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Introduction

Welcome to the System Demonstrations of The 14th International Joint Conference on Natural Language
Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics (IJCNLP-AACL 2025).

System demonstrations play a vital role in bridging the gap between cutting-edge research and practical
applications in natural language processing. As the field continues to evolve rapidly with large language
models and multimodal systems, showcasing working prototypes has become essential for understanding
real-world feasibility and impact. This demonstration track provides a unique venue for researchers to
present their innovative NLP systems and engage with the community through live interactions.

This year, we received 21 demonstration submissions spanning diverse NLP applications including dia-
logue systems, information extraction, and responsible Al tools. After a rigorous review process, we
selected 11 high-quality demonstrations that showcase both technical innovation and practical utility.
Each accepted demonstration was evaluated based on system novelty, implementation robustness, and
potential for real-world deployment.

We are grateful to our program committee members for their thorough evaluations and constructive fee-
dback. We also thank all authors for their contributions and for advancing the state of the art in NLP

system development.

We hope you enjoy the demonstration sessions and find inspiration for your own research and develop-
ment endeavors.

Ayu Purwarianti and Xuebo Liu
IJCNLP-AACL 2025 System Demonstration Chairs

Mumbai, India December 2025
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Abstract

There has been a growing research interest in
in-image machine translation, which involves
translating texts in images from one language
to another. Recent studies continue to explore
pipeline-based systems due to its straightfor-
ward construction and the consistent improve-
ment of its underlined components. However,
the existing implementation for such pipeline
often lack extensibility, composability, and sup-
port for real-time translation. Therefore, this
work introduces ImageTra—an open-source
toolkit designed to facilitate the development
of the pipeline-based system of in-image ma-
chine translation. The toolkit integrates state-
of-the-art open-source models and tools, and
is designed with a focus on modularity and ef-
ficiency, making it particularly well-suited for
real-time translation. The toolkit is released at
https://github.com/hour/imagetra.

1 Introduction

In-image machine translation (IIMT) refers to the
task of translating texts in an image from one lan-
guage to another, and generating a new image that
embeds the translations (Mansimov et al., 2020;
Tian et al., 2023, 2025). Ultimately, the back-
ground and text style of the translations inherit the
characteristics of the original texts, as illustrated
in Figure 1. Such systems have a significant value
for research and a wide range of applications, in-
cluding platform-independent automatic subtitle
translation, manga translation, and real-time trans-
lation from camera input. Although commercial
products like Google Translate offer real-time trans-
lation features, their underlying technical solutions
are not transparent and difficult to customize for
other purposes or downstream applications.
Recent studies continue to explore pipeline-
based systems due to their straightforward construc-
tion (Qian et al., 2024; Vaidya et al., 2025; Kaing
et al., 2025). These systems typically consist of

1

ImageTra

Figure 1: A translation example using ImageTra.

three main components: optical character recogni-
tion (OCR), machine translation (MT), and scene
text editing (STE). The pipeline-based systems re-
main the state-of-the-art compared to end-to-end
solutions (Salesky et al., 2024), primarily because
of the task difficulty and data bottlenecks where
the models training rely heavily on synthetic data
in end-to-end approaches (Li et al., 2025). In con-
trast, the data available for each component of the
pipeline-based systems is richer and multilingual
(Long et al., 2022; Baiién et al., 2020), making
it easier to enhance individual components and,
in turn, improve the overall performance of the
pipeline-based systems.

Although open-source tools are available for
each component thanks to active research commu-
nities, they were developed and improved inde-
pendently, without consideration for compatibility
with other components when building a pipeline-
based system. While assembling these tools into
an [IMT pipeline may seem straightforward, re-
searchers and practitioners still need to invest a
significant amount of effort in implementation. Al-
though several studies have released code to repro-
duce their pipelines (Qian et al., 2024; Vaidya et al.,
2025), existing implementations often lack extensi-
bility and composability, and they do not support
real-time translation.

This work aims to reduce that burden by in-
troducing ImageTra—an open-source toolkit de-
signed to facilitate the development of IIMT sys-
tems. For composibility, our toolkit enable re-
searchers and practitioners to plug and play various
state-of-the-art open-source models and tools to

Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics: System Demonstrations, pages 1-8
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https://github.com/hour/imagetra

build IIMT systems capable of translating text in
images, videos, or a live camera video (real-time
translation)'. For extensibility, the toolkit is feasi-
ble to customize each component to support other
tools or models, which is beneficial for both aca-
demic and industrial research. Both composibility
and extensibility of our toolkit are demonstrated in
Section 3.3. Additionally, for real-time translation,
our toolkit has features to enhance efficiency such
as translation caching, text tracking, and API host-
ing. For accessibility, our toolkit is implemented
in Python and is pip-installable, and is released un-
der the MIT license, permitting unrestricted use,
modification, and redistribution.

For evaluation, we assess the efficiency and qual-
ity of various pipeline configurations, with partic-
ular focus on OCR, and analyze the impact of the
translation caching and text tracking features on
efficiency in Section 4. The experimental results
demonstrate that both features significantly reduce
the pipeline’s inference time.

2 Related Works

In-Image Machine Translation. This task is re-
cently getting many attentions due to the advance-
ment of machine learning techniques. Many works
have explored the end-to-end approaches (Mansi-
mov et al., 2020; Salesky et al., 2021; Ma et al.,
2023; Lan et al., 2024, Tian et al., 2023, 2025),
which are not generalized yet particularly on the
scene text scenario. Meanwhile, the pipeline-based
systems have been explored as well by integrat-
ing OCR, MT, and STE systems into a pipeline
(Qian et al., 2024; Vaidya et al., 2025; Kaing et al.,
2025). The implementation of these works are
mostly opened mainly to reproduce their results,
which are not easy to be adapted especially to sup-
port real-time translation.

Optical Character Recognition. This task is
a long-standing task in computer vision, and mod-
ern OCR systems face increasingly complex chal-
lenges, such as handling document-level and scene
text images. These tasks are typically divided into
two subtasks: text detection (Zhou et al., 2017;
Baek et al., 2019; Liao et al., 2020) and text recog-
nition (Shi et al., 2016; Bautista and Atienza, 2022;
Du et al., 2025). A wide range of open-source
OCR tools are available, many of which continue
to improve in terms of accuracy, efficiency, and

'A video is technically a set of images and the IIMT task
can be generalized to a video as well as a live camera video.

language coverage. For example, but not limited
to, DocTR supports multiple model architectures,
allowing users to choose specific models for detec-
tion and recognition. Similarly, OpenOCR supports
several detection and recognition models including
its own state-of-the-art models (Du et al., 2025).
On the other hand, tools like EasyOCR and Pad-
dleOCR emphasize support for diverse languages,
with PaddleOCR also being recognized for its com-
putational efficiency (Cui et al., 2025).

Machine Translation. Text-based machine
translation provides an efficient way to transform
information from one language into another (Bah-
danau et al., 2014; Vaswani et al., 2017). Many ef-
fective techniques have been introduced for improv-
ing translation quality of low-resource languages
such as data augmentation (Sennrich et al., 2016;
Kaing et al., 2024), multilingual training (Dabre
et al., 2020; Costa-Jussa et al., 2022), and multi-
modal training (Elliott et al., 2016; Hirasawa et al.,
2020; Gu et al., 2021), among others. Multilingual
models offer other advantages especially their effi-
ciency, as they can handle diverse languages within
a single model. Therefore, our toolkit begins with
support for the NLLB200 model family (Costa-
Jussa et al., 2022), which is considered the state-of-
the-art in multilingual machine translation.

Scene Text Editing. This task involves modi-
fying texts within natural scene images while pre-
serving the visual consistency and contextual in-
tegrity of surrounding elements. SRNet was the
first model introduced for this purpose, explic-
itly separating foreground and background com-
ponents (Wu et al., 2019). Subsequent works ex-
tended this approach to better handle irregular or
curved text (Yang et al., 2020), enable character-
level editing (Roy et al., 2020; Qu et al., 2023),
and incorporate diffusion-based frameworks (Zeng
et al., 2024; Fang et al., 2025). Subramanian et al.
(2021) extended SRNet to edit videos and incor-
porated additional techniques to make the edited
text in videos smoother. It is worth noting that
these studies primarily focus on model architec-
ture and are restricted to editing English text. Be-
sides the fact that SRNet remains impressive and
has consistently been used as a baseline, it has
recently been adapted to perform cross-lingual
editing, particularly within the IIMT pipeline, in-
cluding English<+Hindi (Vaidya et al., 2025) and
English—Japanese (Kaing et al., 2025). Hence, our
toolkit begins with SRNet support in this version.
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Figure 2: Overview of a pipline in ImageTra. Green indicate proposed features to enhance real-time translation.

3 The Toolkit: ImageTra

ImageTra is a playground where researchers and
practitioners can quickly build an IIMT pipeline
using the existing tools and models. The pipeline
in ImageTra is composed of three main compo-
nents: RecoDetector, Translator, and Editor.
The composed pipeline can then be applied to an
image, a video, or a live stream video. Additional
features include translation caching, text tracking,
and API hosting for server-client use cases, as il-
lustrated in Figure 2.

3.1 Main Components

RecoDetector. This component takes an image
as input, detects text regions, recognizes the texts
inside the regions, and returns the coordinates of
the regions and the recognized texts. Currently,
our toolkit wraps four popular open-source OCR
tools under this component: DocTR?, OpenOCR?,
EasyOCR*, and PaddleOCR’.

Translator. This component takes recognized
texts from RecoDetector and translates them into
a specific language. We wrap the family of NLLB
models (Costa-Jussa et al., 2022) and the TexTra
API service® under this component.

Editor. This component aims to convert the
translated texts from Translator into pieces of
images and embed them into the whole scene im-
age. The component takes several inputs, including
the coordinates of detected texts and the transla-
tions. Two types of editors can be created in this
component. The first one is a renderer that outputs
arendered translation. To fit the translation into the
region of its original text, the font size is estimated

2https://github.com/mindee/doctr
3https://github.com/Topdu/OpenOCR
*https://github.com/JaidedAI/EasyOCR
Shttps://github.com/PaddlePaddle/Paddle0CR
6https://mt—auto—minhon—mlt.ucri.jgn—x.jp

based on the character length of the translations and
the width and height of the region. It’s worth noting
that the lengths of the translation and its original
text are often different, which may not fit the trans-
lation nicely. The second type of editor returns a
fused translation that shares the same background
and text style as its original text. For the second
type of editor, we wrap the conventional SRNet
model (Wu et al., 2019), which also leverages the
rendered translation as part of its generation.

3.2 Real-Time Video Translation

To improve the efficiency of real-time translation,
we introduce three additional features: translation
caching, text tracking, and an API-based service.

Translation Caching. When translating texts
in video, texts repetition across video frames is
inevitable and using a translator to translate them
all the time is not efficient especially when the
translator model is large and the inference speed
is slower. This could make the pipeline slow and
less practical for real-time translation. We address
this by introducing a simple solution by caching
the already translated sentence using a dictionary
that maps a source text with a target text.

Text Tracking. Translation caching eliminates
redundant translator calls by reusing previously
processed texts. To further improve efficiency, we
apply text tracking to match detected regions across
consecutive frames, allowing translated text from
the prior frame to be directly reused in the cur-
rent frame. This reduces computation for both the
translator and the editor, thereby accelerating the
pipeline. Specifically, the tracker identifies text re-
gions matched between the previous and current
frames. If a matched region in the previous frame
has a score greater than or equal to that of its coun-
terpart in the current frame, the region in the current
frame is directly replaced with the translated text
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image from the previous frame. For tracking, we
leverage the existing multi-object tracking library—
boxmot’, which supports a variety of algorithms,
including botsort (Aharon et al., 2022), strongsort
(Du et al., 2023), deepocsort (Maggiolino et al.,
2023), bytetrack (Zhang et al., 2022), and ocsort
(Cao et al., 2023).

API. The pipeline can also be served as an API,
which allows us to run the pipeline on a server and
call the pipeline from a local machine. This will
enable broader application especially for real-time
translation scenario where a local machine has a
camera but no GPU.

3.3 Usage Examples

Here we present a basic example for building an
IIMT pipeline and how to use it to translate texts
in an image and a video with a few lines of code.
Specifically, we first create the three components
and then integrate them into the pipeline named
Image2Image. Since this pipeline can take multiple
images as input, we can use it to translate a video
frame-by-frame. Lastly, the translated image and
video are saved simply using a save function.

from imagetra.detector.paddleocr import PaddleOCRRecoDetector
from imagetra.translator.nllb import NLLBTranslator

from imagetra.editor.render import RenderEditor

from imagetra.pipeline.img2img import Image2Image

recodetector = PaddleOCRRecoDetector(lang="en')
translator = NLLBTranslator(
'facebook/n11b-200-distilled-600M'
trg_lang="'jpn_Jpan'
cache=True, # translation cache

editor = RenderEditor('<font_path>")

pipeline = Image2Image(
recodetector=recodetector,
editor=editor,
translator=translator

)

from imagetra.common.media import Image
img = Image.load('image.jpeg')

result = pipeline([imgl)[0]
result.img.save('result.jpeg')

from imagetra.common.media import Video

video = Video.load('video.mp4')

results = pipeline(video.frames)

for i, result in enumerate(results):
video.replace(result.img, i)

video.save('result.mp4')

You may have noticed that the translation
caching is activated when the Translator compo-
nent is created with cache=True. We can further
speed up the pipeline on the video translation us-
ing a tracker. To do that, we just need to replace
Image2Image with Video2Vdieo and specify the
tracker type during inference, e.g, bytetrack. The
rest of the codes are the same.

"https://github.com/mikel-brostrom/boxmot

pipeline = Video2Video(...)
results = pipeline(video.frames, tracker_type='bytetrack"')

As there are plenty of other tools and models
that are not directly supported yet, we can also in-
tegrate them into the pipeline by simply inheriting
the base class and overriding the main function of
each component as follows.
from imagetra.detector.base import BaseRecoDetector

from imagetra.translator.base import BaseTranslator
from imagetra.editor.base import BaseEditor

class CustomRecoDetector (BaseRecoDetector):
def recodetect(self, imgs):
# code here
return bboxs, det_scores, texts, reco_scores

class CustomTranslator(BaseTranslator):
def translate(self, texts, src_lang, trg_lang):
# code here
return translations

class CustomEditor(BaseEditor):
def edit(self, texts, imgs):
# code here
return edited_imgs

The above example are explained in python code
to show how a pipeline can be constructed and
customized. Beside this, we can quickly run the
pipeline using a command line interface, of which
details can be found in our project homepage.

4 Evaluation

We assume that the overall quality of the
pipeline primarily depends on the intrinsic qual-
ity of its underlying components, which we ex-
pect will continue to be actively improved and
domain-generalized by their respective commu-
nities. Therefore, our evaluation focuses on the
pipeline’s efficiency and its trade-off with quality,
particularly in the context of real-time translation.
We analyze the impact of both translation caching
and text tracking features, while also examining op-
timal configurations, with particular attention to the
OCR component. To simulate a realistic real-time
translation scenario, our evaluation is conducted on
the DSText video dataset from ICDAR2023 (Wu
et al., 2023), which provides ground-truth coordi-
nates of English text and their transcriptions. Fur-
thermore, the pipeline is constrained to translating
only one frame at a time.

4.1 Impact of Translation Caching

Figure 3 compares the latency of the NLLB model
family with 600M, 1.3B, and 3.3B parameters. The
models translate the DSText dataset transcriptions
into German, one frame at a time. Latency is mea-
sured as the average time per frame (in seconds)
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Figure 4: Fl-score and average latency of the pipeline
with different OCRs.

for each MT model. The results show that larger
models tend to have slower inference speeds, as
expected, and that model depth significantly con-
tributes to higher latency. Our translation caching
substantially improves inference speed, achieving
a twofold increase in this experiment.

4.2 Performance of OCRs

Figure 4 compares four OCR tools in terms of la-
tency and accuracy. For latency, we measure the
inference time of the pipeline using different OCRs,
while keeping the MT model (NLLB-600M) and
the editor (RenderEditor) fixed. For accuracy,
we compute Fl-scores on the OCR outputs fol-
lowing the evaluation protocol of the end-to-end
text detection and recognition task in ICDAR2019
(Nayef et al., 2019). Specifically, we first observed
that the DSText dataset contains labels marked
as “##DONT#CARE##”, which are typically used
when text in the image is unreadable by annotators
due to low resolution or other distortions. Follow-
ing the ICDAR2019 protocol, both ground-truth
regions labeled as “##DONT#CARE##” and pre-
dicted regions overlapping with them are excluded

( J
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Figure 5: Fl-score and average latency of the pipeline
using different trackers.

from evaluation (Nayef et al., 2019). After this
filtering, true positives are defined as the number
of matched texts between the ground truth and pre-
dictions, denoted |M|. Two texts are considered
matched if (i) the intersection-over-union (IoU)
of their regions exceeds 0.5, and (ii) their surface
forms are exactly identical. Precision P and recall
R are then computed as % and %, respectively,
where |T'| is the number of predicted texts and |G|
is the number of ground-truth texts. The F1-score
is calculated as %;i'g.

The results show that OpenOCR achieve the best
accuracy while PaddleOCR has the best inference
speed. This findings is equivalent what is claimed
by these tools, for instance, in each of their home
page, the OpenOCR teams claims that their tool
outperform PaddleOCR and the PaddleOCR teams
present their tool as a lightweight OCR system. On
another hand, EasyOCR maintains similar perfor-
mance with PaddleOCR but has the worst inference
time. The performance of DocTR is the worst but
maintains similar inference speed with OpenOCR.
To this end, this result suggest OpenOCR for accur-
racy and PaddleOCR for inference speed.

4.3 Impact of Text Tracking

Since PaddleOCR is the most efficient system
among the four OCRs, we use it to establish a
baseline performance and evaluate the impact of
trackers on pipeline translation, as shown in Fig-
ure 5. The results demonstrate the efficiency gains
from using trackers, which reduce the average la-
tency per frame by up to 0.34 seconds. However,
a trade-off between accuracy and efficiency is ob-
served; for example, the fastest tracker, ocsort,
achieves a 0.02 lower F1-score compared with the
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Figure 6: Comparison of outputs generated by pipelines using various OCRs (columns) and editors (rows). GT
refers to ground truth where both coordinates and texts are provided in the dataset. The image in the second row
under “Input” is used to highlight the “##DONT#CARE##” regions since it is identical with the image above it.

baseline. To this end, the results suggest employ-
ing bytetrack or botsort in the pipeline, as they
achieve performance comparable to the baseline
while reducing latency.

4.4 Qualitative Analysis

Figure 6 presents an output example translated
from English to Japanese using pipelines that in-
tegrate different OCR systems and editors. For
comparison, we also include the output generated
from ground-truth detection and recognition (GT),
excluding the “##DONT#CARE##” regions. The
editors compared are Render and SRNet; for the
latter, we retrained an English-to-Japanese SRNet
model on synthetic data following the same set-
tings as Kaing et al. (2025). The example shown is
a cropped frame from a video in the DSText dataset.
We selected a slow-motion video and chose a rela-
tively sharp frame, further cropping it to enhance
readability in the illustration.

Overall, the pipeline produces reasonable results
across different OCRs. The outputs are generally
consistent, with only minor variations in handling
off-angle or blurry text and in the detected coor-
dinates. Among them, OpenOCR achieves results
most closely aligned with the ground truth (GT),
consistent with the findings in Figure 4. When SR-
Net is used, the translations of the word “daiya”
are clearly readable, and the original text is cleanly
erased—except for the small green dot above the

letter i, which is preserved. These results are no-
table given that the model was trained solely on
synthetic data. Nevertheless, the model contin-
ues to face challenges with more complex cases,
such as text over colorful backgrounds or charac-
ters with higher visual complexity (e.g., Kanji). We
believe that integrating state-of-the-art scene text
editors could substantially enhance the quality of
the pipeline’s outputs.

5 Conclusion

This work introduces ImageTra—an open-source
toolkit for building pipeline-based IIMT systems
that leverage state-of-the-art models and tools. The
toolkit supports real-time translation and integrates
two key features to enhance efficiency: translation
caching and text tracking. Our evaluation demon-
strates that these features significantly reduce infer-
ence latency without compromising accuracy.
While the current implementation yields promis-
ing results, there remains considerable room for
improvement in both efficiency and accuracy. For
instance, real-time translation could be enhanced
by adopting lightweight, unified models that op-
erate in a more end-to-end manner. Furthermore,
translation quality could be improved by leverag-
ing contextual information rather than translating
words or phrases in isolation. Pursuing these direc-
tions is a core part of our development roadmap as
we work toward practical, real-world applications.
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Abstract

DNN-based language models excel across var-
ious NLP tasks but remain highly vulnerable
to textual adversarial attacks. While adversar-
ial text generation is crucial for NLP security,
explainability, evaluation, and data augmen-
tation, related work remains overwhelmingly
English-centric, leaving the problem of con-
structing high-quality and sustainable adversar-
ial robustness benchmarks for lower-resourced
languages both difficult and understudied. First,
method customization for lower-resourced lan-
guages is complicated due to linguistic differ-
ences and limited resources. Second, auto-
mated attacks are prone to generating invalid or
ambiguous adversarial texts. Last but not least,
language models continuously evolve and may
be immune to parts of previously generated
adversarial texts. To address these challenges,
we introduce HITL-GAT', an interactive system
based on a general approach to human-in-the-
loop generation of adversarial texts. Addition-
ally, we demonstrate the utility of HITL-GAT
through a case study on Tibetan script, employ-
ing three customized adversarial text genera-
tion methods and establishing its first adversar-
ial robustness benchmark, providing a valuable
reference for other lower-resourced languages.

1 Introduction

The adversarial attack refers to an attack method in
which the attacker adds imperceptible perturbations
to the original input, resulting in the incorrect judg-
ment of a DNN-based model. The examples gen-
erated during textual adversarial attacks are called
adversarial texts.

1 Corresponding Author
'Video Demonstration:

https://youtu.be/tXladyAggwA

Code Repository:
https://github.com/CMLI-NLP/HITL-GAT

Victim Models:
https://huggingface.co/collections/UTibetNLP/tib
etan-victim-language-models-669f614ecea872c7211
c121c

9

while new model/dataset/attack:

1. Construct
—— Victim ——

- ~

_- Models >~
- 4 ~

Y N
/ h \
/ N
4. Evaluate =2 — P 2. Generate
“‘» Adversarial
= Examples
v

Adversarial  pam “ Team
Ve
Ve

Robustness 8
N

AN
AN
~ 7
~ -
~ ~
~_ _
-
~

3. Construct
High-Quality e
Benchmarks

Figure 1: Workflow of HITL-GAT. While a new language
model, downstream dataset, or textual adversarial attack
method emerges, we can enter the loop to make the
adversarial robustness benchmark evolve.

Due to the general adaptability of language mod-
els to classification tasks, adversarial robustness
evaluation is mainly focused on the domain. Cur-
rently, most of the adversarial text generation meth-
ods target higher-resourced languages, especially
English. Because of the differences in textual fea-
tures and language resources, it is challenging to
transfer these methods to other languages. Prob-
lem 1: How do we generate adversarial texts for
lower-resourced languages?

Wang et al. (2021a) apply 14 textual adversarial
attack methods to GLUE tasks (Wang et al., 2019)
to construct the widely used adversarial robustness
benchmark AdvGLUE. In their construction, they
find that most textual adversarial attack methods
are prone to generating invalid or ambiguous ad-
versarial texts, with around 90% either changing
the original semantics or hindering the annotators’
unanimity. In our case study on Tibetan script, we
also come to the same conclusion. Problem 2:
How do we construct high-quality adversarial
robustness benchmarks?

Wang et al. (2023) employ ANLI (Nie et al.,
2020) and AdvGLUE (Wang et al., 2021a) to as-
sess the adversarial robustness of ChatGPT and
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several previous popular language models and find
ChatGPT is the best. However, both ANLI and
AdvGLUE are constructed using fine-tuned BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) as victim models. Language models are
evolving, while adversarial robustness benchmarks
never. We argue that new language models may be
immune to part of previously generated adversarial
texts. Lower-resourced languages are at a very
early stage of adversarial robustness evaluation
compared to higher-resourced languages, and it is
essential to envisage sustainable adversarial robust-
ness evaluation in advance. Problem 3: How do
we update adversarial robustness benchmarks?
To address the above problems, we introduce
HITL-GAT, an interactive system for human-in-the-
loop generation of adversarial texts. Figure 1 de-
picts the workflow of HITL-GAT. In a loop where a
new language model, downstream dataset, or tex-
tual adversarial attack method emerges, our team
starts to construct victim models, generate adversar-
ial examples, construct high-quality benchmarks,
and evaluate adversarial robustness. The loop al-
lows adversarial robustness benchmarks to evolve
along with new models, datasets, and attacks (Prob-
lem 3). Figure 2 depicts the four stages in one
pipeline detailedly. Firstly, we fine-tune the previ-
ous model and the new model on the same down-
stream datasets to construct victim models. Subse-
quently, we implement adversarial attacks on the
victim models constructed from the previous model
upon downstream datasets to generate adversarial
examples. Afterward, we customize filter condi-
tions and conduct human annotation to construct
a high-quality adversarial robustness benchmark
(Problem 2). Finally, we evaluate the adversarial
robustness of the new model on the benchmark.
Additionally, we make a case study on one lower-
resourced language, Tibetan, based on the general
human-in-the-loop approach to adversarial text gen-
eration (Problem 1).
The contributions of this paper are as follows:
(1) We propose a general human-in-the-loop
approach to adversarial text generation. This ap-
proach can assist in constructing and updating high-
quality adversarial robustness benchmarks with the
emergence of new language models, downstream
datasets, and textual adversarial attack methods.
(2) We develop an interactive system called
HITL-GAT based on the general approach to human-
in-the-loop generation of adversarial texts. This
system is successfully applied to a case study on
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one lower-resourced language.

(3) We demonstrate the utility of HITL-GAT
through a case study on Tibetan script, employ-
ing three customized adversarial text generation
methods and establishing its first adversarial robust-
ness benchmark, providing a valuable reference for
other lower-resourced languages.

(4) We open-source both the system and the case
study under GNU General Public License v3.0 to
facilitate future explorations. Our code repository
received 42 stars, and our 12 victim models were
downloaded more than 5,000 times before paper
submission on November 15, 2025.

2 Related Work

2.1 Textual Adversarial Attack Frameworks

TextAttack (Morris et al., 2020) and OpenAttack
(Zeng et al., 2021) are two powerful and easy-to-
use Python frameworks for textual adversarial at-
tacks. They are both for text classification, sup-
porting English and Chinese, with similar toolkit
functionality and complementary attack methods.
From a developer’s perspective, TextAttack utilizes
a relatively rigorous architecture to unify different
attack methods, while OpenAttack is more flexible.
SeqAttack (Simoncini and Spanakis, 2021) and
RobustQA (Boreshban et al., 2023) are textual ad-
versarial attack frameworks for named entity recog-
nition and question answering, respectively, sup-
porting English only. These frameworks provide
an excellent platform to stress-test the adversarial
robustness of models targeting higher-resourced
languages. However, the weaponization of lower-
resourced languages against NLP security (Lent,
2025; Yoo et al., 2025; Lent et al., 2025) highlights
the urgent need for research in this area. To our
knowledge, HITL-GAT is the first interactive system
to build adversarial robustness benchmarks from
scratch for a truly low-resource language.

2.2 Human-in-the-Loop Adversarial Text
Generation

Wallace et al. (2019) guide human authors to keep
crafting adversarial questions to break the ques-
tion answering models with the aid of visual model
predictions and interpretations. They conduct two
rounds of adversarial writing. In the first round,
human authors attack a traditional ElasticSearch
model A to construct the adversarial set x. Then,
they use x to evaluate A, a bidirectional recurrent
neural network model B, and a deep averaging net-
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Figure 2: Flowchart of HITL-GAT. Our system contains four stages in one pipeline: victim model construction,
adversarial example generation, high-quality benchmark construction, and adversarial robustness evaluation.
System outputs are highlighted in purple background . Human choices are highlighted in yellow background .

Human annotation is highlighted in |red background .

work model C. In the second round, they train A,
B, and C on a larger dataset. Human authors at-
tack A and B to construct the adversarial set x and
x’. Then, they use x and x’ to evaluate A, B, and
C. We see their human-in-the-loop approach as an
embryo of adversarial robustness benchmark evo-
lution, despite the high labor cost of relying on
human authors to think and write adversarial texts.
Most goals of using a human-in-the-loop approach
in NLP tasks are to improve the model performance
in various aspects (Wang et al., 2021b). With these
goals, language models evolve. As continuous ad-
vancement of model capabilities, it is imperative
to explore the paradigm for benchmark evolution.
To our knowledge, even though our work is prelim-
inary, we are the first to explore the evolution of
adversarial robustness benchmarks.

3 Implementation

Definition Due to the general adaptability of lan-
guage models to the text classification task, our
work focuses on the adversarial robustness evalua-
tion of language models on this task. The definition
of textual adversarial attacks on text classification
is as follows. For a text classifier F', let z (z € X,
X includes all possible input texts) be the original
input text and y (y € Y, Y includes all possible
output labels) be the corresponding output label of
z, denoted as F'(x) = argmaxycy P(ylz) = y.
For a successful textual adversarial attack, let
¥’ = x + 0 be the perturbed input text, where
0 is the imperceptible perturbation, denoted as
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F(2') = argmaxcy P(y[z') # y.

Overview Our system for human-in-the-loop
generation of adversarial texts, HITL-GAT, contains
four stages in one pipeline: victim model con-
struction, adversarial example generation, high-
quality benchmark construction, and adversar-
ial robustness evaluation. Figure 2 depicts the
flowchart of HITL-GAT. These four stages will be
detailed in the following four subsections respec-
tively. Our flexible interactive system allows users
to either go through the entire pipeline or directly
start at any stage. Gradio (Abid et al., 2019) is an
open-sourced Python package that allows develop-
ers to quickly build a web demo or application for
machine learning. LlamaBoard is the user-friendly
GUI (Graphical User Interface) of LlamaFactory
(Zheng et al., 2024). The GUI of our system is
powered by Gradio and draws inspiration from the
design of LlamaBoard.

3.1 Construct Victim Models

This stage aims at constructing victim language
models via a fine-tuning paradigm.

When a new language model B emerges, in order
to better evaluate the adversarial robustness of B,
we need to quantitatively and thoroughly perform
evaluation on multiple downstream tasks. For the
purpose of stress-testing the adversarial robustness
of B more effectively, i.e., constructing a stronger
adversarial robustness benchmark with high qual-
ity, we can choose at least one previous SOTA or



similar-structured language model A to implement
textual adversarial attacks on it to generate updated
adversarial texts. We can also follow this stage
when a new downstream dataset n is available.

In this stage, we fine-tune A and B on the training
set of the same downstream datasets 1,2,...,n
to construct victim language models. The victim
model construction stage is depicted in the first part
of Figure 2.

3.2 Generate Adversarial Examples

This stage aims at automatically generating the
first-round adversarial texts with the help of various
textual adversarial attack methods.

The way human authors keep thinking and writ-
ing adversarial texts (Wallace et al., 2019) is high-
labor-cost. With the emergence of automated tex-
tual adversarial attacks, such as TextFooler (Jin
et al., 2020), BERT-ATTACK (Li et al., 2020),
SemAttack (Wang et al., 2022), and TextCheater
(Peng et al., 2024), adversarial text generation has
become relatively easy. We can directly enter this
stage when a new textual adversarial attack N ap-
pears.

In this stage, we implement textual adversarial
attacks I,II,...,Non the victimlanguage models
constructed from language model A upon the test
set of downstream datasets 1,2, ...,n to generate
the first-round adversarial texts automatically. The
adversarial example generation stage is depicted in
the second part of Figure 2.

3.3 Construct High-Quality Benchmarks

This stage aims at constructing a high-quality adver-
sarial robustness benchmark by customizing filter
conditions and conducting human annotation.

The construction process of AdvGLUE (Wang
et al., 2021a), a widely used adversarial robustness
benchmark, tells us that most textual adversarial
attack methods are prone to generating invalid or
ambiguous adversarial texts, with around 90% ei-
ther changing the original semantics or hindering
the annotators’ unanimity. Therefore, human anno-
tation is indispensable and can make benchmarks
more practical and relevant. In order to reduce the
cost of human annotation, the first-round adver-
sarial texts need to be screened automatically first
using appropriate filter conditions. Due to the fact
that humans perceive texts through their eyes and
brains, both filter conditions and human annotation
should follow the visual and semantic similarity
between adversarial texts and original texts. Filter
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conditions can be the following metrics: Edit Dis-
tance, Normalized Cross-Correlation Coefficient
(from the perspective of visual similarity); Cosine
Similarity, BERTScore (Zhang et al., 2020) (from
the perspective of semantic similarity); and so on.
Human annotation still requires additional consid-
eration of annotators’ unanimity so that adversarial
texts can be deemed human-acceptable. For ex-
ample, given an original text and an adversarial
text, we ask several annotators to score the human
acceptance of the adversarial text based on the vi-
sual and semantic similarity between the two texts,
from 1 to 5. The higher the score, the higher the
human acceptance. If all annotators score the hu-
man acceptance of the adversarial text as 4 or 5, the
adversarial text will be included in the adversarial
robustness benchmark.

In this stage, we screen out the examples that
do not satisfy the customized filter conditions from
the first-round adversarial texts, and then manually
annotate the remaining examples to construct the
high-quality adversarial robustness benchmark x.
The high-quality benchmark construction stage is
depicted in the third part of Figure 2.

3.4 Evaluate Adversarial Robustness

This stage aims at quantitatively and thoroughly
evaluating the adversarial robustness of new lan-
guage models using the constructed high-quality
adversarial robustness benchmark.

The adversarial robustness benchmark x is a col-
lection of n subsets, each of which contains high-
quality adversarial texts generated from the test set
of the corresponding downstream dataset. We take
the average accuracy on n subsets as the adversar-
ial robustness (AdvRobust) of the new language
model B on x, denoted as:

AdvRobust = 2 i=1 fceuracy .

ey

n

In this stage, we utilize the constructed high-
quality adversarial robustness benchmark x to eval-
uate the adversarial robustness of the language
model B quantitatively and thoroughly. The ad-
versarial robustness evaluation stage is depicted in
the fourth part of Figure 2.

4 Case Study

In this section, we go through the entire pipeline
under the existing conditions to construct the first
adversarial robustness benchmark for Tibetan script
and conduct the adversarial robustness evaluation



on Tibetan language models. We will introduce the
existing conditions and the whole process in the
following two subsections respectively.

4.1 Existing Conditions

Below is the involved language models, down-
stream datasets, and attack methods.

4.1.1 Language Models

Tibetan-BERT! (Zhang et al., 2022). A BERT-
based monolingual model targeting Tibetan. It is
the first Tibetan BERT model and achieves a good
result on the specific downstream Tibetan text clas-
sification task.

CINO®> (Yang et al., 2022). A series of XLM-
RoBERTa-based multilingual models including Ti-
betan. It is the first multilingual model for Chinese
minority languages and achieves a SOTA perfor-
mance on multiple downstream monolingual or
multilingual text classification task.

