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Abstract

Document retrieval is a critical challenge in
information retrieval systems, where the goal
is to efficiently retrieve relevant documents in
response to a given query. Dense retrieval
methods, which utilize vector embeddings to
represent semantic information, require effec-
tive indexing to ensure fast and accurate re-
trieval. Existing methods, such as MEVI, have
attempted to address this by using hierarchi-
cal K-Means for clustering, but they often face
limitations in computational efficiency and re-
trieval accuracy. In this paper, we introduce the
Hildoc Index, a novel document indexing ap-
proach that leverages the Hilbert Curve to map
document embeddings onto a one-dimensional
space. This innovative representation facilitates
efficient clustering using a 1D quantile-based
algorithm, ensuring uniform partition sizes and
preserving the inherent structure of the data. As
a result, Hildoc Index not only reduces training
complexity but also enhances retrieval accu-
racy and speed during inference. Our method
can be seamlessly integrated into both dense
retrieval systems and hybrid ensemble systems.
Through comprehensive experiments on stan-
dard benchmarks like MSMARCO Passage and
Natural Questions, we demonstrate that the
Hildoc Index significantly outperforms the cur-
rent state-of-the-art MEVTI in terms of both re-
trieval speed and recall. These results under-
score the Hildoc Index as a solution for fast and
accurate dense document retrieval.

1 Introduction

Document retrieval involves identifying relevant
documents in response to a user’s query (Li et al.,
2024a,b). This process is a critical component
of various applications, including search engines,
Al recommendation systems, question-answering
systems, and Agentic Al (Achiam et al., 2023;
EduBrain, 2024; Kenton and Toutanova, 2019;
Lewis et al., 2020).
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A prevalent approach to document retrieval to-
day is dense retrieval, which encodes documents
and queries into dense vectors to capture seman-
tic information (Zhang et al., 2021; Xiong et al.,
2020). These vectors are then used with similar-
ity metrics to rank candidate documents (Malkov
and Yashunin, 2020; Douze et al., 2024; Karpukhin
et al., 2020). However, searching through the entire
document database for each query during inference
is computationally prohibitive. This challenge has
prompted researchers to develop various document
indexing techniques to expedite the search process.

A document index partitions the document
database into subsets and constructs dense represen-
tations for these partitions. This indexing method
enhances document retrieval efficiency through a
two-step approach. Initially, the top-C' partitions
most similar to the query are retrieved as a can-
didate set. Subsequently, documents within this
candidate set are ranked based on their similarity
to the query, with the top-£ documents returned as
results. This method significantly reduces compu-
tational demands by limiting similarity evaluations
to the candidate set rather than the entire database.

The quality of the document index is pivotal to
the accuracy and efficiency of the overall dense re-
trieval system. A well-constructed document index
should meet three critical criteria. First, it must
preserve the cluster structure within the document
embeddings, ensuring that documents within the
same cluster are likely to reside in the same parti-
tion (Cluster Preservation). This criterion guaran-
tees that partitions respect the intrinsic structure of
the embeddings, increasing the likelihood that rele-
vant documents appear in the candidate set during
the initial retrieval phase. Second, the document
partitions should be of similar sizes (Uniformity).
This uniformity prevents the inflation of the can-
didate set size, which could occur if an oversized
partition is retrieved during the initial phase. Con-
sequently, the retrieval system can maintain high

1863

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 1863—-1876
December 20-24, 2025 ©2025 Association for Computational Linguistics



computational efficiency across all queries at in-
ference time. Lastly, the document index should
be constructed efficiently during the training phase,
exhibiting favorable average and worst-case time
complexity (Efficiency). This criterion ensures that
the indexing process does not become a bottleneck,
allowing for scalable and practical deployment of
the dense retrieval system.

However, it is challenging to design a retrieval
system that achieve the three criteria. Prior work
has shown a clear trade-off between cluster presen-
tation, and uniformity and efficiency. For instance,
HNSW and BATL leverage heuristic balanced tree
index or graph index to achieve high uniformity
and efficiency at the cost of cluster preservation
(Malkov and Yashunin, 2020; Li et al., 2023). On
the other hand, NCI and the state-of-the art retrieval
method, MEVI, leverage hierarchical K-Means
clustering algorithm to achieve high cluster preser-
vation (Wang et al., 2022; Zhang et al., 2024). Yet,
the K-Means algorithm often results in clusters of
varying sizes, which undermines uniformity, and
the repeated application of K-Means contributes to
high training complexity, thereby compromising
efficiency. There is yet to be a method that achieves
all three criteria at the same time.

In this work, we introduce a novel principled
document index for dense retrieval, Hildoc Index
, by leveraging the Hilbert Curve representation
of document embeddings. Our principal insight is
that the Hilbert Curve’s space-filling and measure-
preserving properties enable a reduction in embed-
ding dimensionality to 1D while preserving the
inherent cluster structure of the data. Addition-
ally, we employ a novel 1D quantile-based clus-
tering algorithm that ensures high uniformity and
enhances training efficiency. Collectively, these in-
novations allow the Hildoc index to facilitate more
accurate and efficient document retrieval. More-
over, Hildoc can be integrated with other docu-
ment retrieval methods in an ensemble configu-
ration to further augment retrieval accuracy. We
conduct comprehensive evaluations on two lead-
ing benchmarks, MSMARCO Passage and Natural
Questions, demonstrating that Hildoc surpasses the
state-of-the-art MEVI method in terms of both re-
trieval efficiency and accuracy.

