GQSA: Group Quantization and Sparsity for Accelerating Large Language
Model Inference

Chao Zeng", Songwei Liu* ¥, Shu Yang, Fangmin Chen, Xing Mei ¥, Lean Fu
ByteDance Inc,
{zengchaocs, cfangmin}@gmail.com, {liusongwei.zju, xing.mei}@bytedance.com

Abstract

Model compression has emerged as a main-
stream solution to reduce memory usage and
computational overhead. This paper proposes
GQSA, a novel model compression frame-
work specifically designed for LLMs. Tradi-
tional methods typically focus exclusively on
either quantization or sparsification, but rely-
ing on a single strategy often results in sig-
nificant performance loss at high compression
rates. In contrast, GQSA integrates quanti-
zation and sparsification in a tightly coupled
manner, leveraging GPU-friendly structured
group sparsity and quantization for efficient
acceleration. Building upon system-algorithm
co-design principles, we propose a two-stage
sparse optimization strategy that ensures the
performance superiority of the compressed
model. On the engine side, we introduce a
"task-centric" parallel strategy, which, to the
best of our knowledge, is the first application in
the domain of sparse computing. Compared to
the traditional 2:4 sparse method, the GQSA of-
fers a more flexible and adjustable sparsity rate,
as well as a higher weight compression rate,
and is efficiently compatible with weight-only
quantization methods. Experimental results
demonstrate that, under the GQSA W4S50%
compression setting, the model’s accuracy sur-
passes that of both 2:4 pruning and W2 quan-
tization. Furthermore, at the inference level,
GQSA outperforms W2 by 1.26 x and 2:4 prun-
ing by 2.35x% in terms of speed.

1 Introduction

Sparsity, combined with quantization (Lin et al.,
2024; Shao et al., 2023), is a powerful approach
to enhance model inference performance, reduce
the size of LLMs, and enable their deployment on
edge devices such as PCs (Gu et al., 2024; Liu
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Table 1: Compatibility of 2:4 and GQSA Methods with
Quantization Approaches.

et al., 2022). However, current sparsification strate-
gies exhibit limited acceleration benefits due to the
unstructured sparsity patterns typically generated
by existing unstructured pruning methods (Han
et al., 2015; Sun et al., 2023), which are poorly
suited for hardware acceleration. Strategies such
as SparseGPT (Frantar and Alistarh, 2023) and
Wanda (Sun et al., 2023) address this issue by
adopting a 2:4 sparsity pattern, leveraging NVIDIA
GPUs’ Sparse Tensor Core units for acceleration.
Nevertheless, these approaches are constrained by
hardware requirements such as a minimum oper-
ation shape of [m, n, k] = [16, 8, 16], which re-
strict their applicability to compute-intensive tasks
like GEMM operations. These limitations pose
significant challenges in accelerating the decod-
ing process, the primary performance bottleneck
in LLMs (Zeng et al., 2024). Unlike GEMM,
decoding involves GEMYV operations, where the
Tensor Core’s compute resources are underuti-
lized, with approximately 87.5% of resources be-
ing wasted (Mishra et al., 2021). Consequently,
SparseGPT and Wanda achieve up to 50% spar-
sity but remain inefficient in practical scenarios.
Furthermore, as shown in Table 1, these methods
are incompatible with weight-only quantization be-
cause Sparse Tensor Cores require both weights
and activations to be in either floating-point or inte-
ger formats. Combining sparsification with weight-
activation quantization leads to excessive compres-
sion of activation value representation, resulting
in severe performance degradation. This limita-
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tion significantly diminishes the practical utility of
existing sparsification strategies.

To address these challenges, we propose a novel
model compression method called GQSA, de-
signed specifically for the decoding process and
efficiently compatible with weight-only per-group
quantization. GQSA explores a group sparsity pat-
tern beyond the conventional 2:4 sparsity, achiev-
ing a better trade-off between accuracy and speed
through a combination of algorithm-level optimiza-
tions and a customized software engine. Specifi-
cally, we reinterpret weight pruning as a particular
form of quantization and introduce a group pruning
based on group quantization. Our method incor-
porates the Block Sparse Row (BSR) format and
designs a compact, low-precision weight storage
structure to maximize the compression benefits of
pruning and quantization. The GQSA method con-
sists of two main stages. The first stage, Block
Quantization-Pruning Optimization (BQPO), cali-
brates model parameters at the block level by op-
timizing weight distributions within block to min-
imize performance loss caused by group pruning
and quantization. In the second stage, End-to-End
Optimized Quantization-Pruning (E2E-OQP), the
backbone network’s weights are frozen, and only
the quantization parameters are fine-tuned to op-
timize the global network performance. Unlike
BQPO, E2E-OQP considers the global error dis-
tribution across blocks. Freezing the backbone
network can not only reduce memory usage but
also improve training efficiency. Extensive experi-
ments demonstrate that GQSA achieves significant
advantages in both model accuracy and inference
speed, especially when applied to newly released
advanced models such as LLaMA-3 and LLaMA-
3.1 model family and Qwen2.5 models.

In summary, our contributions are as follows.

* We propose a sparse scheme seamlessly com-
patible with widely used weight-only and
weight-activation quantization, effectively ac-
celerating GEMV operations and reducing
memory usage.

* We introduce a task-centric parallel implemen-
tation, addressing the workload balancing is-
sue in sparse acceleration.

* We integrate group pruning with low-bit quan-
tization techniques and achieves outstanding
model performance through the two-stage op-
timization process of BQPO and E2E-OQP.

2 Related work

Compressing Large Language Models. Prun-
ing and quantization are the two primary tech-
niques for compressing LLMs. Pruning meth-
ods can be classified into structured (Chen et al.,
2024; Ma et al., 2023; Ashkboos et al., 2024),
semi-structuredcite (Frantar and Alistarh, 2023;
Sun et al., 2023; Fang et al., 2024), and unstruc-
tured (Han et al., 2016, 2015; Sun et al., 2023) prun-
ing, depending on the granularity of pruning. Struc-
tured pruning operates at a coarser granularity and
offers significant acceleration, but it often results in
a substantial loss of accuracy (Wang et al., 2024),
limiting its application in LLMs. Unstructured
pruning better preserves accuracy but provides
limited improvements in inference speed (Fran-
tar and Alistarh, 2023). Semi-structured pruning
strikes a balance between accuracy retention and
acceleration, though it is constrained by a sparsity
of 50%, reducing its flexibility. Quantization re-
duces model size by replacing floating-point num-
bers with low-precision integers, which accelerates
memory access during inference. Currently, high-
bit quantization techniques such as AWQ (Lin et al.,
2024), GPTQ (Frantar et al., 2022), QulP (Chee
et al., 2024), OmniQuant (Shao et al., 2023), and
OWQ (Lee et al., 2024) are widely adopted. How-
ever, extremely low-bit quantization poses signif-
icant challenges, with mainstream methods strug-
gling to maintain performance at low-bit levels.
While techniques like AQLM (Egiazarian et al.,
2024) and QulIP# (Tseng et al., 2024) aim to en-
hance low-bit quantization, they rely on vector
quantization and complex codebooks, which hin-
der inference acceleration. Overall, existing model
compression techniques continue to face substan-
tial challenges in achieving an optimal balance be-
tween flexibility and compression rate.