4.1.2 Downstream Datasets

TNCC-title® (Qun et al., 2017). A Tibetan news
title classification dataset. This dataset contains a
total of 9,276 Tibetan news titles, which are divided
into 12 classes.

TU_SA* (Zhu et al., 2023). A Tibetan sentiment
analysis dataset. It is built by translating and proof-
reading 10,000 sentences from two public Chinese
sentiment analysis datasets. In this dataset, nega-
tive or positive class each accounts for 50%.

4.1.3 Attack Methods

Over the past few years, we have developed several
Tibetan textual adversarial attack methods, aiming
to draw attention to the NLP security in lower-
resourced languages, as listed below. Our past work
(Cao et al., 2023) is the only one engaged with a
truly low-resource language among the research
samples in the literature NLP Security and Ethics,
in the Wild (Lent et al., TACL 2025, page 719).
TSAttacker (Cao et al., 2023). An embedding-
similarity-based Tibetan textual adversarial attack.
It utilizes the cosine distance between static sylla-
ble embeddings to generate substitution syllables.

Thttps
2https

.co/UTibetNLP/tibetan_bert
.co/hfl/cino-small-v2
https://huggingface.co/hfl/cino-base-v2
https://huggingface.co/hfl/cino-large-v2
3https://github.com/FudanNLP/Tibetan—Classificat
ion
*https

://huggingface
://huggingface

://github.com/UTibetNLP/TU_SA
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TSTricker (Cao et al., 2024). A context-aware-
based Tibetan textual adversarial attack. It utilizes
two BERT-based masked language models with
tokenizers of two different granularities to generate
substitution syllables or words respectively.

TSCheater (Cao et al., 2025). A visual-similarity-
based Tibetan textual adversarial attack. It utilizes
a self-constructed Tibetan syllable visual similarity
database to generate substitution candidates.

4.2 Whole Process

Figure 2 and Section 3 introduce the four stages of
HITL-GAT. Below we use a case study on Tibetan
script to illustrate the whole process, which is also
demonstrated in the video and Figure 3.

&
@

Figure 3: Screenshots of HITL-GAT.

In the victim model construction stage, we
choose the language model and downstream
dataset, and then the default fine-tuning hyperpa-
rameters will be loaded. Once the “Start” button
is clicked, the fine-tuning starts and the GUI dis-
plays a progress bar, metric plots (F1/macro-F1,
Accuracy, and Loss) and running logs. Here, we
fine-tune Tibetan-BERT and CINO series on the
training set of TNCC-title and TU_SA to construct
the victim language models.

Next, in the adversarial example generation
stage, we choose the language model and down-
stream dataset, and then the victim language model
will be loaded. Once the “Start” button is clicked,
the attack starts and the GUI displays gener-
ated examples. Here, we implement TSAttacker,
TSTricker, and TSCheater on the victim language
models constructed from Tibetan-BERT upon the
test set of TNCC-title and TU_SA to generate the
first-round adversarial texts.

Thereafter, in the high-quality benchmark con-
struction stage, we screen out the examples
that do not satisfy the customized filter condi-
tion levenshtein_distance/text_length <= 0.1


https://huggingface.co/UTibetNLP/tibetan_bert
https://huggingface.co/hfl/cino-small-v2
https://huggingface.co/hfl/cino-base-v2
https://huggingface.co/hfl/cino-large-v2
https://github.com/FudanNLP/Tibetan-Classification
https://github.com/FudanNLP/Tibetan-Classification
https://github.com/UTibetNLP/TU_SA

from the first-round adversarial texts, and then man-
ually annotate the remaining examples to construct
the first Tibetan adversarial robustness benchmark
called AdvTS. Given an original text and an adver-
sarial text, we ask 3 annotators to score the human
acceptance of the adversarial text based on the vi-
sual and semantic similarity between the two texts,
from 1 to 5. The higher the score, the higher the
human acceptance. If all annotators score the hu-
man acceptance of the adversarial text as 4 or 5, the
adversarial text will be included in AdvTS. Below
is the guidelines for human annotation.

Score 1: Definite Reject. Humans can intuitively
perceive that the perturbations significantly alter
the appearance or semantics of the original text.

Score 2: Reject. Humans can intuitively perceive
that the perturbations do alter the appearance or
semantics of the original text.

Score 3: Marginal Reject or Accept. Humans
can intuitively perceive that the perturbations alter
the appearance or semantics of the original text not
too much.

Score 4: Accept. After careful observation or
thought for 5 seconds, humans find that perturba-
tions only slightly alter the appearance or semantics
of the original text.

Score 5: Definite Accept. After careful observa-
tion for 5 seconds, humans can not find that pertur-
bations alter the appearance of the original text. Or,
after careful thought for 5 seconds, humans find
that perturbations do not alter the semantics of the
original text.

Finally, in the adversarial robustness evaluation
stage, we utilize AdvTS to evaluate the adversarial
robustness of CINO series with Equation 1. The
AdvRobust of CINO-small-v2, CINO-base-v2,
and CINO-large-v2 is 0.5609, 0.5572, and 0.5726
respectively.

While a new language model, downstream
dataset, or textual adversarial attack method
emerges, we can enter the loop again to make the
adversarial robustness benchmark evolve.

5 Discussion

Due to the fact that humans perceive texts through
their eyes and brains, when the perturbed text tends
to the original text in visual or semantic similarity,
we consider such perturbations to be imperceptible.
To construct imperceptible perturbations, we can
start from the following three aspects.
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Transplanting existing general methods. From
the perspective of semantic approximation, using
synonyms for substitution is a general method.
Sources of synonyms can be static word embed-
dings (Alzantot et al., 2018), dictionaries (Ren
et al., 2019), and predictions of masked language
models (Li et al., 2020).

Using intrinsic textual features. Different lan-
guages have different features inherent in their texts.
For example, in abugidas (Tibetan script, Devana-
gari script, etc.), many pairs of confusable letters
result in visually similar syllables (Kaing et al.,
2024; Cao et al., 2025).

Using extrinsic encoding features. In the process
of historical development, there are many cases
of “same language with different encodings”. For
example, due to the technical problems in history,
there are two Tibetan coded character sets in na-
tional standards of P.R.C (basic set: GB 16959-
1997 and extension set: GB/T 20542-2006, GB/T
22238-2008); due to the simplification of Chinese
characters, simplified and traditional Chinese exist.
Encoding issues between different languages also
deserve attention. For example, the Latin letter x
(U+0078) and the Cyrillic letter x (U+0445) look
the same; ZWNIJ (zero width non-joiner, U+200C)
is used extensively for certain prefixes, suffixes and
compound words in Persian, but it is invisible and
useless in most other languages.

6 Conclusion

This paper introduces HITL-GAT, an interactive sys-
tem for human-in-the-loop generation of adversar-
ial texts. Our approach employs a four-stage iter-
ative loop: victim model construction, adversar-
ial example generation, high-quality benchmark
construction, and adversarial robustness evaluation.
The loop ensures adversarial robustness bench-
marks to co-evolve with advancements in language
models, downstream datasets, and textual adver-
sarial attack methods. Additionally, we demon-
strate the utility of HITL-GAT through a case study
on Tibetan script, employing three customized ad-
versarial text generation methods and establishing
its first adversarial robustness benchmark. Our
work provides a valuable reference for other lower-
resourced languages, especially languages in the
Asia-Pacific that use abugidas as their writing sys-
tem. The weaponization of lower-resourced lan-
guages against NLP security highlights the critical
gap and the urgent need for research in this area.



Limitations

The system and the case study presented in this
paper are the crystallization of our research on the
adversarial robustness of Tibetan language models
over the past few years. The summarized approach
is only applicable to classification tasks. Given
the heightened sensitivity necessary for working
with lower-resourced languages, our case study is
conducted on insensitive tasks with ethical best
practices in mind. Due to the existing conditions
of lower-resourced languages, our case study can
only be conducted this far. However, this does
not prevent it from serving as an early paradigm
for researching the evolution of adversarial robust-
ness benchmarks. We will continue to develop
HITL-GAT and conduct more case studies on other
minority languages.

Ethical Considerations

Our work adheres to the ACM Code of Ethics. The
purpose of this paper is to promote research on NLP
security, especially for lower-resourced languages.
The textual adversarial attack methods mentioned
in this paper must be used positively, thus prevent-
ing any malicious misuse. Additionally, adherence
to the model or dataset license is mandatory when
using our system or fork versions, thus preventing
any potential misuse.
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Abstract

Live commentary has the potential of mak-
ing specific broadcasts such as sports or video
games more engaging and interesting to watch
for spectators. With the recent popularity rise
of online live streaming many new categories
have entered the space, like art in its many
forms or even software development, however,
not all live streamers have the capability to be
naturally engaging with the audience. We intro-
duce a live commentator assistant system that
can discuss what is visible on screen in real
time. Our experimental setting is focused on
the use-case of a photo editing live stream. We
compare several recent vision language models
for commentary generation and text to speech
models for spoken output, all on relatively mod-
est consumer hardware configurations.

1 Introduction

Introducing live commentary to a broadcast can
meaningfully impact the enjoyment of its viewers,
but being a fun and engaging commentator is a
skill that many people simply do not possess. Ex-
isting systems can sometimes require a significant
amount of compute and often cannot function in
real-time on consumer hardware. Our goal is to
build a virtual commentator assistant system that
would be capable of functioning on a consumer-
level laptop or desktop while also performing other
resource-intensive tasks in the background or fore-
ground such as photo editing and live streaming
software.

We choose the domain of photo editing live
streaming for its simplicity and somewhat slow na-
ture. This allows us to sample the screen with a far
lower frequency, enabling all necessary computa-
tion to run on-device in adequate time. Aside from
photo editing, there are many other slow-paced cat-
egories for live streaming, such as making minia-
ture models, software and game development, or
even cooking. Additionally, the popularity of VTu-

17

Take a
Screenshot

Generate Text
Description

\ v
Select Generate Process
Animation Speech History
L

Play Speech
and Animation

| |

Cool-down

Figure 1: Live commentary system overview flowchart.

bers has tremendously grown in the live streaming
space, which are online entertainers who use virtual
avatars instead of showing themselves directly live
on camera. This inspires us to also create a visual
animated character who would be personified to
speak out the generated comments.

2 Related Work

Previous work (Ishigaki et al., 2023) has focused on
generating audio commentary from game teleme-
try data, specifically — a racing game which allows
such data collection. Unlike our work, their method
does not consider what is actually shown on the
screen. They also use a separate server for calcula-
tions and only produce audio output.

Yamazaki et al. (2023) propose an open-domain
avatar chatbot in a virtual reality environment,
which incorporates speech recognition, modules
for spoken text processing and refinement, avatar
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Figure 2: A screenshot of the user interface for con-
trol. The first row shows the main control buttons for
character animations, a status timer showing how many
seconds it takes to generate text, speech, and how long
until all speech is finished playing back, and the cool-
down timer, if enabled. Further down is the animated
character, current and previous photo (screenshot), and
the generated text comment to be spoken out.

expression generation, text to speech (TTS), as well
as use of an LLM for text comprehension and gen-
eration. While the authors mention that using an
82B parameter LLM and an in-house TTS solution
is challenging for generation speed, there is no de-
tail on what hardware is used or processing time
for each component.

Marrese-Taylor et al. (2022) sample suitable ut-
terances from open-domain input videos and gen-
erate textual commentary to enhance the viewing
experience. However, their approach is not real-
time and the nature of open-domain videos makes
the task much more difficult to tackle.

3 Architecture

The system consists of three main components as
highlighted in Figure 1 - text generation from the
screenshot, speech generation from the text and
visual expression animation based on the text con-
tents. After clicking the ‘Loop’ button (top-left in
Figure 2), the process begins and keeps running
until the ‘Stop’ button is pressed. A screenshot is
automatically taken, a text description is generated
based on the screenshot, and speech is generated
based on the text, along with selecting an appropri-
ate animation for the assistant character to display
while the speech is being played.
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After a configurable cool-down period, the pro-
cess starts again; however, in subsequent iterations,
the model is also supplied with the last screenshot
and previously generated comments, to contextu-
alise the current screenshot. To avoid the history
becoming too large and overburdening the model, a
history compaction process is also implemented, to
summarise history and compact it to a predefined
size. Figure 3 shows the system at work with the
animated avatar overlay on top of the photo editing
view, as well as the current screenshot on the bot-
tom left and the previous screenshot on the bottom
right side.

3.1 Spoken Text Generation

For the task of generating spoken text based on
the screenshot of the photo currently being edited,
we use a smaller-sized multimodal large language
model (LLM) on device to accommodate a good
balance of memory usage and relative performance.
By default we choose Phi-3.5-vision-instruct (Ab-
din et al., 2024), but the model parameter is config-
urable with support for several other similar mod-
els, which are loaded from the Hugging Face model
library'. Model performance is compared in the Ex-
periments and Results sections. We also enable the
use of online API versions of multimodal LLMs
such as Gemini-2.5-flash by Google or GPT 4o
by OpenAl to offload this more intensive task in
GPU-poor scenarios.

The comments get generated from the first
screenshot based on the default prompt (listed in
the Appendix), and then from a combination of the
most recent current screenshot and the one prior.
Previous generated comments are maintained as
context, and optionally summarised in a compact
history representation after a certain configurable
threshold.

3.2 History Compacting

By default, all the comments generated by the
model are kept in the memory, and provided to
the model as context for the user’s current activity.
If left unchecked, after a while this will result in
more time spent in comment generation, as well
as incur larger fees if a paid remote API is used.
To control this, a history size range can be speci-
fied. If a maximum size is set, then the history will
be compacted when this size (in number of com-
ments) is reached. The most recent comments, up

"https://huggingface.co/models


https://huggingface.co/models

Figure 3: A screenshot of the live-stream view with the assistant character and current/previous photos overlay.

to the minimum size setting, will be retained as-is,
while the older comments will be summarised into
a single comment representing old history.

3.3 Speech Generation

When searching for a viable approach for speech
generation, we set a criterion that the speech gen-
erated by the model should sound more like a fic-
tional character than an actual person, along with
having capabilities to generate speech with emotion
instead of being monotone. However, the main cri-
terion was model size and generation speed, while
maintaining reasonable output quality.

We found that the Kokoro-82M model® performs
amazingly well for its size and also allows for some
customisation of the generated voice. We compare
it with several other text to speech (TTS) models
in sizes up to 350M parameters in the Experiments
and Results sections.

3.4 Visual Character and Animation

To generate the visual character, we used the Al
Anime Generator® on Perchance (a platform for
creating and sharing random generators) using Sta-
ble Diffusion (Rombach et al., 2022) as a backend.
The character was generated based on a prompt

https://huggingface.co/hexgrad/Kokoro-82M
3https://perchance.org/ai-anime-generator
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describing a selection of unique visual features and
a simple uniform background for easy removal.

Next, we used the Wan2.1-12V-14B-720P model
(Wang et al., 2025) to generate short animations for
various situations. We generated several variations
of the character talking calmly to enrich the diver-
sity of expressions shown. We also prompted the
model to generate specific animations for occasions
when the character would express particular inter-
est, happiness, fear, affection and other emotions.
In addition, we prepared animation versions for the
character to enter the screen from the side; leave
the screen; wave hello or good bye; wait patiently
for the next time to start speaking; look around
to both sides pretending to be bored; and slowly
dance while nothing interesting is happening.

Running specific animations can be controlled
through the user interface (UI). However most
are selected automatically, depending on the
contents of the generated text. The selection
of specific animations expressing interest,
happiness, fear, affection and other emotions
is based on pre-defined regular expressions.
For example, the regular expression to trigger
the animation showing the character being scared is
“\b(?:scar\w+Icreep\w*|fright\w*Ispook\w*)\b".


https://huggingface.co/hexgrad/Kokoro-82M
https://perchance.org/ai-anime-generator

Model Size | R3090 G1650L R3070L R4070L R4090L M3 Pro | Average
Phi-3.5 42B 98 1110 11.0 13.6 100 103.4 43.1
Phi-4 56B | 142 - 13606 12702 11.0 - 664.0
e 3 4B | 250 5483 255 346 251 383 | 1163
12B| 314 - 4210 5102 322 S| 2487
3B 99 2472 12.4 193 1.1 207 534
Qwen 2.5-VL 7B | 102 - 12.4 32.9 10.6 - 16.5
0.5B 9.1 13.7 6.7 11.0 8.7 73 9.4
FastVLM 15B | 113 - 8.4 16.0 1.6 129 12.0
7B | 1211 - 12.9 25.8 11.9 - 15.7

Average | 149 2300 2079 2148 147 365

Table 1: Results on text description generation in seconds on select consumer hardware. We abbreviate RTX and
GTX to R and G, and Laptop to L for the NVIDIA GPU models. All results are averages over 30 runs. A dash
represents unsuccessful runs for the specific model-hardware combination.

1 Image 2 Images

Phi-3.5 4.2B 363.1 632.5
Phi-4 5.6B 385.4 682.7
Gemma 4B 534.8 727.1
12B 429.8 505.1

3B 458.1 582.0

Quwen2.5-VL 7B | 3953 6156
0.5B 690.9 779.0

FastVLM 1.5B 706.1 891.5
B 816.3 823.7

Average 531.1 693.2

Table 2: Average text length in characters with one or
two images as inputs. All averages over 30 runs.

4 [Experiments

We experiment with testing the system on four
consumer-grade gaming laptops with NVIDIA
GTX 1650 4GB, RTX 3070 8GB, RTX 4070 8GB
and RTX 4090 16GB GPUs, one desktop with
RTX 3090 24GB, and a Macbook with M3 Pro
and 18GB of memory. We run the experiments
in two different settings - 1) running all models
locally; and 2) running speech generation locally,
but relying on Google Gemini* or OpenAl GPT?
for text generation.

For text generation, we compare four differ-
ent multimodal language model families and test
model sizes from 0.5B to 12B parameters. The
models are compared on generation speed, length
of the generated comments, and also how much do

“Gemini 2.5 Flash-Lite (August 2025) - https:
//ai.google.dev/gemini-api/docs/models#gemini-2.
5-flash-lite

SGPT-40 mini (August 2025) https://platform.
openai.com/docs/models/gpt-40-mini
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newly generated comments overlap with previously
generated comments in the same session.

Meanwhile in terms of speech models, we only
consider models up to 350M parameters in size,
as anything larger takes too much time and GPU
memory to feasibly be part of our system. TTS
models are mainly compared in terms of generation
speed.

Flash attention (Dao, 2024) is used on compati-
ble hardware (everything except M3 Pro and GTX
1650). All models are loaded with 4-bit precision
(Dettmers et al., 2023) if compatible (everything
except M3 Pro and the Phi-4 model).

A short demonstration video recording is avail-
able on YouTube®. We also release our source code
in a public GitHub repository under a permissive

license’.

5 Results

The experiment results maily help us validate
model compatibility with reasonable consumer
hardware, as well as validate our choices of default
models and other supported models. We consider
the laptop with the RTX 4090 Laptop GPU as our
main baseline hardware configuration, the GTX
1650 Laptop GPU — our minimum configuration,
and the M3 Pro — our alternative configuration.

5.1 Text Generation

For the task of comment generation, we compare
the following versions of recent multimodal LLMs
— Phi 3.5 Vision Instruct (Abdin et al., 2024), Phi

Shttps://www.youtube.com/watch?v=LuPcfsqPSso
7https://github.com/M4t1ss/
live-photo-commentary


https://ai.google.dev/gemini-api/docs/models#gemini-2.5-flash-lite
https://ai.google.dev/gemini-api/docs/models#gemini-2.5-flash-lite
https://ai.google.dev/gemini-api/docs/models#gemini-2.5-flash-lite
https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4o-mini
https://www.youtube.com/watch?v=LuPcfsqPSso
https://github.com/M4t1ss/live-photo-commentary
https://github.com/M4t1ss/live-photo-commentary

History O History 1 History 5 Average

Model Size tok chr tok chr tok chr tok chr
Phi-3.5 42B | 53.1% 83% 558% 82% 80.4% 19.7% | 63.1% 12.1%
Phi-4 5.6B | 56.9% 72% 702% 65% 91.6% 532% | 72.9% 22.3%
Gemma 4B | 55.6% 124% 51.1% 83% 59.0% 9.5% | 552% 10.1%
12B | 50.4% 11.8% 468% 95% 49.1% 9.6% | 48.8% 10.3%
3B | 528% 69% 460% 74% 7T13% 22.5% | 56.7% 12.3%

Qwen2.5-VL
7B | 504% 81% 487% T1.7% 454% 9.0% | 482% 8.3%
0.5B | 56.0% 10.1% 932% 53.5% 99.3% 82.3% | 82.9% 48.7%
FastVLM 1.5B | 594% 92% 90.1% 24.4% 98.5% 47.0% | 82.7% 26.9%
7B | 573% 81% 79.0% 79% 87.5% 358% | 714.6% 17.3%
Gemini 2.5-flash | 432% 85% 398% 8.0% 43.6% 7.6% |422% 8.0%
GPT 4o-mini | 52.1% 12.9% 514% 11.0% 48.1% 129% | 50.5% 12.3%

Average | 54.7%  9.1% 64.5% 148% 758% 32.1%

Table 3: Average text overlap between the last two generated comments with different history compacting thresholds
in terms of overlapping tokens (tok) and character substring overlap (chr).

4 Multimodal Instruct (Abouelenin et al., 2025),
Gemma 3 (Kamath et al., 2025) in 4B and 12B
sizes, Qwen 2.5-VL (Bai et al., 2025) in 3B and
7B sizes, and FastVLM (Vasu et al., 2025) in 0.5B,
1.5B and 7B sizes.

As can be seen in table 1, all tested models run
smoothly on the baseline configuration and gener-
ate comments within 10-11 seconds, aside from the
two Gemma 3 models, which overall seem to be
among the slowest on all tested hardware. However,
both on the minimum and the alternative config-
urations Phi 4, Gemma 3 12B, Qwen 2.5-VL 7B
and FastVLM 7B are entirely unable to run. Out of
all models tested, Phi 4 has the least compatibility
— unable to run on two GPUs and on two others
taking over 20 minutes to produce a result.

Table 2 shows that the FastVLM models tend to
generate longer outputs regardless whether the in-
put is one image or two. The other models generate
comments with an average length of 446 characters
while the average for FastVLM models is 686 char-
acters. Comparing two image inputs to one image
input, the increase in average generated characters
is around 160, with outliers like Phi 3.5 almost dou-
bling the amount compared to single image, and
Gemma 3 12B only generating around 40 charac-
ters more for dual image inputs.

Upon manual inspection of the generated com-
ments, we noticed that at times there is substan-
tial overlap between the current and previous com-
ments generated by some models, or even a 1:1
copy — not based on the input images at all. There-
fore, we evaluated handling of our history feature
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Model Size | Time, s
Bark 300M 48.8
Bark-small 8OM 27.5
Kokoro-82M 82M 0.5
OuteTTS-0.1 350M 87.6
MMS-TTS-ENG  36M 58
SpeechT5 145M 75

Table 4: Comparison of several smaller text to speech
models, showing model size and average generation
time over 10 runs. Input text was on average 555 char-
acters long ranging between 347 and 828 characters.

by the LLMs using a set of 10 consecutive photos
from the same photo shoot as inputs. In table 3
we look at how the multimodal LLMs handle our
history compacting approach, by comparing pass-
ing history lengths of 0 (history turned off), 1, and
5 previously generated comments along with the
prompt. We measure the percentage of overlapping
tokens (words) between two consecutive outputs,
as well as the percentage of overleaping characters.
The FastVLM models are overall worst in terms ov
both overlap metrics, while Gemma 3 and Qwen
2.5-VL models along with Gemini and GPT APIs
perform best here. Some models like both Phi mod-
els, Qwen 2.5-VL 3B, and FastVLM 7B only suffer
from the overlapping output issue with the longer
history of 5 comments.

5.2 Speech Generation

Most modern TTS models have at least 0.5B pa-
rameters, which can hinder efficient execution on
consumer hardware. We test base and small ver-



sions of the Bark model from Suno®, Kokoro-82M,
OuteTTs-0.1°, MMS-TTS-ENG (Pratap et al.,
2024), and SpeechT5 (Ao et al., 2022). As these
models are quite small in terms of parameters, we
only consider testing on our baseline hardware con-
figuration. All tests were performed on 10 pre-
viously generated comments from Phi 4, ranging
between 347 and 828 characters in length.

Table 4 shows that the Kokoro-82M is by far
the overall fastest TTS model, taking on average
only 0.5 seconds to generate speech for the previ-
ously generated comments from the multimodal
LLMs, which is over 10 times faster than the next
fastest — MMS-TTS. Based on these results, we
select Kokoro-82M as the default model and add
MMS-TTS-ENG and SpeechTS5 as alternative op-
tions to select in our system.

6 Conclusion

In this paper, we introduce a live commentator as-
sistant system for the use case of photo editing
online live streaming, which generates real-time
commentary based on what is visible on-screen.
It is capable of fully functioning locally alongside
live streaming and photo editing software with mod-
erate consumer hardware requirements, as well as
utilising multimodal LLM APIs to offload a major
part of the required computation supporting even
lower-grade hardware.

For future work we consider a wide range of
potential improvements and expansions of our pro-
posed task. In terms of expanding the scope of the
task, we plan on utilising dialogue-styled commen-
tary based on either user input or live-stream chat
to make the interaction even more engaging. Other
avenues of expanding the scope include enhancing
live streams with additional explanatory graphics
as on-screen overlays, and exploring the applica-
bility of short video capture commentary. As for
the actual quality of the generated text, we plan on
performing a small-scaled human evaluation study
to obtain a broader insight on the quality of the
generated text beyond token and character overlap.
Further improvements of output quality may also
be achieved by implementing output filtering based
on heuristics (Rikters, 2018) or the model attention
mechanism output (Rikters and Fishel, 2017).

8https://github.com/suno-ai/bark
*https://github.com/edwko/OuteTTS

Limitations

In this work, we only considered using models that
are publicly available at no cost to enable repro-
ducibility. The computation setup for our experi-
ments is relatively modest and well within reach
for most who would be willing to reproduce our
experiments.

Our proposed system is easily reproducible with
publicly available model checkpoints and open-
source tools which are cited in this paper. Our full
workflow shall be released on GitHub. For the blind
submission, we prepared an anonymised version
as an attachment. Our system is also not limited
to the specific model families cited in the paper,
so one could simply swap out the text or speech
models for others compatible with the Hugging
Face Transformers workflow.

Ethical Considerations

Our work is fully in accordance with the ACL Code
of Ethics'?. We use only publicly available open-
weight models and relatively low compute amounts
while conducting our experiments to enable repro-
ducibility. We do not conduct studies on other
humans or animals in this research.
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A Prompt Format

Table 5 shows examples of prompts used for gener-
ating comments. We use the exact same prompts
for all models without fine-tuning them to each
model individually. The default example prompts
are formed in a way that works best with our pro-
posed use-case of editing photography (e.g. men-
tioning gridlines, sliders, addressing the photogra-
pher). For other use-cases these prompts can be
updated as needed.
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Prompt Text Addition
SYSTEM You are a friendly chatty commentator who likes to casually describe
work done by a photographer in various details, even by pondering
the implications on work, or leisure, being performed, etc. Write
your response in a very personal way using personal pronouns and
explaining what you see, perhaps also adding how it makes you
feel. Do your best to not be repetitive in your choice of words. You
MUST keep the response length to no more than three sentences.
You MUST NOT mention any specific layout elements or tools that
may be visible on the screen, such as gridlines or sliders.

MAIN Summarize what is visible in the current photo, <limage_1I>. How | + ENDING
is it different from the previous photo, <limage_2I>? There may be
some subtle differences as well. Do not describe the previous photo;
assume you have described it already. It is only there for context, so
you can notice the new things in the current photo. Do not mention
photos explicitly; use words like ‘I can see...” or ‘The photographer
is now... and similar. Use the comment history for context and
continuity, but the utmost priority should be on describing the current
activity, as reflected in the current photo. DO NOT repeat comments
from the history.

FIRST Summarize what is visible in this image: <limage_1/> + ENDING
ENDING Do not at all mention any specific layout elements or tools that may

be visible on the screen, such as overlays, gridlines or sliders. To

adjust intonation, please add dedicated punctuation like ; : ,. ! ?

... () “” For example, to emphasize a word or a phrase, surround it
with "quotation marks". However, since the text will undergo speech
synthesis, do not use anything unpronounceable, like emojis.
COMPACT | Summarize in one short paragraph your (the assistant’s) comments
so far on the current activity; i.e. compact it into a single com-
ment of comparable size to one individual original comment, that
encapsulates the essence of the current activity’s past. If some older
comments pertain to a different activity, you can ignore them; fo-
cus only on the current activity. This is what you (the assistant)
commented before:

HISTORY This is what you (the assistant) commented before:

Table 5: Examples of prompts used for comment text generation. The FIRST prompt is used only at the beginning
when there is just one screenshot, after which the MAIN prompt is used. The HISTORY prompt is used to maintain
recent context, and COMPACT - for consolidating older history into a short summary.
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Abstract

Communicating complex scientific findings to
non-experts remains a major challenge in fields
like psychology, where research is often pre-
sented in highly technical language. One ef-
fective way to improve accessibility, for non-
experts, is through plain language summaries,
which summarize key insights into simple and
understandable terms. However, the limited
number of institutions that produce lay sum-
maries typically relies on psychology experts
to create them manually — an approach that
ensures high quality but requires significant ex-
pertise, time, and effort. In this paper, we intro-
duce the KLARpsy App, a system designed to
support psychology experts in creating plain
language summaries of psychological meta-
analyses using Large Language Models (LLM).
Our system generates initial draft summaries
based on a 37-criterion guideline developed to
ensure clarity for non-experts. All summaries
produced through the system are manually val-
idated and edited by KLARpsy authors to en-
sure factual correctness and readability. We
demonstrate how the system integrates LLM-
generated content into an expert-in-the-loop
workflow. The automatic evaluation showed a
mean semantic-similarity score of 0.73 against
expert-written summaries, and human evalua-
tion on a 5-point Likert scale averaged above
3 (higher is better), indicate that the generated
drafts are of high quality. The application and
code are open source.

1 Introduction

Plain language summaries play an important role
in making scientific findings accessible to broader
audiences. In psychology and other disciplines,
research findings are often communicated in tech-
nical language that can be difficult for non-experts
to understand. This becomes especially challeng-
ing in the context of meta-analyses, where findings
from multiple studies are summarized using spe-
cialized terminology and statistical information.
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Figure 1: Workflow overview of the KLARpsy App,
which follows the KLARpsy guidelines for summariz-
ing psychological texts.

In recent years, there has been a growing initia-
tive both in policy and practice — to promote more
accessible scientific communication. For example,
plain language summaries are now required for
clinical trials in the European Union (under Regu-
lation EU No. 536/2014; European Commission,
2023; Center for Drug Evaluation and Research
et al., 2017; European Medicines Agency, 2022).
These efforts aim to help non-experts understand
and engage with research evidence.

Despite these developments, creating plain lan-
guage summaries remains a time-consuming and
expert-driven task. Summaries need to be both
clear and accurate — especially in fields like psy-
chology, where findings often inform health deci-
sions or clinical practice. At the same time, new
tools based on large language models offer promis-
ing support for generating initial drafts. These
models are capable of producing fluent text (Shaib
et al., 2023; Turbitt et al., 2023), but their reliabil-
ity, particularly when it comes to factual accuracy,
remains limited (Tomlin et al., 2024).

In this paper, we present KLARpsy App (Fig-
ure 1), a system developed to support psychol-
ogy experts in creating plain language summaries
of psychological meta-analyses'. Rather than re-

'We refer to scientific publications that include at least one
meta-analysis as “meta-analyses”.

Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics: System Demonstrations, pages 25-35
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placing human expertise, the system is designed
to work alongside it. It generates initial drafts
based on a structured 37-point guideline to pro-
duce summaries for lay readers (Chasiotis et al.,
2023). These drafts are then reviewed, edited, and
finalized by domain experts, as ensuring factual ac-
curacy and accessible language is essential. Even
in full expert workflows, lay summaries are often
checked by other experts or by laypersons.

Our approach highlights the potential of human-
Al collaboration in scientific communication. By
combining the efficiency of LLMs with expert
oversight, KLARpsy App aims to reduce the
load of producing summaries while maintain-
ing high standards of quality. We also pro-
vide an evaluation, both automatic and human,
of the system’s outputs to better understand
its strengths and limitations in practice. The
code and an installable executable are available
at https://github.com/leibniz-psychology/
klarpsy-summarization-assistant.

2 Related Work

Automatic plain-text generation has been a long-
standing area of research in natural language pro-
cessing. Early work in this space focused on
rule-based and statistical methods. Classical ap-
proaches include template-based generation and
extractive summarization techniques that rely on
word-frequency and cue-phrase detection (Tas and
Kiyani, 2017; Reiter and Dale, 1997; El-Kassas
et al., 2021; Kloehn et al., 2018).

In recent years, the field has increasingly shifted
toward the use of large language models — such
as GPT-Family (OpenAl, 2022, 2023), LLaMA-
Family (Touvron et al., 2023; Grattafiori et al.,
2024), and Mixtral (Jiang et al., 2024) — due to
their ability to generate fluent, coherent text. This
transition has significantly influenced the develop-
ment of plain language summaries, especially in the
scientific and biomedical domains. Recent work
has evaluated LLMs in generating lay summaries
of complex biomedical content, often highlighting
their strengths in readability and fluency (Shaib
et al., 2023; Turbitt et al., 2023; Tailor et al., 2024).

However, a limitation in LLM-based applica-
tions — not only summarization — is the risk of
hallucination (i.e., the generation of inaccurate or
fabricated information), which is particularly prob-
lematic in medical and scientific contexts where
factual accuracy is critical (Tomlin et al., 2024).
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For instance, Fang et al. (2024) introduced the
FAREBIO benchmark to evaluate factual consis-
tency in biomedical lay summaries, showing that
high fluency often correlates with diminished fac-
tual reliability.

To address this limitation, recent studies have
explored human-in-the-loop frameworks where
LLMs serve as assistive tools rather than stan-
dalone applications (Ovelman et al., 2024; Salazar-
Lara et al., 2024; Tomlin et al., 2024; Chamber-
lain James, 2024). For example, Shyr et al. (2024)
used engineered prompts with ChatGPT-4 to gener-
ate layperson-level summaries of clinical research
abstracts. They validated performance using partic-
ipant feedback from the ResearchMatch platform.
Srivastava et al. (2024) introduced PIECE, a system
that improves mental health dialogue summariza-
tion by first selecting important parts of the conver-
sation using counseling knowledge. It then guides
a language model with a structured plan to gener-
ate clearer and more accurate summaries. Showing
the importance of humans in the loop, which is
especially relevant in health care systems.

Our work builds on previous research by guiding
LLM-based generation using a 37-point psycholog-
ical guideline to produce lay summaries (Chasiotis
et al., 2023). Rather than aiming to fully automate
the process, our application is designed to function
as a tool within a human-in-the-loop framework.
The generated summaries are reviewed and vali-
dated by psychological experts to ensure accuracy
and clarity.