Our contributions are summarized as follows:

1. We introduce the Hildoc Index (Hilbert
Document Index), a novel document index
for dense retrieval that utilizes Hilbert curve

distances to facilitate cluster preservation,
achieve high uniformity, and ensure efficient
training.

2. Using Hildoc Index, we propose a dense re-
trieval system (Hildoc) and a hybrid retrieval
system (Hildoc Ensemble).

3. Through extensive experimentation, we show
that both Hildoc and Hildoc Ensemble achieve
state-of-the-art (SOTA) performance in docu-
ment retrieval efficiency and accuracy.

2 Dense retrieval and document index

2.1 A formal description of dense retrieval
with document index

Let D be a collection of N documents, represented
as D = {z;}Y,. Given a query y, the objective is
to identify the top-k related documents within D.
We operate in a dense retrieval setting, where both
the documents in D and the query y are encoded
into vector representations. Denote the document
vector as d; = f(x;) € R/ foralli < N, where f
is the encoding function (e.g., a twin-tower repre-
sentation model), and J € N* is the dimensionality
of the vector space. Similarly, denote the query
vectoras q = f(y) € R7.

In principle, one can compute the similarity
score between the query and each document, de-
noted as s; = ¢(q,d;), where g is the similarity
function. A common choice for g is the inner prod-
uct, q - d;, assuming the vectors are appropriately
scaled. The documents with the top-k similarity
scores are then returned. A major limitation of this
approach is its computational cost, which becomes
significant when /V is large. A common solution is
to employ a document index, as discussed below.

A document index partitions D into M € N*
subsets, denoted as D,,, for m € [M]. Furthermore,
let r,,, € R” represent the vector representation of
the entire partition D,,,. The similarity between a
partition and a query can be measured as v, =
9(d, ).

With a document index, dense retrieval can be
performed efficiently in a two-step process. First,
the top-C partitions are retrieved based on the
partition-query similarity scores v,,. Subsequently,
the top-k documents are retrieved within the se-
lected partitions D,,, based on the document-query
similarity scores s;. This approach avoids the need
to compute s; for all documents in D.
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Figure 1: [llustration of training and inference with Hildoc Index. For illustrative purposes, we use two-dimensional
embeddings (J = 2) of N = 10 documents to build Hildoc with M = 3 partitions. During inference, we retrieve

top C' = 2 partitions and k£ = 3 documents.

2.2 Criteria for an effective document index

As the document index plays a crucial role in dense
retrieval, we consider the following key criteria
when developing document indices to ensure accu-
rate and efficient retrieval.

Cluster Preservation. Document vectors often
exhibit a clustering structure characterized by two
properties: Homogeneity and Separation. Assume
there exist K clusters Cy, ..., Cx with respective
centroids ey, ..., ex. Homogeneity implies that
documents within a cluster are close to its centroid:

Homogeneity: ||d;—ex|| < dp, VE € [K], i € Ck,
(D
for a constant d;,. A small §j (indicating high ho-
mogeneity) suggests that the cluster centroid ey
accurately represents all documents within the clus-
ter. The second property, Separation, indicates
that clusters are separated by at least a constant §
(larger d, indicates better-separated clusters):

Separation: ||d; — d;|| > ds,

forall ¢ € Ck17 je C]Q, k1 # ka.

It is desirable for the document index to pre-
serve this clustering structure by setting the parti-
tion representation as cluster centroids r,,, = e
and assigning documents according to the clusters
D,,, = Cj. During the initial retrieval phase, Homo-
geneity and Separation ensure that only documents
highly similar to r,,, are retrieved, thereby enhanc-
ing accuracy.

However, directly clustering document vectors
d;, i € [N], is computationally expensive, particu-
larly when N is large, thus violating the Efficiency

2

criterion discussed below. The Hildoc Index is
designed to preserve clustering structure while re-
maining computationally efficient.

Uniformity. Uniformity ensures that partitions
do not become overly large, which would make the
index less efficient. It is defined by bounding the
maximum partition size by a constant d,,:

max | Dy, | < dy. 3)

This property is critical for inference time effi-
ciency, as it prevents the retrieval of disproportion-
ately large partitions, which would take a long time
to process.

Efficiency. Efficiency pertains to the computa-
tional demands during the training phase (when
the index is constructed). Given the large size of
the document database D, it is essential to employ
algorithms that scale well with respect to V.

3 Hildoc Index

The Hildoc Index offers a novel and principled
approach to constructing a document index that
meets the aforementioned criteria, thereby facilitat-
ing accurate and efficient retrieval. To construct the
Hildoc Index, we map the vector representations d
into a one-dimensional representation d using the
Hilbert Curve. Subsequently, we apply quantile-
based clustering to these representations to derive
the document index. The pseudo-code of Hildoc
Index is shown in Appendix C.
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3.1 Computing the Hilbert Curve
representation of vectors

The Hilbert Curve is a continuous mapping from
a J-dimensional hypercube to a one-dimensional
interval, expressed as h : [0,1]7 — [0, 1]. To con-
struct the Hildoc Index, we compute the Hilbert
Curve representation of a document vector as
d; = h(d;). It is crucial to note that the one-
dimensional representation d; preserves the cluster
structure inherent in the original vector d; (Moon
et al., 2001). Consequently, clustering can be per-
formed on d; € [0, 1] instead of d; € R”, as we
show below.