Advantages of GQSA. Quantization and sparsity
address model redundancy in different ways. Quan-
tization reduces the precision of numerical repre-
sentations, while sparsity compresses the model by
eliminating certain neurons. These two techniques
are largely orthogonal, and GQSA leverages both
dimensions to achieve flexible and high compres-
sion rates. Although both GQSA and 2:4 pruning
are semi-structured pruning methods, GQSA offers
several advantages over 2:4 pruning. First, GQSA
supports an adjustable sparsity rate, whereas 2:4
pruning, designed for NVIDIA’s 2:4 TensorCore,
mandates a 50% sparsity rate by forcing two out of
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every four weights to be zero. Our group sparsity
model, in combination with co-designed operators,
enables efficient implementation at various sparsity
levels. Second, GQSA achieves a higher weight
compression rate. For instance, with a 50% sparsity
rate, 2:4 pruning requires additional metadata to
identify the positions of retained neurons, which
are chosen randomly. In contrast, GQSA stores lo-
cation information at the group/block level, signifi-
cantly enhancing compression efficiency. Finally,
2:4 pruning is restricted to NVIDIA’s 2:4 Tensor-
Core and is incompatible with mainstream weight-
only quantization methods. In contrast, GQSA is
highly compatible with weight-only quantization,
thanks to its customized two-stage optimization,
leading to a substantial increase in overall compres-
sion rate.

3 GQSA

In this section, we provide a detailed exposition
of GQSA. Section 3.1 begins with an examination
of weight quantization and salient weight selec-
tion principles. Building upon these foundations,
Section 3.2 introduces the innovative GQS Layer,
designed to maximize the compression advantages
from both quantization and pruning. The subse-
quent sections ( 3.3 and 3.4) detail our two-stage
optimization algorithm, which delivers exceptional
model performance. Concluding the section, 3.5
proposes a novel task-centric parallel strategy for
efficient inference acceleration.

3.1 Preliminary

Weight Quantization. LL.M quantization maps
floating-point values to a lower-bit discrete value
space, significantly reducing model size, enhanc-
ing computational efficiency, and accelerating in-
ference. The process typically involves two steps:
determining the quantization parameters (scale and
zero-point) and computing the corresponding quan-
tized tensor. For uniform asymmetric quantization,
which is used in this paper, the scale s and zero-
point z are determined by:

where W represents the model weights and n de-
notes the quantization bit-width. The elements of
the quantized tensor can be computed as follows:

_ max(W)—min(W)
2n—1

min(W)

2= S

|

~ w
W = clamp( {s—‘ +2,0,2"—-1), (2
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where || represents the rounding operation, and
W represents the quantized integer weights. When
it is necessary to update the quantized weights of
the model, the weights are converted back to full
precision during the forward propagation phase, as
shown below:

W=(W-=2)-s, 3)
where W denotes the dequantized weights utilized
in the forward computation. The processes of quan-
tization (as shown in Equation (2) and dequantiza-
tion (as shown in Equation (3) are integrated into
the computational graph, enabling quantization-
aware optimization through gradient descent.

Column Index Column Index

Row Index

Figure 1: The distribution of the top 1% significant
weights in the Hessian matrix, derived from the k.,
and gpo; distributions in the LLaMA-7B model.

Salient Weight. In LLMs, different weights ex-
hibit different importance. By pruning unimpor-
tant weights, memory usage can be greatly reduced
while maintaining nearly unchanged performance.
Early studies used the absolute value of weights to
evaluate weight importance, but ignored the role of
activation. The Hessian metric combines weights
and activations and is a more effective metric that
has been verified by multiple methods (Shang et al.,
2023; Frantar and Alistarh, 2023). Therefore, this
paper uses the Hessian matrix to evaluate weight
importance.
2

w;

i

5; = “)
where H represents the Hessian matrix of each
layer, and w; denotes the weight values. In the
subsequent sections, s; refers to the criteria for
identifying salient weights. AWQ (Lin et al., 2024)
demonstrates that the top 1% of salient weights in
the model are crucial to performance, so accurately
retaining these weights is key to performance. Fig-
ure 1 visualizes the distribution of salient weights
in the OPT model, revealing a segmented pattern
along the rows. Consequently, group by rows and



selecting salient weight group emerges as a natural
optimization strategy.
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Figure 2: GQSA computes saliency metrics based on
weights and activations, grouping the weights along
the row dimension (illustrated with groups of four el-
ements). Group pruning is then applied based on the
average saliency metrics within each group, resulting in
the formation of the GQS layer.

3.2 GQS Layer

Weight-only per-group quantization has gained sig-
nificant recognition in both academia (Lin et al.,
2024; Shao et al., 2023; Frantar et al., 2022)
and industry (Gerganov, 2024). To enable effi-
cient sparse acceleration compatible with weight-
only per-group quantization approach, we conduct
a comprehensive analysis of the distribution of
salient weights within the model. As depicted in
Figure 1, we observe that salient weights exhibit
distinct segmented distribution patterns. Based
on this observation, we introduce a novel struc-
tured group pruning method that goes beyond the
conventional 2:4 sparsity pattern, leveraging the
segmented distribution characteristics of salient
weights. As illustrated in Figure 2, we begin by
grouping weights along the row dimension, assum-
ing a group size of 4 for simplicity. For each group,
we compute a salient metric using the Hessian ma-
trix. Based on this metric, we prune non-salient
weight groups and quantize the remaining salient
groups to 4 bits, thereby further compressing the
model size. Additionally, by adopting the BSR
sparse format, we convert the compression gains
from pruning into actual storage savings. The spe-
cific storage structure in Figure 2 is shown below:

rowIndex = {0, 1, 3, 3, 4}

groups = {1, o, 1, 1}

values = {5, 1, 15, 1, 15, 13, 2, 1,
-1, 7, 14, o, o, 3, 6, 153}

where rowIndex[i] represent the offset of each
row i, where i belongs to the range [0, rows|. The

difference rowIndex[r+1] - rowIndex[i] indi-
cates the number of non-zero groups in the i-th row.
Additionally, rowIndex[rows] represents the total
number of non-zero groups. The array groups[i]
stores the indices of the non-zero groups; for in-
stance, if groups[1] = 0, it means that the sec-
ond group is located in the Oth column (in terms of
group units). Finally, values stores the values of
the non-zero groups for each row.