3 KLARpsy App

This section introduces KLARpsy App, a system
designed to assist psychology experts in generating
plain language summaries of psychological meta-
analyses. The tool uses a retrieval-augmented gen-
eration (RAG) system to produce initial summary
drafts (in an MDX format, similar to a Markdown
file), which are then reviewed and refined by do-
main experts and published®. The draft is guided by
a 37-point criterion developed specifically for gen-
erating lay psychological summaries. Rather than
replacing expert judgment, KLARpsy App sup-
ports a human-in-the-loop workflow that ensures
both clarity and factual correctness. Section 3.1
provides a detailed overview of the system’s archi-
tecture and workflow, while Section 3.2 outlines
the psychological guideline that guides the system.

Zhttps://klarpsy.de/klarpsytexte/
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3.1 System Description

KLARpsy App is implemented as a retrieval-
augmented generation system (Figure 1) using a
client/server architecture. The client provides an
easy-to-use interface for non-computer-science ex-
perts (e.g., psychologists), while the server per-
forms the computationally intensive model infer-
ence. In this paper, we use OpenAl’s GPT family
as the backend because it eliminates the need for
local GPU resources, enabling distribution as a
standalone executable (e.g., a Windows .exe or a
macOS .dmg) for non-technical users. The system
can be easily updated to run local language models.

The application accepts as input one or more
PDF files (meta-analyses), and optionally, a con-
figuration file that specifies parameters such as the
underlying model, API credentials, section lengths,
and custom prompts.

The system is designed to generate 16 distinct
sections that together form a plain language sum-
mary of a psychological meta-analysis. These sec-
tions include, for example, the Title, Background,
and Research Question, and are structured accord-
ing to the criteria defined in the KLARpsy guide-
line. Each section is generated independently,
based on relevant content extracted from the meta-
analysis. However, to maintain coherence and
consistency across the full summary, the system
models interdependencies between sections. For
instance, the generation of the Title and Main
Message depends on the content of the Research
Question section. To handle these dependencies,
KLARpsy App employs a chain-of-thought prompt-
ing strategy, where the content from earlier sections
is explicitly passed as input into the generation of
subsequent sections. For example, when gener-
ating the Title, the system first extracts the origi-
nal scientific title from the meta-analysis and then
paraphrases it to align with the identified research
question.

The KLARpsy guideline defines two types of
sections in the lay summary, each requiring a dif-
ferent generation strategy: (1) Free-text generation
sections (e.g., Background, Interpretation of Re-
sults) are generated using zero-shot and few-shot
prompting, guided by open-ended natural language
instructions that incorporate the KLARpsy criteria
(e.g., “Explain this in simple terms for a general au-
dience.”). (2) Information extraction and template
filling sections follow fixed structures (e.g., Study
Objective, Participant Information) that are gener-
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ated using structured extraction and output genera-
tion techniques (Willard and Louf, 2023; OpenAl,
2024). Prompts for these sections include explicit
output schemas to ensure the model adheres to pre-
defined formats such as bullet points, labeled fields,
or fixed templates (e.g., “The researchers searched
for studies [topic_of_the_meta-analysis]. [Descrip-
tion_of_selection criteria]”).

To further ensure the quality of the generated
content, each section undergoes an automatic eval-
uation and optimization loop, which includes Struc-
tural checks (e.g., section length, formatting com-
pleteness) and readability assessments using estab-
lished metrics such as Flesch Reading Ease (Flesch,
1948), Gunning Fog Index (Gunning, 1952), and
SMOG Index (Mc Laughlin, 1969), to verify that
the language is accessible to non-experts.

3.2 KLARpsy Guideline

The KLARpsy guideline (Chasiotis et al., 2023)
provides a structured framework for writing lay
summaries of psychological meta-analyses. De-
veloped at the Leibniz Institute of Psychology
(ZPID)3, it aims to make complex research find-
ings transparent and accessible to a non-specialist
audience while maintaining neutrality and scien-
tific accuracy.

Each KLARpsy text consists of 16 standard-
ized content sections: Title, Key message, Authors
and Affiliations, Background, Research Question,
Study Selection, Study Selection Criteria, Study
Approach, Study Variables, Key Results, Result
Interpretation, Result Bias, Results Reliability, Ev-
ery Day Relevance, and Funding and Conflicts of
Interest (See Appendix A for an example). The
guideline includes 37 criteria, organized into six
categories: (1) General content ensures alignment
with the original meta-analysis; (2) Contextual at-
tributes address target audience and publication
process; (3) Linguistic attributes cover tone, choice
of words (e.g., handling of jargon and technical
terms); (4) Formal attributes relate to structure,
standardized formulation, and word limits, etc.; (5)
Presentation of results guides the reporting of sta-
tistical findings; and (6) Presentation of evidence
quality covers reliability of the evidence, such as
reporting ratings or disclosing authors’ conflicts of
interest.

*https://leibniz-psychology.org/
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4 Evaluation

We evaluate the initial drafts produced by
KLARpsy App, which are intended to be refined
through human-in-the-loop editing, using both au-
tomatic (Section 4.1) and human (Section 4.2) eval-
uations. In addition, in Section 4.3, we compare
KLARpsy App against FlexRAG (Zhuocheng et al.,
2025), an out-of-the-box RAG system.

4.1 Automatic Evaluation

The automatic evaluation consists of two parts: (1)
assessing how well the KLARpsy App replicates
expert-written summaries; and (2) evaluating the
application’s ability to generate lay summaries.

For the first part, we use 99 expert-written lay
summaries as gold standards.* We then compare
the model-generated summaries at the section level
using two methods: BLEU scores and semantic
similarity (we prompt GPT-4 to rate the similar-
ity between corresponding sentences on a S-level
scale). BLEU provides a standard measure of
word-level overlap, while the semantic-similarity
score captures the overall idea even when phras-
ing differs. Table 1 reports the performance of the
KLARpsy App replicating KLARpsy texts (expert-
written). As expected, BLEU scores are generally
low, since the same information can be phrased in
many different ways. The exception is the Authors
section, where BLEU scores are higher because
author names must be directly extracted from the
paper, leaving little room for paraphrasing. Se-
mantic similarity (S. sim.), however, provides a
more informative signal, showing stronger align-
ment between generated and human-written text.
Sections involving information extraction (e.g., Au-
thors, Conflict of Interest, Study Selection) achieve
the highest similarity scores. In contrast, sec-
tions requiring more open-ended generation have
a slightly lower performance (e.g., Research ques-
tion, Background). Notably, the Results Reason
section shows one of the lowest scores (0.56), likely
reflecting the tendency of LLMs to generate as-
sertive rather than uncertain statements — a limita-
tion we discuss further in Section 4.2.

We evaluate readability using three standard
indices: (1) Flesch Reading Ease (FRE), which
ranges from 0—100 with higher values indicating

“The 99 lay summaries were written by an expert and re-
viewed by another expert and a layperson to guarantee factual
accuracy and accessible language, following the KLARpsy
guideline. The summaries are available at https://klarpsy.
de/klarpsytexte/)
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Section KLARpsy FlexRAG
BLEU S. sim. BLEU 8. sim.

Title 0.02 070 0.01 0.13
Key message 0.03 0.62 0.01 0.10
First author 022 0.67 0.04 0.33
Affiliation 0.06 049 003 0.14
Authors 0.68 0.80 0.00 0.08
Background 0.02 0.62 001 0.13
Research Question 0.09 0.75 0.01 0.13
Selection criteria 0.04 0.65 000 0.18
Study selection 0.10 0.63 0.01 0.17
Study approach 0.04 062 001 0.15
Study variables 0.02 0.63 0.00 O0.11
Key results 0.03 0.66 0.00 0.12
Results reason 0.07 053 0.00 0.14
Results bais 033 0.85 0.08 0.80
R. reliability 0.02 045 001 0.17
Everyday relevance 0.02 0.56 0.01 0.12
Funding 0.11 058 0.00 0.05
Conflict of interest 045 0.80 0.01 0.13
Average 0.15 0.73 0.01 0.20

Table 1: Evaluation of KLARpsy App and FlexRAG
against 99 human-written texts across the KLARpsy
sections.

easier text, (2) Gunning Fog Index, and (3) SMOG
Index, both of which estimate the years of educa-
tion required for comprehension (lower scores indi-
cate simpler text). Table 2 reports scores for gener-
ated text, with expert-written references shown in
parentheses. On average, KLARpsy App achieves
a Gunning Fog score of 15.1 and a SMOG score of
13.8 — similar to expert-written texts — correspond-
ing to a high school to early college reading level.
This aligns with FRE values and suggests that read-
ers do not need specialized training or professional
expertise to understand the generated summaries.

4.2 Human Evaluation

For the human evaluation, three psychological ex-
perts evaluate the 10 generated lay summaries us-
ing a five-point Likert scale (Not at all, Slightly,
Somewhat, Moderately, Extremely) across six state-
ments: (1) the information in this slot correctly re-
flects the content/title; (2) the text avoids irrelevant
information; (3) the language is understandable for
laypeople; (4) the uncertainty in existing scientific
findings is adequately reflected in the choice of
words (or the language too assertive); (5) the text is
neutral (i.e., without judgemental or advice); and
(6) I would not recognize that the text has been
written by an Al These aspects were chosen based
on the requirements of the KLARpsy guideline.
Lay summaries are expected to use a neutral and
non-directive tone to ensure that they are not mis-
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Figure 2: Section-level human evaluation results. Each heatmap shows the distribution of scores (1-5; higher/darker
is better) across six evaluation criteria (x-axis) for the 10 papers (y-axis). Columns with a value of zero indicate that
the criterion was not applicable (e.g., uncertainty does not apply to author names).

understood as guidelines or directions, but instead
as evidence-based information. Table 3 reports the
inter-annotator agreement among the three experts,
with an average across the 16 sections of 0.60, in-
dicating a high level of agreement.

Figure 2 presents heatmaps of section-level
scores across the six criteria. Information extrac-
tion sections (e.g., Selection Criteria, Authors, and
Funding Information) scored consistently high—
predominantly dark green cells. In contrast, sec-
tions involving the presentation and interpretation
of results (e.g., Study Variables, Research Ques-
tion, and Results Reason) showed lower scores —
primarily due to Criterion 4 (Is uncertainty in ex-
isting findings adequately reflected ... ?) and Crite-
rion 2 (Is irrelevant information included?). These
results show that while LLMs handle information
extraction reliably, they tend to produce verbose
formulations and overstated claims about findings
(e.g., “Treatment X helped patients” instead of
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“Treatment X benefited N out of 100 patients™).

Table 4 shows the average score for each evalua-
tion criterion across the 16 sections. Most criteria
received scores above 3, indicating that the gener-
ated texts were generally of acceptable quality. The
exception is Criterion 4, which averaged 2.05, rein-
forcing the automatic evaluation results reported in
Section 4.1 and reflected in Figure 2.

4.3 Baseline Comparison

We  compare KLARpsy App  against
FLEXRAG (Zhuocheng et al., 2025), an off-
the-shelf RAG system, using the same set of 99
meta-reviews described in Section 4.1. To ensure
a fair comparison, both systems rely on the same
underlying model, GPT-4.0. For FLEXRAG,
each summary was generated by providing only
the meta-analysis and the KLARpsy guideline
as prompts. Table 1 reports the BLEU scores
and sentence similarity scores (against the 99



Section FRE Gunning SMOG
Title 50.0 (28.5) 12.4(15.8) 11.5(12.9)
Key message 41.5(25.2) 13.8(16.6) 13.2(14.7)
Background 37.5(31.6) 14.9(15.1) 13.4(13.9)
Research Question 38.0 (38.6) 16.8 (16.2) 14.8 (14.5)
Selection criteria 44.5(29.0) 14.3(17.1) 13.4(15.1)
Study selection 42.5(54.7) 14.6 (12.3) 13.5(11.8)
Study approach 38.1(25.4) 15.5(18.7) 14.7 (16.3)
Study variables 17.4 (15.1) 24.7 (28.4) 19.5(23.3)
Key results 30.4 (31.3) 16.8(15.0) 15.5(13.5)
Results reason 29.2 (34.9) 17.1 (15.2) 15.3 (14.3)
Results bias 46.4 (47.5) 11.6 (11.0) 10.9 (10.6)
R. reliability 44.4 (33.1) 13.6 (14.7) 13.2(13.7)
Everyday relevance 33.1 (31.3) 15.2 (16.2) 14.3 (14.8)
Funding 47.4 (36.0) 13.7(17.2) 12.8 (15.1)
Conflict of interest  53.7 (60.7) 11.5(9.8) 11.4(10.1)
Average 39.6 (35.2) 15.1(15.5) 13.8(14.2)

Table 2: Evaluation of KLARpsy App generated text
on readability using the Flesch Reading Ease (FRE),
Gunning Fog (Gunning) Index, and SMOG Index across
the KLARpsy sections. Readability scores for expert-
written texts are shown in parentheses.

expert-written summaries) across the 16 sections.
Although BLEU scores are low for both systems,
KLARpsy App outperforms FLEXRAG across all
sections. Sentence similarity scores show a similar
trend. KLARpsy App outperforms FlexRAG with
an average score of 0.73 compared to 0.20. These
results suggest that lay summarization cannot be
reliably achieved with an out-of-the-box RAG
system.

5 Conclusion and Future Work

We introduced KLARpsy App, a RAG system that
supports psychology experts in creating plain lan-
guage summaries of meta-analyses. Guided and
optimized by a 37-point guideline, the system pro-
duces layperson-friendly drafts that experts refine
for factuality and clarity — in a human-in-the-loop
workflow. Automatic evaluation shows that the
model produces solid initial drafts, achieving a sim-
ilarity score of 0.73 compared to expert-written
texts. Human evaluations indicated strong overall
performance, with scores exceeding 3 out of 5 on
most criteria. The only exception was criterion 4
(“uncertainty expression”), which received a score
of 2. This finding strengthens the need for experts
in the loop, as LLLMs tend to produce verbose for-
mulations and overstated claims about findings.

In future work, we will explore automatic
prompt-optimization techniques to refine prompts
so they better match the domain of each meta-
analysis (e.g., education, crime and law, media,
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Section Krippendorff’s o
Title 0.31
Key message 0.53
Authors 0.59
Background 0.22
Research question 0.85
Study selection 0.77
Selection criteria 0.53
Study approach 0.86
Study variables 0.83
Key results 0.21
Results reason 0.53
Publication bias 0.33
Results reliability 0.77
Everyday relevance 0.53
Funding info 0.81
Conflict of interest 0.93
Average 0.60

Table 3: Inter-annotator agreement between three ex-
perts, reported as Krippendorff’s « for each section and
overall.

Criterion Avg.

Does the information in this slot correctly reflect the 3.32
content title?

Does the text avoid irrelevant information? 3.18
The language is understandable for laypeople. 341
Is uncertainty in existing scientific findings adequately 2.05
reflected in the choice of words (or is the language too
assertive)?

The text is neutral (i.e., without judgemental or advice) 4.31
I would not recognize that the text has been written by 4.36
an AL

Table 4: Average ratings (1-5 scale) for each criterion.

mental health). In addition, we plan to investigate
reinforcement learning with an expert in the loop
and expand the KLARpsy App to additional lan-
guages.

6 Limitations

Summarising scientific texts for a lay audience in-
evitably involves a trade-off between accessibility
and technical accuracy. Making complex findings
easier to understand often requires simplifying ter-
minology and concepts, but this can risk omitting
important qualifiers or subtly changing the intended
meaning. Our design addresses this by position-
ing KLARpsy App as a tool to assist, rather than
replace, domain experts. However, this approach
depends on experts being available to review and
refine outputs, which may limit scalability in prac-
tice.

The system is built around a psychological guide-
line developed specifically for plain language sum-



maries of meta-analyses in psychology. While this
framework could serve as a starting point for other
fields, it would require adaptation to the terminol-
ogy, conventions, and standards of each specific
domain. This limits its immediate, “out-of-the-box”
applicability beyond psychology.

7 Ethical Considerations

The presented work involves generating plain-
language summaries of psychological meta-
analyses using large language models. LLMs may
introduce hallucinations or overly confident claims
that could mislead non-expert readers. Since inac-
curate information may affect public understand-
ing of scientific findings, the KLARpsy App out-
puts are intended only as initial drafts for experts
rather than as a fully automatic tool. Moreover, the
KLARpsy App is designed specifically for sum-
marizing psychological meta-reviews and has not
been tested in other domains. Therefore, the use
outside of psychology should be validated by do-
main experts.

We use GPT-4.0 as the underlying model, and
results may vary with other LLMs or future model
updates. Summary quality and accuracy may differ
across models, so applying the system with alterna-
tive LLMs requires additional validation.
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A Lay Summary Example from the KLARpsy App

In the next sections, we present the same lay summary produced by psychology experts (Section A.1) and
by KLARpsy App (Section A.2).5 All summaries are generated from the meta-analysis reported in Otten
et al. (2022).

A.1 Human Generated Summary

title: "Is the risk of ADHD higher in babies who had early exposure to antibiotics?”

key_message: "Babies do not have an increased risk of ADHD if they receive antibiotics shortly after
birth. However, babies do have an increased risk of ADHD if their mothers take antibiotics
during pregnancy.”

### Background:

"ADHD (Attention-Deficit/Hyperactivity Disorder) is one of the most common developmental disorders of

the nervous system. The gut microbiota also plays an important role in the development of such

disorders. It can be disrupted when antibiotics are taken. Therefore, researchers are examining
whether early exposure to antibiotics can lead to a child developing ADHD."

### Research question:
"With their review, the researchers wanted to find out: Do babies who come into contact with
antibiotics very early have a higher risk of developing ADHD later on?”

### Which studies did the researchers look for in the review?

"The researchers looked for studies that examined a connection between early exposure to antibiotics
as a baby and the development of ADHD. The exposure to antibiotics had to occur during the
mother’s pregnancy or up to two years after birth.”

### Which studies did the researchers find for the review?

"The researchers found a total of 8 studies from the years 2016 to 2021. Of these, 4 studies from the
years 2019 to 2021 involved babies who received antibiotics after birth, which they could
combine into a meta-analysis. These results pertain to 1,863,867 babies. Another 4 studies from
the years 2019 to 2021 involved babies whose mothers took antibiotics during pregnancy, which
they could combine into another meta-analysis. These results pertain to 2,398,475 babies.”

### What did the researchers do in the review?
"In the 8 studies, the researchers examined whether early exposure to antibiotics increased the risk
of infants developing ADHD later on."

### What did the researchers investigate in the review?
"The following characteristics of the babies were examined:

- Type and timing of contact with antibiotics
- Before birth
- The mother took antibiotics during pregnancy.
- The mother did not take antibiotics during pregnancy.
- After birth
- The baby received antibiotics in the first two years of life.
- The baby did not receive antibiotics in the first two years of life.
- Development of ADHD in childhood
- The baby later developed ADHD in childhood.
- The baby did not develop ADHD later in childhood.”

## What are the most important results?

"~ When the mothers of the babies took antibiotics during pregnancy, the risk of the babies
developing ADHD later was significantly higher. The summary risk measure, Hazard Ratio, was 1.23.
This means that the risk of these babies developing ADHD later was 1.23 times higher compared
to babies whose mothers did not take antibiotics during pregnancy.

- When the babies received antibiotics after birth, the risk of them developing ADHD later was not
significantly higher compared to babies who did not receive antibiotics after birth.”

### What is the reason for the results?
"The review article observed a correlation between the intake of antibiotics during the mother’s
pregnancy and a subsequent ADHD diagnosis in the child. Due to the types of studies that were

SFor space reasons, we omit all comments and interface-related code that is constant across summaries. The expert version
was originally written in German, machine-translated into English, and then double-checked by the experts.
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considered, it is only known that this correlation exists. However, it cannot be definitively
stated that the antibiotics caused the ADHD."

### Are the results biased by limited publication of studies?
- What is the issue? Clear research results are easier to publish than ambiguous results. This is
problematic for reviews. They cannot take unpublished results into account.
"- xxWhat is it about?** Clear research findings are easier to publish than ambiguous results. This
poses a problem for review articles because they cannot take unpublished results into account.

- *xWhat does this mean for the present review article?*x The researchers do not specify whether
there are indications of such biases. It remains unclear whether the connection between
antibiotics and ADHD is actually smaller than calculated in this review article.”

### How reliable are the results?

"All the studies examined were observational studies. From these results, it cannot be determined
whether antibiotics actually cause ADHD. ADHD could also have been caused by something else,
such as the mother’s illness, which required her to take antibiotics.”

## What relevance to everyday life do the researchers see in the review?

"The researchers say that the results are important for the study of ADHD. However, improved studies
are needed in order to make clear statements. Experiments with test animals would also help in
drawing reliable conclusions.”

### Who funded the review?

"The creation of the review article was funded by the German Research Foundation. This is an
organization that promotes science and research in Germany. It is financed by the federal and
state governments."

### Do the researchers report their own conflicts of interest in the review?
"The researchers report that there are no conflicts of interest present.”

A.2 KLARpsy App Lay Summary

title: "xxCan Taking Antibiotics During and After Pregnancy Increase a Child’s Risk of Developing
ADHD?*x*"

key_message: "The study investigates whether using antibiotics around the time of birth could
increase the risk of ADHD in children by affecting gut health and brain development. Animal
studies have previously shown that early antibiotic use can change gut health and behavior,
implying a connection between the gut and brain development.”

### Background:

"The study investigates if taking antibiotics around the time of birth could increase a child’s risk
of developing ADHD. It suggests that antibiotics might alter gut bacteria, potentially impacting
brain development and behavior. The research also considers other factors like genetics and the
environment that could affect ADHD."

### Research question:

With their review, the researchers wanted to find out:"Does exposure to antibiotics before and
shortly after birth increase the risk of a child developing ADHD, possibly by affecting gut
health and brain development?”

### Which studies did the researchers look for in the review?

"Researchers looked at studies to see if taking antibiotics during pregnancy or early childhood is
connected to being diagnosed with ADHD later on. They focused on studies involving humans in the
first two years of life and some experiments with animals. Only studies written in English
before January 2021 were considered, and two experts carefully checked each study to make sure
it was relevant and met their criteria.”

### Which studies did the researchers find for the review?
"The researchers found a total of 21 studies published between 1995 and 2017, involving 2,398,475
subjects who participated in the analysis of prenatal antibiotic exposure and 1,863,867 subjects
in the study on postnatal exposure within the first two years of life.”

### What did the researchers do in the review?
"In the 21 studies, The researchers looked at how giving antibiotics to mothers before and shortly
after birth could affect a child’s chances of developing ADHD. They gathered information from
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different human and animal studies. In human studies, they explored any possible link between
antibiotic use and ADHD. The animal studies helped them understand how antibiotics might impact
gut health and behavior. By using statistical techniques, they made sure their results were
dependable, considering both the direct and indirect effects of antibiotics on the risk of ADHD

### What did the researchers investigate in the review?
"- Investigating the impact of early antibiotic exposure on the risk of developing ADHD.
- Main variables investigated:

- Prenatal Antibiotic Exposure

- Postnatal Antibiotic Exposure

- ADHD Diagnosis”

## What are the most important results?

"The research found that taking antibiotics before birth is linked to a higher risk of a child
developing ADHD, likely due to changes in gut health. However, giving antibiotics to young
children after they’re born doesn’t generally increase ADHD risk, except in premature babies,
where it might play a role. Scientists suggest that how antibiotics affect gut health could
influence brain development, but more studies are needed to fully understand these connections.”

### What is the reason for the results?

"In the review, relationships between prenatal antibiotic exposure and ADHD risk were observed.
Because of the type of studies that were considered, it can be said with a high degree of
certainty,

- that prenatal antibiotic exposure is also the cause of an increased risk of developing ADHD in the
general population.

- that postnatal antibiotic exposure does not cause increased susceptibility to ADHD, except possibly

in preterm infants.”

### Are the results biased by limited publication of studies?
- What is the issue? Clear research results are easier to publish than ambiguous results. This is
problematic for reviews. They cannot take unpublished results into account.

"What does this mean for this review? The researchers provide no information on whether there are
indications of such biases. Whether the results indicating an increased risk for ADHD after
prenatal antibiotic exposure are actually smaller than calculated in this review thus remains
unclear.”

### How reliable are the results?

"The results of the study aren’t very strong because there were only a few studies included, and they
weren’t all the same. Also, the way the study was designed might have added some confusion. The
connections found might actually be due to the infections themselves rather than the

antibiotics used.”

## What relevance to everyday life do the researchers see in the review?

"Taking antibiotics during pregnancy might increase the chances of the child developing ADHD by
affecting gut health. After birth, antibiotics generally don’t raise ADHD risk, except possibly
in premature babies. Changes in gut health may impact brain development, but more research is
needed to understand these links.”

### Who funded the review?
"The preparation of the review was funded by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)."”

### Do the researchers report their own conflicts of interest in the review?
"The researchers report that they have no conflicts of interest.”
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Abstract

The diversity across outputs generated by
LLMs shapes perception of their quality and
utility. High lexical diversity is often desirable,
but there is no standard method to measure
this property. Templated answer structures and
“canned” responses across different documents
are readily noticeable, but difficult to visualize
across large corpora. This work aims to stan-
dardize measurement of text diversity. Specifi-
cally, we empirically investigate the convergent
validity of existing scores across English texts,
and release diversity, an open-source Python
package' for measuring and extracting repeti-
tion in text. We also build a platform” based
on diversity for users to interactively explore
repetition in text. We find that fast compres-
sion algorithms capture information similar to
what is measured by slow-to-compute n-gram
overlap homogeneity scores. Further, a combi-
nation of measures—compression ratios, self-
repetition of long n-grams, and Self-BLEU—
are sufficient to report, as they have low mutual
correlation with each other.

1 Introduction

LLM-generated texts are typically evaluated with
respect to accuracy or factuality, e.g., as measured
via entailment (Tang et al., 2023), or text quality as-
pects such as coherence and fluency (e.g., estimated
using LL.Ms as evaluators Liu et al. 2023). When
reference summaries are available, the similarity
of generated outputs to these is also often mea-
sured (e.g., via ROUGE; Lin and Och, 2004). A
complementary dimension of model performance
is diversity, or how much “boilerplate” content is
repeated across LLM outputs.

There is a distinct lack of standardization in
reporting diversity in ML datasets (Zhao et al.,
2024). We address this by introducing diversity,

TPartial work completed while at Adobe Research.

Thttps://pypi.org/project/diversity/
Zhttps://ai-templates.app
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an open-source Python package for evaluating text
diversity,' along with a web-based UI that allows
users to visualize repetition in their corpus,’ pro-
viding an intuitive, efficient tool for text analysis
that permits: (i) Viewing repetitive text and Part-
of-Speech n-grams; (ii) Quickly computing diver-
sity metrics, and; (iii) Interactively highlighting
and matching repetition in documents. Both the
package® and UI code* are open-sourced under the
Apache 2.0 license.

We run existing diversity metrics over English
language outputs from several LLMs to identify a
few (mostly) independent scores that characterize
repetition. We also examine diversity in down-
stream datasets such as instruction tuning. Finally,
we show that compression ratio—compressed over
original texts size—is a fast, easy to compute score
sufficient to capture the information in all token/-
type ratio related alternatives. But we emphasize
text length as an important confounder when as-
sessing diversity: No reliable conclusions can be
drawn without taking this into consideration.

Our contributions are as follows. (1) We intro-
duce diversity, a Python package implementing
diversity metrics. (2) We host and release source
code to a user interface to explore repetition and
diversity. (3) We evaluate the convergent validity
of existing lexical diversity metrics and highlight
compression ratios as efficient measures of diver-
sity.

2 Related Work

Lack of diversity in text may result from repetition
of lengthy strings or owe to subtle distributional pat-
terns (Holtzman et al., 2019; Meister et al., 2022,
2023a). We focus on scores that aim to capture
overt repetition across outputs, and leave for fu-
ture work similar analysis of semantic and struc-
tural diversity scores (Bdr et al., 2012; Shaib et al.,

Shttps://github.com/cshaib/diversity
*https://github.com/cshaib/diversity_demo

Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics: System Demonstrations, pages 36-46
December 20-24, 2025 ©2025 Association for Computational Linguistics
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Get Started
dataset or upload your ow fileto be
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Cross-Document Repeated Text

“southern right whales breach”

®)

. nature_examples.txt

Matching Text in nature_examples.txt

‘The quick brown fox jumps over the lazy dog napping in the
garden.

While thunder rumbles overhead, frightened mice scurry
beneath the old barn's floorboards.

73 36

Diversity Metrics

2024 2.986

Self-BLEV

2747

Figure 1: (A) Users start by uploading their own dataset on the right or by selecting one of the existing demo
datasets on the left. Once uploaded, users can (B) interactively visualize part-of-speech patterns in the data, (C)
interactively search for exact repeated text matches, and (D) calculate lexical diversity metrics.

2024). Conditional generation tasks such as image
captioning have offered observations regarding the
diversity of produced texts. Prior work has shown
that models tend to repeat the same text for differ-
ent contexts in these tasks (Li et al., 2016; Devlin
et al., 2015). Self-repetition (Salkar et al., 2022)—
exact repetition of the same n-gram (n > 4) across
outputs—is a practical way of measuring repeti-
tion in lengthy outputs. In such cases repetition is
common, especially relative to training data (Wang
et al., 2023a).

We discuss several metrics but it is unclear which
of these to use when, and how to efficiently visual-
ize lower diversity in text-only tasks. Further, prior
work has shown that human judgments of diversity
are difficult to reliably collect. Humans tend to
implicitly conflate quality of text with its diversity,
and it can be difficult to separate content and lexi-
cal diversity in such assessments (Tevet and Berant,
2021). We design an interactive tool to allow users
to browse highlighted instances of “lower diversity”
text (Figure 1 (B)).

2.1 A Smorgasbord of Text Diversity Scores

Scores used to measure diversity across a corpus
of texts derive from two core ideas: Computing
average similarity between pairs of outputs pro-
duced by the same model for different inputs, and
computing variants of token/type ratio. The former
are adapted from common approaches to reference-
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based text generation using standard measures of
pairwise similarity; the latter track the diversity of
vocabulary measured as the ratio of unique words
to total words produced, with outputs from a model
concatenated into a single text. We first describe
each score, and then present insights regarding their
mutual redundancy. All scores are defined for a set
of generated texts D, each conditioned on its re-
spective input.

Self-BLEU The quality of text in machine trans-
lation, summarization, and image captioning is of-
ten reported in terms of overlap with a reference
text. This idea can be adapted to measure diver-
sity across different outputs by using one generated
text as a “reference” and measuring the similar-
ity of other outputs against this. Self-BLEU mea-
sures similarity between all text pairs in D using
BLEU (Zhu et al., 2018). BLEU could be replaced
with other similarity scores, e.g., ROUGE-L or
BERTScore. These variants are called homoge-
nization scores and have recently been used to
compare the diversity of texts produced under sev-
eral conditions (Padmakumar and He, 2023).

Homogenization Score (ROUGE-L) All homog-
enization scores calculate an aggregate similarity
across pairs of examples (Equation 1). Here the
similarity score of choice is ROUGE-L (Lin and
Och, 2004), which quantifies overlap in terms of
longest common sub-sequences between all pairs
of text in a corpus instead of the fixed n-gram size



used in other ROUGE variants:

hom(D) 1 Z sim(d,d) (1)

“ D1
d,d'eD; d#d’

Homogenization Score (BERTScore) This ho-
mogenization score uses BERTScore to measure
similarity between documents in Equation 1. Un-
like the other scores, it does not count the repetition
of specific tokens, but instead uses BERT embed-
dings to (ideally) capture “semantic” similarity be-
yond verbatim n-gram matches.

Self-repetition Score Self-repetition measures the
tendency of LMs to repeat long n-grams across
different outputs (Salkar et al., 2022).

k
SRS(d) =log [ Y "N; +1 )
i=1
Where £ is the total number of 4-grams in a single
document d and IV; the number of other summaries
in which 4-gram ¢ appears. The final score is the
sum of SRS(d) divided by |D|.

Moving Average Token-Type Ratio The token-
type ratio for a text is the unique token count di-
vided by the total token count. This metric captures
the repetition of a given word in segments of text
and does not explicitly account for longer repeated
sequences (Covington and McFall, 2010).

N-Gram Diversity Score NGD extends the idea of
token-type ratio to longer n-grams (Padmakumar
and He, 2023; Meister et al., 2023b; Li et al., 2023),
taking a ratio of unique to all n-gram counts:

# unique n-grams in D&

4
NGD(D) = ) 3)

n=1

# n-grams in D&

Where D& denotes the dataset D concatenated
into a single string. We use four as the maximum
n-gram length. This method captures repeated se-
quences in addition to single token diversity.

2.2 Compression Ratios for Diversity

Compression Ratios (CRs) The diversity scores
introduced so far are all a function of the number
of repeated substrings across outputs. We use gZip
to compress the concatenated text of all outputs
generated by a model. CR is then the ratio between
the size of the compressed file to that of the original.
High CRs imply more redundancy:

size of D@
CR(D) = 4
(D) compressed size of D@ ®

Part-of-Speech Compression Ratio To capture
repeated syntactic patterns, we also compute com-
pression ratios for part-of-speech (POS) tag se-
quences. We use the NLTK POS tagger > and the
Penn Treebank set of 36 tags.

3 Evaluating Repetition with diversity

3.1 Design of the Diversity Package

The diversity package incorporates measures of
diversity including lexical, syntactic, and semantic
diversity. For lexical/syntactic diversity, we use
NLTK (Bird and Loper, 2004) and SpaCY (Honni-
bal et al., 2020) to tag text with parts of speech and
extract n-grams. We also include implementations
of embedding-based measures (Cox et al., 2021),
and QUDSim (Namuduri et al., 2025). Users can
install the package via pip (assuming Python 3.10+)
and can calculate various diversity metrics over a
list of texts as follows:

1

3

10

19
20
21

22

from diversity import =x

text = ["I enjoy walking with my cute

dog...", "I enjoy walking outside
with...", "I enjoy jogging on a
sunny..."]

# compression ratios

cr = compression_ratio(text, ’gzip’)

cr_pos = compression_ratio(get_pos(

text)[1], ’gzip’)
# homogenization scores

hs_rougel = homogenization_score(text,
"rougel’)

hs_bert = homogenization_score(text,

"bertscore’)

self_bleu = homogenization_score(text,
"bleu’)

# other

self_rep = self_repetition_score(text)

nds = ngram_diversity_score(text, n=4)

# Embedding-based

rc = remote_clique(text, model="Qwen/
Qwen3-Embedding -0.6B", verbose=
False)

cd = chamfer_dist(text, model="Qwen/
Qwen3-Embedding -0.6B", verbose=
False)

# QUDSim
key = os.environ.get("OPENAI_API_KEY")
# requires an OpenAI key
qud_alignment = qudsim(text, key=key)
# list of QUD-based alignments/
scores

Shttps://www.nltk.org/api/nltk.tag.html
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Users can extract PoS patterns using the
extract_patterns function by specifying the n-
gram length to search for, and the top_n most re-
peated n-grams to return:

I | extract_patterns(text, n=5, top_n=100)

This returns a Python dictionary where the keys are
the part-of-speech n-grams and the values are the
raw text n-grams matching those patterns. The pat-
tern matches are based on the frequency seen across
the entire dataset, i.e., a part-of-speech pattern is
only a pattern if it appears in more than 2 texts in
the original input. Default values consider the top
100 part-of-speech patterns (sorted by frequency).