Proposition 1. If the document vectors d; exhibit
Homogeneity and Separation with constants dp, and
ds, respectively, as defined in Equations 1 and 2,
then their Hilbert Curve representations d; also
exhibit Homogeneity and Separation, characterized
by the following constants:

Homogeneity: ]af, — ek <ws - 5}1L/J,
VEk € [K], i € Cy,
Separation: |d; — dj| > wa - 67,Vi € Cy,,
J € Cpy, k1,ko € [K], k1 # ko

where wi,wy € R are positive constants and
ék = h(ek)

Proposition 1 is derived from the bi-Lipschitz
properties and Holder continuity of Hilbert Curves.
The proof is provided in Appendix B.

In practice, Hilbert Curves are computed itera-
tively (Appendix E). We denote the Hilbert Curve
at iteration t as h', where t < T, the maximum
number of iterations. A well-known property is
that the length of the Hilbert Curve is 2/ — 27,
which increases exponentially with iteration ¢. This
implies that the Hilbert Curve can achieve high nu-
merical precision after only a few iterations (Fisher,
1986).

3.2 Building Hildoc Index via quantile-based
one-dimensional clustering

Having represented documents along the Hilbert
Curve, the next step is to cluster these documents
to form the Hildoc Index. We employ a cluster-
ing method based on quantiles, which are well-
defined and straightforward to compute for one-
dimensional data. The interval [0, 1], which con-
tains the Hilbert Curve representations {d;}~ ,,
is divided into segments by the cutoff points
[q1, - -, qnr]. These cutoff points, gy, are selected

such that there are exactly N/M representations d;
within each segment [gy,, ¢m+1). In practice, the
¢m values are derived from the empirical quantiles
of czi, ensuring that each g,,, corresponds to a docu-
ment in the corpus, i.e., foreachm € {1,..., M},
there exists an ¢ € {1,..., N} such that di = qm.

The documents located at these cutoff points
serve as the cluster centroids. It is important to note
that for any given m, there are N/M documents in
both the left segment [¢;,—1, ¢ ) and the right seg-
ment [¢y,, Gm+1)- Thus, ¢, effectively acts as the
“center” of the combined segment [¢y,—1, Gm+1)-
The document vector at the cutoff point is used as
the representation for the partition, i.e., for each
m € {1l,...,M}, r,, = d; for the document i
such that Ji = Qm.

To complete the construction of the Hildoc Index,
documents must be assigned to partitions. For each
document ¢, we identify the segment it belongs to,
specifically finding m such that d; € [Gms Gm+1)-
We consider partitions m and m + 1 as potential
assignments. The similarity between the document
and the two partitions is compared using a sim-
ilarity function g(d;,r,,) and g(d;,r;,+1). The
document is then assigned to the partition with the
greater similarity.

The quantile-based 1D clustering approach facil-
itates Uniformity, as detailed in Proposition 2.

Proposition 2. The Hildoc Index achieves worst-
case uniformity as follows:

2N
Uniformity of Hildoc Index: max |D,,| < A

Proposition 2 is derived from the fact that par-
tition m may only contain documents from the
segment [Gy,—1, ¢m+1), which encompasses a total
of 2N /M documents. It is noteworthy that if docu-
ments are partitioned evenly, we have max | D,,,| =
N/M, which represents optimal uniformity. In
comparison, the worst-case partition size for the
Hildoc Index is only twice as large as the optimal
scenario. Many clustering algorithms, such as K-
Means and Hierarchical Clustering, exhibit worst-
case uniformity of max |D,,| < N — M +1, result-
ing in one large cluster and M — 1 clusters contain-
ing a single element each. By employing quantile-
based one-dimensional clustering, the Hildoc Index
avoids these adverse scenarios that could degrade
retrieval speed.
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Cluster Preservation

Method Reference Homogenity  Separation = Uniformity Efficiency
HNSW  (Malkov and Yashunin, 2020) X X v’ v’
BATL (Li et al., 2023) v’ X v’ X
NCI (Wang et al., 2022) v’ v’ X X
MEVI  (Zhang et al., 2024) v’ v’ X X
Hildoc  This work v’ v’ v’ v’

Table 1: Comparison with prior document retrieval methods. Hildoc is the first approach that simultaneously
achieves cluster preservation, uniformity, and efficiency.

3.3 Efficiency of the Hildoc Index

The most computationally expensive step in con-
structing the Hildoc Index is determining the clus-
ter centroids. One potential approach is to sort
the values d; and select the cutoff points directly
from the sorted sequence. With an appropriate al-
gorithm, sorting can be achieved in O(N log V)
time complexity for both average and worst-case
scenarios (Appendix D). In contrast, MEVI pro-
posed by (Zhang et al., 2024) employs hierarchical
K-Means, which incurs an average-case complex-
ity of O(NMJLH), where L is the number of
iterations required for K-Means convergence, and
H represents the number of hierarchy levels. This
complexity becomes significant in practice when
M is approximately one million and L typically
reaches a few thousand iterations (Zhang et al.,
2024). Moreover, K-Means exhibits a substantially
higher worst-case complexity of O(NM+2/7),

3.4 Applying Hildoc Index in dense retrieval

The Hildoc Index can serve as a modular compo-
nent in a two-phase dense retrieval system, as de-
tailed in Section 2.1. We refer to the resulting sys-
tem as the Hildoc. Additionally, the Hildoc Index
can be integrated with another document retrieval
method to form an ensemble (Zhang et al., 2024).
Specifically, the other method is required to return
it’s own candidate documents and their relevance
rankings. A common ensemble strategy involves
combining the documents retrieved by both meth-
ods into a unified candidate set, which is re-ranked
based on weighted similarity:

1
where s; denotes the similarity score produced
by Hildoc, r; represents the document ranking as-
signed by the other method, and o, 3 € R™ are
hyperparameters. The documents with the top-k
similarity scores S; in this combined candidate set
are returned as the final result.