3.3 BQPO

In the first stage (Figure 3(b)), we apply the BQPO
method to optimize the GQS model, aiming to mit-
igate the accuracy degradation caused by group
quantization and pruning. This is achieved by ad-
justing the weight parameters within each block.
Traditional QAT methods typically optimize the
entire network’s weights in an end-to-end fashion,
as illustrated in Equations (2) and (3). Similarly,
most pruning approaches adopt a global end-to-end
strategy to update the remaining unpruned parame-
ters. However, such methods often demand substan-
tial computational resources and large-scale train-
ing datasets. To improve optimization efficiency,
BQPO adopts a block-wise optimization strategy.
Prior studies, such as OmniQuant and AffineQuant,
have shown that block-wise optimization can sig-
nificantly reduce both training time and memory
consumption. Unlike OmniQuant and AffineQuant,
which primarily optimize quantization parameters
(inter-channel smoothing factors and weight clip-
ping thresholds), GQSA suffers from more severe
performance degradation due to its combination of
high structured sparsity and low-precision quantiza-
tion. As a result, BQPO focuses on optimizing the
remaining weights to recover performance under
extreme compression settings. This block-wise ap-
proach enables significant performance restoration
with minimal additional training cost compared to
global optimization techniques.

3.4 E2E-OQP

Compared to BQPO, E2E-OQP not only performs
intra-block optimization but also accounts for the
overall error across the entire network, thereby cap-
turing cross-block dependencies. As illustrated in
Figure 3(b), E2E-OQP differs from conventional
quantization-aware training (QAT) methods. As-
suming that BQPO has already yielded a well-
optimized model in the first stage, E2E-OQP initial-
izes training using the BQPO-optimized weights.
During this phase, we freeze the primary network
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Figure 3: Overview of GQSA. (a) We propose a group quantization and sparse LLMs, where linear layers are
replaced by GQS layers. (b) We use the two-stage optimization method BQPO and E2E-OQP to recover the

performance of the extremely compressed model.

weights W and optimize only the quantization pa-
rameters s and z to further refine model perfor-
mance. The design of E2E-OQP underscores the
advantages of the GQSA framework. Specifically,
during fine-tuning, we employ the block-sparse
row (BSR) format: the remaining group weights
are quantized to low bit-width and frozen, while
pruned groups are discarded entirely. This strategy
enables effective fine-tuning of the quantization pa-
rameters without requiring sparse masks, thereby
restoring the performance of the GQSA model
under extreme compression. Overall, E2E-OQP
achieves substantial memory savings by focusing
solely on the quantization parameters of the remain-
ing groups while maintaining 4-bit quantization
across the main network. A detailed comparison
of the resource consumption of BQPO and E2E-
OQP is provided in Appendix A, demonstrating the
efficiency advantages of the GQSA approach.

CTALI

CTAj CTAk
Quantized & Sparsed
Weight

Outputs

Figure 4: A simplified view of GQSA’s operator calcu-
lation flow. G represents sparse and quantized group
size.

3.5 Custom Software Engine

GPU has many processing elements called Stream-
ing Multiprocessors (SMs) and uses a large num-
ber of threads to perform computing tasks in par-
allel. Threads are structured into thread blocks
(CTAs), which become the smallest scheduling ex-
ecution unit on SMs. Therefore, the computation
target is decomposed and mapped to each thread
block, called CTA, to achieve parallel computing.
As shown in Figure 4, for a GEMYV task of shape
1xNxK, each thread block is responsible for com-
puting a 1xBN output tile, which is decomposed
into % sub-GEMV tasks of shape 1xBNxBK.
In offline pre-processing, quantized weights are
grouped by size G and saved as gguf format along
with scaling factors and zero points. This means
that each sub-GEMYV task computes % * BN
non-sparse groups held by one or more output
channels. It should be noted that the logical ad-
dresses between non-sparse groups are not neces-
sarily consecutive, so the corresponding activation
group needs to be accessed according to the real
group index of each group. @) The thread-block is-
sues asynchronous copy instructions to fetch small
chunks of input data (tiles) from global memory
to shared memory. @ As soon as a tile arrives
in shared memory, it is further sliced into smaller
chunks (fragments) and copied into registers. €)
Once all necessary components are in the regis-
ters, the quantized matrix undergoes dequantiza-
tion. @ The dequantized matrix and inputs are
then processed by TensorCores (MMA) or Cuda-
Cores (FMA) instructions. 6 Finally, the accumu-
lated results are written back from the registers to
the outputs in global memory.
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LLaMA-7B LLaMA-13B LLaMA-2-7B LLaMA-2-13B LLaMA3-8B  LLaMA-3.1-8B
Seting  Method Ym0 €4 WikiTex2  C4  WikiText2 C4  WikiText? 4 WikiTex2  C4  WikiText2  C4
GPTQ 4401 2771 1560 1529 3677 3370 2814 2097 210  4led 250 803
QuIP 2074 3374 1248 2194 3973 3194 1348 1616 8497  13c2 } ;
Wy PBLLM 2461 4973 1773 2693 2537 2984 4981 1982 4412 792 ; ;
Omniquant 1547 2480 1321 1831 3737  90.64 1721 2676  2.1ed  60ed  7.3e3  1.3ed
LeanQuant 1565 1762 964 1093 1698  17.89 1032 1173 4178 3650 ; ;
SEM-LLM 1458 3291 887 1385 1601 1600 941 941 3966  lLle2
24  SparseGPT 1120 1359 9.4 1134 1095 1356 832 1130 1656 2299 1662  23.22
2:4 Wanda 1153 1441 958 1207 1102 1507 827 1212 2527 3640 2393 3624
wds20% 658 830 575 757 657 832 586 751 843 1254 840 1237
wAsS0% oo 791 974 672 832 756 949 687 849 979 1458 969 1432
wisd0% 9.10 1124 770 957 843 1131 713 953 1180 1761 1156  17.32
wis50% 1133 1203 921 1085 1064 1282  7.80 1093 1381 2085 13.56  20.43

Table 2: Wikitext2 and C4 perplexity (]) for LLaMA-1, LLaMA-2, LLaMA-3 and LLaMA-3.1 models, with a

context length of 2048.

[ cTAl
[cTad
[ cTA K

Slice-K Stream-K

Figure 5: Workload balancing through parallel task par-
titioning.

Furthermore, to enhance the efficiency of sparse
computing, we introduced Stream-K (Osama et al.,
2023). As show in Figure 5, the classic Slice-
K (Guo et al., 2024) assigns output tiles indepen-
dently to thread blocks. Each thread block pro-
cesses one or more rows of the left operand and one
or more columns of the right operand to compute
the corresponding output tile by slicing along the
internal K dimensions. However, when the weight
matrix exhibits high sparsity, the uneven distribu-
tion of workloads can result in the "straggler" prob-
lem, where small workloads cause inefficiencies.
Stream-K addresses this issue by decomposing the
workload at a finer granularity, allowing multiple
thread blocks to collaborate in computing a single
output tile.

