging, NER tasks. Results are averaged across 4
seeds along with the standard deviation.
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