“)

S; =8 +a-

4 Related Work

Document retrieval is a critical task that involves
identifying relevant documents in response to a
user’s query (Li et al., 2024a,b). [Existing ap-
proaches are categorized into three main types:
sparse retrieval (Bevilacqua et al., 2022; Dai and
Callan, 2019), dense retrieval (Karpukhin et al.,
2020; Xiong et al., 2020), and generative retrieval
(Metzler et al., 2021; Tay et al., 2022).

Traditional sparse retrieval methods, such as TF-
IDF, rely on partial string matching and accelerate
search processes using inverted indices like BM25
(Robertson and Zaragoza, 2009), SPLADE (Formal
et al., 2021), and UniCOIL (Lin and Ma, 2021).
While these methods are efficient, they often fall
short in capturing semantic nuances, leading to
incorrect responses when synonymous terms are
used.

Dense retrieval methods address this limitation
by encoding documents and queries into dense vec-
tors that encapsulate semantic information, using
similarity metrics to rank candidate documents.
The primary challenge in document retrieval lies
in constructing a document index that ensures
rapid query responses while maintaining high ac-
curacy. Table 1 illustrate the features of prior
works through the lens of the three desiderata.
Prior works have explored various indexing struc-
tures, including balanced tree indices such as BATL
(Li et al., 2023), neighbor graph indices such as
HNSW (Malkov and Yashunin, 2020), and hybrid
approaches (Chen et al., 2021). However, these ap-
proaches do not explicitly preserve the clustering
structure, which could lead to lower retrieval re-
call. Recently, (Zhang et al., 2024) introduced the
MEVI method, which innovatively employs resid-
ual quantization (RQ) codebooks to facilitate hi-
erarchical K-Means clustering. However, MEVT’s
cluster preservation comes at a cost for Efficiency
and Uniformity as shown in Table 1.

Unlike dense retrieval, generation-based re-
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Figure 2: Average inference time on Natural Questions with varying retrieved partitions C.

Method Natural Questions MSMARCO

MRR@10 MRR@50 R@l1 R@50 | MRR@I0 MRR@50 R@1 R@50
MEVI (C-10) 51.48 51.79 4540 69.64 33.66 34.19 2293  63.79
MEVI (C-100) 60.45 60.75 53.41  80.03 38.11 38.96 25.02  8l1.15
MEVI (C-1000) 64.53 64.85 56.79  85.68 39.26 40.20 2577 85.52
MEVI Ens (C-10) 63.55 63.87 5579  85.18 37.00 37.97 24.19  82.53
MEVI Ens (C-100) 63.42 63.75 55.49  86.40 38.39 39.34 25.08 84.52
MEVI Ens (C-1000) 64.64 64.97 56.62  87.09 39.00 39.94 2534 85.76
Hildoc (C-10) 60.19 60.51 52.19  81.55 33.97 34.75 2220 7244
Hildoc (C-100) 64.05 64.37 56.23 85.73 37.49 38.40 24.57  81.76
Hildoc (C-1000) 65.40 65.72 57.31  87.20 38.87 39.81 2545 85.05
Hildoc Ens (C-10) 63.81 64.09 56.23  84.40 37.80 38.69 2496 81.06
Hildoc Ens (C-100) 65.68 65.99 5795 87.34 39.30 40.26 2590 86.15
Hildoc Ens (C-1000) 66.32 66.61 58.34 88.14 39.62 40.60 26.00 87.01

Table 2: Retrieval accuracy of different methods on Natural Questions and MSMARCO. The C value denotes the

number of retrieved partitions.

trieval methods employ deep auto-regressive mod-
els to directly generate document identifiers from
query inputs(Bevilacqua et al., 2022; Tay et al.,
2022; Zhang et al., 2024; Wang et al., 2022; Zhou
et al., 2023). However, these methods often require
auxiliary processes, such as clustering or indexing,
to create training datasets for the auto-regressive
models. For instance, NCI (Wang et al., 2022) uti-
lizes hierarchical K-means clustering, while SEAL
(Bevilacqua et al., 2022) employs the FM-Index on
document n-grams (Ferragina and Manzini, 2000).
Consequently, advancements in document indexing
remain a crucial, complementary effort that can sig-
nificantly enhance the training phase of generation-
based retrieval methods.

5 Experiments

5.1 Experimental Settings

To maintain consistency and facilitate comparison
with related studies, we employ the standard bench-
mark settings commonly used in document retrieval
(Zhang et al., 2024).