4 Experiments

4.1 Experimental Settings

Models and Tasks. We selected the LLaMA (Tou-
vron et al., 2023a), LLaMA-2 (Touvron et al.,
2023b), LLaMA-3, LLaMA-3.1 (Dubey et al.,
2024) and OPT (Zhang et al., 2022) models to
benchmark our method. Following previous stud-
ies, we evaluated the model’s language modeling

capability on the WikiText2 (Merity et al., 2016)
and C4 (Raffel et al., 2020) datasets. To assess per-
formance on zero-shot tasks, we selected several
mainstream benchmarks, including PIQA (Bisk
et al., 2020), ARC (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), and Winogrande (Sak-
aguchi et al., 2021), and conducted evaluations us-
ing Im-eval.

Baselines. We conducted a comprehensive com-
parison of our method with several recently pub-
lished techniques in both structured and semi-
structured pruning. Given that our implementation
achieved INT4 along with 50% structured prun-
ing, we also compared our approach with pure
INT2 quantization. For structured pruning, we
compared our results with LLMPruner (Ma et al.,
2023), SliceGPT (Ashkboos et al., 2024) and Short-
GPT (Men et al., 2024). For semi-structured prun-
ing, we utilized SparseGPT (Frantar and Alistarh,
2023) and Wanda (Sun et al., 2023) for comparison.
Additionally, we selected OmniQuant (Shao et al.,
2023), QuIP (Chee et al., 2024), PB-LLM (Shang
et al., 2023), GPTQ (Frantar et al., 2022), Lean-
Quant (Zhang and Shrivastava, 2024), and S1iM-
LLM (Huang et al., 2024) as benchmarks for W2
quantization.

Implementation Details. To evaluate the perfor-
mance of GQSA across various configurations, we
implemented sparsity levels of 20%, 30%, 40%,
and 50%, using 4-bit weight-only per-group quan-
tization. To strike a balance between model perfor-
mance and inference speed, a group size of 16 was
selected as the optimal configuration. The AdamW
optimizer (Loshchilov, 2017) with a learning rate
of le-5 was employed to optimize both BQPO and
E2E-OQP. The optimization data was randomly
sampled from the WikiText2 and C4 datasets, con-
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sisting of 4,096 samples, each containing 2,048
tokens. BQPO was trained for 5 epochs, while
E2E-OQP was trained for 2 epochs.

4.2 Evaluation on Language Generation Tasks

To assess the performance of GQSA under extreme
compression conditions, we first compared its per-
plexity against baseline method. As shown in Ta-
ble 2, GQSA surpasses the performance of cur-
rent state-of-the-art weight-only per-group quan-
tization methods, including GPTQ, QulP, Omni-
Quant, LeanQuant, under a 50% structured pruning
combined with INT4 quantization. It also surpasses
mixed-precision quantization models like PB-LLM
and SIiM-LLM. Furthermore, GQSA achieves com-
parable results to 2:4 semi-structured pruning while
delivering substantial improvements in compres-
sion ratio and speedup. Similar results are pre-
sented in Table 16 for Qwen2.5 and Table 17 for
OPT models, where GQSA consistently matches or
surpasses baseline methods, even under more strin-
gent compression settings. Furthermore, we ob-
serve that existing model compression methods of-
ten experience significant performance degradation
on the latest large language models (e.g., LLaMA-3
and LLaMA-3.1). In contrast, GQSA demonstrates
robust performance even in scenarios where other
methods encounter substantial performance degra-
dation.

Zero-Shot Accuracy

Model Setting Method PIOA ARC-E ARC-C Hellaswag Winogrande
ShortGPT ~ 60.1 31.0 41.7 44.0 60.8
25% SliceGPT 67.5 345 55.6 55.1 62.9
LLM-Pruner  75.7 37.2 62.0 60.1 62.2
W4S30% GQSA 7432 3498  66.04 64.40 65.98
LLaMA-2-7B ShortGPT ~ 50.7 27.7 25.6 30.1 50.3
40% SliceGPT 58.5 27.3 435 43.6 579
LLM-Pruner  70.7 313 50.7 535 56.1
W4S40% GQSA 7127 3072 61.32 58.48 61.48
ShortGPT ~ 73.1 41.9 60.1 60.6 70.5
25% SliceGPT 69.6 40.2 61.5 59.4 67.0
LLM-Pruner  79.4 43.5 67.8 65.4 63.5
W4S30% GQSA 75.68 39.85 7155 70.45 66.54
LLaMA-2-13B ShortGPT ~ 62.4 322 44.8 478 62.8
40% SliceGPT 59.9 29.2 44.1 49.6 61.6
LLM-Pruner 753 354 56.3 60.2 57.8
W4S40% GQSA 7530 3582  66.50 65.40 65.98

Table 3: Zero-shot performance between LLaMA-2-
7B and LLaMA-2-13B models under 25% and 40%
structured pruning, GQSA with 30% and 40% structured
pruning along with INT4 quantization.

4.3 Evaluation on Zero-Shot Tasks

To further validate our model, we conducted a de-
tailed comparison of its zero-shot accuracy against
baseline methods. Given the limited data avail-
ability from these baselines methods, we selected

LLaMA-2-7B and LLaMA-2-13B for the analysis.
Table 3 compares GQSA with structured pruning,
where GQSA achieved substantial performance
gains at equivalent or higher pruning rates, with
these benefits becoming more pronounced at higher
pruning levels. Table 4 compares GQSA with semi-
structured pruning and W2 weight-only per-group
quantization. Compared to W2 per-group quanti-
zation, GQSA consistently delivered superior per-
formance improvements at the same compression
ratio. Under the conditions of 50% structured prun-
ing with INT4 quantization, GQSA outperformed
OmniQuant W2 per-group quantization, yielding
average accuracy gains of 5.4% for LLaMA-2-7B
and 5.7% for LLaMA-2-13B. Given that GQSA
operates in a more challenging compression set-
ting than semi-structured pruning, we compare
GQSA W4 40% with semi-structured pruning. Ex-
perimental results reveal that GQSA achieves su-
perior performance even with a compression rate
3% higher than that of 2:4 pruning. Furthermore,
GQSA demonstrates significant advantages in both
speed and accuracy compared to 2:4 pruning. Con-
sidering its compression efficiency and flexibility,
GQSA emerges as the clear superior choice.

Zero-Shot Accuracy

Model Setting Method 1\ ARC.E ARC-C  Hellaswag Winogrande
Wy OmniQuint 6452 2610 4494 4927 5453
LeanQuant  65.4 247 442 - 57.4
W4S50%  GQSA  68.01 2901 5833 5272 58.41
LLaMA-27B  © SparseGPT  70.13 2935 6114 56.89 63.14
: Wanda 7012 3055 6132 5534 62.83
W4S40%  GQSA 7127 3072 6132 5848 61.48
wp  OmmiQuant 6806 3003 5707 5656 5295
LeanQuant 70.6 282 567 - 607
W4S50%  GQSA 7247 3328 6301 6211 6228
LLaMA213B . SpaeGPT 7274 3259 6604 6278 66.54
: Wanda 7372 3439 6633  63.12 66.93
W4S40%  GQSA 7530 3582 6650  65.40 65.98

Table 4: Zero-shot performance between LLaMA-2-
7B and LLaMA-2-13B under W2 quantization method,
50% semi-structured pruning, and GQSA with 40% and
50% structured pruning along with INT4 quantization.