Then, using match_patterns, a user can iden-
tify all patterns in a single text from the input:

1 |idx = 2
> |match_patterns(text[idx], patterns)

which returns a list of tuples containing the pattern
and matched substring, respectively. Many diver-
sity metrics require pairwise comparisons. With
larger datasets, this can become infeasible to com-
pute (see Appendix A). We implement a few meth-
ods to increase efficiency: memoization of already
computed pairs, and batch pattern searching in the
UL

We also include a function for users to run all
metrics and display them in a table to easily com-
pare values:

I | compute_all_metrics(corpus=text)

3.2 Metric Visualization and the Web Ul

The diversity Web UI offers the same function-
ality as the package via a no-code UI. Figure 1
shows the main pages of the site: users can begin
by (A) either uploading their own text file for anal-
ysis or selecting one of the demo datasets provided
on the site. Then, the user is prompted to select
one of three types of analyses: either (B) to explore
part-of-speech patterns, (C) to explore verbatim
repeated text, or (D) to measure various diversity
metrics of the dataset. Datasets are processed upon
upload, and nothing is stored on the backend server
aside from the existing demo datasets.

(B) Templates The templates tab allows users to
explore extracted part-of-speech n-grams in their
selected dataset. The left-most column displays
pattern length of n = [2,10]. The user can then
scroll through all of the templates, select some or
all, and see the highlighted text in the middle panel

corresponding to the template. The templates are
assigned a colour when selected to indicate the cor-
responding matched text. The right-most column
provides a reference for all the part-of-speech tags
from SpaCY. ® The default pattern length is set to
n = 4. Other lengths will load when selected.

(C) Exact Match The exact matches tab allows a
user to explore exact text matches in their dataset.
The top provides two sliders: the left slider al-
lows the user to set a string length to search for
(n = [2,10]), and the right the minimum num-
ber of documents in which the string must appear
(n = [2,10]). The minimum document occurrence
slider defaults to 2. Once selected, the user can
scroll through to see the repeated text in bold, and
the full document text in which the string appears,
as well as the number of documents.

(D) Diversity Metrics The diversity metrics tabs
reports the recommended metrics from our evalua-
tion: Compression Ratio, POS Compression, Self-
BLEU, Self-Repetition, and Homogenization with
BERTScore. We display these values alongside a
guide to the metrics on the right-hand side.

3.3 Use-Cases

Our implementation of compression ratios over
PoS tags and tokens (along with BERTScore, Self-
BLEU, and self-repetition) have already been used
in prior works (by other groups) to evaluate diver-
sity in model evaluation and alignment (Lake et al.,
2024; Moon et al., 2024; Fernandez et al., 2024),
and for reporting diversity over synthetic datasets
(Chang et al., 2024; Hastings et al., 2024). Due
to its computational efficiency, compression ratios
have also been used as optimization parameters in
decoding strategies (Lanchantin et al., 2025).

Shaib et al. (2024) use the pattern analysis in
diversity to measure and evaluate the prevalence
of syntactic patterns in LLMs. Wadhwa et al.
(2025) extract PoS patterns in distillation tasks for
model attribution. Further, insights from our eval-
uation of diversity metrics have informed how to
report diversity with respect to text length and data
sizes (Guo et al., 2023; Hastings et al., 2024).

®https://spacy.io/usage/linguistic-features
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Figure 2: Correlations between diversity scores on CN-
N/DM. CR correlates strongly with most other metrics.

4 Platform Evaluation: Comparative
Analysis of Diversity Metrics

4.1 Data and Models

We compute diversity scores for the outputs of
six instruction tuned models on the CNN/Daily-
Mail (Hermann et al., 2015) and XSUM (Narayan
et al., 2018) English news summarization datasets:
Llama-2 (Touvron et al., 2023a), GPT-4 (OpenAl,
2023), FlanT5-XXL (Longpre et al., 2023), Sta-
bleLM (Taori et al., 2023; Chiang et al., 2023;
Anand et al., 2023), Mistral (Jiang et al., 2023),
and StableBeluga (Touvron et al., 2023b; Mukher-
jee et al., 2023).” We selected these models to
cover a range of availability (open and closed), and
architectures (encoder-decoder, decoder-only). The
lengths of texts vary considerably by source, for
reference and model-produced text alike, so we
also note average lengths when reporting diversity.

5 Text Length as a Confounder

To keep compute time and costs manageable, we
randomly sample 500 inputs from CNN/DailyMail
and XSUM for analysis. Table 1 reports diver-
sity scores for outputs generated by the six LLMs
for these inputs. Table 1 (top) reports scores for
human-written texts: The article given as input for
summarization, the baseline summary comprising
the first three sentences of the news article, and the
reference summary. These scores serve as a refer-
ence point for the diversity scores of the models.
One would expect that human-authored texts
would be more diverse than those produced by
LLMs (with the caveat that the texts were scraped

"All models—except GPT-4—downloaded from HUG-
GINGFACE (https://huggingface.co/models).
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from the web, and so may contain HTML and page
layout artifacts which might be repetitive (Salkar
et al., 2022)). The human texts differ by length and
the sources of longer texts appear to be less diverse.

Text length as a confounder for diversity has
been reported in prior work (Salkar et al., 2022),
along with methods to account for this, e.g., sam-
pling blocks of fixed size (Covington and McFall,
2010).

All scores of the token/type ratio family are
highly correlated with length, while the pairwise
similarity ones are only moderately correlated.
Self-BLEU has low correlation with length.

6 Diversity of Model Summaries

The confound of length complicates reporting.
On CNN/DM (cf. Table 1) StableLM produces
the longest summaries. All scores indicate that
these are the least diverse, probably due to length.
Three types of differences are marked in the tables.
Model summaries that are shorter but less diverse
than human summaries are marked in bold. Human
texts here are written by journalists, so the expecta-
tion is that they would be more diverse. More bold
entries in a column indicate that the score captures
differences between human and machine diversity,
a desirable trait. Underlined entries denote models
that are less diverse than other models that produce
longer summaries. The more underlined entries
there are for a model, the more indicators there
are that its output is less diverse. Asterisks mark
models that appear more diverse than a human text
of shorter length.

The most interesting diversity scores are those
that capture differences between human and auto-
matically produced text. On the CNN/DM dataset,
Hom. (BERT) and MATTR are the two scores that
detect no differences between human and model
texts. Compression ratio for part of speech se-
quences is the score that identifies the most dif-
ferences between human and model-generated text.
Self-repetition stands out as the only score that
identifies model generated text as more diverse on
the CNN/DM dataset. From this analysis, CR:POS
and self-repetition emerge as prime candidates of
reportable scores, while Hom. BERT is less useful.

7 Correlation Analysis

We present three sets of correlation analyses be-
tween (i) different diversity scores, (ii) the same
diversity score across datasets, and (iii) diversity


https://huggingface.co/models

Model Avg. CR CR: POS NGD Self- Hom. Hom. Self- MATTR HD-D
Length (}) (€] (4] Rep. (1) (R-L)(}) (BERT)({) BLEU() () (4]
Article 45225 2.615 5.544 2.637 6.216 0.118 0.696 0.003 0.837 0.896
Article (Lead 3) 75.87 2369 5.497 3.041 4.276 0.105 0.686 0 0.856 0.892
Reference 51.78 2277 5.330 3.164 3.842 0.074 0.683 0 0.875 0.919
StableLM 13271  2.724 5.940 2.673  4.940 0.126 0.689 0.002 0.792 0.867
Mistral 114.88 2499 5.621 2.926 4.688 0.123 0.697 0.036 0.831 0.880
Llama-2 106.52  2.543 5.684 2.874 4.159*  0.125 0.694 0.001 0.820 0.873
StableBeluga 91.17 2452 5.644 3.028 4.467 0.121 0.702 0.047 0.846 0.889
FlanT5 63.84 2453 5.608 2.939 3.608*  0.084 0.667 0 0.833 0.887
GPT-4 55.4 2.361 5.463 3.124  3.909 0.098 0.684 0.001 0.853 0.891

Table 1: Diversity scores for the CNN/Daily Mail dataset. Arrows indicate direction of more diversity. Values
indicating less diversity compared to at least one text source that produces longer human texts are bolded; models
with scores that are less diverse than those from a model that produces longer summaries are underlined. An asterisk
indicates a model more diverse than a shorter human text.

scores and standard reference-based evaluations.
Despite the large number of diversity scores in our
list, they all revolve around n-gram repetition. Do
these capture different (complementary) informa-
tion? To assess this we compute the correlations
between all pairs of scores, reported in Figure 2.
Compression ratio is highly to moderately corre-
lated with other n-gram scores. The only weak cor-
relations are with Self-BLEU and Hom. (BERT).
Given the degenerate behavior of Hom. (BERT) on
the analysis of summaries, reporting Self-BLEU
only is advisable. Finally, self-repetition is only
moderately correlated with other scores, and is
therefore informative to report. Correlations are
similar on XSUM summaries (Appendix 5).

8 Truncating to Control for Length

We truncate all summaries to the length of the
shortest one produced by any source as a crude
means to control scores for length. The resulting
scores are directly comparable (see Table 5 in the
Appendix). CRs and Self-BLEU scores indicate
that model-generated text is less diverse than hu-
man text. Hom. (BERT) scores barely vary across
sources. On the CNN/DM dataset, Self-BLEU in-
dicates that Llama-2 and StableLM are the most
repetitive models. CR also ranks these two models
as the least diverse. The results are consistent on
XSUM, but for that dataset Flan-T5 is also highly
ranked and the most repetitive.

Truncation to control for length is impractical
for published research or leaderboards. Introducing
a new source of texts would require recomputing
scores for other sources for comparison, which is
sometimes impossible (when outputs from other
sources are not available). Future research might
search for more practical alternatives.
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9 Discussion and Recommendations

The diversity package and platform provides a
useful way to analyze and visualize diversity in
datasets. Our analyses of metrics reveal that com-
pression ratio (CR) is an excellent score to report,
easy to compute and strongly correlated with other
scores used in past work. CR of PoS sequences
captures differences between human and model-
generated text. Self-repetition focusses on repeti-
tion of longer n-grams across generations, and is
only moderately correlated with CRs. Finally Self-
BLEU is only weakly correlated with the previous
three, so is a good complement score to report. We
found BERTScore limited: It does not show dif-
ferences between human and model-generated text
and barely varies when adjusted for length.

Length of the analyzed text has to be reported
alongside all these scores. When length differs,
scores are not meaningfully comparable. Truncat-
ing text is one way to control for this. Different
random draws of the sample chosen to represent a
dataset may differ in diversity, in turn leading to un-
warranted conclusions. Truncating texts prevents
quantifying repetition towards the end of longer
texts. Finally, diversity offers a platform and
package in which researchers from a variety of do-
mains can use to facilitate evaluation and gather in-
sights about diversity between human- and model-
produced texts.

10 Limitations

In this work, we do not attempt to measure human
judgments of diversity, which are straightforward
for short texts (e.g., questions) but far more difficult
for longer summaries or large instruction datasets
(Tevet and Berant, 2021); we leave this for future
work. All evaluations are conducted in English.
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Figure 3: Mean run time (log-scale) on CNN/DM sum-
maries. Run times increase with the number of text for
the analysis. Even for small datasets, Self-BLEU and
BERTScore homogenization are slow.

Figure 4: Correlations between diversity metrics,
BERTScore, and ROUGE-1. Both reference-based met-
rics are weakly correlated with CR and Hom. (BERT),
and moderately anti-correlated with Self-BLEU.

Appendix
A Run-Time Considerations

Figure 3 provides insights about the feasibility of
obtaining scores for large samples.® The compres-
sion ratio scores are fast compared to other diversity
measures.

B Correlations with Evaluation Metrics

Output diversity and self-repetition are aspects of
model behavior that are not captured by existing
evaluation approaches. We compute the system
level correlation between the diversity scores and
the traditional BERTScore and ROUGE evalua-
tions, shown in Figure 4.

C Controlling for Length

Scores on CNN/DM summaries truncated to the
shortest summary reveal a different model order
with respect to diversity (Table 2).

D Additional Evaluations

Story Writing Padmakumar et al. (2023) pre-
sented an analysis of human-written stories, where
people wrote either by themselves or with the help
of GPT-3 or GPT-3.5 Turbo. We also find that all

8Run on a single NVIDIA Quadro RTX 8000 GPU.
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Model CR CR: POS  Self- Hom. Self-
) ) Rep. (1) (BERT)(}) BLEU()
Article 2268 5.25 2.763 0.676 0
Article (Lead 3) 2274 5.25 2.762 0.658 0
Reference 2.189 5.179 2.763 0.674 0
Llama-2 296  5.627 2.847 0.674 0.001
GPT-4 2.287 5.376 2.761 0.672 0
FlanT5 2288 5.389 2.779 0.673 0
StableLM 2393 5.537 2.884 0.672 0.001
Mistral 232 5415 2.812 0.67 0
StableBeluga 2.288 5.46 2.766 0.671 0

Table 2: Scores on CNN/DM summaries truncated to
the shortest summary length for a given input.

Dataset CR () CR:POS () Self-Rep. (})
Open Assistant 2886  6.731 3.969
Unnatural Instructions 4.191 7.278 9.868
Alpaca 3.119  6.61 3.105
Super-Naturallnstructions  2.675  5.749 3.456
Dolly 2578  6.214 2.935

Table 3: Diversity scores for instruction datasets. We do
not include Self-BLEU nor Hom. (BERT) due to long
run times.

diversity scores agree that people writing indepen-
dently produce the more diverse texts (cf. Table 5).
Length is not an issue because the average length of
stories in each setting are comparable: 375 words
for writing without help, 372 words when writing
with GPT-3 and 370 when writing with GPT-3.5.

Instruction-tuning Datasets The quality and di-
versity of instructions are likely to result in more
robust and capable systems (Sanh et al., 2022;
Mishra et al., 2022). We analyze the diversity
of five instruction-tuning datasets: Open Assis-
tant (Kopf et al., 2024), Super-Naturallnstructions
(Wang et al., 2022), Unnatural Instructions (Hon-
ovich et al., 2023), Alpaca (Wang et al., 2023b),
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Figure 5: Correlation table between scores on XSUM.



Model Avg. CR CR:POS NGD Self- Hom. Hom. Self- MATTR HD-D
Length (}) W) () Rep. (1) (R-L)({) (BERT)(}) BLEU() (1) ()
Article 31020 2511 5.555 2756 5.643  0.110 0.695 0.002 0.838 0.892
Article (Lead-3) 55.94 2316 5.454 3107 3999  0.103 0.683 0 0.860 0.891
Reference 2104 2276 5.409 3211 2914  0.081 0.673 0 0.877 0.888
StableLM 10920 2.745 6.008 2636 4.687  0.130 0.695 0.002 0.78 0.854
Llama-2 10248 2.634 5.802 2795 4618  0.128 0.687 0.002 0.795 0.858
Mistral 95.18  2.531 5.708 2911 4495 0132 0.698 0.044 0.819 0.867
StableBeluga ~ 88.46 2461 5.673 2992 4418  0.124 0.698 0.046 0.837 0.88
GPT-4 62.15 2394 5531 3079 4041  0.104 0.682 0 0.848 0.886
FlanT5 2093 2.666 6.222 2.743 2.868  0.114 0.665 0.001 0.756  0.842

Table 4: Diversity scores for XSUM summaries. Arrow indicate the direction of more diverse texts for each score.

Dataset CR CR: POS  Self- Hom. Self-

(€] (€] Rep. (1) (BERT)({) BLEU()
Solo 2901 5314 5.873 0.604 0.018
GPT-3 2.940 5.371 5911 0.613 0.020
InstructGPT  3.064 5.462 5.966 0.631 0.022

Table 5: Diversity scores over essays. Working with an
LLM correlates with lower diversity.

Model CR CR: POS  Self- Hom. Self-
(€3] ) Rep. (1) (BERT)(l) BLEU ()
Article 2.162  5.095 2.719 0.666 0
Article (Lead 3) 2.179 5.093 2.719 0.663 0
Reference 2230 5314 2.663 0.667 0
Llama-2 2.345 5.636 2919 0.663 0.002
GPT-4 2213 5425 2.666 0.663 0
FlanT5 2490 5.737 2.707 0.665 0.001
StableLM 2.342 5521 2.823 0.664 0.001
Mistral 2.308 5.689 2.736 0.659 0
StableBeluga 2210 5436 2.663 0.659 0

Table 6: Diversity metrics for XSUM summaries, with
outputs from each model truncated to the length of the
shortest. All scores are directly comparable.

and Dolly (Conover et al., 2023) (Table 3).

Open Assistant instructions are remarkably di-
verse compared to the other datasets across all di-
versity scores. Unnatural instructions are remark-
able in the opposite direction. We provide an analy-
sis of the diversity scores with the length controlled
in Appendix D.2.

Given the large dataset sizes, ranging from 15-
80k data points, we do not compute the homoge-
nization scores nor Self-BLEU, as the computation
time is infeasible. For approximately 50k instruc-
tions, the estimated computation times ranged from
48 to 800 hours for these scores. This case study
highlights the relevancy of the run-time analysis for
computing score that we presented in the previous
section.

D.1 Correlation Between Metrics

Self-BLEU scores are almost perfectly correlated
between the two datasets; they appear to not be
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Dataset CR () CR:POS(]) Self-Rep. ()
Open Assistant 2.370 5402 1.741
Unnatural Instructions 6.036  8.421 5.595
Alpaca 3301  6.044 2.020
Super-NaturalInstructions  2.458 1.844 4.859
Dolly 2.832  5.504 2.235

Table 7: Truncated diversity scores for instruction
datasets.

affected by text source. The other scores are still
moderately to highly correlated but as already ob-
served, models are ranked differently. When report-
ing diversity, source of analyzed data also has to be
taken into account, in addition to length.

D.2 Instruction Datasets, Length Controlled

Table 7 shows scores for instructions downsampled
to the size of the smallest dataset, and truncated
to the length of the shortest instructions in the re-
maining data. Again, the Open Assistant dataset
stand out as most diverse, while the Unnatural In-
structions dataset is markedly less diverse than the
others. Self-repetition in the related Super-Natural
and Unnatural instructions is notably high. The
human instructions in Dolly compare favorably
with automatic instructions, especially when bear-
ing in mind that only eight tasks are covered in it.
CR:POS points to Super-natural instructions as the
most diverse. We do not have a convincing explana-
tion of why it compares so favorably against others
on this score.

D.3 XSUM Metrics

Tables 4, 6 show the full diversity metrics over
XSUM with and without controlling for length.

Figure 5 shows the correlations between all pairs
of metrics for the XSUM dataset. The correlations
show that compression ratio is highly to moderately
correlated with other n-gram scores, similar to the
findings for the CNN/DM dataset.
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Abstract

We present LITMUS++, an agentic system
for predicting language-model performance for
queries of the form “How will a Model per-
form on a Task in a Language?’, a persis-
tent challenge in multilingual and low-resource
settings, settings where benchmarks are in-
complete or unavailable. Unlike static evalua-
tion suites or opaque LLM-as-judge pipelines,
LITMUS++ implements an agentic, auditable
workflow: a Directed Acyclic Graph of spe-
cialized Thought Agents that generate hypothe-
ses, retrieve multilingual evidence, select pre-
dictive features, and train lightweight regres-
sors with calibrated uncertainty. The system
supports interactive querying through a chat-
style interface, enabling users to inspect rea-
soning traces and cited evidence. Experiments
across six tasks and five multilingual scenar-
ios show that LITMUS++ delivers accurate
and interpretable performance predictions, in-
cluding in low-resource and unseen conditions.
Code is available at https://github.com/
AvniMittal13/litmus_plus_plus.

1 Introduction

Large Language Models (LLMs) now support di-
verse tasks such as reasoning, summarization, code
synthesis, and multilingual communication across
more than a hundred languages (OpenAl, 2023;
Huang et al., 2024). Yet, evaluating their perfor-
mance remains a critical bottleneck. Benchmark-
driven resources such as XTREME-R and XGLUE
(Ruder et al., 2021; Liang et al., 2020), along with
broader stress tests like BIG-Bench and HELM
(Srivastava et al., 2023; Liang et al., 2023), provide
systematic measurement but cannot scale to the
vast Task—Model-Language space, especially in
low-resource settings. LLLM-as-judge approaches
(Zhou et al., 2024; Tan et al., 2024) offer scala-
bility but raise concerns about bias, opacity, and
reproducibility.

{shanu.kumar, monojit.choudhury}@mbzuai.ac.ae
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Predictive multilingual analysis has gained trac-
tion as an alternative to direct evaluation. Early
methods like LangRank leveraged typological and
corpus features for transfer prediction (Lin et al.,
2019), while lightweight proxies such as LEEP
and LogME offered fast transferability estimates
(Nguyen et al., 2020; You et al., 2021). The founda-
tional LITMUS predictor (Srinivasan et al., 2022)
combined diverse linguistic and task features but
required expert feature design and manual setup.
More recent approaches, including Bayesian fac-
torization and information-parity models (Schram
et al., 2023; Tsvetkov and Kipnis, 2024), and multi-
task zero-shot prediction frameworks (Ahuja et al.,
2022b), improved scalability but still rely on pre-
defined features and static configurations. Overall,
existing predictors struggle to generalize under data
scarcity and lack automation.

We introduce LITMUS++, an agentic system
that transforms predictive evaluation into a fully
autonomous workflow. A Directed Acyclic Graph
(DAG) of specialized Thought Agents (Zhang et al.,
2024) hypothesizes, gather multilingual evidence,
select predictive features, and train lightweight re-
gressors with calibrated uncertainty. This design
enables interpretable and auditable predictions for
unseen Task—Model-Language combinations, in-
cluding challenging low- and zero-resource cases.
The system is accessible through a browser-based
interface (Figure 1), which combines three comple-
mentary views: a chat entry point for user queries,
a live reasoning trace of DAG orchestration, and an
evidence panel showing citations and exportable
reports. Users can pose questions such as “How
will a Model perform on a Task in a Language?”,
observe autonomous reasoning unfold in real time,
and inspect the provenance of predictions.

We evaluate LITMUS++ across six represen-
tative tasks in five multilingual settings, measur-
ing predictive accuracy, Q&A correctness, and rea-
soning quality dimensions such as plausibility, co-
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Figure 1: The interactive interface of LITMUS++. The system is organized into three coordinated panels: (left) the
chat interface where users submit queries and receive structured analysis reports, (center) the DAG reasoning view
showing the orchestration of Thought Agents and their outputs, and (right) the agent details panel exposing internal
reasoning steps and expert knowledge retrieval. This design emphasizes transparency, allowing users to follow how
predictions are generated and to inspect the provenance of evidence used in multilingual evaluation.

herence, and hallucination control. Our results
show that DAG-based orchestration consistently
reduces errors and enhances reasoning quality com-
pared to single-agent and generalist multi-agent
baselines. We have hosted a live demo at https:
//1itmusplusplus.azurewebsites.net/.

2 System Overview

LITMUS++ is a multi-agent orchestration frame-
work for automated, interpretable, and extensible
evaluation of language models in multilingual and
low-resource settings. The system transforms what
is traditionally a manual research process into a
fully autonomous workflow. At its core, a DAG ar-
chitecture of collaborative ThoughtAgents enables
structured decomposition of queries, parallel in-
vestigation of hypotheses, and traceable reasoning
paths. By allowing multiple branches to expand
or be pruned dynamically, the DAG ensures both
efficiency and transparency. This design provides
scalability across languages and tasks while pre-
serving auditability.

2.1 End-to-End Workflow

Query Ingestion and Initialization: A natural
language query (e.g., “How will model X per-
form on task Y in language Z?”) is first received
by the MainAgent, which distinguishes between
new and follow-up queries. For new queries, the
ThoughtCreatorAgent generates hypotheses and
spawns corresponding ThoughtAgents as nodes in
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the DAG. For the follow-up queries, the Though-
tAnalyzerAgent routes new information, spawns
additional nodes, or prunes irrelevant ones to refine
the DAG.

DAG-Based Reasoning: Each node in the DAG
corresponds to a ThoughtAgent, which validates
a single hypothesis. Dependencies across nodes
allow for both parallel and conditional reasoning.
The DAG evolves dynamically, expanding when
new evidence emerges and pruning branches that
are unproductive. Figure 3 illustrates the internal
pipeline of a single ThoughtAgent, which itself
orchestrates multiple specialized sub-agents.

Agent Internal Structure: A ThoughtAgent
is in itself a groupchat of multiple collaborative
sub-agents. The Research Planner coordinates
investigations and decides what should be done
next based on the current evidence provided by
other agents such as Web Search and Crawl, Ex-
pert Knowledge and Coder agents. Creating these
as separate agents, rather than just providing tools
for web search, coding, and querying the curated
multilingual knowledge base, leads to improved
context management and allows individual itera-
tive reasoning of sub agents with only relevant con-
text for the groupchat. The Send User Message
observes the conversation and produces a detailed
report of the conversation at the end when either
the hypothesis testing is complete successfully or
some clarification is needed from the User. To-
gether, they maintain a shared history of tool calls,
reasoning steps, and outputs, ensuring reproducibil-
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Figure 2: LITMUS++ pipeline: a user query triggers orchestration that initializes and refines a DAG of Though-
tAgents. Each agent retrieves evidence from the curated knowledge base, web search, and benchmarks, and may
perform predictive modelling with lightweight regressors. The Response Analyzer aggregates results with uncer-
tainty estimates and delivers both predictions and full reasoning traces to the user interface.

ity and transparency. More details on the design
and curation of the knowledge base are provided in
Appendix C.

Iterative Management: The ThoughtAnalyz-
erAgent monitors active hypotheses and manages
progression. It routes clarifications, creates new
agents, marks completed ones, and discards irrele-
vant branches. This iterative refinement keeps the
system aligned with evolving queries while main-
taining focus on the evaluation goal. The full life-
cycle of ThoughtAgents is detailed in Appendix A.

Execution and Aggregation: Active ThoughtA-
gents run in parallel, producing validated hypothe-
ses, predictive outputs, and evidence traces. Re-
sults are aggregated by the ResponseAnalyzerAgent,
which synthesizes a final response that includes
predictions, supporting evidence, confidence mea-
sures, and tradeoffs.

2.2 User Interface

The browser-based interface is organized into three
coordinated panels as shown in Figure 1. The
Chat Window (left) displays user queries and fi-
nal system responses. The Agent Reasoning View
(middle) logs the main orchestration flow, with ex-
pandable views of ThoughtAgents. The Sub-agent
Panel (right) exposes detailed conversations of Web
Search and Crawl and Expert Knowledge Agents.
This design promotes transparency, allowing re-
searchers to inspect intermediate reasoning and

intervene when needed. The interface outputs com-
prehensive reports that combine retrieved evidence,
predictions, and uncertainty estimates. These re-
ports can be exported for reproducibility and inte-
gration into research workflows.

Implementation: LITMUS++ runs locally or
in-browser with minimal setup, requiring only an
API key for external search. The agentic backend
uses Autogen' for orchestration, ChromaDB? as the
curated knowledge base, and Firecrawl® for web
search and scraping. Further details are provided
in Appendix B.

3 Evaluation Framework

We design an evaluation framework to probe both
the predictive accuracy and the reasoning quality
of LITMUS++ in realistic multilingual conditions.
The framework combines representative tasks, con-
trolled scenarios, constrained knowledge access,
and multi-dimensional evaluation metrics, balanc-
ing correctness with interpretability.

3.1 Evaluation Tasks and Scenarios

The benchmark spans six tasks: code generation,
mathematical reasoning, question answering, text
classification, text summarization, and machine

"https://microsoft.github.io/autogen/stable/
/index.html

2https://github.com/chroma-core/chroma
Shttps://www.firecrawl.dev/
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Figure 3: Single ThoughtAgent pipeline. Each agent
operates as a group chat of specialized sub-agents (e.g.,
Web Search, Expert Knowledge, Coder) that validate a
hypothesis and return structured results. These agents
form the nodes of the DAG.

translation. To reflect practical multilingual chal-
lenges, each task is evaluated under five controlled
scenarios: Scenario 1 (Same Lang + Same Model):
the same language and model are available. Sce-
nario 2 (Same Lang + Diff Model): the language
is available but only with a different model. Sce-
nario 3 (Similar Lang + Same Model): transfer
from a typologically related language using the
same model. Scenario 4 (Distant Lang + Same
Model): transfer from a distant language with the
same model. Scenario 5 (No Lang + No Model):
neither the language nor the model is represented.

Each scenario contains 60 questions (10 per
task), covering high- to zero-resource conditions
and testing how well the system adapts as prior
evidence decreases. Scenario labels are used con-
sistently in the Results.

3.2 Evaluation Sets and Knowledge Access
Constraints

We evaluate the system using two complemen-
tary query sets, each consisting of 150 questions.
The PredSet contains predictive analysis questions
of the form “How will a model perform on a
task in a language?”, probing the system’s abil-
ity to generate quantitative performance estimates.
The QnASet contains comparative and factoid-style

50

questions about models, languages, and bench-
marks. Figure 4 shows representative examples.
While the system supports unrestricted web ac-
cess, we constrain evidence sources during evalu-
ation. The web-search tool is redirected to a fixed
corpus of research papers, retrieving the top can-
didate via a retrieval-augmented setup that ranks
paper abstracts by embedding similarity to the gen-
erated query. This ensures consistent, controlled
conditions across scenarios while providing a real-
istic retrieval signal for multilingual evaluation.

N
Q1: How does cross-lingual summarization work for low-
resource Ukrainian?

Answer: 13.5

Q2: What is the performance of GPT-40 on MT for
Ambharic?
Answer: 14

-

Q3: Which models have been benchmarked on code gen-
eration in Sanskrit?
Answer: Gemini 1.5, Gemini 2.0, LLaMA 7B

Q4: Which model performs best for Math Reasoning in
Italian?
Answer: LLaMA 3.1 70B

Q5: Compare Aquila-VL2 and Aria-MoE for QA/VQA in
German.
Answer: Aria-MoE

J

Figure 4: Illustrative queries from PredSet (predictive
analysis) and QnASet (Q&A).

3.3 Evaluation Metrics

Outputs are judged using the LLM-as-Judge
paradigm (Sahinug et al., 2025; Li et al., 2024),
complemented with task-specific correctness. For
the PredSet, we measure mean absolute error
(MAE) between predicted and ground truth perfor-
mance values. For the QnASet, we report accuracy
based on exact or task-appropriate matching.
Ground-truth values come from the fixed cor-
pus of research papers. Scenario conditions are
simulated by removing papers containing the target
language—task—model results, the values in these re-
moved papers serve as ground truth. In Scenario 1,
the relevant paper remains in the corpus, making
the task a retrieval case. In all other scenarios,
ground-truth papers are excluded, creating con-
trolled evidence scarcity for prediction. We plan to
release additional dataset details in future work.
Beyond correctness, we evaluate multiple as-
pects of reasoning quality, including predictive
plausibility under low-resource settings, citation
verification (whether cited works exist and are rele-
vant), citation emphasis (how strongly reasoning is



grounded in citations), the depth of feature selec-
tion and modeling choices, and overall coherence
in logical flow and linguistic fluency. We further
conduct human validation of the LLM judge’s out-
puts, with details provided in Appendix D.

4 Results

We present quantitative results of LITMUS++,
evaluating its predictive accuracy and Q&A per-
formance under the five controlled scenarios intro-
duced in Section 3. All experiments use GPT-4.14
as the underlying LLM. Detailed task-level num-
bers are provided in the supplementary material
due to space constraints.

--l- Magentic-One ThoughtAgent —@— LITMUS++

Mean Absolute Error (|)
n

$1 S2 S3

Qna Accuracy

S4 S5

$1

S2

S3
Scenario

S4 S5

Figure 5: Quantitative results for PredSet (Mean Abso-
lute Error, top) and QnASet (Accuracy, bottom) across
the five scenarios (S1-S5). Lower is better for PredSet,
higher is better for OnASet.

We compare against two baselines. The first,
ThoughtAgent, is a simplified variant that processes
the full query with a single agent, isolating the
benefits of DAG-based coordination. The second,
Magentic-One, is a generalist multi-agent frame-
work from Microsoft,? included as a strong open-
ended, general-purpose baseline.

4.1 Predictive and Q&A Performance

Figure 5 shows results on the two evaluation sets.
On the PredSet (left), we report mean absolute er-

4https://openai.com/index/gpt-4—1/

Shttps://microsoft.github.io/autogen/stable/
/user-guide/agentchat-user-guide/magentic-one.
html
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ror (J). We observe that error generally increases
from Scenario 1 to Scenario 4 as the prediction task
becomes harder: in S1 and S2, the target language
and model are available, so predictions are rela-
tively straightforward; in S3 and especially S4, the
system must rely on increasingly distant evidence
and construct more complex transfer paths, which
increases error. Interestingly, S5 shows a drop com-
pared to S4: since neither language nor model is
available, most systems fall back to predicting con-
sistently low performance, which reduces variance
and makes the case less challenging than S4 where
nuanced feature-based modeling is required.

Across systems, Magentic-One shows the high-
est errors, especially in mid- and low-resource con-
ditions, reflecting its lack of task-specific orchestra-
tion. Both LITMUS++ and ThoughtAgent main-
tain mean absolute error below or close to 12 in all
scenarios except S4, highlighting the effectiveness
of specialized reasoning even in harder conditions.
Between the two, LITMUS++ achieves lower er-
rors on average, showing the benefit of orchestrated
DAG reasoning over a single-agent baseline.

On the OnASet (bottom in Figure 5), there
is no uniform trend across scenarios: accuracy
fluctuates depending on the combination of task
and resource availability. Overall, LITMUS++
achieves the best performance in most scenarios,
while Magentic-One consistently underperforms.
ThoughtAgent remains competitive, often close to
LITMUS++, but falls behind in scenarios requir-
ing more complex reasoning (e.g., S3 and S4).
These results confirm that orchestration in LIT-
MUS++ provides a measurable advantage, though
the single ThoughtAgent performs strongly, likely
because the queries are relatively simple, reduc-
ing the need for multi-step reasoning and causing
LITMUS++ to occasionally overdo the reasoning.

4.2 Reasoning Quality

We evaluate reasoning quality across five dimen-
sions: predictive plausibility, feature selection, co-
herence, citation emphasis, and hallucination rate
(Figure 6). Starting with Predictive Plausibility,
LITMUS++ achieves the strongest and most stable
scores (~4.0—4.5), consistently producing reason-
able and interpretable predictions even in challeng-
ing scenarios. ThoughtAgent remains competitive
but slightly weaker (~3.4-3.6), while Magentic-
One trails at ~3.0 across all scenarios, highlighting
the value of structured orchestration.

On Feature Selection, the advantages of or-
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Figure 6: Qualitative results across non-accuracy metrics. Each subplot reports performance averaged across all
tasks and scenarios, enabling comparison of model behavior under multiple evaluation dimensions.

chestration become even clearer. LITMUS++
reaches as high as ~3.8 in S3-S4, precisely the
settings where feature-driven reasoning is essen-
tial. ThoughtAgent improves under the same condi-
tions but stays ~0.5 points behind, while Magentic-
One struggles at ~2.2-2.8. For Coherence, both
LITMUS++ and ThoughtAgent maintain excellent
fluency and logical consistency (~4.9-5.0), with
LITMUS++ slightly ahead. Magentic-One, how-
ever, lags behind with lower scores of ~4.3—4.6,
underscoring its weaker reasoning discipline.