Benchmark Datasets. To evaluate the efficiency

and accuracy of the proposed method, we bench-
marked Hildoc on two large-scale passage retrieval
datasets: Natural Questions (NQ) (Kwiatkowski
et al., 2019) and MSMARCO Passage (Nguyen,
2016). The NQ dataset is an open-domain ques-
tion answering dataset containing 21,015,324 pas-
sages and 3,610 test queries, collected from Google
search logs. The MSMARCO dataset is a smaller
dataset containing 8,841,823 passages and 6,980
queries, developed by Microsoft.

Evaluation Metrics. We utilized two widely
recognized metrics, R@K and MRR @K, to assess
the relevance of retrieved documents to the input
queries. R@K (Recall at K) represents the pro-
portion of relevant documents among the top-K
retrieved documents. MRR @K (Mean Reciprocal
Rank at K) evaluates the method’s ability in retriev-
ing relevant documents with higher ranks (Zhang
et al., 2024).

Baselines. We compare Hildoc with the state-of-
the-art (SOTA) baseline MEVI (Zhang et al., 2024).
Our focus is on top-performing models, as weaker
baselines such as BM25, SPLADE, HNSW, and
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Trade-off between Accuracy and Efficiency

Figure 3: Trade-off between accuracy (MRR @20) and
efficiency (inference time) on Natural Questions by se-
lecting different number of retrieved partitions C'.

NCI have been shown to underperform MEVI in
the standard benchmark setting we have adopted
(Zhang et al., 2024). For ensemble methods, we
consider the ensemble of MEVI and HNSW as
a baseline, originally proposed and validated in
(Zhang et al., 2024).

Embedding Models. We employed two dis-
tinct embedding methods, TS-ANCE (OpenMatch,
2022) and AR2 (Zhang et al., 2021), to generate em-
bedding vectors. Both methods have demonstrated
effectiveness in prior studies. These methods uti-
lize different backbone models, providing a means
to test the applicability of our method to various
twin-tower representation models.

Computational resources. The experiments
were conducted on a single A6000 GPU.

5.2 Results on retrieval efficiency

Computational efficiency during inference time is a
crucial aspect in practical document retrieval appli-
cations. Since both MEVI and Hildoc partitions the
documents by clustering, we can perform an apple-
to-apple comparison of their retrieval efficiency by
varying the number of partitions retrieved, C'. Fig-
ure 2 shows the speed of retrieval on Natural Ques-
tions dataset in millisecond for C' = 10, 100, 1000.
Empirically the inference time of MEVI increased
dramatically with the increase in the number of
retrieved clusters, reaching an unpractical 4000 ms
when C' = 1000. In contrast, Hildoc’s efficiency
is consistently high across various C' values, and
always less then 200 ms.

The results above suggest that Hildoc employs
a better clustering technique to ensure high Uni-
formity (Proposition 2). In contrast, MEVI’s hi-
erarchical K-Means clustering appears to less uni-
form - and when a larger number of partitions are
retrieved, it is more likely to hit a very large par-
tition, thereby incurring high computational cost.
The MEVI and Hildoc ensembles have similar in-

MRR 09 Recall —

Figure 4: Performance curve for MRR and Recall across
different k values on the Natural Questions.

ference time since the time is determined by the
slowest method in an ensemble.

5.3 Results on retrieval accuracy

Table 2 presents the retrieval accuracy, evaluated
using the Mean Reciprocal Rank (MRR) and Recall
metrics (More experimental results are presented
in Appendix F). Recall from the previous section
that the standalone Hildoc with 1000 partitions is
even faster than MEVI with 100 partitions. Hence
a fair and practically relevant comparison should
compare Hildoc C-1000 with MEVI C-100, and
not with MEVI C-1000. Indeed, the standalone
Hildoc C-100 outperforms both the MEVI and
MEVI Ensemble models across all C' levels on
the Natural Questions dataset. Its performance fur-
ther improves when retrieving 1000 partitions. On
the MSMARCO Passage dataset, Hildoc exceeds
the MEVI Ensemble’s performance when C=1000,
and it demonstrates performance comparable to the
MEVI Ensemble when retrieving only 100 parti-
tions.

Turning to the Hildoc Ensemble, it achieves the
highest overall performance among all methods
compared when retrieving 1000 partitions. No-
tably, the Hildoc Ensemble matches or surpasses
the performance of the MEVI Ensemble with the
same C' value. Additionally, the Hildoc Ensemble
with C=100 achieves performance roughly equiv-
alent to that of the standalone Hildoc retrieving
1000 partitions. These results indicate that both
Hildoc and Hildoc Ensemble can accurately iden-
tify relevant documents while retrieving a modest
number of partitions, compared to state-of-the-art
baselines.

Consistent performance improvement across
various k values. Table 2 demonstrates Hildoc’s
consistent performance pattern for MRR and Re-
call at different k£ values, representing the number
of top-k retrieved documents. We present results
for a broad range of & values (from 1 to 1000) to
confirm the consistency of Hildoc’s advantage. Fig-
ure 4 illustrates the performance curve for MRR
and Recall across different k£ values on the Natural
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Hilbert curve order MRR@10 MRR@20 R@50 R@I100 R@1000
T=4 35.24 3591 81.24 86.50 94.25
T="17 35.16 35.82 81.20 86.38 94.15
T=15 35.36 36.03 81.64 86.76 94.73
Largest Gap (%) 0.57% 0.57% 0.54%  0.43% 0.62%

Table 3: Impact of Hilbert Curve order T on Hildoc’s performance on MSMARCO

Embedding Model MRR@10 MRR@20 R@50 R@100 R@1000
T5-ANCE 35.36 36.03 81.64 86.76 94.73
AR2 38.78 39.43 84.93 89.63 95.54

Table 4: Impact of Embedding model (T5-ANCE and AR2) on Hildoc’s performance on MSMARCO

MRR
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Figure 5: Impact of Hyperparameters «, 8 on Hildoc Ensemble’s performance on MSMARCO.