4.4 Comparison with Joint Quantization and
Sparsity Methods

To further compare GQSA with co-design meth-
ods for quantization and sparsity, we integrate W4
quantization with 2:4 semi-structured sparsity into
GPTQ, AWQ, and OmniQuant. This ensures a
fair comparison with GQSA under equivalent bit-
width and sparsity constraints. As shown in Table 5,
GQSA consistently achieves higher zero-shot ac-
curacy than these baselines, demonstrating the su-
periority of our co-optimization algorithm. More-
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Model Setting

Method

Zero-Shot Accuracy

PIOA ARC-E ARC-C Hellaswag Winogrande
GPTQ 65.94 4945  26.37 49.09 58.00
W4 2:4 AWQ 66.97 5442 2898 52.06 58.08
LLaMA-2-7B OmniQuant 6724 55.84  29.01 52.64 56.14
W4 S50% GQSA  68.01 5833  29.01 52.72 58.41
GPTQ 7002 59.64  32.56 59.72 60.80
W4 2:4 AWQ 71.16 6136 3314 61.06 51.59
LLaMA-2-13B OmniQuant 71.06 59.97  32.90 60.11 61.43
W4S850%  GQSA 7247 63.01 33.28 62.11 62.28
GPTQ 6224 4352 2594 40.52 53.12
W4 2:4 AWQ 64.74 51.18  29.12 51.45 59.54
LLaMA-3-8B OmniQuant 63.93 47.81  26.88 49.62 59.83
W4S850%  GQSA  68.06 5232  29.10 52.05 60.89
GPTQ 61.86 4263  25.00 35.88 56.99
W4 2:4 AWQ 64.80 4928  28.50 50.60 60.67
LLaMA-3.1-88 OmniQuant 6594 5236  28.05 49.39 60.01
W4S50%  GQSA 6834 52.80 29.33 52.92 61.75

Table 5: Comparison of Zero-Shot Accuracy: GQSA versus joint quantization and sparsity methods.

over, the elegant integration of group sparsity with
weight-only quantization in GQSA also leads to
significantly better inference performance than the
W4 2:4 compression method.

1x4096x4096 (MxNxK)

—e— full presicion 2:4

—8— W4A16-Sparse8x1
—8— W4A16-Sparsel6xl
W4A16-Sparse32x1

30 40 50 60 70 80 90

Pruning rate (%)

0 10 20

Figure 6: Comparison of GEMYV acceleration of our
GQSKernel on RTX 4080.

4.5 Inference Engine Evaluation

Kernel Benchmark. We compared GQSKernel
with the 2:4 sparse kernel on a (1, 4096) x (4096,
4096) dimension. Due to the flexibility of GQSKer-
nel, it can accommodate varying group sparsity
sizes. The experimental results, presented in Fig-
ure 6, show that as sparsity increases, the GEMV
computation speed improves. Moreover, GQSKer-
nel consistently outperforms the 2:4 sparse mode
across all group granularity settings. At 50% spar-
sity, GQSA achieves a 3 x inference speedup com-
pared to the 2:4 sparse mode.

= FP16  [J W4A16 [J GQSAW4S30% [0 GQSAW4S40%  EEE GQSA W4S50%
LLaMA-7B LLaMA-30B (TP=2)
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Figure 7: Inference latency (top) and memory usage
(bottom) on an NVIDIA A800-40GB GPU with a fixed
input length of 15. W8 results are provided in the Ap-
pendix Table 18.

End-to-end throughput. The acceleration of quan-
tization primarily results from memory access sav-
ings, whereas sparsity acceleration arises from both
memory access and computational savings. We in-
tegrated the GQSKernel into FastTransformer and
compared it with the FP16 implementation. The ex-
perimental results, as shown in Figure 7, indicate
that GQSA achieves a 4x reduction in inference
latency on the LLaMA-7B model under the GQSA
W4S50% setting with a 1024 output length. Addi-
tionally, as presented in Appendix Table 12, GQSA
further enhances the acceleration potential of the
compressed model compared to separate quantiza-
tion or sparsity methods by simultaneously reduc-
ing redundancy in both dimensions of LLMs. For
instance, the inference speeds of LLaMA-7B for
S50%, W2, and W4S50% are 878.90 ms, 475.55
ms, and 377.98 ms, respectively. Overall, GQSA
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demonstrates the most significant performance im-
provement.

SeqLen Method Latency (ms)

W4A16 642.24

128 W4 2:4 Pruning 513.79
GQSA W4 S50% 377.98

W4A16 1312.91

256 W4 2:4 Pruning 1112.96
GQSA W4 S50% 699.26

W4A16 2707.26

512 W4 2:4 Pruning 1966.45
GQSA W4 S50% 1433.43

W4A16 5786.8

1024 W4 2:4 Pruning 4118.36
GQSA W4 S50% 3110.54

Table 6: The inference latency and memory usage of
GQSA and 2:4 pruning are compared on an NVIDIA
A800-40GB GPU with a fixed input length of 15.

Additionally, we compared GQSA’s perfor-
mance with that of state-of-the-art sparse schemes,
such as SparseGPT and Wanda’s 2:4 sparse scheme.
The experimental results, presented in Table 6,
demonstrate that GQSA outperforms these meth-
ods in terms of inference latency and accuracy.

LLaMA-7B LLaMA-7B

ca ca
—— WikiText2 —— WikiText2

&

2
3
5

Perplexity
Perplexity

S
o

S

w 5

20 30 40 50 60 70 80 8 16 32 64 128
Pruning Ratio (%) Group Size

Figure 8: The ablation studies on the LLaMA-7B model
to evaluate the impact of different structured pruning
group sizes (right) and sparsity levels (left) on model
performance.

4.6 Ablation Experiments

We investigated the impact of group size and spar-
sity on the performance of the GQSA model. As
shown in Figure 8 (left), GQSA demonstrates ro-
bust performance at sparsity levels of 50% or lower.
When sparsity exceeds 60%, a noticeable perfor-
mance degradation occurs. However, even at an
extreme sparsity level of 80%, GQSA achieves
a perplexity below 30, avoiding performance col-
lapse. Figure 8 (right) illustrates the relationship
between group size and model performance. Over-
all, model performance exhibits a clear correlation
with group size. Based on performance considera-

tions, we selected 16 as the default group size for
the model.

5 Conclusion

We propose GQSA, an efficient sparse accelera-
tion method for the decoding process, compatible
with weight-only per-group quantization. Through
a comprehensive analysis of LLMs weights, we
investigated group sparse modes beyond the 2:4
sparsity mode. To enhance model performance,
we implemented a two-stage sparse optimization
strategy, comprising BQPO and E2E-OQP. Based
on the BSR format, we then developed an efficient
sparse inference engine to fully leverage the syner-
gistic benefits of quantization and sparsity. Exten-
sive experimental results demonstrate that GQSA
effectively integrates at both the algorithmic and
system levels, offering a superior accuracy-speed
trade-off compared to traditional 2:4 sparsity and
quantization approaches.