For Citation Emphasis, LITMUS++ grounds its
outputs more consistently in cited evidence, scor-
ing ~2.5-3.0 in S1-S2. Although this decreases in
S3-S4, it remains above both baselines. ThoughtA-
gent follows the same trend at lower levels, while
Magentic-One is lowest throughout. Hallucina-
tion Rate shows an unexpected pattern: instead of
rising as evidence grows scarcer, hallucinations ac-
tually decrease from S1 to S5. In high-resource
cases like S1, models sometimes hallucinate non-
existent papers due to strong priors, whereas in low-
resource cases they adhere strictly to constrained
citations. Magentic-One hallucinates the most
(42%—24%), while LITMUS++ and Though-
tAgent remain substantially lower (23%—10%).
Overall, while ThoughtAgent stays close to LIT-
MUS++ in surface-level coherence, it lags behind
on citation grounding, feature-driven reasoning,
and hallucination control, whereas Magentic-One
underperforms across all dimensions.

4.3 Ablation Study

To examine the impact of the underlying LLM in
LITMUS++, we ran an ablation study in the Web
Search configuration, testing 03-mini,® a model re-
ported to have stronger reasoning than GPT-4.1 on
30 questions. Table 1 reports results across plau-
sibility, feature selection, citation emphasis, and

6https ://openai.com/index/openai-o03-mini/

52

coherence. Despite 03-mini’s reasoning-oriented
design, results were highly competitive: GPT-4.1
achieved stronger citation grounding, while o03-
mini offered slight gains in feature selection. Over-
all, LITMUS++ remains robust across backbones,
indicating that orchestration matters more than the
choice of a single LLM. Extending this to open-
source LLMs is left for future work.

Model Predictive Feature Citation  Coh-
Plausibility  Selection Emphasis erence

03-mini 3.97 3.68 1.19 5.00

GPT-4.1 3.90 3.10 2.10 4.97

Table 1: Ablation study of LITMUS++ with different
underlying LLMs in the Web Search configuration, eval-
uated on reasoning quality metrics.

5 Conclusion

We introduced LITMUS++, a demo system for
multilingual performance prediction that combines
DAG-based orchestration of thought agents with
transparent reasoning and uncertainty-aware out-
puts. The system enables users to query tasks,
inspect evidence traces, and obtain plausible pre-
dictions even under distant and zero-resource con-
ditions. Compared to strong baselines such as
ThoughtAgent and Magentic-One, LITMUS++
achieves lower prediction error, higher Q&A accu-
racy, and stronger reasoning quality, making it both
effective and trustworthy. The demo illustrates how
complex evaluation workflows can be transformed
into interactive, auditable experiences, lowering the
barrier for researchers and practitioners to explore
multilingual model behavior. We have hosted a live
demo for review while a broader public release is
under active development. Future work will focus
on optimizing latency, expanding task coverage,
and extending the curated knowledge base to fur-
ther strengthen the system’s utility.
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Ethical Considerations

LITMUS++ operates in sensitive settings such as
multilingual fairness. Although evaluated under
controlled evidence access, it provides predictive
estimates and is not a replacement for ground-truth
benchmarks. We mitigate risks through curated
knowledge bases and transparent reasoning traces
and will extend coverage responsibly in future.

A Agent Lifecycle Details

Each ThoughtAgent transitions between three core
states: Active: investigating a hypothesis with
assigned tools; Completed: finished investiga-
tion and returned validated evidence; Discarded:
pruned when deemed irrelevant, redundant, or di-
vergent. State transitions are managed by the
ThoughtAnalyzerAgent, which monitors progress
and determines whether to continue, complete, or
discard a ThoughtAgent. This lifecycle ensures
only relevant outputs contribute to the final analy-
sis, while providing auditable reasoning paths.

B Implementation Details

Tooling. Agents access a modular suite of reusable
tools, including web search and scraping utilities,
knowledge-base retrieval functions, and code ex-
ecutor. Tools are independently registered and can
be added, replaced, or modified without altering
agent logic, enabling easy integration of new APIs
or analysis modules. Deployment. The system
supports both local and hosted execution, running
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via a command-line interface or local server, with
a hosted variant for reproducible experiments. Ex-
ternal search and LLM calls require user-provided
API keys; all other components run offline. Per-
formance. Predictions include evidence traces and
calibrated uncertainty estimates, offering transpar-
ent and confidence-aware reasoning. Extensibility.
The DAG orchestration is model- and task-agnostic.
New agents or tools are added by registering them
within the MainAgent or ThoughtAgent logic, with-
out modifying control flow, supporting ongoing
extensibility as evaluation needs evolve.

C Knowledge Base Curation

A curated multilingual knowledge base grounds
LITMUS++ in linguistic and computational ev-
idence. It integrates (i) literature-derived re-
sources from peer-reviewed papers, benchmarks,
and typological databases (Lauscher et al., 2020;
Dolicki and Spanakis, 2021; Srinivasan et al., 2022;
Ahuja et al., 2022a; Kumar et al., 2023), and
(i1) expert annotations for under-documented or
low-resource languages. It is organized as de-
tailed reports over language—task—model combina-
tions, combining few-shot examples, known failure
modes, and best-practice guidelines. We employ a
retrieval-augmented generation setup, where top-
K chunks from this knowledge base are passed
as tool outputs to the Expert Knowledge Agent,
which synthesizes answers for the current query.
The knowledge base can be expanded as new re-
search, experimental findings, and expert inputs
become available, supporting hypothesis genera-
tion, feature selection, and provenance tracking.

D Human Validation of LLM-as-Judge
Evaluation

To assess the reliability of LLM-as-Judge, we ran
a human validation study on a subset of reports.
Annotators received the report, LLM reasoning,
rating criteria and scores (1-5) on four metrics:
predictive plausibility, coherence, feature selection,
and emphasis on citations. Their task was to mark
agreement or disagreement (binary 1/0) with each
score. The results showed that an annotator agreed
with the LLM evaluations in 81.25% of the cases,
while the second annotator agreed in 78.1% of the
cases. The high agreement indicates that the LLM-
as-Judge framework provides evaluations that are
generally consistent with human judgment, though
some divergences remain.
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Abstract

As cosmological simulations and their as-
sociated software become increasingly com-
plex, physicists face the challenge of search-
ing through vast amounts of literature and
user manuals to extract simulation parame-
ters from dense academic papers, each us-
ing different models and formats. Translat-
ing these parameters into executable scripts
remains a time-consuming and error-prone pro-
cess. To improve efficiency in physics re-
search and accelerate the cosmological sim-
ulation process, we introduce SIMAGENTS,
a multi-agent system designed to automate
both parameter configuration from the litera-
ture and preliminary analysis for cosmology
research. SIMAGENTS is powered by special-
ized LLM agents capable of physics reason-
ing, simulation software validation, and tool
execution. These agents collaborate through
structured communication, ensuring that ex-
tracted parameters are physically meaningful,
internally consistent, and software-compliant.
We also construct a cosmological parameter ex-
traction evaluation dataset by collecting over
40 simulations in published papers from Arxiv
and leading journals that cover diverse sim-
ulation types. Experiments on the dataset
demonstrate a strong performance of SIMA-
GENTS, highlighting its effectiveness and po-
tential to accelerate scientific research for physi-
cists. Our demonstration video is available
at: https://youtu.be/w1zLpm_CaWA. The com-
plete system and dataset are publicly available
at https://github.com/xwzhang98/SimAgents.

1 Introduction

Modern cosmological simulations are essential
tools for advancing our understanding of the uni-
verse, enabling researchers to study the forma-
tion of galaxies and the evolution of structures.
Setting up such simulations is a highly manual,

*Equal contribution
Corresponding author.
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time-consuming, and error-prone process. Re-
searchers must extract parameters from dense scien-
tific papers, convert values between units, interpret
context-specific model assumptions, and then for-
mat them into executable scripts compatible with
domain-specific software such as MP-GADGET
(Feng et al., 2018), GADGET-4 (Springel et al.,
2022), Arepo (Springel et al., 2019), GIZMO code
(Hopkins, 2015) and ENZO (Bryan et al., 2014).
In addition to the diversity of the simulations them-
selves, the complexity of using the software adds
another layer of difficulty. Software user manuals
are often dozens of pages long and filled with in-
tricate rules about parameter dependencies, default
settings, and strict formatting requirements.

As aresult, even experienced physics researchers
face a steep learning curve when trying to adopt a
new simulation tool. For example, when given a
cosmology paper covering several simulations, the
average time cost for a human researcher to formu-
late the correct parameter files is in the range of
hours to days, depending on the familiarity with the
software. Ideally, we want this labor-intensive pro-
cess to be done in minutes. The above challenges
raise a crucial question: How can we design a
highly professional automated toolkit to assist
cosmologists with the lengthy and complex task
of setting up simulations?

Large Language Model (LLM) agents have
demonstrated significant potential on many scien-
tific tasks (Zhao et al., 2023). Recently, researchers
have proposed multi-agent reasoning frameworks
that enable collaborative debates among multiple
LLM agents to enhance their problem-solving abil-
ities (Wu et al., 2023; Liang et al., 2024; Zhuge
et al., 2024; Bi et al., 2025). Following this path,
researchers have explored LLM-agent-based work-
flows on several highly professional scientific and
technical applications, such as biomedical tasks
and clinical tasks (Bi et al., 2024; Lu et al., 2024).

In the field of cosmology, researchers have ex-
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Figure 1: The workflow of our proposed multi-agent system, SIMAGENTS.

plored various LLM agent tools to provide assis-
tance to researchers, targeting several tasks, such
as a programming assistant specialized in differ-
ent cosmology tasks. For example, CLAPP! is a
single LLLM agent that specializes in the CLASS
cosmology code. CAMEL agents 2 provide a suite
of Al-powered agents designed specifically to nav-
igate and analyze the extensive CAMELS cosmo-
logical simulation dataset, automating tasks such as
data exploration and code generation. In addition,
CMBAgent (Laverick et al., 2024) and Mephisto
(Sun et al., 2024) utilize a multi-agent LLM system
to aid physicists in cosmological parameter analy-
sis. Each of these systems focuses on a different
scope of research, ranging from coding support
to data analysis research directions. However, to
our knowledge, no prior LLLM agent system au-
tomates the whole workflow from parameter
configuration from the literature to initial simu-
lation output analysis on cosmology simulation
software.

Toward this end, we introduce SIMAGENTS, a
multi-agent system that automates parameter ex-
traction, validation and configuration for cosmolog-
ical simulations. The system is composed of spe-
cialized LLM agents with different distinct roles:

* Physics Agent that reads and interprets simula-
tion papers using domain knowledge

"https://github.com/santiagocasas/clapp/
*https://github.com/franciscovillaescusa/
CAMELS_Agents/
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* Software Agent that parses and enforces the con-
straints specified in the software user manual

* Analysis Code Writer that provides codes for re-
sult visualization and produces preliminary anal-
ysis (e.g. power spectra and density fields plot)

These agents collaborate through structured com-
munication, ensuring that extracted parameters are
physically meaningful, internally consistent, and
software-complaint. To assess the effectiveness of
SIMAGENTS, we construct a benchmark dataset
of 41 simulations and evaluate the system’s perfor-
mance using metrics such as precision and recall,
and error-specific breakdowns (e.g. Value Error,
Type Error and Hallucinations). Our results show
that SIMAGENTS achieves high accuracy while sig-
nificantly reducing the manual workload typically
required for simulation setup.

2 SIMAGENTS

In this section, we present the structure and im-
plementations of SIMAGENTS. As illustrated in
Figure 1, SIMAGENTS is composed of the follow-
ing key components:

* Parameter extraction: This module automates
the process of generating simulation scripts by ex-
tracting relevant parameters from user-uploaded
papers and formatting them according to the in-
ternal requirements of the target simulation soft-
ware. The extraction is performed through itera-
tive communication between a dual-agent setup,
ensuring accuracy and consistency.


https://github.com/santiagocasas/clapp/
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https://github.com/franciscovillaescusa/CAMELS_Agents/

Post Simulation Processing: This module han-
dles code generation and execution for prelimi-
nary simulation analysis, including power spectra
and density field plotting.

Together, the simulation preparation and prelim-
inary analysis step allows users to move quickly
from a published paper to actionable simulation
output, closing the loop from literature reading to
research insight.

2.1 Parameter Extraction

The parameter extraction module is responsible
for transforming scientific papers into structured
simulation-ready configurations. Given a user-
uploaded paper, the system initiates a dual-agent
collaboration between Physics Agent and Soft-
ware Agent. The Physics Agent reads the input
paper using domain knowledge in cosmology to
identify relevant parameters such as cosmological
constants, simulation box size, redshift and simu-
lation types (dark matter, gas, stars and neutrinos).
The Software Agent utilizes the simulation soft-
ware’s official user manual to query all required
and optional parameters, including their default
values, units, and inter-parameter dependencies.

These two agents collaborate through participa-
tion in multiple rounds of discussions based on the
provided material, including a research paper and
the software manual, to refine the parameter ex-
traction process. Specifically, after Physics Agent
reads the paper and extracts the parameters, the
results will be sent to the Software Agent, which
will then use the software user manual to check the
coverage and validity of the extracted parameters.
Then Software Agent will generate the parameter
file following the required format and constraints.
The generated file will then be sent to Physics
Agent for another round of refinement. This it-
erative process, together with specialized task as-
signment on each agent, ensures:

High accuracy, including scientific parameter
accuracy and software requirement compliance,
through task-specific expertise;

Modular adaptability, as the formatting agent
can be extended to support different simulation
software by referencing alternative user manuals
without altering the extraction logic.

2.2 Post-Simulation Processing

Once parameter extraction is completed, the gener-
ated script is passed to the simulation software for
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execution. After obtaining the output, the system
transitions to the post-simulation processing stage,
where an Analysis Code Writer automatically gen-
erates Python scripts to assist users with early-stage
analysis of the simulation output. These generated
scripts support:

* Visualization: Generating 2D/3D density plots
from slices of the simulation box.

* Statistical Analysis: Generating code to plot
summary statistics like matter power spectrum.

* Custom Post-Processing: Capability to use user-
provided custom packages

The scripts are designed to be executable with
minimal modification and make use of standard
Python libraries such as NumPy, Matplotlib. For
specialized cosmology packages, the system gener-
ates code based on example usage provided to the
agent. This stage helps researchers validate simula-
tions, identify issues early and prepare for deeper
scientific investigation.

3 Experimental Setup

Our experiments are conducted in two parts: the
first focuses on parameter extraction, where we
evaluate quantitative accuracy; the second ad-
dresses simulation post-processing, which is more
subjective and demonstrated through a representa-
tive pipeline. In our paper, we use MP-GADGET
as our simulation software. In the following, we
describe the experimental setup for parameter ex-
tractions.

Dataset We construct a dataset for the evaluation
of cosmological parameter extraction by collecting
more than 40 different simulations from published
articles from ArXiv and leading journals (e.g. ApJ,
MNRAS). To run MP-GADGET, two input files are
required: a .genic file and a .gadget file. The .genic
file generates the initial positions and velocities of
particles, along with essential simulation metadata.
The .gadget file evolves the initial particle distri-
bution over time and contains numerous configu-
ration options for selecting and enabling various
physical models. Each paper is manually annotated
with all MP-GADGET relevant parameter value
pairs, covering cosmological parameters (2, {1,
Qa, h, og, ng), initial-condition settings (BoxSize,
Ngrid, Redshift), and key model switches (e.g.
StarformationOn, WindOn). To our knowledge,
this is the first publicly released dataset of cos-



mological simulations with parameters derived di-
rectly from published text.

Implementation We use OpenAl GPT-4 (Ope-
nAl et al., 2023) for our zero-shot extraction ex-
periments. Our SimAgents framework utilizes the
publicly available Autogen framework>. We also
conduct an ablation study of our SIMAGENTS us-
ing the Qwen3-4B model (Yang et al., 2025). We
set the temperature to 0.01 and top_p to 0.1. For
the simulation software, we use MP-GADGET as
an example in this paper. All outputs are formatted
directly in MP-GADGET configuration syntax. We
conduct all the experiments with user manual since
the LLM does not have sufficient knowledge of
current simulation software.

Baselines We compare our methods against two
baseline methods.

Chain-of-thought (CoT) (Kojima et al., 2022)
We implement zero-shot CoT prompting with a
single LLM agent. The agent is provided with
both the literature and the manual.
Exchange-of-thought (EoT) (Yin et al., 2023)
We implement EoT using two agents with the
same initialization, and provide them both with
the literature and the manual. The agents engage
in a discussion with one another.

SIMAGENTS Our approach employs two task-
specific agents: Physics Agent and Software
Agent, each with role-specialized profiling. We
provide Physics Agent with only the literature
and Software Agent with only the manual. The
agents engage in a discussion with one another.

We recognize that there are other LLM-based
retrieval augmented generation frameworks (Gao
et al., 2023). However, these RAG methods are un-
necessary for our current work, as the information
we provide is straightforward and does not need
special design on the RAG techniques. Other LLM-
based multi-agent tools in the field of cosmology
(Laverick et al., 2024; Sun et al., 2024) do not fit
into the scope of the current work. Thus, we do not
compare with these methods in our baselines.

Evaluation We evaluate our framework using
F1-score and different error metrics and provide
the details of these metrics in Appendix B. Due
to time constraints, we only annotated one version
of the executable files. For each simulation, there

3https ://microsoft.github.io/autogen/
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Method Micro-F1 Precision Recall
CoT (1-Agent) 93.64 92.46 94.84
EoT (2-Agent) 94.95 93.87 96.05
Ours (2-Agent) 98.67 97.80 99.55

Table 1: Performance comparison of SIMAGENTS
with baseline methods on the cosmological simulation
dataset. We report Micro-F1 score, Precision, and Re-
call as percentages. Higher values indicate better per-
formance. The best-performing methods are bolded,
and the second-best are underlined.

Method Value Type Hallucination
Error Error

CoT (1-Agent) 097 0.51 0.21

EoT (2-Agent) 1.21  0.21 0.34

Ours (2-Agent) 0.46  0.02 0.30

Table 2: Performance comparison of SIMAGENTS
with baseline methods on the cosmological simulation
dataset, in terms of average number of errors made per
simulation. Each error type is reported as the average
number of errors per case. Lower values indicate bet-
ter performance. The best-performing methods are
bolded, and the second-best are underlined.

exist multiple variants that contain parameters not
covered in the original paper, but which could still
yield the same output. To facilitate a fair com-
parison with the baselines, we conduct a human
evaluation covering as many variants as possible
and report the results in Table 1 and Table 2. The
automated evaluation against the annotated dataset
is reported in Section C.

4 Results

In this section, we first present the quantitative
results, which contains baseline comparisons, de-
tailed error analysis, ablation studies, and cost anal-
ysis. We then present a brief overview of the post-
simulation processing capabilities of our system.

4.1 Main Results

The performance of our system compared to the
baseline methods is shown in Table 1. Our pro-
posed method, SIMAGENTS, outperforms CoT and
EoT, achieving improvements of 5.03% and 3.72%
in Micro-F1 score, respectively. Reduces the over-
all error rate by 80% compared to CoT and 70%
compared to EoT, demonstrating significantly im-
proved reliability in parameter extraction.


https://microsoft.github.io/autogen/

Comparison with Baseline Methods We exam-
ine the reasoning process of the CoT method and
find that it struggles to handle excessive task in-
structions and information at input time, consis-
tently making errors, and is unable to complete
any tasks effectively. Simply involving multiple
agents is not sufficient for optimal performance:
EoT benefits from multi-agent interaction, but its
lack of specialized task decomposition and clear
communication structures results in imprecise out-
comes. In contrast, SIMAGENTS incorporates task-
specialized agents with specialized inputs, signifi-
cantly reducing critical error types and leading to
more accurate and robust parameter extraction.

Error Analysis In detailed error analysis, we
observe that both CoT-based extraction and EoT-
based extraction exhibits a higher frequency of both
value error and type errors as shown in Table 2. Al-
though our system exhibits slightly higher halluci-
nation per case than the other baselines, these hallu-
cinated parameters are easier to detect and filter (we
provide an example in Appendix A). In contrast,
value errors involve plausible-looking parameters
whose values or units are subtly incorrect, often
bypassing sanity checks and undetected during the
simulation stage. Figure 2 shows that a single value
error leads to drastically different structures, due to
the different unit convention between the literature
and simulation software.

4.2 Ablation study

Rounds of Discussion We conduct an ablation
study to investigate the optimal number of dis-
cussion rounds between Physics Agent and Soft-
ware Agent. In our parameter extraction module,
each agent contributes domain-specific expertise to
achieve high extraction accuracy while maintaining
computational efficiency. By varying the number
of discussions between these agents, we observe
that two iterations yield the highest Micro-F1 score,
as shown in Figure 3.

Smaller Backbone Model We also conduct ex-
periments using Qwen3-4B as the backbone model
to examine the generalizability of SIMAGENTS on
Small Language Models. We provide the detailed
results in Table 5 and Table 6 in Appendix C. Com-
pared with GPT-4 which is significantly larger in
model size, Qwen3-4B has inferior reasoning abil-
ity, leading to a decreased performance of an 81.23
F1 score, and an average of 3.05 value errors and
2.59 type errors per simulation.
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Figure 2: Impact of incorrect parameters (Value Error)
on cosmological simulation outputs. Varying a single
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others fixed, can result in drastically different structures.
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4.3 Time and Cost Analysis

We conducted a survey of researchers to estimate
the time cost of using simulation software. Results
show that first-time users require an average of
166 minutes to replicate experiments, while experi-
enced users average 44.4 minutes. In contrast, SIM-
AGENTS completes the same step in about 2 min
per simulation, giving an 83x speedup (—98.8%)
for first-time users and 22.2x (—95.5%) speed up
for familiar users. At current GPT-4 API rates, a
full extraction consumes around $0.25 per paper.
Additionally, SIMAGENTS can run on smaller, lo-
cally executable language models with no monetary
cost and an increased time cost. We report detailed
numbers in Table 7 and 8 in Appendix D.



def visualize_density(path, config):
# extract particles from simulation output
positions = extract_particles(path, config)
# calculate density field from particles
channels = calc_density(config, positions)
# create image from density field
figure = create_image(channels, config)

Visualization

return figure

Analysis
Code Writer

+

def
# load redshifts

Statistics

# plot power spectrum

Simulation return figure

Output

# prepare data

Other Packages # run super resolution

return SR_data

plot_power_spectrum(path, config):
rs = load_redshift(path, config)
# calculate power spectrum

pspec = calc_power_spectrum(data) " \\‘\\

figure = plot_power_spectrum(pspec, rs)

run_super_resolution(path, config):
data = load_data(path, config)

SR_data = run_SR_model(data, config)

Figure 4: Illustration of post-simulation processing pipeline

4.4 Post-Simulation Processing

The output of simulation software typically con-
sists of particle data, including positions, veloci-
ties, masses and optional quantities such as internal
energy and star formation rate depending on the
physical models enabled. These particles represent
matter components in the universe, and the evo-
lution over cosmic time encodes the formation of
large-scale structures such as filaments, voids and
halos. Some preliminary analysis are crucial for
validating and interpreting simulation results:

* Matter Power Spectrum: Quantifies the sta-
tistical distribution of matter at different scales,
sensitive to cosmological parameters such as €2,,,,
os, and n,. Comparing the measured power spec-
trum with theoretical expectations helps to assess
whether the simulation correctly reproduces the
output we want.

Density Visualization: Provides intuitive insight
into particle distribution, particularly useful for
identifying issues like incorrect box sizes or phys-
ical model settings.

Specialized Packages: Generates code for spe-
cialized cosmology tools using sample code or
minimal user input.

The Analysis Code Writer agent automatically
provides the user with Python scripts designed to
facilitate preliminary analysis of the complex and
non-straightforward simulation output. As shown
in Figure 4, the generated code processes the simu-
lation output using various packages to produce the
figures described above. Due to the lengthy running
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time of the simulation software, we were only able
to perform visualization analysis and evaluation
on a subset of our annotate dataset. The code pro-
vided by the Analysis Code Writer agent is highly
reliable, with an execution rate of 100% in the eval-
uation subset.

5 Conclusions

In this paper, we propose SIMAGENTS, a multi-
agent system that could accelerate physicist re-
search for cosmological research by automati-
cally performing parameter extraction from user-
uploaded paper and simulation setup with prelimi-
nary analysis. We demonstrate the system’s ability
to accurately extract parameters from various sim-
ulations and translate them into valid software con-
figuration files. Through benchmark evaluations,
SIMAGENTS achieves F1 score of 98%, show-
ing its utility in improving reproducibility, reduc-
ing human workload and accelerating the research
pipeline. We envision extending SIMAGENTS to
support additional simulation engines, incorporat-
ing more advanced reasoning techniques to interac-
tively assist the researcher during post-simulation
analysis. Our system and dataset are released to
support further development.

Limitations

Due to time constraints, we annotated only one ex-
ecutable variant per paper. SIMAGENTS currently
supports a small set of pretrained models and sim-
ulation codes, we will expand both datasets and
coverage in the future.
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A Example script and type of errors An example script containing an incorrect option

that enables gas production in a dark matter only
A correct version of the MP-GADGET simulation  simulation (Type Error), caused by a mismatch

script to match the low-resolution simulation in  between the paper specifications and the generated

Zhang et al., 2024. script.
"genic": { "genic": {

"OutputDir"”: "./ICs/", "QutputDir”: "./ICs/",
"FileBase"”: "LR_100Mpc_64", "FileBase"”: "LR_100Mpc_64",
"BoxSize": 100000.0, "BoxSize": 100.0,
"Ngrid”: 64, "Ngrid”: 64,
"WhichSpectrum”: 2, "WhichSpectrum": 2,
"FileWithInputSpectrum”: "./ "FileWithInputSpectrum”: "./

WMAP9_CAMB_matterpower.dat”, WMAP9_CAMB_matterpower.dat"”,
"Omega@": 0.2814, "Omega@": 0.2814,
"OmegaBaryon": 0.0464, "OmegaBaryon": 0.0464,
"OmegalLambda": 0.7186, "OmegalLambda": 0.7186,
"HubbleParam”: ©.697, "HubbleParam”: 0.697,
"ProduceGas": 0, "ProduceGas”: 1,

"Redshift"”: 99, "Redshift": 99,
"Seed": 12345 "Seed": 12345
3 }
"gadget": {
"InitCondFile"”: "./ICs/

LR_100Mpc_64", An example of script containing an incorrect
"QutputDir”: "./output/", . . . :
POutputlist”: "0.333.1.0" variable name that mismatch with the one in soft-
"TimeLimitCPU": 86400, ware user manual. (Hallucination)
"MetalReturnOn": 0,
"CoolingOn": 0,
"SnapshotWithFOF": @,
"BlackHoleOn": @, "genic": {
"StarformationOn": @, "OQutputDir”: "./ICs/",
"WindOn": @, "FileBase": "LR_100Mpc_64",
"MassiveNuLinRespOn": @, "BoxSize": 100.0,
"DensityIndependentSphOn": o, "Ngrid": 64,
"Omega0"”": 0.2814 "WhichSpectrum"”: 2,

3 "FileWithInputSpectrum”: "./

WMAP9_CAMB_matterpower.dat”,
"Omega0": 0.2814,

An example script with an incorrect simulation ! 8me g aEa "g 3 n": g : gq‘gg ,
. . "OmegalLambda”: 0. ,
box size (Vah.le Error)? caused by a mismatch be- "HubbleParam”: ©.697 .
tween the units used in the paper and those ex- "ProduceGas”: 1,
pected by the simulation software. "Redshift”: 99,
"Seed"”: 12345,
"FinalRedshift": @
3
rgenic’: ¢ 1 |-
"QutputDir”: "./ICs/",
"FileBase"”: "LR_100Mpc_64",
"BoxSize": 100.0, .
"Ngrid”: 64 B Evaluation Protocol
"WhichSpectrum”: 2, .
"FileWithInputSpectrum”: "./ We define our parameter-level metrics as follows:
WMAP9_CAMB_matterpower.dat"”, .
"Omegad": 0.2814, * True Positives (TP): Number of extracted pa-
"OmegaBaryon”: 0.0464, rameters whose names and values are exactly
"OmegalLambda": ©.7186,
"HubbleParam”: ©.697, correct.
"ProduceGas”: @,  False Positives (FP): Number of extracted pa-
., E:: Z hi fﬁ 2:3 . 2 o rameters with incorrect values/settings .
}  False Negatives (FN): Number of required pa-
----- rameters that are missing from the extraction out-
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put.

Our primary evaluation metric is the F; Score,
which captures the overall balance between preci-
sion and recall in all extracted parameter instances.

Precision x Recall
X

Fy

Precision + Recall

Precision and recall are defined as:

Precisi TP
recision = ————
TP + FP
TP
l= ——.
Reca TP+ TN

A higher F; indicates more accurate extractions
with fewer missing or incorrect parameters.
We categorize error cases into the following

types:

* Value Error: The extracted parameter exists but
its numerical value is incorrect. This includes
errors due to unit mismatch, incorrect scaling, or
misinterpretation of scientific notation.

Type Error: A parameter is extracted from an
incompatible simulation context. (e.g. hydrody-
namic settings mistakenly used in a dark matter
only simulation)

Hallucination: The system outputs parameters
that do not appear in the user manual, inventing
values or name unsupported by the source.

Each of these types of error is reported as the
average number of errors per simulation.

C Additional Experiments and Results

We provide the automatic evaluation results on
SIMAGENTS and the baselines in Table 3 and Table
4. The evaluation results are slightly worse for the
baselines compared to the human evaluation, as the
automatic evaluation does not consider all possible
executable variations of the input file. We provide
the automatic evaluation results on SIMAGENTS
using different backbone models in Table 5 and
Table 6.

D Time and Cost Analysis

We provide the average time and cost of SIMA-
GENTS using GPT-4 and Qwen3-4B as the back-
bone model, respectively. For GPT-4, we do direct
API calling; for Qwen3-4B, we run experiments
on a single NVIDIA A40 GPU and report the time
cost.
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Method Micro-F1 Precision Recall
CoT (1-Agent) 91.27 85.84 97.44
EoT (2-Agent) 90.69 84.94 97.27
Ours (2-Agent) 98.13 97.77 98.50

Table 3: Performance comparison of SIMAGENTS
with baseline methods on the cosmological simulation
dataset. We report Micro-F1 score, Precision, and Re-
call as percentages. Higher values indicate better perfor-
mance. The best-performing methods are bolded, and
the second-best are underlined.

Method Value Error Type Error
CoT (1-Agent) 1.76 1.00
EoT (2-Agent) 1.97 0.95
Ours (2-Agent) 0.40 0.05

Table 4: Performance comparison of SIMAGENTS
with baseline methods on the cosmological simulation
dataset, in terms of average number of errors made per
simulation. Each error type is reported as the average
number of errors per simulation. Lower values indicate
better performance. The best-performing methods are
bolded, and the second-best are underlined.

E Additional Discussion and
Clarifications

In this appendix, we provide additional details and
clarifications in response to reviewer questions.

E.1 Manual Inspection and Physical
Equivalence

For simulations that can be completed within a
few days on our available compute resources, we
manually inspected the outputs, focusing primarily
on the matter power spectrum and density fields.
For huge simulations that would require months of
computation, we did not rerun the full simulations
from published results. Instead, we verified that
the automatically generated configurations (e.g.,
cosmological parameters, resolution, and activated
physical modules) match those described in the
corresponding publications.

As a future validation goal, we plan to move
toward more systematic checks of physical equiv-
alence between SIMAGENTS-generated simula-
tions and published benchmarks. This includes
extending our current limited manual inspection
on smaller runs to broader, human-verified com-
parisons on standardized benchmark setups, once
additional compute resources are available.



Method Micro-F1 Precision Recall
SIMAGENTS
(GPT-4) 98.13 97.77 98.50
SIMAGENTS
(Qwen3-4B) 81.23 70.16 96.10

Table 5: Performance comparison of SIMAGENTS using
Qwen3-4B as the backbone model and GPT-4 as the
backbone model. Experiments are conducted on the
cosmological simulation dataset. We report Micro-F1
score, Precision, and Recall as percentages.

Method Value Error Type Error
SIMAGENTS (GPT-4) 0.40 0.05
SIMAGENTS (Qwen3-4B) 3.05 2.59

Table 6: Error analysis of SIMAGENTS using Qwen3-
4B as the backbone model and GPT-4 as the backbone
model. Experiments are conducted on the cosmological
simulation dataset. Each error type is reported as the
average number of errors per simulation.

E.2 Definition of Simulation Success

In our evaluation, success requires both executabil-
ity and basic physical consistency. First, the simu-
lation script must run to completion without errors
raised by the simulation software. Second, we per-
form lightweight checks of physical consistency,
such as verifying units and ensuring that critical
physical parameters and models are set in a way
that is compatible with the problem specification.
These considerations are reflected in the examples
and analyses presented in the main paper.

E.3 Agent Decomposition and Coordination

We did consider alternative agent decompositions
when designing SIMAGENTS. The current two-
agent setup is chosen to balance information dis-
tribution and domain expertise: both agents are
prompted to use physics knowledge, while the Soft-
ware Agent focuses on interacting with the code
and its manual. In a two-agent interaction, there is
limited room for different coordination strategies
and patterns in a two-agent interaction. We will
explore this in future work as we implement more
varieties of agent groups.

E.4 Generalizability to Other Simulation
Codes

Our framework is designed to be largely adaptable
to different simulation codes. Many widely used
codes (e.g., Arepo, ENZO, GIZMO, GADGET-4)
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Manual Paper/rel. Draft+dbg Iter Total

First-time 64 42 60 5.2 166
Familiar 12 19 13.4 2 444
SIMAGENTS 2 (total only) 2

Table 7: Average setup effort. Times are averages in
minutes. Manual = reading the software manual; Pa-
per/rel. = reading the paper or related materials and
extracting needed parameters; Draft+dbg = drafting
and debugging the configuration; Iter = iterations/de-
bug cycles to first successful run. For SIMAGENTS,
only the total time applies (no per-step times).

Backbone Average Time Average Cost

Model (seconds) )
GPT-4 124 0.25
Qwen3-4B 406 -

Table 8: Average time and cost per paper of SIMA-
GENTS using GPT4 and Qwen3-4B, respectively

share similar high-level physical models and work-
flows (configuration — initial conditions — run
— analysis), but differ in file structures, parameter
names, units, and other conventions.

In principle, the overall multi-agent structure of
SIMAGENTS can be reused across codes. Adapt-
ing to a new code primarily requires:

* Providing the Software Agent with the corre-
sponding manuals and documentation.

* Adding code-specific guidance about file for-
mats, execution commands, and key parame-
ters.

* Performing modest prompt engineering to ac-
count for different naming conventions, error
messages, and pipeline structures.

Thus, extending SIMAGENTS to other simula-
tion environments is not a matter of re-engineering
the entire framework, but of combining new docu-
mentation with few adaptations.