Questions dataset. As depicted in the figure, the
Hildoc Ensemble consistently outperforms other
methods, followed by standalone Hildoc.

5.4 Trade-off between accuracy and efficiency

Figure 3 depicts the trade-off between accuracy
(MRR @20) and efficiency (inference time) for var-
ious methods. We computed results for Hildoc,
MEVI, and their ensembles by varying the number
of retrieved partitions C'. The Pareto front of ac-
curacy and efficiency is highlighted with a black
line. Methods on the Pareto front are considered
"optimal" since no other method simultaneously
surpasses them in both accuracy and efficiency
(Sawaragi et al., 1985). Notably, the Pareto front is
formed by Hildoc or Hildoc Ensemble, with stan-
dalone Hildoc excelling in the low inference time
regime and Hildoc Ensemble in the high inference
time regime. MEVI and its ensemble do not lie on
the Pareto front, indicating that Hildoc can outper-
form them in both dimensions.

5.5 Hyperparameters and sensitivity

Impact of Hilbert Curve order 7'. To assess the
effect of the Hilbert curve order T° on model perfor-
mance, we evaluated the Hildoc algorithm with
T = 4,7, and 15 on the MSMARCO passage
dataset. Table 3 shows that the highest perfor-
mance is achieved with 7" = 15. However, the

performance variability is minimal (the percentage
difference between the best and worst performance
is within 0.62%). It is important to note that the
Hilbert curve iteration 7" only affects training speed.
Therefore, we recommend using a larger I" during
training when feasible.

Impact of Embedding Model. Table 4 presents
the performance of Hildoc using two different em-
bedding models, T5-ANCE and AR2. We observe
that Hildoc with AR2 consistently outperforms the
version with T5-ANCE, highlighting the critical
role of the embedding model in dense retrieval.
This pattern is also observed in MEVI and its en-
sembles, suggesting that AR?2 is generally a supe-
rior embedding model compared to TS-ANCE and
should be preferred in practical applications.

The Ensemble Hyperparameters o, 3. We
evaluated the hyperparameters on a grid with o €
[0.1,1] and 8 € [0.01, 0.1] to assess model perfor-
mance on MSMARCO. We found that o« = 0.3
and 8 = 0.03 achieved the best performance. Fig-
ure 5 displays the MRR@10 score when varying
« and § while holding the other constant. Addi-
tionally, the best-performing hyperparameters are
approximately 2% better than the worst-performing
ones, suggesting that tuning ensemble hyperparam-
eters may unlock some performance improvement,
though not substantial.
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6 Limitations

In this study, we propose Hildoc, a novel dense
embedding retrieval method that improves over ex-
isting methods on retrieval accuracy and efficiency.
One limitation of our theoretical analysis (Proposi-
tion 1) is that the bounds may become loose when
the embedding dimensionality J is large, which
represents the “curse of dimensionality”. However,
our experiments confirms Hildoc’s practical perfor-
mance improvement with embeddings generated
by two widely used embedding models (T5-ANCE
and AR2).
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A Notations
Table 5.

B Proofs

Proposition 1. If the document vectors d; exhibit
Homogeneity and Separation with constants &y, and
ds, respectively, as defined in Equations 1 and 2,
then their Hilbert Curve representations d; also
exhibit Homogeneity and Separation, characterized
by the following constants:
Homogeneity: |Jl — ekl <ws - 5}11/‘],
Vk € [K], i € Cy,

Separation: |d; — dj| > wy - 67, Vi € Cy,,

j e CkQ, ki,ko € [K], k1 7é ko

where wi,ws € RT are positive constants and
ék = h(ek)

Proof of Homogeneity. Recall that the defi-
nition of Homogenetiy ensures that (Equation 1
reproduced below)

Hdi_eng(sh; Vk € [K], 1 € Cp. (B.1)
To show Homogeneity on Hilbert Curve, we need
to find an upper bound of |d; — é|. We take ad-
vantage of Hilbert Curves’ Holder continuity prop-
erty (Jagadish, 1990), given that cZZ and ¢;, are the
Hilbert Curve representations of d; and e, respec-
tively. For all k& € [K], ¢ € Cy, the following
equation holds:

~ 11:
Holder continuity: 3wy > 0, s.t. |d;—éx| < wl-Hdi—e@]l/‘Iend if

(B.2)
Combining Equation B.1 and B.2, we obtain the
Homogeneity on Hilbert Curve.
Proof of Separation. Recall that the definition
of Separation ensures that (Equation 2 reproduced
below)

Hdz - d]H > s, Vi € Ckl, j e C]Q, k1 75 ko,

(B.3)
To show Separation on Hilbert Curve, we need to
find an lower bound of |d; —d|. We take advantage
of Hilbert Curves’ Forward locality property (Ja-
gadish, 1990), given that d; and Jj are the Hilbert
Curve representations of d; and d; respectively.
Foralli € Ci,, j € Ck,, k1 # k2, the following
equation holds:

3C > 0s.t.]|d; — di|| < C-|d; — dj|"// (B.4)

Re-arranging the terms and raising both sides to
the power of J, we get

=l > o -l B5)
Combining Equation B.5 and B.3 we obtain the
Separation property on Hilbert Curve, where the
constant w = %

We refer the readers to Jagadish (1990) for a
more in-depth discussion about the cluster preser-

vation properties of Hilbert Curve representations.