Limitations

The proposed GQSA extends beyond the 2:4 spar-
sity pattern to explore group sparsity patterns, en-
abling efficient compatibility with weight-only per-
group quantization. By combining algorithm-level
optimizations with a customized inference engine,
our approach achieves an improved balance be-
tween accuracy and inference speed. However, the
current method does not address activation quanti-
zation, and due to resource limitations, it has not
yet been applied to large language models (LLMs)
exceeding 100 billion parameters. These limita-
tions present promising directions for future re-
search, and we are optimistic that they will be ad-
dressed in subsequent work.

Ethics Statement

This paper introduces a method to tackle the
challenges of compressing large language models
(LLMs), with the goal of facilitating their wider
application and adoption. In the context of cur-
rent research, ethical considerations surrounding
LLMs have received substantial attention. Our find-
ings indicate that the proposed method does not
exacerbate existing biases or compromise ethical
standards.
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Appendix
A Training Efficiency of GQSA

Table 7 lists the memory and time required to train
the Lllama-2 model using GQSA. The results show
that GQSA requires only minimal resource over-
head, and the 7B model only takes less than 10
hours to train with 9.3GB of memory, which is
much less than the 14GB memory requirement to
load the FP16 model, which is very efficient. It is
also significantly better than other pruning meth-
ods, such as LLM-Pruner, which requires 18GB
and takes less training time.

LLaMA-2 BQPO E2E-OQP
Memory (GB) Time (h) Memory (GB) Time (h)
7B 9.3 5.1 7.6 4.2
13B 14.3 7.3 11.7 6.4

Table 7: Detailed training time and training memory for
GQSA at different model sizes and quantization bits on
a single A100-40GB GPU.

B The effects of BQPO and E2E-OQP on
the model’s performance

Table 8 presents the impact of BQPO and E2E-
OQP on model performance. BQPO optimizes
weights in a block-wise manner, effectively pre-
serving the performance of the GQS model. Fi-
nally, E2E-OQP, which accounts for cross-layer
errors, yields the best model performance.

LLaMA-13B LLaMA-2-13B
Method
WikiText2 C4 WikiText2 C4
BQPO 12.90 13.39 10.55 13.56
BQPO+E2E-OQP 9.21 10.85 7.80 10.93

Table 8: The effectiveness of BQPO and E2E-OQP
methods for compressing LLaMA-13B and LLaMA-2-
13B models.

C GQSA performance under
weight-activation quantization

Unlike other algorithms that are limited to weight-
only quantization, weight-activation quantization
or model pruning, GQSA can not only effi-
ciently combine pruning with weight-only quan-
tization, but also support pruning with weight acti-
vation quantization. Our GPU-friendly grouped
semi-structured sparse solution can be seam-
lessly combined with weight-only quantization or

weight+activation quantization. On the basis of
quantization, we can further improve performance
by skipping some operations through sparsity.

Model Settings WikiText2  C4
LLaMA-2-7B  W4A8S50% 7.84 11.04
LLaMA-2-13B W4A8S50% 14.09 21.26

Table 9: Performance comparison of GQSA with
weight-activation quantization.

As show in Table 9, GQSA effectively preserves
model accuracy under W4A8S50% quantization
for both LLaMA-2-7B and LLaMA-2-13B archi-
tectures, maintaining strong performance despite
simultaneous weight and activation quantization
with 50% sparsity.

D Comparison of Quantized & Pruned
Works

A comparison with SparseGPT’s joint sparsi-
fication and quantization. In SparseGPT’s re-
port, "Joint Sparsification & Quantization" per-
forms worse than "Sparsification-only," so we ini-
tially did not include it in our main content. How-
ever, for completeness, the following Table 10
presents a direct comparison between GQSA and
SparseGPT’s "Joint Sparsification & Quantization"
on LLaMA-2-13B and LLaMA-3-8B. The results
demonstrate that GQSA provides a more significant
performance advantage.

LlaMA-2-13B LLaMA-3-8B
Method
WikiText2 C4  WikiText2 C4
SparseGPT 2:4 8.32 11.30 16.56 22.99
SparseGPT 2:4+INT4 9.25 12.74 19.43 26.34
GQSA W4S50% 7.80 10.93 13.84 20.85

Table 10: Performance comparison of GQSA with
SparseGPT.

Comparison with contemporaneous works. To
further validate the superiority of GQSA, we con-
duct comparative evaluations with contemporane-
ous methods including SliM-LoRA (Mozaffari and
Dehnavi, 2024) and DC-W8AS8 (Wang et al., 2025).
SliM-LoRA employs 4-bit weight quantization
combined with Wanda’s 2:4 pruning but fails to
overcome the limitations of semi-structured spar-
sity. Since NVIDIA’s 2:4 Tensor Cores do not sup-
port weight-only quantization, the inference accel-
eration benefits remain limited. Additionally, the
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2:4 sparse format retains randomly positioned neu-
rons and requires storing an equal amount of meta-
data to record their locations, preventing effective
memory compression. SIiM-LoRA also introduces
the LoRA-Adapter; however, due to the quantiza-
tion and sparsity of the main network, the LoRA-
Adapter cannot be directly integrated and must be
stored separately, increasing inference complexity.
According to the S1iM paper, its sparse quantiza-
tion matrix can even reduce inference speed on
the A100 GPU. In contrast, GQSA’s sparse quan-
tization achieves a 4.3 X inference speedup over
FP16, highlighting SliM’s shortcomings in both
inference acceleration and memory compression.
DC-W8AS incorporates sparsity into W8AS8 quan-
tization but relies on unstructured sparsity with a
sparsity rate of only 20%, offering minimal mem-
ory compression benefits. As stated in its paper,
DC-W8AS achieves only a 2.2 x compression ratio
compared to FP16, whereas GQSA achieves a 4.3 x
compression ratio. Moreover, GQSA significantly
outperforms DC-W8AS in inference acceleration.

Method OPT LLaMA-2
6.7B  13B 7B 13B
SliM-LoRA 47.08 4796 54.26 57.85
DC-WS8AS 48.55 - 60.89 -
GQSA W4S50% 53.26 56.39 59.36 64.96

Table 11: Performance comparison between GQSA and
contemporaneous methods.

Table 11 presents the comparative evaluation of
average accuracy on zero-shot tasks across differ-
ent methods. The experimental results demonstrate
that GQSA consistently outperforms both SliM
and DC-W8AS in terms of overall performance.
Furthermore, GQSA achieves superior accelera-
tion ratios and compression rates, while maintain-
ing competitive accuracy. These advantages make
GQSA particularly suitable for edge-side inference
scenarios, where both computational efficiency and
model compactness are critical.

E A comparison of the effects of pruning
and quantization on inference
performance

As demonstrated in Table 12, we will highlight the
comprehensive performance advantages of GQSA
over single pruning and quantization methods from
two perspectives.