E.5 Model Dependency and Smaller
Open-Source Models

We observe a substantial performance gap between
GPT-4 and the smaller open-source model Qwen3-
4B (F1 score dropping from 98.13% to 81.23%).
A key limitation of Qwen3-4B in our setting is its
weaker long-context reasoning ability: given very
long inputs such as a ~100-page software manual,
it struggles to fully interpret and integrate the nec-
essary information. Thus, giving it more examples



would not be that helpful, as we are feeding it with
more contexts, which are usually dozens of pages
of physics papers. Fine-tuning on the dataset could
be beneficial, but it would be very time-consuming
and dataset-specific. We will explore light fine-
tuning in later works.

E.6 Error Analysis and Hallucination Errors

As noted in Section 3 of the main paper, all base-
lines, including SIMAGENTS, have access to the
user manual, since current LLMs do not possess
sufficient built-in knowledge of cosmological sim-
ulation software. In SIMAGENTS, we prompt the
specialized Software Agent to focus particularly on
parameter explanations rather than just parameter
names, because type and value errors are especially
critical from a physicist’s perspective. As a result,
many of the hallucination errors made are errors
that a physicist can understand which physical pa-
rameter they correspond to. Still, the naming is dif-
ferent from that of the software. We expect these er-
rors to be reducible by prompting the agents to pay
closer attention to exact parameter names during
inter-agent communication and by strengthening
consistency checks between proposed configura-
tions and the documentation. Such improvements
are a natural direction for future iterations of the
framework.
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Abstract

Despite the size of the field, stance detection
has remained inaccessible to most researchers
due to implementation barriers. Here we
present a library that allows easy access to an
end-to-end stance modelling solution. This li-
brary comes complete with everything needed
to go from a corpus of documents, to exploring
stance trends in a corpus through an interactive
dashboard. To support this, we provide stance
target extraction, stance detection, stance time-
series trend inference, and an exploratory dash-
board, all available in an easy-to-use library.
We hope that this library can increase the acces-
sibility of stance detection for the wider com-
munity of those who could benefit from this
method.

1 Introduction

The field of stance detection —the identification of
the attitude of a document author to a target, as rep-
resented by a topic, claim, entity, etc. (Mohammad
et al., 2016) —has produced a number of methods
critical to the understanding of social behaviour.
However, it remains a method that requires a com-
mitted natural language processing (NLP) expert
to apply. While other NLP fields have success-
fully made their technology available for general
practitioners, with topic modelling being a prime
example, stance detection remains off limits to gen-
eral use. Beyond this, stance detection has thus far
focused on the situation of having a set of docu-
ments with pre-defined stance targets (the idea or
issue a stance is expressed on, here in the form of
noun-phrases or claims, as used previously (Zhao
and Caragea, 2024)). We present a library that uses
a combination of new and prior methods to allow
a user to go from a raw corpus of documents, to
an organised set of stance targets and stance target
trends, with little-to-no tuning needed.

Stance detection is frequently used in a temporal
context to understand how attitudes are changing
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over time. In prior work, the outputs have been
naively assembled into a time series using a mov-
ing average (Introne, 2023; Almadan et al., 2023).
We account for the error in the stance classifier and
the noisiness of the data by using Gaussian pro-
cesses (GPs) with a custom likelihood to model the
temporal trends of stance. We show an explanation
of this problem in Fig. 1.

Our library contains an easy-to-deploy web-app
that allows for the exploration of the features output
from our library. In addition, it comes with small
fine-tuned models and defaults that allow it to run
on consumer-grade GPUs !, making it accessible
to researchers with modest compute budgets. We
have seen the value that accessible topic modelling
has provided to the larger community that can ben-
efit from using topic modelling but does not have
the technical capacity to implement their own topic
models, and we hope that, similarly, this library
can benefit the larger community of social scien-
tists who have much to gain from easily accessible
stance detection.

We present two novel contributions: First, to our
knowledge, no stance detection method is available
in a library/package form, only as research repos-
itories specific to a context and dataset. We go
beyond this and release a library that is designed
to be generally usable. Second, no prior work has
produced a method that can take stance labels with
timestamps, and infer a continuous time-varying
stance, considering the error of the classifier.

We release this library under an
MIT license at https://github.com/
bendavidsteel/stancemining. Scripts
to reproduce our results are available in

https://github.com/bendavidsteel/
stancemining/tree/main/experiments. In ad-
dition, we present a video demonstrating the system
at this link: https://youtu.be/4tvqq8GTUHU.

"Here defined as having less than 16GB VRAM
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Figure 1: Given the ordinal stance classifications as x,
with labels ‘Favor’, ‘Neutral’, and ‘Against’, arrayed
in time, how should we infer the latent stance? We
propose to use a Gaussian process with a customized or-
dinal likelihood to infer the latent stance trend. This will
allow us to infer the latent stance from the stance classi-
fications as shown in the figure - that is, in a smoothly
varying manner that balances fitting signal and avoiding
noise. This allows us to factor in the error of the stance
detection classifier into our inference, alongside setting
a prior on the extent to which the stance trend will vary,
allowing us to ignore noise.

2 Background

Services exist to provide stance-detection-like mod-
els to a practitioner audience, but they are either
proprietary (sum) or domain specific (Stab et al.,
2018). Methods for inferring stance trends from
stance observations have been limited to rolling
averages (Introne, 2023), or aggregation on a time
interval basis (Almadan et al., 2023). We produce
models that can both interpolate, and consider the
error of the classifier.

For stance detection output visualization, previ-
ous work has produced solutions (Wu et al., 2014;
Martins et al., 2017; Kucher et al., 2020, 2016), but
all are either not open-source/publicly available, or
are specific to a particular domain, or both.

3 Implementation

We depict the system in Fig. 2, showing the func-
tionality that the library affords. By default, for
cases where the specific stance-targets of a corpus
are not known a priori, the fine-tuned stance target
extraction model will extract stance targets from
each document. The fine-tuned stance detection
models will then find the stance of each document
on each stance target mapped to that document. Ad-
ditional stance targets can optionally be discovered
via clustering, using the method detailed in ?. Alter-
nately, pre-defined stance targets can be provided,
in which case the library will find the stance of
each document on each pre-defined stance targets.

For out-of-the-box use, we use our two fine-
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tuned models by default, hosted on HuggingFace
model storage to allow distribution. In practice,
stance detection frequently needs custom models
for domain specific data, so the library allows us-
ing any local transformers compatible fine-tuned
model. We train our base stance extraction model
on VAST (Allaway and Mckeown, 2020) and EZ-
STANCE noun-phrase (Zhao and Caragea, 2024).
Stance targets represented by claims are popular
in stance detection (Kii¢iik and Can, 2020; Zhao
and Caragea, 2024), so we additionally provide
fine-tuned claim extraction models. This choice of
noun-phrases or claims for extracted stance targets
is configurable by the user in the library.

Since cross-dataset generalization in stance de-
tection is poor (Ng and Carley, 2022; Zhao and
Caragea, 2024), we fine-tuned a modern small lan-
guage model on several datasets to produce a model
that has more generalizability. While this comes at
the risk of each dataset’s slightly different defini-
tion of stance distorting the learned signal, it should
improve the generalizability of the model. Specifi-
cally, we use the following datasets: SemEval Task
6 dataset (Mohammad et al., 2016), VAST (All-
away and Mckeown, 2020), EZ-STANCE noun-
phrase and claim datasets (Zhao and Caragea,
2024), P-STANCE (Li et al., 2021), and the multi-
turn conversational stance detection datasets M'T-
CSD (Niu et al., 2024) and CTSDT (Li et al., 2023).
The use of the multi-turn datasets means that our
library supports documents with contextual threads,
common in media data. Corresponding to the
datasets we select, the specific form of stance de-
tection we focus on is topic/entity stance detection
(Zhu et al., 2025).

We use 16-bit models to maintain high through-
put on older GPUs 2. We use vLLM (Kwon et al.,
2023) for fast LLM inference. This enables pro-
cessing of a dataset of ~1300 posts in 4 minutes.

Stance detection using inputs from audio data,
whether from social media videos or podcasts, is
a common use-case. We therefore provide helper
functions to transcribe audio and video files, using
WhisperX (Bain et al., 2023) and pyannote (Plaquet
and Bredin, 2023). Our library does not currently
support image/video inputs.

Stance Trend Inference GP models use a base
model that outputs a set of Gaussian distributions
corresponding to input points, and a likelihood, that

Zhttps://docs.vllm.ai/en/latest/features/quantization/
supported_hardware.html



Stance Detection Corpus Corpus
Model (Optional) Timestamps Metadata
Corpus +
Stance Target Extraction Targets v -~ L] ~ v
Model (Optional) o Stance Time Series Exploratory
<X r Detection Inference )L Web App
Corpus 1>/ Stgnce Target v v
Ao Stance Stance Data
Classifications Trends Exploration

Figure 2: System diagram of stancemining. Origin items in blue are inputs to the system, origin items in orange are
optional models (stancemining provides these models by default), intermediate items in green are components of
the stancemining library, and endpoint items in red are outputs from the library.

takes as input samples from the base model, and
defines how those signals correspond to the actual
data seen. In our case, the base model is modelling
the function between time and true latent stance,
and the likelihood is modelling the relationship be-
tween the true latent stance and the observed stance
classifications. Stance classifications are ordinal in
nature: a ‘neutral’ post favors a target more than
an ‘against’ post, and an ‘favor’ post favors a target
more than a ‘neutral’ post. We therefore use an
ordinal likelihood (Chu et al., 2005), and model the
stance as a continuous time-varying value between
-1 (‘against’) and 1 (‘favor’).

There are two conditions specific to our use-case.
First and most importantly, stance detection is done
with classification models that make errors. If a
stance detection model is better at classifying ‘fa-
vor’ posts than ‘against’ posts, we will have a sys-
tematic error in our trend inferences if we do not
account for this error. We can estimate the error of
the classifier from its performance on an evaluation
set. The ordinal likelihood function for the 3 true
stance labels would generally be defined as:

1

ao

1) (%)
al—F)

2

p(Y = Fav|F) = ¢ (

a

p(Y =Neuw.|F) = ¢ <

p(Y =Aga|F)=1—¢ <

where ¢ is the cumulative density function of
a Gaussian (the inverse probit function), o is a
parameter to be learned, the data are integer values
from O to k, and the bin edges where the labels
switch are [ag, a;], which we set to [—0.5, 0.5]

However, we want to model the observed prob-
abilities. So first we normalize the confusion ma-
trix C such that each row sums to 1: Z;’:l Cij =

1 forallt € 1,2,3. We then multiply the
true stance probability vector pg [p(Y
Fav.|F),p(Y = Neu.|F),p(Y = Aga.|F)] with
the normalized confusion matrix to obtain the final
observed stance probabilities pg = Cpg, which
are used as the probabilities of the likelihood cate-
gorical output.

The second condition specific to our use-case is
that the stance should be clamped between -1 and
1. Without this, for an array of ‘favor’ observations,
the GP model could reasonably infer a stance of any
value over 1, whereas we want to limit the stance at
1 for the sake of trend comparison. We model this
by inferring the inverse hyperbolic tangent with the
GP base model, and then transform the output of
this model for predictions and the likelihood by
applying a hyperbolic tangent transform.

We use a GP model with constant mean and the
radial basis function for the covariance kernel, with
a log-normal prior for the lengthscale parameter. In
this case, we are inferring the time-varying trend
of a person’s stance on an issue (as opposed to an
organization etc.), so we choose a lengthscale prior
of u = 2,0 = 0.1 based on prior work studying the
correlation of user attitudes over time in Krosnick
(1988). We use the ordinal likelihood developed
by Chu et al. (2005), and optimize the model us-
ing stochastic variational inference, using natural
gradient descent (Salimbeni et al., 2018).

A critical aspect of getting the model to train fast
and effectively is the learning rates of the natural
gradient optimizer, and the learning rate and learn-
ing rate scheduler of the hyperparameter and likeli-
hood parameter optimizer. We run hyperparameter
sweeps of these three variables in Section C. To
implement the model, we use GPyTorch (Gardner
et al., 2018). To improve training speed, we add
a number of optimizations, including compiling
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the model using PyTorch 3, converting functions to
TorchScript, and a batching process which trains
models of comparable size in parallel.

When calling the infer trends function on the
library, the user can specify filter columns. These
are columns in the dataframe where trends should
be calculated for each unique value. This is useful
for when a user wants to calculate time series trends
for different users, sources, accounts etc.

4 Application Use

Once stance features have been extracted from the
corpus using stancemining, it is useful to be able to
quickly explore them using an interactive applica-
tion. We therefore include a ready-to-use web-app
for this purpose. This web-app can be easily de-
ployed via Docker Compose for any user data via
the use of environment variables, as long as the data
has been saved in the format and structure specified
in the documentation. There is an option to enable
authentication in the application if necessary for
sensitive data. The backend of the application uses
FastAPI 4, and the frontend uses React °.

The user is presented with two main views in the
app: a stance target map view, and a timeline view.
The map view (Fig. 3a) shows a 2-dimensional
map of stance targets, where stance targets are em-
bedded using the ‘GIST-small-Embedding-v0’ text
embedding model (Solatorio, 2024), those embed-
dings are reduced to 2-dimensions using UMAP
(Mclnnes et al., 2018), and plotted as a scatter plot.
Points are coloured with the mean stance of docu-
ments on that target, and hovering over the point
shows the proportions of each stance on that tar-
get. This plot allows the user to explore stance
targets in a 2D semantic space, and the discovery
of more stance targets than semantic search alone.
If a user clicks on a point, they are shown the tem-
poral trends of that target in the timeline view.

The timeline view (Fig. 3b) shows the inferred
trend mean for each stance target, alongside its
confidence intervals as computed by the GP model.
When we load the trend data, the backend auto-
matically finds filter types, and allows the user to
display trends broken down by filter value side by
side, or one at a time. This is useful when breaking
down stance target trends into individual users or
sources.

We summarise the full use of the stancemining

3https://pytorch.org/
*https://fastapi.tiangolo.com/
Shttps://react.dev/
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library and web app in the following steps. While
each component of the system can be used sepa-
rately, this sequence represents its full potential:

1. Extract Targets (Optional): Extract stance
targets (noun-phrases or claims) from corpus,
using default model or custom model if there
are specific domain requirements.

Stance Detection: Detect stance of docu-
ments on targets using default models, or cus-
tom models if there are specific domain re-
quirements.

. Stance Trend Inference: Do stance trend
inference if corpus has timestamps.

Load Web App: Load web app using saved
stancemining outputs, specify options via en-
vironment variables.

. Explore Target Map: Explore stance targets
in the target map view.

View Target Trend: Zoom in on a specific
target timeline, filter by metadata attributes.

5 Evaluation

Where possible, we evaluate components of our
system against prior work. Otherwise, we provide
multiple competing methods to add context to the
range of possible metrics. We did not do any formal
evaluation of the web application with end users.
Stance Target Extraction We evaluate the
model using BERTScore (Zhang et al., 2019)
and BLEU (using the SacreBLEU package) (Post,
2018), and show our results in Table 1. We com-
pare to the smallest open-source model evaluated
in Akash et al. (2024). No other direct task and
dataset comparisons exist. For the task of noun-
phrase stance target extraction, we fine-tune our
models on a combined dataset of the document -
stance target noun phrases from VAST (Allaway
and Mckeown, 2020) and the noun-phrase targets
of EZ-STANCE (Zhao and Caragea, 2024). We do
not compare against prior work here, as previous
work has only evaluated one extracted stance target
per document (Akash et al., 2024), as opposed to
extracting multiple targets per document. For these
tasks we use Qwen 3 models (Yang et al., 2025)
and SmolLM2 models (Allal et al., 2025), with
specific sizes reported in the tables. For our claim
extraction models, we fine-tune them on the docu-
ment - stance target claims pairs from EZ-STANCE
(Zhao and Caragea, 2024). We show metrics from
this fine-tuning in Table 2. No comparable results
are available for this task on this dataset to our
knowledge.



(a) 2-dimensional map view of stance targets.

,,,,,,,,

(b) Trend timelines view of a stance target broken down by filter
values.

Figure 3: Two screenshots from the stancemining dashboard.

EZ-STANCE VAST
Model Num. params. | BERTScore F1 ~BLEU F1 | BERTScore F1 =~ BLEU F1
Llama-3-8B (Akash et al., 2024) 8B 0.78 - 0.84 -
Qwen3-0.6B (ours) 752M 0.90 0.67 0.91 0.33
SmolLM2-360M-Instruct (ours) 360M 0.90 0.67 0.92 0.20

Table 1: Noun-phrase stance target extraction evaluation results. We compare to the smallest open-source model
evaluated in Akash et al. (2024). No other direct task and dataset comparisons exist.

EZ-STANCE
Num. BERTScore BLEU
Model params. F1 F1
Qwen3-1.7B (ours) 2.03B 0.89 0.16
Qwen3-0.6B (ours) 752M 0.88 0.04

Table 2: Claim stance target extraction evaluation. No
comparable results are available for this task on this
dataset to our knowledge.

Stance Detection We evaluate our fine-tuned
stance detection models using the macro F1
score, as is typical in stance detection (Zhao and
Caragea, 2024; Allaway and Mckeown, 2020),
and show our results in Table 3. We experi-
mented with several hyperparameters and report
the best results here, using 4 epochs, batch_size X
grad_accumulation_size = 32, a learning rate
of 0.0001, and classifying using a classification
head (instead of using causal language modelling
to generate the label). We report other hyperparam-
eters experimented with in App. A. In the table
we also highlight the number of parameters in each
model, given that part of the aim of stancemining
is to make it accessible, thereby necessitating small
models that work with limited resources.

Stance Trend Inference To test the GP model,
we use synthetic data. This also allows us to model
the relationship between a true latent stance and
stance classifications across time, lacking a dataset
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for fine-grained stance over time. We detail our
synthetic data generation process in Section B. We
use 3 parameters to parameterize our synthetic data,
the number of observations n4, the random walk
scale 0, Which determines how much the latent
stance trend varies, and 0,,,;s¢ Which determines
the amount of noise in the stance expressions (i.e.
someone who consistently favors a stance target or
producing varied views on it).

To improve training time and model perfor-
mance, we ran hyperparameter sweeps on the learn-
ing rates of the natural gradient optimizer for the
GP model, and the learning rate and scheduler for
the likelihood parameters and model hyperparame-
ters. We averaged across several synthetic data con-
figurations, including ng, 0neise, and oq%. We de-
termine scheduler performance by averaging across
all learning rate values, and then sorting by mini-
mum loss achieved in 1000 epochs. We detail this
experiment in Sec. C. Using no scheduler achieves
the best loss, but a cosine scheduler achieves the
fastest convergence. We therefore use no learning
rate scheduler in our library. When using no learn-
ing rate scheduler, the most effective learning rate
was (.2 for both learning rates.

Next, we evaluate our method of inferring stance
trends against other regression methods. Other
methods have used a rolling average to smooth
user stance observations (Introne, 2023) or simply



Flmacro

Model Num. params. | SemEval ~VAST  EZ-STANCE  EZ-STANCE claim P-STANCE  MT-CSD  CTSDT
TGA Net 111M 0.665 - -
BART-MNLI-e,, 205M - 0.669 0.885
COLA Prop. - 0.73 - - - -
SmolLM2-135M-Instruct (Ours) 135M 0.57 0.71 0.61 0.81 0.78 0.56 0.67
SmolLM2-360M-Instruct (Ours) 360M 0.59 0.75 0.64 0.85 0.82 0.60 0.64

Table 3: Stance detection F1 scores for each dataset. With models BART-MNLI-e,, (Zhao and Caragea, 2024),
TGA Net (Allaway and Mckeown, 2020), and COLA (Lan et al., 2024) (COLA uses GPT 3.5 Turbo, hence the
proprietary label in the number of parameters cell.) (While COLA evaluates on P-Stance and SemEval, they report
separate macro Fls for each target, making comparison here difficult).

aggregate user stance observations on a time period
basis (Almadan et al., 2023), but we consider it
very useful to be able to interpolate the values, and
as such, we only use methods capable of interpola-
tion here. We evaluate LOWESS (Cleveland, 1979)
and a spline model (De Boor and De Boor, 1978).
Specifically, we found using a cubic smoothing
spline with ridge regression with o = 0.1 as a reg-
ularization parameter to produce the best data fits.
We evaluated each method at 10 values of 0,0
between 0.05 and 0.5, 10 values of o, between
0.005 and 0.05, and ng randomly sampled from
the range (5,30) (Detailed in App. D). Our GP
method consistently obtains lower mean squared
error (MSE) values than the other two methods
evaluated. To obtain the overall MSEs, we simply
take all MSEs measured for each point in the noise
and random walk scales, and obtain their mean. We
show these results, plotted against training time, in
Fig. 4, showing that our GP method obtains a better
mean MSE overall compared to the two methods.

However, this is not without a cost in training
time: the process of training and obtaining predic-
tions from GPs is much slower than for LOWESS
and splines. This training time is acceptable when
we want to have confidence in the stance trends
we obtain for further modelling, but we provide
LOWESS as a faster alternative in the library for
those who want faster stance trend inference. Ac-
tual numbers are in Appendix D.

6 Conclusion

We developed a library that allows a user to provide
a document corpus expressing stance on unknown
issues, optionally with associated timestamps and
metadata, and detect the stance of the texts on
the discovered targets. We believe that —just as
easy-to-use topic modelling tools have enabled
widespread use of these tools where they were pre-
viously inaccessible —easy-to-access stance detec-
tion can unlock new experimental approaches for
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Figure 4: Comparison of median training time and me-
dian MSE between our GP, LOWESS, and splines over
100 runs with varying synthetic data parameters. Error
bars indicate quartiles. Error bars for runtime are not
visible as the runtime variance is small relative to marker
size. Our GP method outperforms the other methods,
but at the cost of increased training time.

groups where stance detection was previously in-
accessible. We hope this tool unlocks improved
understanding of opinion and attitude processes for
a larger community of social scientists.

7 Ethical Considerations

Stance detection enables inference of attitudes from
unconsenting text authors on issues they discuss,
which is privacy-violating. It also allows greater in-
sight into social processes, allowing researchers to
work towards understanding social processes. How-
ever, the current nature of stance detection is that
it requires dedicated work from an NLP engineer
to implement, in addition to compute resources to
train models, meaning that only large incumbents
can use it. Our library aims to democratize access
to stance detection, such that groups with fewer
resources can use it in their studies, while larger
groups were always able to use it.
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A Stance Detection Training

We tested several models and hyperparameters
to improve our final fine-tuned stance detection
model, results shown in Table 4. In some cases
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where epochs are low we aborted training early due
to low evaluation set metrics.

B Synthetic Data Generation

Then sample the observed post stances by sampling
them from categoricals indexed by the true quan-
tized post stances, using categorical probabilities
obtained by normalizing the confusion matrix of
the stance detection classifier on the test set.

We start with our timestamps representing each
day in a year of 365 days.

t=10,1,2,...,365]
We then sample the stance on the first day.
2o ~U(-1,1)

Then simulate a random walk for each times-
tamp.

z; = maz(min((N (zi-1, U?)valk)? -1),1)

Z‘:1727"'7ntime_1

We then draw n,ps elements from the vectors ¢
and z to serve as our observations ¢, and z,bs. We
model diversity of stance expression (i.e. someone
in favor of something will sometimes say things
neutral or even against that thing) by sampling the
latent user post stance values from normal distribu-
tions centred at the true stance, with scale opp;se:

Yi ~ N(Zi’ O'noise)Vi

We then clamp these values between -1 and 1,
and round them to the nearest integer to simulate
the quantizing nature of classification.

s; = round(min(maz((y;, —1),1))Vi

where s; € {—1,0,1}

Then, using the normalized confusion matrix of
the classifier, let P , be the probability of predict-
ing class ¢ given true class k:

Py 1 Paig P
P=1 F_-1 Fo P
Py Py P

where each row sums to 1: " ycr_; o1y Pry =
1

We get the classification probabilities as indexed
by the true latent classifications to obtain the ob-
served classifications:

5; ~ Categorical(Py, .), j=1,2,...,Nobs
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Model Name | Epochs | Grad Accum Steps | Batch Size | LR. | Classification Method | Flmacro
SmolLLM2-360M-Instruct 4 8 4 1.0e-4 | head 0.744
SmolLM2-360M-Instruct 2 8 4 1.0e-4 | head 0.738
SmolLLM2-360M-Instruct 1 8 4 1.0e-4 | head 0.724
SmolLM2-135M-Instruct 4 4 8 1.0e-4 | head 0.715
SmolLLM2-135M-Instruct 8 4 8 1.0e-4 | head 0.709
SmolLM-135M-Instruct 4 4 8 1.0e-4 | head 0.708
SmolLLM2-135M-Instruct 4 4 8 1.0e-4 | head 0.708
SmolLM2-135M-Instruct 4 4 8 1.0e-4 | head 0.707
SmolLM-135M-Instruct 8 8 8 1.0e-4 | head 0.705
SmolLM-135M-Instruct 8 4 8 5.0e-5 | head 0.703
SmolLLM-135M-Instruct 1 4 8 1.0e-4 | head 0.651
SmolLM2-135M 2 8 4 1.0e-4 | head 0.621
SmolLM2-135M-Instruct 1 8 4 1.0e-4 | generation 0.562
SmolLM2-135M 2 2 4 1.0e-4 | head 0.473

Table 4: Hyperparameter sweep with F'1,,,.., across all datasets.

Hyperparameter ‘ Tested values
LR. [0.001, 0.01, 0.1, 0.2, 0.5, 1.0]
NGD LR. [0.05, 0.1, 0.2, 0.5]
Num. Data Points [20, 100, 200]
Onoise [0.2, 0.5]
Owalk [0.1, 0.5]

Table 5: NGD LR. stands for natural gradient descent
optimizer learning rate. It is typical to use a large learn-
ing rate for the learning rate of natural gradient descent
(Salimbeni et al., 2018).

We then use the observed classifications § and
observed timestamps %5 as the observations, and
the full timestamp vector ¢ as the timestamps to
infer the latent stance on.

C Learning Rate Hyperparameter Sweep

We trialled several hyperparameter settings when
searching for the best learning rates and learn-
ing rate schedulers. We detail them in Table 5,
alongside logging the number of epochs needed to
achieve 90% loss reduction as a measure of conver-
gence speed.

We report the aggregated scheduler metrics in
Table 6.

D Time Series Inference Results

Synthetic data generation parameter sensitivity ex-
periment outputs are shown in Figs. 5a and 5b.

Overall output metrics from our time-series infer-
ence comparison experiments are shown in Table
7.
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Figure 5: Mean MSE from 5 runs for each of 10 values
of an adjusted synthetic data generation parameter, used
to compare the GP, LOWESS, and spline models.



Scheduler Min. Loss

Num Epochs Conv.

None
Cosine Warm Restarts
Cosine
Step
Exponential

1.12
1.19
1.19
1.22
1.22

97
112
73
74
87

Table 6: Evaluation of learning rate schedulers, using minimum loss achieved and number of epochs to 90% loss
reduction as measures of efficacy and speed, respectively.

Method MSE Training Time

GP 0.069 £0.13 21.7+£7.2
LOWESS | 0.197 £ 0.46 0.003 £ 0.001
Spline 0.130 £0.12 0.002 £ 0.007

Table 7: Comparison of time series inference methods.

Numbers listed are mean = standard deviation.
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Abstract

Short-form video platforms like TikTok present
unique challenges for misinformation detec-
tion due to their multimodal, dynamic, and
noisy content. We present SHORTCHECK, a
modular, inference-only pipeline with a user-
friendly interface that automatically identi-
fies checkworthy short-form videos to help
human fact-checkers. The system integrates
speech transcription, OCR, object and deep-
fake detection, video-to-text summarization,
and claim verification. SHORTCHECK is val-
idated by evaluating it on two manually anno-
tated datasets with TikTok videos in a multi-
lingual setting. The pipeline achieves promis-
ing results with F1-weighted score over 70%.
The demo can be accessed live at http://
shortcheck.factiverse.ai.

1 Introduction

The popularity of short-form video platforms such
as TikTok, YouTube Shorts and Instagram Reels
has transformed how information is produced, con-
sumed, and spread. With billions of monthly active
users, these platforms create fertile ground for the
spread of misinformation on sensitive topics includ-
ing politics, health, and social issues. Unlike tra-
ditional text or image-based content, these videos
may include multiple modalities such as speech,
text overlays, music, and visuals, often edited in
ways that obscure meaning or context, though not
all of these elements are always present; for exam-
ple, some videos contain only on-screen text with-
out audio, while others show just a speaker without
any additional graphics or overlays. For example,
Figure 1 shows a TikTok screenshot where the over-
lay text makes the claim, while the audio transcript
(translated to “it’s a shame”) does not provide any
useful information. The video summary notes an
urban explosion, indicating potentially contentious
content for fact-checkers.

The multimodal complexity of short videos
makes automated fact-checking technically chal-
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Factiverse Al and University of Stavanger
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Field Value

overlay_text Someone captured the | missile

in the Beirut blast

e e i)l glio sl (sl duge
The video captures footage of
the 2020 Beirut blast, showing
destruction and chaos in an ur-
ban area, with explosions visible

transcript
video_summary

throughout.
buzzword_detected  False
transcript_verdict hostile
summary_verdict contentious-issue
overlay_verdict hostile
Checkworthiness True

Figure 1: TikTok video with overlay text claiming “Someone
captured the missile in the Beirut blast,” and noisy Arabic
audio and explosion visuals. Features below show why SHORT
CHECK marked it Checkworthy.

lenging and manual efforts are increasingly un-
sustainable, especially for under-resourced fact-
checkers facing unprecedented content scale and
funding cuts. In this demo, we present a prototype
designed to automate the identification of poten-
tially checkworthy videos, significantly reducing
the time required by human fact-checkers. Our pro-
totype is easy to use and can predict checkworthi-
ness in over 30 major languages.'

Most existing misinformation detection systems
are designed for structured, single-modality content
such as news articles, social media posts, or deep-
fake detection, with a primary focus on either text,
audio, transcriptions or visual modalities. We sum-
marize the existing fact-checking systems and their
modalities in Table 1. However, these approaches

'Intersection of languages supported by Meta Llama3

https://ai.meta.com/blog/meta-1lama-3/ and Ope-
nAl Whisper https://github.com/openai/whisper

Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics: System Demonstrations, pages 77-85
December 20-24, 2025 ©2025 Association for Computational Linguistics
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Table 1: Fact-checking systems categorized by input modality, granularity, multilinguality, and fact-checking support.

System Text Audio Image Video Granularity M.ingual Full FC
BRENDA Botnevik et al. (2020) v X X X Long Text X v
FLEEK (Bayat et al., 2023) v X X X Single Claim X 4
QACHECK (Pan and et al., 2023) v X X X Single Claim X v
CLAIMLENS (Devasier et al., 2024) v X X X Single Claim X X
TRUTHREADER (Li et al., 2024) v X X X Long Text X v
OPENFACTCHECK (Igbal et al., 2024) 4 X X X Long Text X v
FAcTCHECKEDITOR (Setty, 2024a) v X X X Long Text v v
Lokr (Li et al., 2025) v X X X Single Claim v v
AupIOCWD (Ivanov et al., 2024) X v X X Single Claim X X
LiveFC (Venktesh and Setty, 2025) v v X X Long Text X v
PopFC (Setty, 2025) v X v X Long Text v v
FAUXTOGRAPHY (Zlatkova et al., 2019) v X v X Single Claim X v
AVERIMATEC (Cao et al., 2025) v X v X Single Claim X v
CER (Barone et al., 2025) v v v v Single Claim X v
COVID-VTS (Liu et al., 2023a) v v v v Single Claim X X
SHORTCHECK (ours) v v v v Long Text v X

are not suited for short-form video content found
on platforms like TikTok or YouTube Shorts due to
the casual unstructured nature of the content.

Short-form videos pose unique challenges due to
their limited multimodal generalization. They often
blend speech, text, music, and visuals in non-linear,
asynchronous ways that traditional unimodal mod-
els struggle to interpret (Alam et al., 2022; Yao et al.,
2023; Guo et al., 2022; Singhal et al., 2019). These
videos also exhibit noisy or incomplete modality
signals: some lack audio, others feature distorted
overlays or rapid cuts, making existing detectors
brittle in real-world conditions (Jindal et al., 2020;
Venktesh et al., 2024). Furthermore, most mod-
els offer low interpretability, returning binary pre-
dictions without justifications. This hinders adop-
tion in professional workflows that require transpar-
ent, evidence-backed reasoning (Schlichtkrull et al.,
2023; Guo et al., 2022; Alam et al., 2022; Venktesh
and Setty, 2025).

While multimodal fact-checking is gaining trac-
tion, the gap between research prototypes and de-
ployable, interpretable tools for short-form video
remains substantial. Bridging this divide requires
not only improved multimodal understanding but
also system outputs that align with the needs of
human fact-checkers in high-throughput environ-
ments.

Our Contributions. This paper introduces a
demonstration system for detecting checkworthy
TikTok videos. Our key contributions are:

* A modular multimodal pipeline that inte-
grates OCR, transcription, video-to-text cap-
tioning, semantic classification, retrieval and
fact-checking modules.
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* Two new multilingual annotated datasets of
TikTok videos labeled for checkworthiness.

* An evaluation and error analysis showing
which modalities contribute most to reliable
classification.

* A demo interface that allows fact-checkers
to upload videos, inspect intermediate results,
and link claims to existing fact-checks.

Together, these contributions provide a step toward
bridging the gap between state-of-the-art research
and practical tools for combating misinformation
on emerging short-form video platforms.

2 Related work

Automated fact-checking has advanced through
benchmark datasets such as FEVER (Thorne et al.,
2018) and subsequent surveys (Thorne and Vla-
chos, 2018; Guo et al., 2022), along with real-world
datasets like MULTIFC (Augenstein et al., 2019),
AVERITEC (Schlichtkrull et al., 2023) and QUAN-
TeMP (Venktesh et al., 2024). Within checkworthi-
ness detection, early work introduced context-aware
ranking (Gencheva et al., 2017) and systems such
as CLAIMRANK (Jaradat et al., 2018) that support
real-time prioritization of claims for journalists.
Multimodal research now combines text, audio
and visual cues (Alam et al., 2022), enriched by
datasets and models such as FAKINGRECIPE (Bu
et al., 2024), SpoTFAKE (Singhal et al., 2019),
NEwsBAG (Jindal et al., 2020) and end-to-end video
fact-checking systems with explanation generation
(Yao et al., 2023). Deepfake detection architectures
like MESONET (Afchar et al., 2018a) further sup-
port authenticity analysis within video pipelines.
Practical systems such as BRENDA (Botnevik



et al., 2020), FACTCHECKEDITOR (Setty, 2024b),
PoDFC (Setty, 2025) and LiveFC (Venktesh and
Setty, 2025) have begun bridging research and real-
world fact-checking needs, though they typically
focus on single-modality inputs or long-form con-
tent. SHORTCHECK differs by targeting short-form
video platforms and integrating text, audio, im-
age and video signals within a modular and inter-
pretable pipeline designed to support professional
fact-checkers.