C Pseudo-code of Hildoc Index

Algorithm 1 Training Hildoc Index
Input: document database D, number of parti-
tions M.
Output: partitions D; ... Dy and partition vec-
torsry...rys
1: fori=1to N do
2: ql — f(.l’z)
3. d; + h'(d;) {Compute Hilbert Curve Rep-
resentations for each document}
4: end for
s {Li}N, < argsort({d;}Y)
6: m=1
7
8
9

: for: =1to N do
ifz':’%vthen

¢m < dj where j = [; {The quantiles of
{di}ile)

10 r,, < d; where j = [; {Compute the
cluster centroids}
m+<m+1

13: end for

14: for i = 1to N do

15:  d < d;; {Retrieve the embedding of the i-
th smallest document on the Hilbert Curve}

16:  c1 + floor(4h), co « ceil(AL)

17: ey 1., €3 < r¢, {Obtain the two candi-
date cluster centroids}

18: U] g(d,el), Vo g(d,eg)

19: if v1 < vy then

20: D¢, < D¢, U{zy,}
21:  else

22: D¢, < D, U{zy,}
23:  end if

24: end for

25: Return D ... Dysandry...ryy
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Notation | Value Range | Explanation
T; Document | Individual document in the collection
D {mi}ij\il Collection of N documents
Y Query The query for which related documents are sought
d; R Vector representation of document z;
d; [0, 1] Hilbert Curve representation of document z;
q R’ Vector representation of the query y
f Function Encoding function for documents and queries
J N* Dimensionality of the document vector
g Function Similarity function (e.g., inner product)
S; R Similarity score between query and document x;
M N* Number of partitions in the document index
D, Subset of D | Partition m of the document collection
m R’ Vector representation of partition D,,,
U, R Similarity score between query and partition D,,

Table 5: Notation definitions and explanations

Algorithm 2 Inference with Hildoc
Input: query y, number of partitions to retrieve
C', number of documents to retrieve k.

Output: top-k docu-
ments
1 q < f(y)
2: form =1to M do
33 vy g(a,rm)
4: end for
5:01...lc + top_ind({vm }M_,,C) {Obtain

the top-C partitions }

S+ o

7: fori =1to C do
S < S U Dy, {Combine all the documents
in the top-C partitions }

9: end for

10: for i =1to |S| do

11:  Retrieve the i-th document x; inside S

12:  Obtain the pre-computed document embed-
ding d; = f (i)

13: s« g(q,d;)

14: end for

15: j1...ji < top_ind({s;}}°| k) {Obtain the

top-k documents based on similarity }
16: Return zj, ...x; from S

a

D Computational Complexity

From Algorithm 1, we can see that the “argsort”
step on line 5 requires sorting the Hilbert Curve
Representations of N documents. This is the most
computationally expensive step in the whole train-

ing process, which can take O(N log(XN)) in both
space and time complexity. However, many effi-
cient sorting algorithms are available, especially
the ones that leverages parallel computing, which
can robustly sort 10'? items or more (O’malley,
2008). In addition, Algorithm 1 only requires three
iterations over the documents (line 1, 7, and 14),
which takes O(N) time complexity.

In terms of inference, the algorithm needs to it-
erate through the M partitions and the documents
inside the top-C partitions. Due to Hildoc’s high
Uniformity (Proposition 2), each partition contains
maximum % documents. Hence, the retrieved
top-C partitions contains % documents at max.
Hence, the overall time complexity for inference
is O(M + 28C), where M and C' are configurable
during training and inference to manage the trade-
off between speed and accuracy.

E Calculation of Hilbert Curve

Efforts to calculate the Hilbert Curve in a compu-
tationally efficient and numerically stable manner
have been numerous (Skilling, 2004). Typically,
Hilbert Curves are computed recursively until a pre-
specified order, 7', is reached. Additionally, there
are several practical implementations available, in-
cluding the hilbertcurve and numpy-hilbert-curve
libraries in Python.

F Additional Experiment Results

The experimental results on MSMARCO passage
dataset which encoded using T5-ANCE embedding
model are listed in Table 6. As shown from the
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Method MRR@10 MRR@50 MRR@100 R@1 R@20 R@50
MEVI (C-10) 32.037 32.607 32.637 21.317 58.841 63.232
MEVI (C-100) 35.160 36.070 36.128 22.536 70.558 79.106
MEVI (C-1000) 35.748 36.743 36.815 22.822 72.611 82.427
MEVI Ens (C-10) 35.373 36.357 36.432 22.611 71.660 81.320
MEVI Ens (C-100) 35.620 36.614 36.689 22730 72.641 82.458
MEVI Ens (C-1000)  35.739 36.725 36.803 227766 72.882 82.747
Hildoc (C-10) 31.451 32.270 32.313 20475 62.043 69.548
Hildoc (C-100) 34.421 35.356 35.420 22.170  69.280 78.479
Hildoc (C-1000) 35.362 36.353 36.425 22.622 71.763 81.636
Hildoc Ens (C-10) 34.692 35.604 35.664 22.384 69.253 T77.777
Hildoc Ens (C-100)  35.584 36.573 36.642 227704 72.519 82.258
Hildoc Ens (C-1000) 35.875 36.881 36.957 22.962 73.007 82919

Table 6: Experimental results on MSMARCO Passage with embedding model T5-ANCE.

table, the performance results show that Hildoc
Ens (C-1000) achieved the best performance. Note
that, C-1000 denotes that the number of retrieved
partitions.