Setting ~ WikiText2 C4  Inference speed (ms)
0% 5.47 6.97 1490.50
S20% 7.67 9.10 1370.35
S30% 9.34 11.27 1181.25
S40% 10.84 16.38 1035.15
S50% 14.56 21.09 878.90
S60% 25.76 37.49 671.98
W8 5.50 7.01 868.35
w4 572 7.25 642.24
w2 36.43 40.34 475.55
W4S50% 10.64 12.82 377.98

Table 12: Performance comparison of GQSA with naive
pruning and naive quantization in the extreme compres-
sion setting on LLaMA-2-7B.

From the Perspective of Algorithm Accuracy:
Both quantization and sparsity, when applied in-
dividually, can lead to significant accuracy degra-
dation under extreme compression settings. For
instance, the PPL test results under S60% and
W2 configurations demonstrate considerable per-
formance loss. However, combining these two
strategies allows for higher compression rates while
better preserving model performance compared to
using either strategy alone. As an example, us-
ing the LLaMA-2-7B WikiText2 benchmark, the
results for W2, S60%, and W4S50% are 36.44,
25.76, and 10.64, respectively.

From the Perspective of Inference Speed: The
acceleration benefit of quantization primarily arises
from reduced memory access, while the accelera-
tion benefit of sparsity stems from both memory
and computational savings. For pure quantization
or pure sparsity, the acceleration benefit diminishes
as the compression rate increases. GQSA, however,
enhances the upper limit of the acceleration benefit
by simultaneously reducing redundancy in both di-
mensions (quantization and sparsity). For example,
in the case of LLaMA-2-7B, the inference speeds
for S60%, W2, and W4S50% are 671.98, 475.55,
and 377.98, respectively.

F Combining the advantages of
structured pruning and group
quantization

As show in Table 13 the acceleration benefits of
quantization primarily stem from reduced mem-
ory access, while sparsity accelerates inference by
saving both memory and computation (as sparse
groups do not need to be stored, read, or computed).
When applying only the quantization strategy, the
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LLM’s acceleration benefit does not increase expo-
nentially as the bit-width of W decreases. Instead,
it faces diminishing returns, as the performance
bottleneck shifts from memory access to compu-
tation as the quantization bit-width is reduced. In
contrast, GQSA can further accelerate deep quanti-
zation models by skipping redundant calculations,
thereby pushing the upper limit of acceleration ben-
efits. For example, in the case of LLaMA-2-7B,
the measured inference speed is 20% faster with
W4S50 than with W2.

Model Setting  Inference speed (ms)
w4 642.24
LLaMA-2-7B w2 475.55
W4S50 % 377.98

Table 13: Comparison of inference speed between
GQSA and single quantization.

G Comparison of GQSA with Vector
Quantization

Some of the latest low-bit quantization meth-
ods, such as AQLM (Egiazarian et al., 2024) and
QulP# (Tseng et al., 2024), employ vector quanti-
zation (VQ), which differs from uniform quantiza-
tion techniques like GQSA. VQ constructs code-
books by learning the underlying data distribution,
enabling better data preservation and potentially
higher model performance. However, VQ meth-
ods rely on pre-trained codebooks (e.g., the ESP
codebook used in QulP# and the multi-codebook
scheme in AQLM), which introduce considerable
computational overhead during both training and
inference. This makes them less practical for real-
world deployment.

Method WikiText2 C4 Tokens Per Second
QulP# W2 6.06 8.07 71.09
AQLM W2 5.60 7.47 68.1

GQSA W4S50% 7.80 10.93 228.95

Table 14: Comparison between GQSA and Vector Quan-
tization

In contrast, GQSA combines uniform quantiza-
tion with high sparsity to enable efficient inference
acceleration in practical scenarios. As show in
Table 14, while it may slightly underperform VQ-
based methods like QuIP# and AQLM in terms of
accuracy, it significantly outpaces them in inference
speed—achieving up to 3.3 x the speed of vector

Setting LLaMA-7B LLaMA-13B
FP 92.69 50.68
W38 156.40 95.78

W8S50 263.64 158.99
w4 202.81 137.92

W4S50 343.43 228.95

Table 15: Inference throughput (tokens per second) of
GQSA on the NVIDIA A100 80GB.

quantization methods under a small accuracy trade-
off. No single method perfectly balances accuracy
and computational efficiency; GQSA prioritizes
inference speed, accepting a minor compromise
in model accuracy to achieve substantial gains in
performance.

H Inference throughput of GQSA

As show in Table 15, we evaluated the throughput
of the GQSA model based on FastTransformer on
an Nvidia A100 80 GB GPU. The results demon-
strate that, compared to the pure W8 and W4 config-
urations, GQSA’s W8S550% and W4S50% configu-
rations achieved a 60% improvement in throughput.

I Differences from Sparse Methods in
Traditional CNNs

Although previous work, such as PatDNN, intro-
duced semi-structured sparsity in CNN networks,
we believe our work contributes to the field in two
core aspects: First, we have significantly advanced
the engineering implementation of semi-structured
sparsity. Notably, we introduced the "task-centric"
parallel strategy, replacing the widely-used "data-
centric" parallel approach in the industry. This shift
effectively addresses the issue of unbalanced load
across computing units, resulting in a substantial
speedup of 1.3x to 1.5x for individual operators,
thus achieving a new state-of-the-art in engineering
performance. Second, while the GEMM operator
in traditional CNN networks typically adopts the
"Nx1" sparse mode, we propose the "1 xN" sparse
mode tailored to the characteristics of LLM models.
This innovation better preserves outliers within the
channel and is fundamentally different from the
traditional "Nx 1" mode in terms of engineering
implementation.
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We believe innovation is not solely about propos-
ing "new concepts" or "new strategies" but also
about selecting the most appropriate approaches to
address real technical challenges and pushing the
performance boundaries. Currently, the LLM field
faces significant inference cost challenges, and re-
lying exclusively on quantization techniques has
nearly reached its performance optimization limits.
Our work contributes to further enhancing perfor-
mance based on quantization models and has led to
a SOTA breakthrough in semi-structured sparsity
technology within the LLM field. The pursuit of
higher performance limits and greater industrial
applicability reflects a key aspect of innovation.

J The advantages of group quantization
compared to standard per-layer or
per-label quantization methods.

From the Perspective of Quantization Accuracy:
The primary challenge in quantization LLMs arises
from the imbalanced numerical distribution (both
between and within channels) and the prevalence of
outliers in both weights and activations. Standard
per-layer and per-token (or per-channel) quantiza-
tion methods assume that the entire tensor or the
neurons in each channel are identically distributed.
This coarser quantization granularity is insufficient
to address the issues of uneven distribution and out-
lier retention. Group quantization, however, further
partitions the channels and quantizes the model
weights at a finer granularity, effectively mitigating
the problem of imbalanced numerical distribution
and improving outlier handling, thereby reducing
the accuracy loss typically associated with quanti-
zation.