3 System Overview

Given that the checkworthiness of a TikTok video
can be inherently subjective, we base our approach
on established best practices followed by profes-
sional fact-checkers. In particular, we consulted
the guidelines of Faktisk.no® This also aligns with
the definition of fact-checkworthiness in the liter-
ature(Jaradat et al., 2018; Barron-Cedeiio et al.,
2024)

Short videos up to ten minutes may contain mul-
timodal claims, and are checkworthy only when
they pose potential public harm in areas like pol-
itics, health or society. Content such as celebrity
gossip, sports or advertisements is excluded.

We propose a modular, inference-only pipeline
for detecting potentially misleading or checkwor-
thy content in short-form videos, particularly those
published on platforms like TikTok. The sys-
tem assigns each video one of two categorical la-
bels: Checkworthy, or Not_Checkworthy. Un-
like prior work that builds monolithic or end-to-end
models, our design emphasizes modularity, inter-
pretability, and adaptability. Each component in
the pipeline can be independently replaced, which
makes the system robust to failures in specific
modalities and easier to maintain in production set-
tings.

3.1 Pipeline Components

The pipeline comprises feature extraction mod-
ules tailored to speech, text, visuals, and metadata,
whose outputs are aggregated by a rule-based en-
gine for final video classification. Additional mod-
ules, such as object detection for weapons, were
tested but excluded due to limited contribution.

Optical Character Recognition (OCR): The
first stage involves extracting visible on-screen text

2A Norwegian non-profit organization accredited by the
International Fact-Checking Network (IFCN).
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through Optical Character Recognition (OCR), us-
ing the EasyOCR library>. This module captures
embedded captions or textual overlays, which are
common in TikTok videos. However, OCR perfor-
mance is often challenged by stylized fonts, rapid
transitions, and visually noisy frames.

DeepFake Detection: To detect synthetic media,
we incorporated a deepfake detection module into
the pipeline. Since many methods rely on identity-
specific data or high-quality frontal imagery, we
evaluated their generalization to TikTok’s uncon-
strained, user-generated content (Abbas and Taei-
hagh, 2024). We tested three zero-shot models:
MesoNet (Afchar et al., 2018b), a mesoscopic CNN;
EfficientNet (Bonettini et al., 2021; Dolhansky et al.,
2020), an attention-based model from the DFDC
challenge; and Wvolf/ViT 4 (Bonettini et al., 2020),
selected for its plug-and-play accessibility. Their
outputs contributed as signals in the rule-based de-
cision logic.

Speech Transcription: Speech transcription is
handled by OpenAl Whisper (Radford et al., 2022),
which offers robust multilingual transcription and
performs well in noisy audio environments. How-
ever, overlapping music or sound effects, which are
prevalent in entertainment-oriented videos, can still
degrade transcription quality.

Video Summarization: To obtain a visual se-
mantic summary, video frames are sampled and
passed through LLaVA (Liu et al., 2023b), a vision-
language model that generates frame-level captions
describing people, objects, and scenes. These cap-
tions are subsequently summarized and contextu-
alized using Meta’s LLaMA 3 model, which also
performs high-level semantic classification. The
model predicts whether a video is political, hostile,
benign, or promotional in nature. All models are
hosted via Ollama, a lightweight, local model serv-
ing platform that supports REST-based inference.’

Ideological Language Detection: In addition to
these core modules, we incorporate a rule-based sys-
tem for detecting ideological buzzwords and coded
language, often referred to as dog whistles. This
module operates on both OCR and transcript out-
puts, scanning for terms known to encode polit-
ical or ideological meaning in subtle ways. The

*https://github.com/JaidedAI/Easy0CR

*https://huggingface.co/Wvolf/ViT_Deepfake_
Detection

Sollama.com
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Figure 2: Modular pipeline for fact-checking TikTok videos.

detection rules are informed by prior literature on
dog-whistle communication (Albertson, 2015) and
curated datasets from organizations such as Fak-
tisk.no.

Text-based fact-checking To further refine the
decision-making process, we incorporate a claim
detection and external fact-checking module. This
component leverages fine-tuned transformer models
for claim detection and natural language inference
(NLI), applied to both the transcript and the visual
summary of the video. Following the approach
proposed by (Setty, 2024b), the module identifies
declarative, factual statements and attempts to ver-
ify them against a fact-checking evidence database.
While this does not fact-check the entire content
of the video, it provides fact-checkers early signals
indicating whether the video may contain verifiably
false or misleading information.

Finally, the system aggregates the outputs from
all modules using a rule-based logic engine. A
scoring system considers multiple module outputs,
including the presence of claims, ideological lan-
guage, or political classification. If the cumulative
score exceeds a threshold, the video is marked as
Checkworthy. Advertisements are detected and
filtered early in the pipeline and override all other
scores. Videos that do not meet either criterion
are labeled as Not_Checkworthy. This decision
process is entirely transparent and configurable, en-
abling future refinement without retraining models.

3.2 Verdict Evaluation

Our system produces a final binary label using a
lightweight rule-based scoring function that aggre-
gates signals from multiple modules. Each module
contributes a fixed weight to a cumulative Check-
worthiness score.

The scoring scheme assigns concrete weights to
each signal: detecting ideological buzzwords adds
+2, and transcripts labelled as a contentious issue
add +2 while other checkworthy transcript cate-
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gories add +0.5. Summary and overlay-text clas-
sifiers contribute +1.5 for contentious-issue labels
or +0.7 for other checkworthy labels. Evidence-
supported claims add +0.5 when at least one such
claim is present, with an additional +0.25 for each
extra supported claim. The total score of over 2 is
considered checkworthy otherwise not.

The weights and threshold were manually se-
lected based on findings from the initial thesis work.
At the current stage, no automated parameter opti-
mization has been implemented.

3.3 Model Configuration and Deployment

All models used in the pipeline are inference-only
and require no task-specific fine-tuning. We use
prompt engineering to adapt general-purpose mod-
els to specific sub-tasks. The LLaMA 3 and LLaVA
models are deployed using Ollama, which allows for
lightweight, local hosting and fast prototyping. Cus-
tom prompts, temperature settings, stop sequences,
and token limits are adjusted to ensure consistent
outputs across modules.

3.4 Interpretability and Modularity

A key design goal of our approach is interpretabil-
ity. Each module exposes intermediate outputs that
are human-readable and can be inspected by fact-
checkers. This transparency builds trust and en-
ables feedback-driven improvement of the system.
The modular design also ensures that any individual
component, such as the OCR engine or the seman-
tic classifier, can be replaced or updated without
disrupting the entire pipeline. This is especially
important for deployment in evolving information
ecosystems where content formats and threat types
change rapidly.

3.5 Overhead and Concurrency

The video-to-text module is consistently the domi-
nant computational cost, requiring approximately
20 s or more per video regardless of length. Largely



due to the amount of frames being fixed. The
fact_check module also exhibited substantial
variability, between 25.9 s and 1.2 s, depending
on the amount of claims present. Audio transcrip-
tion scaled more directly with video duration, typ-
ically accounting for 10-30% of the video length.
Lighter modules such as OCR and deepfake de-
tection contributed comparatively little overhead
(approximately 2—4 s combined), while buzzword
detection, advertisement detection, and final verdict
evaluation added negligible cost.

It is important to note that the current prototype
processes videos sequentially and does not employ
modular concurrency.

4 Experimental Evaluation

4.1 Setup

All experiments were conducted on a local ma-
chine with an NVIDIA A10 GPU (24GB VRAM).
All models, including vision-language models and
LLM:s, were served locally via 011ama using REST-
based endpoints. For full implementation see®

4.2 Datasets

We evaluate SHORTCHECK on two manually anno-
tated dataset in their entirety. Summary of dataset
statistics is shown in Table 3

Norwegian influencer data: This dataset in-
cludes 249 TikTok videos curated by Faktisk for
an emotional analysis study on political trolling via
buzzwords like “Stem FRP”.” We manually anno-
tated each video, with annotator(2) agreement of
96%, for checkworthiness using the guidelines in
Section 3.

TikTok Videos from Fact-Checking Websites:
This dataset, curated by (Bu et al., 2024), was
compiled from fact-checking platforms including
Snopes, PolitiFact, FactCheck.org, and Health Feed-
back. While the majority of content is in English,
some posts and modalities appear in other lan-
guages. We annotated a sample of 254 videos from
this collection, following the same guidelines de-
scribed before.

4.3 Results

In this section, we present the overall results and
ablation studies. In addition, we also present the

*https://github.com/factiverse/shortcheck

"https://wuw.faktisk.no/artikkel/
faktisk-analyse-av-tiktok-menn-mest-negative/
109375
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effectiveness of some of the modules such as Deep-
Fake detection. We plan to evaluate other modules
in detail in future work.

Overall Results: The model performs well on
both Norwegian and English TikTok videos, with
notable differences in class-wise behavior. For Nor-
wegian content, the system achieves strong recall
for Checkworthy instances (0.91) and high overall
accuracy (0.81), indicating robust performance in
identifying relevant claims. In contrast, the English
dataset shows higher precision for Checkworthy
(0.82) but lower recall (0.58), suggesting the model
is more conservative in flagging English videos as
checkworthy. Combined macro-averaged scores are
comparable across languages (F1: 0.73 for Norwe-
gian, 0.74 for English), highlighting the pipeline’s
cross-lingual generalizability with slightly better
balance in the Norwegian case.

4.4 Ablation Studies

The ablation study shown in Table 5 demonstrates
that textual modules are the most influential compo-
nents in determining checkworthiness. The removal
of the Transcript Verdict and Buzzword modules re-
sulted in the largest decreases in recall and F1-score,
highlighting the critical role of spoken content and
ideological language. In contrast, excluding mod-
ules such as Weapon Detection, Fact Check, or
Video-to-Text Verdict had minimal impact, indicat-
ing their limited standalone contribution. Notably,
the Weapon Detection module slightly reduced over-
all performance, likely because such content ap-
pears infrequently; as a result, it was omitted from
the final pipeline. These findings reinforce the sys-
tem’s reliance on semantic and linguistic features
rather than visual or metadata-based cues. Finally
since removing individual modules does not show a
huge drop in performance, the overall performance
is attributed to contribution of modules.

DeepFake detection The models were evaluated
in a zero-shot setting, without any fine-tuning on the
target dataset. Among them, EfficientNET outper-
formed all others across evaluation metrics, achiev-
ing an accuracy of 0.612 and a remarkably high
precision of 0.992, indicating highly reliable posi-
tive predictions. However, its recall of 0.573 sug-
gests it still misses nearly half of actual deepfakes.
MesoNET and Wvolf/ViT perform very poorly.
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Table 2: Results on TikTok videos in Norwegian and English. CW = Checkworthy, NCW = Not Checkworthy.
Combined metrics are macro-averages. Metrics: Precision (P), Recall (R), Accuracy (Acc) and Fl1-weighted (F1-W)

Dataset Cw NCW Combined (Macro)

P R F1-W P R F1-W P R F1-W  Acc
Norwegian influencer 042 091 058 098 080 0.88 070 0.85 0.73 0.81
Fact-checking websites 0.82 0.58 068 0.72 090 0.80 077 074 0.74 0.76

Table 3: Dataset composition by language and check-
worthiness class. CW: Checkworthy and NCW: Not
Checkworthy.

Dataset CW NCW Total
Norwegian influencer 33 204 237
Fact-checking websites 114 140 254
Total 147 344 491

Table 4: Evaluation scores of DeepFake detection mod-
els. Precision (P), Recall (R), Accuracy (A), and F1-
weighted (F1-w)

Model A P R F1-W
MesoNET 0.114 0.808 0.019 0.038
Wvolf/ViT 0.100 0.000 0.000 0.000
EfficientNET  0.612 0.992 0.573 0.727

Table 5: Ablation study showing the performance change
when individual modules are removed. Values represent
the change from the full system (Baseline). Red indicates
a drop in performance. Metrics: Precision (P), Recall
(R), Accuracy (Acc) and F1-weighted (F1-W).

Removed P R Acc F1-W
Weapon detection  +0.005  +0.002  +0.004  +0.004
Video summary +0.001  -0.008 0.000 -0.002
Transcript +0.027  -0.076  0.000 -0.024
Buzzword -0.024  -0.050 -0.021  -0.033
OCR -0.005  -0.030  -0.003  -0.004
Fact Check +0.013  -0.040 +0.004 -0.009
All modules 0.737 0.727 0.884 0.720

5 Demonstration

Our demo system integrates the pipeline into a web
interface (Figure 3). The Ul allows users to upload
videos, inspect transcripts, OCR text, and visual
captions, view the final classification with explana-
tions, access linked fact-checks, and examine errors
through confusion matrix visualizations.

6 Conclusion and Future Work

We presented SHORTCHECK, a modular, multilin-
gual pipeline for detecting checkworthy content in
short-form videos. The system integrates multiple
modalities—text, audio, video, and image—and
achieves strong performance on manually annotated
TikTok datasets in both Norwegian and English.

82

Inputs & Options

&& ShortCheck: Checkworthiness in
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Results table

Figure 3: Demo interface for fact-checkers.

Through ablation studies, we showed that transcript
features and ideological language signals contribute
most strongly to checkworthiness, while visual fea-
tures such as deepfake detection and object recog-
nition provide limited standalone utility.

The system can be extended to broader fact-
checking settings, tougher video and text condi-
tions, learned fusion, and user-centered evaluation
to improve robustness and interpretability. Replac-
ing handcrafted weights with data-driven tuning
would strengthen generalization across languages
and domains. Expanding ideological language re-
sources beyond Norwegian and English would sup-
port more accurate detection across diverse linguis-
tic contexts.



7 Ethical Considerations

No personal information is stored, and all uploaded
files are processed locally within the session. Files
are not accessible to other users or administrators
and are deleted after the session ends. The system
focuses exclusively on automated analysis of user-
submitted content and does not collect behavioral
data, usage histories, or identifiers.

ShortCheck operates on short-form videos that
may contain sensitive political, social, or ideologi-
cal material. To reduce potential harm, the system
is designed to support human fact-checkers rather
than replace them. Its outputs are interpretable, al-
lowing users to inspect intermediate signals and
avoid unverified automation. The model does not
attempt to generate verdicts beyond checkworthi-
ness and avoids producing judgments that could
misrepresent individuals or contexts.

As ShortCheck is multilingual, care is taken to
avoid bias toward specific languages or cultural
framing. However, disparities in transcription ac-
curacy, OCR performance, or ideological language
coverage may still introduce uneven behavior. Fu-
ture work includes expanding lexical resources and
conducting user studies with fact-checkers to iden-
tify unintended biases, failure modes, or misclassi-
fications across diverse contexts.
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Abstract

Accurate assessment of generated chart qual-
ity is crucial for automated document creation
and editing across diverse applications like fi-
nance, medicine, policy making, and education.
Current evaluation approaches suffer from sig-
nificant limitations: human evaluation is costly
and difficult to scale, pixel-based metrics ig-
nore data accuracy, while data-centric mea-
sures overlook design quality. Recent multi-
modal LLLM evaluators show promise but ex-
hibit concerning inconsistencies due to prompt
sensitivity and subjective biases. Existing met-
rics fail to evaluate chart quality holistically
across visual similarity, semantic alignment,
and data fidelity, often producing misleading
scores that unfairly penalize good charts while
rewarding bad ones. We introduce ChartEval,
a novel chart evaluation system that compares
generated chart images with ground truth by
leveraging scene graph parsing to decompose
chart images into hierarchical scene graphs of
chart objects, attributes, and relations. Subse-
quently, it applies graph-based similarity mea-
sures to compare candidate chart scene graphs
against reference scene graphs for measuring
chart quality. We demonstrate that our evalu-
ation approach achieves significantly stronger
correlation with human judgments compared
to existing metrics like GPT-Score, SSIM, and
SCRM using a comprehensive benchmark of
4K chart images paired with generation intents
and human quality ratings. We demonstrate the
utility of the ChartEval system as a reliable
automatic chart quality metric on diverse tasks
including language-guided chart editing, chart
reconstruction, and text-to-chart synthesis us-
ing both open-source and API-based LLMs.
Demo Website & Video: chartEval.ai

1 Introduction

Effective data visualization transforms vast
amounts of information into actionable insights,
playing a critical role across professional domains
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Demo Link: chartEval.ai

including financial reporting, scientific publishing,
policy analysis, and clinical documentation. How-
ever, creating high-quality charts requires substan-
tial technical expertise, driving growing demand for
automated chart generation systems. While chart
question-answering and captioning have been ex-
tensively studied, text-to-chart generation and chart
editing have recently gained significant attention
as Large Language Models (LLMs) enable users to
create visualizations through natural language.

Despite these advances, evaluating chart quality
presents significant challenges that existing metrics
fail to address comprehensively. Human evalua-
tion, while thorough, is costly and impractical for
scaling across large datasets with diverse visualiza-
tion types. Existing automated evaluation methods,
though scalable, suffer from fundamental limita-
tions that compromise their reliability. Data-centric
approaches such as SCRM (Xia et al., 2023) ex-
tract underlying data tables from charts, but focus
exclusively on data accuracy while ignoring visual
design quality like mismatched color schemes, mis-
leading labels, or cluttered layouts. Pixel-based
metrics like SSIM perform direct image compar-
isons at the pixel level (Yan et al., 2024), but un-
fairly penalize semantically equivalent charts that
exhibit minor visual differences due to different
rendering libraries or styling choices. LLM-as-a-
judge methods leverage multimodal LLM prompt-
ing to assess generated visualizations (Shi et al.,
2025; Xia et al., 2024), offering better scalabil-
ity but suffering from inconsistent outputs due to
prompt sensitivity and subjective biases. These lim-
itations result in evaluation systems that frequently
mischaracterize chart quality, incorrectly penaliz-
ing well-designed charts while rewarding ones with
poor visual communication.

We propose ChartEval (Fig.1) - a novel chart
evaluation system that views chart images as vi-
sual scene graphs. In this representation, visual
objects such as data marks and legends form nodes,
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Figure 1: ChartEval evaluates chart quality by (1) decomposing predicted and reference charts into visual scene graphs via
ChartSceneParse prompting using multimodal LLMs; (2) applying graph-based similarity measures: Graph-BERTScore for
semantic correctness and completeness, Hallucination Rate for spurious content, and Omission Rate for missing information.
Red crosses (<) highlight values in scene graph of candidate chart that do not match the ground truth chart.

with each object defined by attributes like colors,
sizes, and positions, while edges capture relations
such as spatial arrangements and data mappings be-
tween objects. Given a candidate chart image and
its ground truth reference, ChartEval decomposes
both charts into structured representations using
standardized grammar formats (e.g., Vega JSON
specifications) that captures overall chart seman-
tics. To enable this decomposition, we introduce
ChartSceneParse, a novel prompting technique
that leverages Chain-of-Thought reasoning (Wei
et al., 2022) to systematically extract scene graphs
from chart images using multimodal LLMs. We
compute graph similarity between the extracted
scene graphs of predicted and ground truth charts
using four complementary metrics to judge for se-
mantic correctness, completeness, hallucination of
spurious content, and omission of critical compo-
nents. Users can utilize ChartEval to evaluate
charts generated via multiple methods, including
but not limited to SOTA open-source and API-
based multimodal LLMs, considering their seman-
tic similarity, visual alignment, and data fidelity.

Lastly, we propose a new benchmark - ChartGen
comprising of 4K diverse reference chart im-
ages paired with their generation intents and hu-
man quality ratings across three diverse tasks:
language-guided chart editing, chart reconstruc-
tion, and text-to-chart synthesis. This bench-
mark was assembled by integrating four open-
source datasets - ChartCraft, ChartMimic, ChartX,
and Text2Chart31. @ We validate the perfor-
mance of ChartEval on ChartGen benchmark to
demonstrate that ChartEval achieves significantly
stronger correlation with human judgments com-
pared to existing metrics across most scenarios,
confirming its effectiveness as a reliable chart eval-
uation tool. Results show that participants find the
ChartEval metric to be an accurate and reliable
metric for fact checking generated charts.
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Our main technical contributions are:

* ChartSceneParse prompting technique that
leverages Chain-of-Thought reasoning to sys-
tematically extract hierarchical scene graphs
from chart images using multimodal LLMs
and Vega JSON grammar.

ChartEval system that compares generated
charts with ground truth by decomposing both
into scene graphs and applying graph-based
similarity measures (Graph-BERTScore, Hal-
lucination Rate, Omission Rate) for compre-
hensive quality assessment.

ChartGen benchmark of 4K diverse chart
images with human quality ratings across
chart editing, reconstruction, and text-to-
chart synthesis tasks, achieving significantly
stronger correlation with human judgments
than existing metrics.

Our main system-level contributions are:

(1) Interpretability: ChartEval promotes inter-
pretable chart evaluation by providing granular de-
scriptions of visual, semantic, and data hallucina-
tions/omissions through ChartSceneParse.

(2) Explainability: ChartEval provides logical
rationales alongside metric scores to clarify the rea-
soning behind identified hallucinations and omis-
sions. By transforming charts into hierarchical
entity representations, it transcends simple visual
similarity metrics and enables direct attribution to
chart metadata.

(3) Reliability: ChartEval assists professionals
across business, education, and finance domains by
reducing time spent fact-checking generated charts,
allowing users to focus on more productive tasks
while enhancing overall evaluation reliability.

2 ChartEval - Target Audience

ChartEval’s scene graph representation unlocks
powerful reference-free applications by transform-



ing charts into structured, analyzable formats: (1)
Automated Quality Control: Analyze scene graph
structure to detect missing legends, unlabeled axes,
or inconsistent data encodings in document edit-
ing workflows. (2) Enterprise Style Compliance:
Define corporate chart standards as scene graph
templates to ensure all generated charts follow con-
sistent color schemes, font choices, and layout
patterns across reports. (3) Cross-Chart Consis-
tency: Verify that multiple visualizations within
documents use compatible scales, similar encod-
ing principles, and coherent design languages. (4)
Data Integrity Validation: Compare extracted
scene graph data points against source datasets to
automatically flag discrepancies, incorrect calcu-
lations, or missing information without requiring
reference charts. (5) Collaborative Quality Stan-
dards: Enable teams to maintain quality standards
by detecting when charts violate readability prin-
ciples, accessibility guidelines, or domain-specific
conventions. (6) Template-Based Generation: Al-
low users to define desired chart patterns as scene
graphs, then automatically evaluate whether gener-
ated visualizations match these structural require-
ments. This structured representation transforms
chart evaluation from purely comparative assess-
ment to comprehensive quality analysis, enabling
automated editorial assistance, style enforcement,
and accuracy verification in production document
workflows where reference charts don’t exist.

3 ChartEval - System Architecture

ChartEval (Fig.1) evaluates the representational
fidelity of a candidate chart against a ground
truth chart in two stages. First, it employs
ChartSceneParse prompting to decompose the
chart images into a structured grammar representa-
tions (eg. Vega Json) with a standardized taxonomy
to construct hierarchical scene graphs. Second, we
compare the extracted chart scene graphs using
three complementary evaluation metrics: Graph-
BERTScore for semantic similarity, Hallucination
Rate for spurious content detection, and Omission
Rate for missing information assessment.

3.1 Chart Scene Graph Parsing

ChartEval decomposes chart images into struc-
tured scene graphs in three steps:

(1) Chart Structure parsing describes data visu-
alization designs into a declarative JSON specifi-
cation language by leveraging the Vega visualiza-
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tion grammar' (Satyanarayan et al., 2016). Vega
grammar represents charts as hierarchical compo-
sitions of primitive graphical properties such as
view dimensions, data definitions, map scales, axes,
legends, marks (like lines, points, bars), and sym-
bols that encode the underlying data, neatly orga-
nized into nested groups with explicit coordinate
systems and data bindings. By structuring the ex-
traction process around these core Vega primitives,
ChartSceneParse systematically converts visual
chart elements into their corresponding declara-
tive representations, enabling precise reconstruc-
tion and analysis of the original visualizations.
We employ ChartSceneParse prompting, an
LLM-based Chain-of-Thought reasoning (Wei
et al., 2022) technique to systematically extract
chart elements as Vega structural primitives: (i)
mark types (line, bar, point) and chart layout, (ii)
titles and axis labels with exact transcriptions, (iii)
axis components (domains, ticks, and grid lines),
visual properties (stroke, fill, opacity), and (iv) data
points with both visual coordinates and semantic
values. We provide prompt instructions to use the
identified axis domains and tick positions as spatial
anchors for accurate coordinate mappings of data
points, pairing pixel positions with actual data val-
ues. The extraction follows Vega’s hierarchy—first
identifying the root frame, then cataloging nested
components (axes, marks, titles) with their func-
tional roles. Each extracted element is mapped
to Vega’s declarative format where visual proper-
ties become explicit JSON attributes and spatial
relationships are encoded through coordinate trans-
formations. For charts with incomplete informa-
tion, the system infers reasonable scales while flag-
ging approximations. The LLM is prompted to
provide exact textual transcriptions of all visible
labels and numerical values to mitigate any hallu-
cinations. Few-shot examples guide the LLM to
enforce Vega grammar compliance such that it pre-
serves the proper z-ordering and coordinate system
relationships between chart annotations to maintain
visual parity with the source image.
(2) Self-Reflection Prompting: LLM-based pars-
ing may be prone to hallucinations which need
to be mitigated to avoid spurious results. Hence,
we utilize Altair API ? to convert the intermediate
Vega specification back into a chart image and its
corresponding data table. The intermediate chart

"https://vega.github.io/vega/docs/
Zhttps://altair-viz.github.io/



image, its data table, and the reference chart image
are sent to GPT-5 to illicit a match score (0-10) and
a comparative feedback via Reflexion (Shinn et al.,
2023) to correct the generated Scene Graph in the
next iteration. We continue this iterative process
until match score > 8 or maximum of 3 rounds.
(3) Scene Graph Construction — The Vega gram-
mar JSON is converted into a directed graph
G = (V, E)) where vertices represent chart compo-
nents and edges encode their relationships. Node
Creation: The algorithm generates typed ver-
tices v; € V for each functional component—
title nodes (vgge), chart-type nodes (vgype), axis
nodes (Vx-axis, Vy-axis)» and data-point nodes (vgaca; )-
Each node stores attributes extracted from cor-
responding Vega elements: data nodes contain
both visual coordinates (Zpixel, Ypixel) and seman-
tic values (Zdata, Ydata), While axis nodes store do-
main information and labels. Edge Formation:
Directed edges e;; € FE establish semantic re-
lationships — data-to-axis edges (vdata,, Ux-axis)
and (Vdata, , Vy-axis) €ncode which axes govern each
data point’s positioning, while sequential edges
(Vdata; » Udata;, ) CONNECt consecutive points to pre-
serve spatial ordering. Graph Attributes: Node
and edge attributes capture multi-level abstractions
— visual properties (colors, styling), semantic con-
tent (trends, statistical summaries), and structural
metadata (chart type, dimensions). This graph rep-
resentation Gehayy Standardizes heterogeneous visu-
alizations into a unified format enabling systematic
structural comparison while preserving both geo-
metric layout and data semantics.

3.2 Graph-based Scoring

After obtaining scene graphs Gg = (Vi Egt)
and Gpred = (Vpred; Fpred) from ground truth and
predicted charts respectively, we employ Graph-
BERTScore (G-BS) (Saha et al., 2021), a semantic-
level metric which extends the BERTScore (Zhang
et al., 2019) for graph matching. Each edge in the
graph is considered as a sentence and BERTScore
is used to calculate the score between a pair of
predicted and ground-truth edges. Both graphs
are decomposed into semantic statements S =
{s1, s2,..., sk} encoding chart components (e.g.,
“X-axis represents: Year”, “Data trend: increas-
ing from 2010 to 2020). We use pre-trained
BERT (Devlin et al., 2019) contextual embeddings
e; = BERT(s;) and compute pairwise cosine sim-
ot pred

v J

—a —5ea- between all statement
[leZ [I-l1e5™"11

ilarities M;; =
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pairs. Following recent work in graph evalua-
tion (Ghanem and Cruz, 2024), we calculate:

ChartCraft
5550
1000

Editing

Image + NL

SSIM
Synthetic

ChartMimic
500/500
1000
Editing/Reconstruction
Image + NL
GPT-Score
Human

ChartX
6000
1000
Reconstruction
Image
SCRM & GPT-score
Synthetic

Text2Chart31
1423
1000

Desc-to-Chart
Text

CodeBLEU
Synthetic

Statistic

# charts (test)
# human rated
Task

Input Format
Eval Metric
Source

Table 1: Comparative data statistics

(i) Correctness: Average of the maximum simi-
larity scores between each predicted statement in
Sprea and all ground truth statements Sg: P =

1 ‘Spred| .
‘Spred| 2]21 maxl
(ii) Completeness: Average of the maximum sim-
ilarity scores between each ground truth state-

ment in Sg and all predicted statements Spreq:
R = iy Y% max; My,
We perform direct scene graph comparison via:

(iii) Hallucination Rate (Ghanem and Cruz, 2024)
quantifies spurious information in predictions. Hal-
lucinations are defined as the presence of an entity
or relation in predicted graph that is not present
in the gold graph. We extract structured element
sets &y and Epreq from the ground truth and pre-
dicted graphs, encompassing data points (z;, v;),

axis labels, chart metadata, and visual properties.

|€prea—Eetl
|gprcd‘ ’

fuzzy matching with e-tolerance for numerical val-

ues to account for minor coordinate differences
while preserving semantic accuracy.

(iv) Omission Rate (Ghanem and Cruz, 2024) ac-
counts for critical missing elements that compro-
mise chart completeness, such as absent data points,
unlabeled axes, or missing titles. Omissions are de-
fined as missing entities or relations in the predicted
graph that are present in the gold graph. Mathemat-

. |Eat—Epred|
ically, Opae = gt‘gigt‘pre

M;;, analogous to precision.

analogous to recall.

Mathematically, Hiae We employ

4 System Demonstration

Figure 2 shows the ChartEval demo app (chartE-
val.ai) which has been created using Gradio, and
can use OpenAl GPT-40 or Claude Sonnet-3.7
for chart evaluation. The interface includes a
panel to upload pairs of predicted/reference chart
images and an alternative option to select from
pre-uploaded examples. The user can choose
which LLM to use for the evaluation from the UI
and also reset the interface for new evaluations.
ChartEval shows an evaluation report with scores
for completeness, correction, Hallucination Rate,
and Omission Rate, along with an explanation on


https://github.com/chartEval/ChartEval
https://github.com/chartEval/ChartEval

ul Chart Evaluation System

 Quick Examples.

Chart 2 (Predicted/Generated) ] X

~ Chart Images

@ Quick Examples

Choose from pre-loaded examples

Example 2: Market Share Analysis

[ Example Loaded: Example 2: Market Share Analysis
Description: Pie chart displaying market share distribution among

competitors

Files:
o Ground Truth: examples/ex_2/ground_truth.png

o Predicted: examples/ex_2/output.png

@ If you see placeholder images, replace the file paths in the code with your

actual example images.

< Or Upload Your Own

Chart 1 (Ground Truth) i — ] 1R

Evaluation Completed Successfully!

ul Chart Analysis Summary
© Chart 1 line chart with O data points
o Chart 2: line chart with O data points

¥ Overall Scores
o Correctness: 1.000
o Completeness: 1.000
Semantic Similarity F1:1.000
o Hallucination Rate: 0.000 (lower is better)
o Omission Rate: 0.000 (lower is better)

o Structural Difference: 0.000 (lower is better)

Figure 2: Demo App Ul for ChartEval(chartEval.ai)

Chart 1 (Ground Truth) Chart 2 (Predicted/Generated) =

A
s

Metric Score

Hallucination Rate 0.333
Model Used Claude

Hallucination Count 4
Correctness (Precision) 1.000

Omission Rate 0.000

Completeness (Recall) 1.000

F1 Score 1.000 Omission Count

Figure 3: ChartEval Example

the structural differences between compared charts.
System License: ChartEval is a proprietary sys-
tem developed for research experimentation, and is
not intended for any commercial purposes.

Usage Scenario Example: Figure 3 shows an ex-
ample of our tool usage where a user can upload
a chart image edited based on user request - "Add
a data point (30,25,90) on the line chart" and eval-
uates it against the reference desired chart. user
generated chart erroneously has added more than
one data point which is accurately captured by
ChartEval as part of H-rate. Further, axis rotation
and deviation in rendering quality due to different
software does not affect our evaluation system.

S Experiments - User Study

Datasets: Table 1 summarizes our proposed
ChartGen benchmark that comprises of four chart
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generation datasets spanning three real-world tasks:
instruction-based chart image editing, chart re-
drawing, and text-to-chart generation.

(1) ChartCraft (Yan et al., 2024) is a dataset of
synthetically generated line and bar charts covering
style, layout, format, and data-centric edits. We
evaluate the language-based chart editing task to
modify plot attributes based on user’s intent while
preserving the integrity of the original plot.

(2) ChartMimic (Shi et al., 2025) contains human-
curated visualization from academic documents
and scientific papers, covering 22 common chart
types. ChartMimic evaluates two tasks: (a) Direct
Mimic, where models generate code to reproduce
a given chart, and (b) Customized Mimic, where
models generate code incorporating new data while
preserving the original chart’s design.

(3) ChartX (Xia et al., 2024) contains synthetic
chart images for re-drawing tasks, where models
generate Python code and compare rendered out-
puts against ground-truth charts.

(4) Text2Chart31 (Pesaran Zadeh et al., 2024)
provides chart data across 31 unique plot types,
including 3D, volumetric, and gridded charts. We
evaluate the description-to-chart task, where each
input sample consists of an input textual description
and corresponding reference chart.