Table 7 lists the performance results of different
methods on encoded MSMARCO dataset using
AR2 model. As shown in Table 7, Hildoc im-
proved the performance results when combined
with MEVI. On MRR metric, Hildoc Ens (C-1000)
achieved an improvement of 0.629 to 0.654 over
MEVI Ens (C-1000). Likewise, the improvement
on Recall was 0.661 to 1.249.

Table 8 shows the performance of the models
on natural questions dataset. As listed in the ta-
ble, Hildoc Ens (C-1000) surpasses all methods on
MRR and recall metrics with an improvement of
1.636 to 1.674 and 1.053 to 1.717, respectively.

Table 9 shows the trade-off between the mean
inference time and the performance of different
methods on the NQ dataset. The ratio between the
inference time and the MRR @ 10 measures the suit-
ability of the method to be utilized in online real
applications. Hildoc (C-10) method has the lowest
ratio 5.24, achieved performance of 60.193% on
MRR @10 with inference time of 315.21 Millisec-
onds. MEVI (C-10) scored 5.33, the second place,
achieving performance of 51.483% on MRR@ 10
metric in 274.27 Milliseconds. As listed in Ta-
ble 9, Hildoc (C-1000) achieved performance of
65.404% in 448.85 milliseconds while MEVI(C-
1000) achieved higher MRR@10, 64.534%, in
higher time, 8429.81 milliseconds. Therefore,
Hildoc is more flexible than MEVI in trading-off

between efficiency and performance by increasing
the number of retrieved clusters which makes it
more suitable for online applications.
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Method MRR@10 MRR@50 MRR@100 R@1 R@20 R@50

MEVI (C-10) 33.659 34.190 34.214 22931 59.873 63.787
MEVI (C-100) 38.114 38.960 39.008 25.016 73.056 81.146
MEVI (C-1000) 39.268 40.201 40.266 25.768 76.334 85.521
MEVI Ens (C-10) 36.996 37.972 38.045 24.194 73.128 82.531
MEVI Ens (C-100) 38.391 39.339 39.402 25.080 74.925 84.522
MEVI Ens (C-1000)  38.995 39.942 40.008 25.335 76.334 85.762
Hildoc (C-10) 33.967 34.747 34.779 22202 65.384 72.440
Hildoc (C-100) 37.489 38.399 38.457 24.574 72952 81.761
Hildoc (C-1000) 38.868 39.805 39.871 25.448 75904 85.050
Hildoc Ens (C-10) 37.802 38.689 38.737 24962 727723 81.058
Hildoc Ens (C-100)  39.303 40.261 40.321 25.897 76.814 86.151
Hildoc Ens (C-1000) 39.624 40.595 40.662 25997 77.487 87.011

Table 7: Experimental results on MSMARCO Passage (Dev) with embedding model AR2.

Method MRR@10 MRR@50 MRR@100 R@1 R@20 R@50
MEVI (C-10) 51.483 51.789 51.816 45.402 66.399 69.640
MEVI (C-100) 60.449 60.748 60.775 53.407 77.285 80.028
MEVI (C-1000) 64.534 64.850 64.872 56.787 82.881 85.679
MEVI Ens (C-10) 63.551 63.870 63.895 55.789 82.548 85.180
MEVI Ens (C-100)  63.424 63.750 63.772 55.485 82.992 86.399
MEVI Ens (C-1000) 64.641 64.972 64.999 56.620 84.266 87.091
Hildoc (C-10) 60.193 60.505 60.524 52.188 79.141 81.551
Hildoc (C-100) 64.046 64.366 64.389 56.233 82.770 85.734
Hildoc (C-1000) 65.404 65.724 65.748 57.313 84.626 87.202
Hildoc Ens (C-10) 63.806 64.090 64.108 56.233 81.994 84.404
Hildoc Ens (C-100)  65.677 65.986 66.010 57950 84.681 87.341
Hildoc Ens (C-1000) 66.315 66.612 66.635 58.338 85.679 88.144

Table 8: Experimental results on Natural Questions.

Method MRR@10 Inference time Inference time/MRR
MEVI (C-10) 51.483 274.27 5.33
MEVI (C-100) 60.449 1057.00 17.49
MEVI (C-1000) 64.534 8429.81 130.63
MEVI Ens (C-10) 63.551 2819.61 44.37
MEVI Ens (C-100) 63.424 3602.34 56.80
MEVI Ens (C-1000) 64.641 10975.15 169.79
Hildoc (C-10) 60.193 315.21 5.24
Hildoc (C-100) 64.046 356.50 5.57
Hildoc (C-1000) 65.404 448.85 6.86
Hildoc Ens (C-10) 63.806 588.93 9.23
Hildoc Ens (C-100) 65.677 1413.49 21.52
Hildoc Ens (C-1000) 66.315 8878.66 133.89

Table 9: Trade-off between query mean inference time (in milliseconds) and model performance on NQ dataset.
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