From the Perspective of Quantization Speed:
The finer quantization granularity of the per-group
approach necessitates additional scaling factors dur-
ing computation. However, since LLM tasks are
memory-intensive rather than computation-bound,
this increased granularity does not significantly im-
pact memory access complexity compared to 2:4
sparsity. As a result, the inference speed is not
adversely affected. For instance, the widely used
reasoning engine, llama.cpp, employs group quan-
tization for model inference.

K Results of GQSA on the Qwen model

To verify the generalization ability of GQSA on
different model families, we conduct experiments
on Qwen models (base and instruct model). Ta-

ble 16 shows similar results to the LLaMA model
family, where GQSA consistently matches or out-
performs the baseline methods even under stricter
compression settings.

L Results of GQSA on the OPT model

To verify the generalization ability of GQSA on
different model families, we conduct experiments
on OPT models (ranging from 1.3B to 13B parame-
ters). Table 17 shows similar results to the LLaMA
and Qwen model family, where GQSA consistently
matches or outperforms the baseline methods even
under stricter compression settings.

M GQSA inference latency and memory
consumption

Due to space constraints, detailed inference latency
and model memory consumption are provided in
Appendix Table 18. Overall, GQSA demonstrates
exceptional performance across various settings.
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Qwen2.5-7B Qwen2.5-14B Qwen2.5-7B-Instruct Qwen2.5-14B-Instruct

Setting Method  yoiir 0 C4 WikiTex2 C4  WikiText2  C4  WikiText2  C4

w2 GPTQ 29.22 89.12 23.08 55.43 46.03 289.92 48.42 38.37
OmniQuant 14.49 22.78 11.98 17.81 17.26 26.37 12.95 17.97

24 sparsegpt 11.25 17.17 10.13 15.39 11.92 17.85 10.95 16.24

' wanda 14.78 22.84 11.74 18.24 15.80 23.83 12.06 18.73
w4s20% 8.27 12.74 6.83 10.83 7.99 12.21 6.80 10.76
w4s30% GQSA 8.95 13.66 7.75 12.03 9.01 13.78 7.69 11.91
w4s40% 9.70 14.96 8.97 13.81 10.19 15.64 8.90 13.60
w4s50% 11.71 17.02 9.87 15.93 11.74 17.07 10.81 15.97

Table 16: Wikitext2 and C4 perplexity (}) for Qwen2.5 models, with a context length of 2048.

OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B
Setting Method griri2 €4 WikiTex2 €4 WikiText2  C4  WikiText2  Cé

GPTQ 130.88  60.88  61.59  33.83  20.18 1855 2136 1634

QUIP 41.64 ; 28.98 - 18.57 ] 16.02 -

W2 PB-LLM 4592 ; 39.71 - 20.37 ; 19.11 -
OmniQuant 2395 2733 1813 2111 1443 1667 1294 1492

SEM-LLM  24.57 ] 17.98 - 14.22 ; 12.16 -
L4 SpaseGPT 2454 2655 1782 1945 1423 1656 1294 1488
: Wanda 2827 2854 2017 2284 1590 1899 1555  16.18
W4520% 1449 1660 1203 1454 1021 1271 993 1216
WAS30% oo 1606 1844 1323 1595 1094  13.64 1037  12.85
W4S40% 1882 2154 1539 1825 1215 1512 1129 1397
W4S50% 2132 2490 1752 2081 1344 1694 1216 1557

Table 17: Wikitext2 and C4 perplexity (|) for OPT models, with a context length of 2048.
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LLaMA-7B
128 256 512 1024

sequence length Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB)

fpl6 1490.5 13.47 3005.95 13.534 6090.97 13.662 12561.82 13.918
w8al6 868.35 7.394 1755.62 7.458 3594.95 7.586 7559.22 7.842
w8al6+sp0.3 688.89 6.296 1261.05 6.361 3005.02 6.489 5814.62 6.745
w8al6+sp0.4 603.23 5.669 1103.08 5.733 2593.76 5.861 5039.33 6.117
w8al6+sp0.5 512.71 5.042 996.59 5.106 2019.1 5.234 4329.32 5.492
w4al6 642.24 4.258 1312.91 4.322 2707.26 4.45 5786.8 4.706
w4al6+g16+sp0.3 518.99 4.101 1041.18 4.165 2113.56 4.293 4437.48 4.549
w4al6+g16+sp0.4 432.05 3.788 855.46 3.852 1828.48 3.977 3772.63 4.233
w4al6+g16+sp0.5 377.98 3.474 699.26 3.528 1433.43 3.653 3110.54 3.909
LLaMA-13B
128 256 512 1024

sequence length Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB)

fp16 2726.66 25.61 5481.96 25.696 11071.81 25.92 22559.77 26.304
w8al6 1439.66 13.524 2900.46 13.62 5922.28 13.844 12257.27 14.228
w8al6+sp0.3 1164.239 11.396 2114.165 11.492 4976.471 11.716 9501.55 12.105
w8al6+sp0.4 1024.199 10.182 1843.61 10.278 427272 10.502 8343.77 10.886
w8al6+sp0.5 869.486 8.964 1715.976 9.061 3345.762 9.285 7044.25 9.669
w4al6 999.1 7.444 2020.99 7.54 4155.94 7.764 8750.98 8.148
wdal6+gl6+sp0.3  801.203 7.141 1475.175 7.237 3563.465 7.461 6972.12 7.845
wdal6+gl6+sp0.4  702.602 6.532 1303.865 6.628 3087.623 6.852 6081.292 7.236
wdal6+gl6+sp0.5  603.515 5.924 1104.366 6.02 2374.286 6.244 5099.638 6.628
LLaMA-30B (TP=2)
128 256 512 1024

sequence length Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB)

fpl6 3759.08 65.534 7540.17 65.726 15241.36 66.11 31073.23 66.878
w8al6 3032.64 32.418 6111.43 32.642 12371.66 33.026 25477.58 33.794
w8al6+g16+sp0.3 2412.6 27.084 4861.575 27.308 10343.645 27.692 19826.459 28.46
w8al6+g16+sp0.4 2132.65 24.036 3840.98 24.261 8925.685 24.645 17343.09 25.413
w8al6+g16+sp0.5 1797.27 20.988 3472.16 21.212 6950 21.596 14591.638 22.364
w4al6 1938.2 17.178 3924.2 17.402 8011.57 17.786 16680.64 18.554
w4al6+g16+sp0.3 1541.925 16.416 2515.512 16.641 6800.993 17.025 13290.836 17.793
w4al6+g16+sp0.4 1341.315 14.892 2229.65 15.116 5890.861 15.501 11591.38 16.269
w4al6+g16+sp0.5 1122.292 13.368 2180.11 13.592 4526.311 13.816 9720.279 14.584

Table 18: Inference latency and memory usage of the FastTransformer implementation on NVIDIA A800-40GB
GPU with a fixed input sequence length of 15, output sequence lengths of 128, 256, 512 and 1024.
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