Settings: We use GPT-4V and Claude-3.7 for
ChartSceneParse prompting; GPT-40, Claude
Sonnet-3.5, and Qwen2.5-VL:32b for chart gen-


https://github.com/chartEval/ChartEval

Metric Model ChartCraft ChartMimic

ChartX Text2Chart31

SSIM SCRM  GPT-S¢  CB  O-G SSIM SCRM _ GPT-S¢  CB

0-G

SSIM_ SCRM  GPT-S¢  CB O-G O-C | SSIM  SCRM  GPT-S¢  CB

GPTdo
Sonnet-3.5
Qwen25-VL

0.09
0.10
0.15

0.13 0.25 0.34
0.15 0.23 0.33
0.18 0.28 0.36

0.76
0.75
0.79

0.11
0.13

0.15 0.27 0.29
Correct. 0.16 0.24 0.31
3 0.26 0.37

0.17 0.19

0.7
0.77

0.79

0.24
0.25
0.28

0.29 0.33 0.38
0.27 0.31 0.37
0.29 0.33 0.39

0.84
0.86
0.88

0.85
0.86

0.18
0.19
0.22

0.19 0.25
0.19 0.27
0.23 0.29

0.26

0.89 0.28

GPT-do
Sonnet-3.5
Qwen2.5-VL

0.10
0.08
0.19

0.14 023 0.31
0.12 0.21 0.28
0.19 0.24

0.74
070  0.72

0.12
0.10

0.12
0.15
0.20

0.28
g 021
Compl. 023

035 076 0.77 0.18

0.76
0.75
0.73

0.22
0.77 0.23
0.75° 0.27

0.26 0.31 0.35
0.24 0.28 033
0.28

0.81
0.82
0.81

0.82
0.84
0.82

0.20
0.21
0.24

0.19 0.24
022 0.35
0.25

0.22
0.23

0.34 0.36 0.28 0.28

GPT-d0
Sonnet-3.5
Qwen2.5-VL

0.07
0.08
0.10

0.11 0.15
0.12 0.15
0.12

0.18
0.19
0.19

0.45
0.49
0.40

0.06
0.08
0.09

0.13
0.17
0.14

0.15
0.19

H-Rate 0.19

0.14

0.42
0.48
0.45

0.05
0.52° 0.10
0.08

0.13
0.15
0.15

0.20
0.19
0.22

0.24
0.35
0.27

0.50
0.54
0.52

0.5
0.56
0.54

0.09
0.11
0.08

0.12
0.14
0.14

0.18
0.20
0.13

0.21
0.24
0.23

GPT-do
Sonnet-3.5
Qwen2.5-VL

0.13
0.14
0.18

0.15
0.17
0.19

0.19
0.20
0.24

0.22
0.24
0.26

0.51
0.54
054 057

0.08
0.10
0.16

011
0.13
0.18

0.18
0.21
0.23

O-Rate 0 Z:S

0.54
0.55
0.57

0.12
0.14
0.19

0.14
0.15
0.19

0.23
0.22
0.24

0.28
0.27
0.29

0.48
0.49
0.51

0351
0.53
0.54

0.08
0.12
0.17

0.11
0.14
0.18

0.19
0.18
0.19

0.20
0.22
0.23

0.61 0.55

Table 2: Correlations of ChartEval and existing metrics with human ratings. Correct: Correctness, Compl:

Completeness, H:

Hallucination, O: Omission, CB: CodeBLEU, GPT-Sc: GPT-Score, O-C(G): Our proposed ChartEval with Claude Sonnet-3.5
(GPT-4) for ChartSceneParse prompting. * indicates statistical significance over GPT-Score (p < 0.005) under Wilcoxon’s Signed Rank test.

eration tasks. More experiment settings in Sec. A.
Baselines Metrics: We compare ChartEval with
(1) GPT-Score (Shi et al., 2025; Xia et al., 2024)
uses GPT-40 to compare the candidate and ground
truth chart images on a 0-100 scale (normalized to
0-1) based on prompt-based scoring criteria.

(2) SSIM (Wang et al., 2004; Yan et al., 2024)
assesses the degree to which the candidate chart
visually mirrors the expected outcome, capturing
subtle and nuances in the pixel space.

(3) SCRM (Xia et al., 2023) evaluates extracted
chart information by converting model-predicted
linearized CSV tokens into triplet format, enabling
transpose-invariant evaluation of chart data.

(4) CodeBlue (Ren et al., 2020) evaluates the simi-
larity between the predicted and ground truth code
for respective charts as in (Pesaran Zadeh et al.,
2024). Note that code execution success rate is a
standard metric for code generation tasks where
unsuccessful executions are assigned a score of 0.

6 Results - User Evaluation

We collected human quality ratings for 4K test
charts (1K per dataset) from three annotators,
achieving high inter-annotator agreement (o =
{0.74,0.82,0.76,0.85}) across all evaluation met-
rics. Table 2 presents Pearson correlations between
various metrics and these human ratings across
different dataset-model combinations. ChartEval
consistently demonstrates stronger correlations
with human judgments than existing metrics for
both proprietary and open-source models across
all four datasets. This superior performance indi-
cates that our metric evaluates chart semantics more
accurately than baseline approaches. Our analy-
sis reveals several key advantages of ChartEval
over existing approaches. Unlike SSIM, our metric
avoids over-sensitivity to pixel-level perturbations
while successfully capturing meaningful variations
in visual attributes such as color schemes, text
fonts, and sizing. Code-based metrics like Code-
BLEU fail to evaluate spatial misalignment of chart
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components, which are typically under-specified
in generated code. ChartEval offers a decisive ad-
vantage over SCRM, which exclusively evaluates
underlying data accuracy while ignoring spatial
layout and visual design features. Our approach
surpasses GPT-Score by mitigating subjective bi-
ases inherent in prompt-based evaluation methods.
ChartEval is the only metric that provides com-
prehensive evaluation across semantic, visual, and
data dimensions simultaneously, establishing itself
as a reliable chart quality assessment tool.

Qualitative Examples: Figures 4-6 illustrate
ChartEval’s performance across different scenar-
ios. Figure 4 demonstrates accurate evaluation of a
2D area plot where ChartEval correctly identifies
near-perfect similarity with zero hallucination rates,
avoiding the over-penalization issues of pixel-based
metrics. Figure 5 shows ChartEval successfully
detects a hallucinated data point in the 3D surface
plot, with the Correctness score (0.87) appropri-
ately capturing both spatial inaccuracy and color
scheme deviation. Limitation: Figure 6 reveals a
key limitation that ChartEval struggles with low-
resolution input images where the underlying LLM
(GPT-4V) hallucinates during scene graph parsing,
leading to inaccurate evaluation results. This limi-
tation suggests that ChartEval performs optimally
with high-quality images and may require prepro-
cessing steps for low-resolution scenarios. Overall,
these examples confirm ChartEval provides more
nuanced assessment than existing metrics.

7 Conclusion

We introduced ChartEval, an evaluation system
that converts chart images into visual scene graphs
and compares their graph-based similarity with
ground truth. Extensive experiments across chart
reconstruction, text-to-chart synthesis, and editing
tasks demonstrate the effectiveness of ChartEval
as a reliable chart assessment tool. Future work
will explore finetuning VLMs on low resolution
chart images for better data extraction.
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A Settings

We conduct experiments using GPT-40 (Hurst et al.,
2024), Claude Sonnet-3.5 (Anthropic, 2024), and
Qwen2.5-VL:32b (Bai et al., 2025) for chart gen-
eration/editing. We render the chart code gener-
ated by these models and compare the resulting
visualizations against ground truth charts. We use
NVIDIA A100 GPUs for Qwen2.5, and APIs for
rest. We experiment with GPT-4V and Claude-3.7
for ChartSceneParse prompting.
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Detailed Metrics

10
Metric Score
o8 LLM Provider = Claude
GraphBERT Correctness 0.976
bl GraphBERT Completeness 0.976
& GraphBerT F1 0.976
as
Hallucination Rate 0.000
Hallucination Count 0
02
Omission Rate 0.000
LI Omission Count e
Graph Edit Distance o
Normalized GED 0.000
10
& OVERALL PERFORMANCE ASSESSMENT
" Accuracy Score: 10/10 Perfect replication with no discrepancies in data or visualization elements.
Key Strengths:
Exact matching of all 6 ruit data points (Mango, Kiwi, Banana, Orange, Pineapple, Apple)
s Identical axis ranges (0-10g Glucose, 0-8a Fructose)
£ Consistent color scheme using burgundy markers on pale yellow background
Y critical tssues:
None detected
“\ DETAILED BREAKDOWN BY CHART ELEMENTS
o Title and Labels:
Ground Truth: “Fruit Sugar Content Distribution - Glucose vs. Fructose Composition”
Predicted: Identical title and axis labels

Assessment: Perfect match in all text elements

Description

Chart analysis performed using Claude

Semantic similarity precision

Semantic similarity recall

Overall semantic similarity

False information rate

Number of hallucinated elements

Missing information rate

Number of omitted elements

Raw structural differences

Normalized structural similarity

Data Accuracy:

Al fruit positions match exactly:

Mango: (19 glucose, -2g fructose)
Kiwi (~4g glucose, ~2g fructose]
Bananc: (~4g glucose, ~4g fructose)
Orange: (-6g glucose, ~7g fructose)

Pineapple: (+8g glucose, ~5g fructose)
Apple: (-39 glucose, -5 fructose)

Visual Design:
Identical scatter plot implementation
Consistent grid lines and marker sizes
Matching color scheme and plot dimensions

1. SPECIFIC ERRORS WITH EXAMPLES

No errors detected in any aspect of the visualization.

Figure 4: Example of 2D area plot generated by GPT-4o. ChartEval correctly identifies near-perfect chart similarity with zero
hallucination or omission rates, demonstrating accurate evaluation of high-quality generated charts.
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Detailed Metrics

Metric Score
LLM Provider Claude
GraphBERT Correctness 0.871
08
0  GraphBERT Completeness 1.000
0.4 GraphBERT F1 0.931
02 .
Hallucination Rate 0.077
Hallucination Count 1
10
0,75
Omission Rate 0.000
0, omission Count °
0.75
10 Graph Edit Distance 1
Normalized GED 0.333

@ OVERALL PERFORMANCE ASSESSMENT

Key Strengths:

Critical Issues:

Description
Chart analysis performed using Claude
Semantic similarity precision
Semantic similarity recall

Overall semantic similarity

False information rate

Number of hallucinated elements
Missing information rate

Number of omitted elements

Raw structural differences

Normalized structural similarity

Accuracy Score: 9/10 Based on the high GraphBERT F1 score (0.931) and very low hallucination

Accurate reproduction of the complex 3D surface topology
Consistent color gradient mapping from blue (low values) to red (high values)

Preservation of key mathematical features in both f(x) and solution plots

Minor axis labeling discrepancy in the presentation of x and y coordinates

Slight variation in viewing angle between ground truth and predicted plots

Figure 5: Example of 3D surface plot where ChartEval successfully identifies a hallucinated data point causing curvature
distortion. Graph-BERTScore Correctness also accurately detects deviation in the color scheme (Correctness score = 0.87).
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3 Chart 2 (Predicted/Generated)
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@ OVERALL PERFORMANCE ASSESSMENT

Accuracy Score: 9.8/10 Based on the near-perfect F1 score (1.000) and minimal graph edit distance (0.026), with only minor axis labeling omissions.

Key Strengths:
Perfect reproduction of three data series (2000, 2007, 2010) across all 12 countries
€xact matching of peak values (e.g, Moldova's ~1000 ratio in 2007)

Consistent color coding and line styles (dotted red for 2007, solid blue for 2010, dashed yellow for 2000)

Critical Issues:
Minor omission in x-axis labeling granularity

slight differences in grid line presentation
A DETAILED BREAKDOWN BY CHART ELEMENTS

Title and Labels:
Ground Truth: "Maternal mortality ratio" with country names on x-axis
Predicted: Identical title and country labeling
Assessment: Perfect match in primary labeling elements

Detailed Metrics: Data Accuracy:

Key points precisely matched (eg. Benin's spike of ~570in 2007)

Metric scoxe. Description

Ruwanda

Consistent grid sustem with minor presentational differences

A 2007,
LUK Provider Claude Chart analysis perforned using Claude
GraphBERT Correctness  ©.871 Semantic sinilarity precision Visual Design:
Identical ine chartimplementation
GraphBERT Completeness  1.000 Semantic sinilarity recall e e
GraphBERT F1 0.931 Overall semantic similarity
1 SPECIFIC ERRORS WITH EXAMPLES
Hallucination Rate .07 False infornation rate
Data Errors:
Hallucination Count 1 Number of hallucinated elements
None detected in dota point vlues
Onission Rate 6.000 Missing information rate e
Onission Count o Number of onitted elements Minor differences in axis gid lne presentation
Stight voriation n lobel positioning
Graph Edit Distance 1 Raw structural differences
‘Added Elements (Hallucinations):
Normalized GED 0.333 Normalized structural sinilarity e

Figure 6: Example of ChartEval limitation on low-resolution images. The predicted chart contains significant data hallucinations
and omissions that ChartEval fails to detect due to image quality constraints. Low-resolution inputs cause the underlying LLM
(GPT-4V) to hallucinate during scene graph parsing, leading to inaccurate evaluation results.
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Abstract

We present a modular, interactive system
SPORTSQL for natural language querying and
visualization of dynamic sports data, with a
focus on the English Premier League (EPL).
The system translates user questions into ex-
ecutable SQL over a live, temporally indexed
database constructed from real-time Fantasy
Premier League (FPL) data. It supports both
tabular and visual outputs, leveraging sym-
bolic reasoning capabilities of Large Language
Models (LLMs) for query parsing, schema
linking, and visualization selection. To eval-
uate system performance, we introduce the
Dynamic Sport Question Answering bench-
mark (DSQABENCH), comprising 1,700+
queries annotated with SQL programs, gold
answers, and database snapshots. Our demo
highlights how non-expert users can seamlessly
explore evolving sports statistics through a nat-
ural, conversational interface.

1 Introduction

What if a soccer fan could ask, “How did Mohamed
Salah’s scoring performance trend over the last five
seasons?” or “Which midfielders in the Premier
League are the most creative this season?” and
instantly receive not only a precise answer but also
a dynamic visualization, grounded in up-to-date,
real-world data?

Large language models (LLMs) have shown re-
markable progress in translating natural language
into executable programs, such as SQL. How-
ever, most existing systems are designed for static,
domain-specific datasets. In contrast, domains like
sports are inherently dynamic and structurally com-
plex: match outcomes, player statistics, team for-
mations, and injury reports evolve daily across mul-
tiple interlinked and semi-structured tables. Query-
ing such data effectively requires compositional,
temporal, and relational reasoning, along with
the ability to operate over continuously changing
schemas and distributed sources.
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We introduce SPORTSQL, a fully automated
system for Dynamic Sports Question Answering
(DSQA), enabling users to pose rich natural lan-
guage queries over live sports data and receive
grounded, executable, and often visual responses.
SPORTSQL operates through a modular pipeline:
it begins by scraping and normalizing dynamic data
and transforming it into a unified, temporally in-
dexed relational database. Given a user question,
the system uses only the schema (not the data it-
self) to prompt an LLM to generate symbolic SQL
queries, making the approach scalable and robust
to changes in content (Kulkarni et al., 2025). When
appropriate, SPORTSQL also generates visualiza-
tion code (in matplotlib, seaborn) to produce bar
charts, timelines, or other graphical responses.

For instance, a user might ask, “Compare Arse-
nal’s goals scored in home vs away matches” or
“List forwards with at least ten goals and five as-
sists.” SPORTSQL retrieves accurate answers by
executing SQL over the latest data, rather than re-
lying on potentially outdated or hallucinated infor-
mation from pretrained language models (Kulkarni
and Srikumar, 2025). To evaluate the effective-
ness of the system, we introduce Dynamic Sports
Question Answering Benchmark (DSQABENCH),
a new benchmark containing over 1700 questions
that span various soccer metrics, reasoning types,
and output formats. Each question is paired with
its corresponding SQL program, gold answer, and
the database snapshot at the time of execution. We
further provide a type-aware evaluation framework
that supports multiple answer formats, schema-only
SQL generation, and fine-grained error analysis to
assess system performance under dynamic condi-
tions. Our contributions are threefold:

* We introduce the task of Dynamic Sports
Question Answering and present SPORTSQL,
a modular and interpretable system that en-
ables real-time, schema-driven symbolic rea-
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soning and dynamic visualization over evolv-
ing sports databases.

¢ We construct and release DSQABENCH, the
first benchmark of executable sports queries
paired with live data, supporting multiple an-
swer modalities.

* We develop a type-aware evaluation frame-
work with support for diverse answer formats
(textual, numeric, tabular, visual), schema-
only SQL generation, and fine-grained error
analysis to assess symbolic QA systems over
dynamic content.

We invite the readers to explore SportsSQL’s
functionalities at the following links:

* Code & Data: https://github.com/
coral-lab-asu/SportSQL

e Main Demo Video: https://youtu.be/
xqUyiA-R6al

e Try it out: https://coral-lab-asu.
github.io/SportsSQL

Although SPORTSQL is designed for sports, its
architecture is general and can extend to other dy-
namic, structured domains such as finance, health-
care, or elections, where users seek timely, accurate
insights from evolving data.

2 SPORTSQL Architecture

SPORTSQL translates free-form user queries into
executable answers via a tightly integrated, mul-
tistage pipeline. The system operates over a live,
dynamically updated EPL database, refreshed peri-
odically via cronjobs and at runtime based on query
requirements. Upon receiving a natural language
query, the system first performs entity grounding by
executing SQL lookups against curated reference
tables (e.g., teams, players), mapping surface forms
to canonical entities. Conditioned on this context
and the database schema, it generates an executable
SQL query, which is run on the live database to
produce a structured result. If the query involves
visual reasoning (e.g., comparisons, trends, rank-
ings), the output is forwarded to a visualization
agent, which selects an appropriate chart type and
returns self-contained Python code (Matplotlib +
Seaborn) to render the plot. The full workflow is
outlined below.

1. Database Streaming Our system ingests data
from the public Fantasy Premier League (FPL)
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APL! which offers structured, frequently updated
endpoints covering players, teams, fixtures, and
per-match statistics. After normalization and de-
duplication, the data is stored in a MariaDB back-
end.

Hybrid Storage Strategy Storing full historical
data for every player would require ~2,400 tables
per season (3 per player x 800 players), resulting in
a bloated schema and largely idle data. To balance
granularity with efficiency, we adopt a two-tiered
storage design:

* Query-agnostic tables: Core relations
(players, teams, fixtures) that evolve pre-
dictably week-by-week. These are updated
nightly via cronjob to maintain freshness.

* Query-dependent tables: Fine-grained views
(e.g., “past 5 games”, “next 3 fixtures”)
fetched on demand from the FPL API. These
are materialized in memory for the duration
of a query and discarded after use.

This hybrid architecture ensures (i) freshness via
automated updates, (ii) coverage through just-in-
time API access, and (iii) efficiency by limiting
persistent storage. Figure 1 illustrates the relational
schema and data flow.

2. Entity Recognition User queries often contain
abbreviations, nicknames, or informal spellings
(e.g., “CR7” for Cristiano Ronaldo, “Donatello”
for Kylian Mbappé), making exact string matching
unreliable. Additionally, the LLM operates only
over the database schema and lacks direct access
to cell-level values. To resolve entity mentions, we
employ a prompt-guided procedure. The prompt
instructs the LLM to: (i) use domain knowledge to
infer canonical player or team names, and (ii) gen-
erate a case-insensitive wildcard SQL query over
reference tables. The database returns a filtered
set of candidate rows with unique IDs, which are
retained as the resolved entity identifiers.

3. SQL Generation and Execution Given the
resolved entity identifiers, we prompt a large lan-
guage model to generate an executable SQL query.
The model is provided with: (i) the user question,
(i1) the set of resolved primary keys, and (iii) the
database schema, along with targeted instructions
to mitigate common pitfalls:

* Table hints: e.g., players is preferred for
individual statistics

"https://fantasy.premierleague.com/
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teams
player_id int (PK) team.id int (PK) . n season name varchar (PK) player_id int event int (PK)
web_name varchar ~ team.name varchar gane-id !nt (PK) goals_scored int event int (PK) eventname varchar
player_position varchar position int ?:nished glotolean assists int goals_scored int team h name varchar
team_id int played int team hname varchar minutes int assists int team_aname varchar
goals._scored int win int yellow.cards int minutes int is_home boolean

team a name varchar

dr:
a kickoff time varchar

loss

int
int

int
int

assists
minutes

red cards
saves

int
int

yellow cards int
red.cards int

difficulty int
kickoff time varchar

Figure 1: DB schema, all tables shown, not all columns. Here, PK represent primary key.

Rephrased 1

Give the best <NUMBER>
scorers for <TEAM>.

Original

Who are the top
<NUMBER> scorers on
<TEAM>?

_
Rephrased 2
Tell me the names of
<NUMBER> players with
the most goals for <TEAM>.

1. Who are the top 10 goal scorers on Liverpool?

2. Give the best 5 goal scorers on the team Arsenal.

3. Tell me the names of the 6 players with the most goals on Nott’ Forest.
4. Who are the top 9 goal scorers on Chelsea?

18. Tell me the names of the 7 players with the most goals on Brighton.

Figure 2: Sample Question Creation Expansion

¢ Synonym mappings: e.g.,
league_rank

“team position” >

* Column cautions: e.g., penalty saves are al-
most always non-zero for goalkeepers only

* Derived-field formulas: e.g., formis the 30-
day average of match points

* Scale explanations: e.g., strength ranges
from 1 (weakest) to 5 (strongest)

These prompt elements help ensure syntactic cor-
rectness and reduce semantic errors arising from
natural language variability.

SQL Execution. The generated SQL is parsed
and executed against the dynamic MariaDB store.
If the query references a non-materialized query-
dependent table (e.g., a player’s upcoming fixtures),
the system issues a just-in-time API call to fetch the
necessary data, loads it into an in-memory buffer,
and re-executes the query. The temporary table is
discarded post-aggregation, ensuring the persistent
database remains lightweight.

4. Visual Output Generation Some informa-
tion needs are better served through visualizations
than text. To support this, the system automatically
generates plots when either: (i) the user explic-
itly requests a “plot,” “graph,” or “trend,” or (ii)
the output dataframe exhibits structures—such as
multi-season time series or long categorical rank-
ings—that benefit from visual interpretation. For
example, the query “Plot a line graph of Kylian
Mbappé’s goal totals over the past five seasons”
produces a line chart with seasons on the z-axis
and goals on the y-axis, revealing temporal trends.
Similarly, the query “Which five teams recorded
the highest average possession in the 2024-25 cam-
paign?”—though not explicitly visual—triggers a
horizontal bar chart ranking clubs by possession.
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When comparative or temporal reasoning is de-
tected, the result and original query are passed to
a secondary code-generating LLLM, which returns
self-contained Matplotlib code (e.g., line plots
for trends, bar charts for rankings). A validation
layer ensures the dataframe referenced in the code
matches the SQL output byte-for-byte; any mis-
match triggers automatic re-querying.

This architecture enables near real-time visual
responses, maintains the persistent database under
5GB, and supports fine-grained, player-level analyt-
ics without compromising freshness or correctness.
Figure 3 presents an overview of the full system
pipeline.

3 DSQABENCH Benchmark

To evaluate the SPORTSQL system, we introduce
the Dynamic Sport Question Answering bench-
mark (DSQABENCH), designed to assess natural
language interfaces over dynamic, multi-relational
sports data.

Query Creation. We construct a diverse set
of natural language questions targeting various
schema elements and reasoning skills. The process
begins with manually written question templates,
each rephrased to capture linguistic variation. Tem-
plates contain placeholders (e.g., team names, nu-
merical thresholds), which are instantiated using
real-world entities and context-appropriate values.
This approach balances lexical diversity with se-
mantic control. Additionally, we include a set of
manually crafted, challenging questions to probe
complex and multi-hop reasoning. An illustration
of this process is shown in Figure 2.

Answer Annotation. Each question is paired
with a manually authored SQL query, serving
as the gold standard. These queries are exe-
cuted against the underlying MariaDB-based “Fut-
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Figure 3: SportSQL Architecture and Workflow

SQL_FPL” database to verify correctness. This en-
sures high-quality supervision for evaluating both
SQL generation and execution accuracy.

Dataset Statistics. DSQABENCH contains
1,793 questions derived from 180 base tem-
plates, each rephrased in three distinct ways and
instantiated with real-world values. Among these:

* 1,395 questions yield scalar answers (e.g.,
strings, numbers); 398 require tabular outputs.

* 396 questions involve dynamic queries to
player-specific tables via just-in-time API ac-
cess:

— player_past: 270 queries
— player_history: 72 queries
— player_future: 54 queries

* All questions are paired with manually val-
idated SQL programs executable on the
database.

DSQABENCH provides a rich and realistic bench-
mark for studying compositional generalization,
schema coverage, and executable reasoning in
sports QA systems.

4 Experiments and Analysis

Models. We evaluate two state-of-the-art LLMs:
GPT-40 and GEMINI-2.0 FLASH. GEMINI-2.0-
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FLASH is selected for its balance of performance,
latency, and cost, making it suitable for scalable
deployment. GPT-40 is used to assess generaliza-
tion. Both models use a temperature of 0.1 (for
deterministic outputs) and a maximum token limit
of 2048 (for reduced latency).

Evaluation Metrics. As the system produces
both string and tabular outputs, we employ a type-
aware evaluation. String Answers: Evaluated us-
ing exact match. We also employ LL.Ms as judges
and prompt frontier models with the NL query,
ground truth SQL, and system-generated SQL, and
their SQL outputs, which models classify as equiv-
alent/not equivalent. We use 3 frontier models:
GPT-40, GEMINI-2.5, and QWEN3-235b-A22B-
INSTRUCT-2507, and take majority voting. Ta-
ble Answers: Assessed using TABEVAL (Ramu
et al., 2024), which converts tables into atomic nat-
ural language statements and computes pairwise
entailment via ROBERTA-MNLI, yielding preci-
sion (Correctness), recall (Completeness), and F1
(Overall) scores.

4.1 Results and Analysis

Table 1 reports performance on both string and
table-structured questions. The system achieves
up to 80% exact-match accuracy and 0.75 macro-
F1, indicating strong performance on structured



QA. GPT-40 consistently outperforms GEMINI-
2.0 FLASH, with gains of 4.2 points in exact match
and 0.05 in macro-F1. Completeness scores exceed
correctness for both models, suggesting that rele-
vant columns are more reliably identified than spe-
cific rows, a reflection of the higher complexity of
row selection driven by SQL predicates. Moreover,
we observe that the LLM-as-judge (majority vot-
ing) shows significantly higher accuracy than EM.
This follows findings from previous works (Chan-
dak et al., 2025) where deterministic evaluations
over-penalize semantically coherent outputs. We
observe multiple such cases, especially for more
complex queries, where selecting extra/different
columns in the output can lead to mis-evaluation.
Hence, we use LLM as a Judge as our primary
metric for further analysis.

Table 1: Model performance comparison on string and
tables answered. Here, EM represents an Exact Match.
Corr stands for Correctness, Comp stands for Complete-
ness.

Model String Table (TabEval)
EM LLM as Judge|Corr Comp Overall

Gemini-2.0|76.23 92.39 0.64 0.76  0.69

GPT-40 80.48 93.82 0.70 0.81 0.75

4.2 Primitive-Based Analysis

To systematically assess performance across SQL
query types, we annotate each ground-truth SQL
template with a set of six reasoning primitives:

* Calculate:  Arithmetic operations (SUM,
COUNT, AVG, etc.)

* Compare: Value comparisons

¢ Filter: Conditional constraints (WHERE)

* Order: Sorting (ORDER BY ASC/DESC)

¢ Manipulate:
UNION, MERGE)

* Retrieve: Direct lookups of values (e.g., en-
tity or attribute selection)

Data transformations (JOIN,

Clause Combinations and Their Impact. The
system performs perfectly on single-primitive
queries such as Retrieve (“Show all EPL goalkeep-
ers”, 100%) and Order (“Rank Premier League
clubs by points”, 97.6%). It also handles Calcu-
late + Compare well (“Did Haaland score more
goals than Salah last season?”, 96.3%). How-
ever, performance drops sharply with added com-
plexity: Retrieve + Filter + Calculate (“What'’s
the average pass accuracy for midfielders under
23?”)yields 69.3%, and Calculate + Order reaches
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50.0%. Other challenging cases involve Manipu-
late operations (e.g., table joins) scoring 75%, and
four-way compositions (e.g., Compare + Manipu-
late + Order + Calculate) showing similar results.

Impact of Query Complexity. We examine how
performance varies with the number of reasoning
primitives in a query. Figure 4 plots accuracy
against the number of primitives (k), with 95%
Wilson confidence intervals.

Complexity-Accuracy Curve (EM with 95% Cl) + LLM-Judge Accuracy Lines

Accuracy (%)

40

2 3 4
Number of primitives per query (k)

Figure 4: Accuracy Trend over Number of Clauses with
LLM as Judge scores

LILM-as-a-judge accuracy is high for retrieval-
based queries (99%) but drops to 91.2% with two
primitives. This further drops for 3 primitives and
slightly improves for queries having 4 or more
clauses, possibly due to the scarcity of such com-
plex queries generated from user questions. This
trend highlights the importance of robust eval-
uation metrics as we see divergent trends with
EM and LLM as a judge, especially for complex
queries showcasing capabilities of frontier mod-
els like gemini/gpt to interpret NL questions into
executable programs. It also suggests that future
benchmarks should include more 3 and 4-primitive
questions to better probe system limitations.
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Figure 5: Pairwise Primitive Accuracy with LLM as
Judge

Bottleneck Clause Pairs. Figure 5 shows accu-
racy for all pairs of reasoning primitives. Retrieve +



Compare performs well (>92%), indicating strong
compatibility between basic operations. In con-
trast, any pair involving Manipulate or Calculate
drops sharply, even when combined with other-
wise reliable primitives like Filter. These patterns
align with the decline in Figure 4, where queries in-
volving aggregation or table restructuring introduce
significant error.

5 Related Works

Text-to-SQL. Text-to-SQL research has primar-
ily framed the task as cross-domain semantic pars-
ing over static relational schemas. Benchmarks
like Spider (Yu et al., 2018b) and its extensions (Li
etal., 2023; Zhang et al., 2024; Pourreza and Rafiei,
2023) focus on generalization to unseen databases,
yet operate over fixed snapshots with limited do-
main dynamics. SyntaxSQLNet (Yu et al., 2018a)
introduced syntax-tree decoders for nested queries,
while recent advances (Zhang et al., 2023; Xie et al.,
2024) improve compositional reasoning and execu-
tion accuracy.

However, these methods assume immutable
schemas, overlook temporal drift in cell values,
and sidestep challenges like domain-specific entity
resolution (e.g., player aliases) that arise in contin-
uously evolving datasets.

Sports QA. Prior work in sports question an-
swering has largely centered on unstructured text
or multiple-choice formats. LiveQA (Liu et al.,
2020) explores NBA commentary, using timeline-
based MCQs grounded in broadcast text. AskSport
(Stoisser et al., 2025) retrieves top-k passages via
BM25+RoBERTa, but lacks symbolic execution
and numerical guarantees. These systems do not
support natural language aggregation (e.g., “av-
erage points in last 5 matches”) or multi-table
joins—capabilities native to SQL.

Our work bridges Text-to-SQL and SportsQA
by introducing SPORTSQL, a pipeline tailored to
dynamic sports data, and DSQABENCH, the first
benchmark pairing natural language queries with
executable SQL over temporally indexed, continu-
ously refreshed soccer statistics.

6 Conclusion and Future Work

SPORTSQL demonstrates how natural language
interfaces can make complex, evolving sports data
accessible to everyday users without technical ex-
pertise. The release of DSQABENCH provides a
valuable resource for benchmarking and advancing
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research in dynamic, temporally grounded question
answering.

In future work, we plan to (1) support more
advanced query types, including comparative and
multi-turn analyses across players, teams, and sea-
sons (see Appendix (8)) and (2) generalize the
framework to additional structured domains such
as finance, healthcare, and other sports like basket-
ball or American soccer. We also plan to perform
comprehensive user studies (3) that showcase the
effectiveness and applicability of this system for
real-time analytics. This work lays the groundwork
for scalable, domain-agnostic natural language ac-
cess to complex, real-world databases.

7 Limitations

While our system performs well on natural lan-
guage to SQL translation over dynamic sports data,
several limitations remain. First, ranked queries
using LIMIT (e.g., “top 5 goal scorers”) may omit
tied results due to default lexicographic ordering,
yielding incomplete answers. Second, the system
supports only English input, limiting accessibil-
ity for multilingual users. Third, context length
constraints restrict the ability to encode real-time
metadata such as recent transfers or lineup changes.

Moreover, the current system is tailored to the
English Premier League and does not readily gen-
eralize to other sports or leagues without domain-
specific adaptation. Expanding to new domains
would require schema remapping and possible
model fine-tuning. Future work may incorporate
multilingual LLMSs, retrieval-augmented genera-
tion, and adaptive components to improve robust-
ness across languages, domains, and evolving con-
texts.
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8 Appendix

8.1 Qualitative Examples

Query 1: Show me the top 10 goal scorers and
their goal count.

Generated SQL 1:

SELECT web_name, goals_scored
FROM players
ORDER BY goals_scored DESC
LIMIT 10;

Generated Table 1:

web_name goals_scored
M.Salah 27
Haaland 21
Isak 20
Wood 18
Mbeumo 16
Watkins 14
Wissa 14
Palmer 14
Cunha 14
Mateta 13

Generated Visual 1:

Top 10 Premier League Goal Scorers

scored

Goals

5 & & ; & » 3

3 e # & i 5

R o & # o o e
Player Name

Query 2: Give me the player history table for
James Milner.

Generated SQL 2:
SELECT * FROM player_history;
Generated Table 2:
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season total minutes goals assists clean
name points scored sheet
2006/07 114 2675 3 7 0
2007/08 84 2227 2 2 0
2008/09 128 3060 3 9 0
2009/10 184 3172 7 12 0
2010/11 97 2134 1 7 11
2011/12 86 1586 3 5 6
2012/13 96 1724 4 4 11
2013/14 67 1373 1 6 5
2014/15 107 1749 5 8 7
2015/16 123 2409 5 11 8
2016/17 139 3154 7 4 12
2017/18 77 1759 0 3 6
2018/19 101 1778 5 5 9
2019/20 49 924 2 2 4
2020/21 44 1056 0 2 4
2021/22 38 844 0 1 4
2022/23 42 889 0 1 3
2023/24 28 770 0 2 4

e scdAES Milner - Premier League Perfon

Figure 6: Visualization Output Query 1.

Query 3: Show me the team names, positions,
points, and strength in a color scatterplot.

Generated SQL 3:

SELECT team_name, position, points, strength

FROM teams;
Generated Table 3:
team_name position points  strength
Liverpool 1 76 5
Arsenal 2 63 4
Nott’m Forest 3 57 4
Newcastle 4 56 4
Man City 5 55 4
Chelsea 6 54 4
Aston Villa 7 54 3
Bournemouth 8 48 4
Fulham 9 48 3
Brighton 10 48 3
Brentford 11 43 3
Crystal Palace 12 43 3
Everton 13 38 3
Man Utd 14 38 3
Spurs 15 37 3
Wolves 16 35 3
West Ham 17 35 3
Ipswich 18 21 3
Leicester 19 18 3
Southampton 20 10 2

premier League Team Perfarmance

Position

Figure 7: Visualization Output Query 3.

8.2 Deep-Analysis Mode: Multi-Step
Reasoning Architecture

To address the limitations of single-shot natural
language to SQL translation for complex analyt-
ical queries, we introduce a deep-analysis mode
that implements a hierarchical decomposition strat-
egy. This mode is specifically designed to handle
subjective user questions requiring comprehensive
insights that span multiple data dimensions, tempo-
ral ranges, and comparative analyses.

¢ Stage 1: Entity Extraction and Resolution The
system first extracts entities using the same work-
flow as described in section 2.1.

» Stage 2: Hierarchical Query Decomposition
After entity extraction, the system uses a plan-
ning module to break the query into focused
sub-questions. The system analyzes the query’s
intent (player insight, team comparison, multi-
season analysis) and generates 3-10 prioritized
sub-questions that address the user’s needs. Each
sub-question targets a specific data retrieval re-
quirement, with table hints and priority rankings
to guide execution.

 Stage 3: Parallel SQL Compilation and Execu-
tion Each sub-question is compiled into SQL us-
ing a prompt-based translation mechanism, with
added context for overall intent. Queries are exe-
cuted in parallel where possible, and the results
are aggregated into a comprehensive response,
preserving the semantic relationships across di-
mensions.

We further plan to extend this feature by adding an
insight generation module, extending the utility of
this work to support real-time sports analytics at
scale. To use this feature, toggle to deep analytics
on the platform.
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