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Abstract

Despite the size of the field, stance detection
has remained inaccessible to most researchers
due to implementation barriers. Here we
present a library that allows easy access to an
end-to-end stance modelling solution. This li-
brary comes complete with everything needed
to go from a corpus of documents, to exploring
stance trends in a corpus through an interactive
dashboard. To support this, we provide stance
target extraction, stance detection, stance time-
series trend inference, and an exploratory dash-
board, all available in an easy-to-use library.
We hope that this library can increase the acces-
sibility of stance detection for the wider com-
munity of those who could benefit from this
method.

1 Introduction

The field of stance detection —the identification of
the attitude of a document author to a target, as rep-
resented by a topic, claim, entity, etc. (Mohammad
et al., 2016) —has produced a number of methods
critical to the understanding of social behaviour.
However, it remains a method that requires a com-
mitted natural language processing (NLP) expert
to apply. While other NLP fields have success-
fully made their technology available for general
practitioners, with topic modelling being a prime
example, stance detection remains off limits to gen-
eral use. Beyond this, stance detection has thus far
focused on the situation of having a set of docu-
ments with pre-defined stance targets (the idea or
issue a stance is expressed on, here in the form of
noun-phrases or claims, as used previously (Zhao
and Caragea, 2024)). We present a library that uses
a combination of new and prior methods to allow
a user to go from a raw corpus of documents, to
an organised set of stance targets and stance target
trends, with little-to-no tuning needed.

Stance detection is frequently used in a temporal
context to understand how attitudes are changing
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over time. In prior work, the outputs have been
naively assembled into a time series using a mov-
ing average (Introne, 2023; Almadan et al., 2023).
We account for the error in the stance classifier and
the noisiness of the data by using Gaussian pro-
cesses (GPs) with a custom likelihood to model the
temporal trends of stance. We show an explanation
of this problem in Fig. 1.

Our library contains an easy-to-deploy web-app
that allows for the exploration of the features output
from our library. In addition, it comes with small
fine-tuned models and defaults that allow it to run
on consumer-grade GPUs !, making it accessible
to researchers with modest compute budgets. We
have seen the value that accessible topic modelling
has provided to the larger community that can ben-
efit from using topic modelling but does not have
the technical capacity to implement their own topic
models, and we hope that, similarly, this library
can benefit the larger community of social scien-
tists who have much to gain from easily accessible
stance detection.

We present two novel contributions: First, to our
knowledge, no stance detection method is available
in a library/package form, only as research repos-
itories specific to a context and dataset. We go
beyond this and release a library that is designed
to be generally usable. Second, no prior work has
produced a method that can take stance labels with
timestamps, and infer a continuous time-varying
stance, considering the error of the classifier.

We release this library under an
MIT license at https://github.com/
bendavidsteel/stancemining. Scripts
to reproduce our results are available in

https://github.com/bendavidsteel/
stancemining/tree/main/experiments. In ad-
dition, we present a video demonstrating the system
at this link: https://youtu.be/4tvqq8GTUHU.
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Figure 1: Given the ordinal stance classifications as x,
with labels ‘Favor’, ‘Neutral’, and ‘Against’, arrayed
in time, how should we infer the latent stance? We
propose to use a Gaussian process with a customized or-
dinal likelihood to infer the latent stance trend. This will
allow us to infer the latent stance from the stance classi-
fications as shown in the figure - that is, in a smoothly
varying manner that balances fitting signal and avoiding
noise. This allows us to factor in the error of the stance
detection classifier into our inference, alongside setting
a prior on the extent to which the stance trend will vary,
allowing us to ignore noise.

2 Background

Services exist to provide stance-detection-like mod-
els to a practitioner audience, but they are either
proprietary (sum) or domain specific (Stab et al.,
2018). Methods for inferring stance trends from
stance observations have been limited to rolling
averages (Introne, 2023), or aggregation on a time
interval basis (Almadan et al., 2023). We produce
models that can both interpolate, and consider the
error of the classifier.

For stance detection output visualization, previ-
ous work has produced solutions (Wu et al., 2014;
Martins et al., 2017; Kucher et al., 2020, 2016), but
all are either not open-source/publicly available, or
are specific to a particular domain, or both.

3 Implementation

We depict the system in Fig. 2, showing the func-
tionality that the library affords. By default, for
cases where the specific stance-targets of a corpus
are not known a priori, the fine-tuned stance target
extraction model will extract stance targets from
each document. The fine-tuned stance detection
models will then find the stance of each document
on each stance target mapped to that document. Ad-
ditional stance targets can optionally be discovered
via clustering, using the method detailed in ?. Alter-
nately, pre-defined stance targets can be provided,
in which case the library will find the stance of
each document on each pre-defined stance targets.

For out-of-the-box use, we use our two fine-
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tuned models by default, hosted on HuggingFace
model storage to allow distribution. In practice,
stance detection frequently needs custom models
for domain specific data, so the library allows us-
ing any local transformers compatible fine-tuned
model. We train our base stance extraction model
on VAST (Allaway and Mckeown, 2020) and EZ-
STANCE noun-phrase (Zhao and Caragea, 2024).
Stance targets represented by claims are popular
in stance detection (Kii¢iik and Can, 2020; Zhao
and Caragea, 2024), so we additionally provide
fine-tuned claim extraction models. This choice of
noun-phrases or claims for extracted stance targets
is configurable by the user in the library.

Since cross-dataset generalization in stance de-
tection is poor (Ng and Carley, 2022; Zhao and
Caragea, 2024), we fine-tuned a modern small lan-
guage model on several datasets to produce a model
that has more generalizability. While this comes at
the risk of each dataset’s slightly different defini-
tion of stance distorting the learned signal, it should
improve the generalizability of the model. Specifi-
cally, we use the following datasets: SemEval Task
6 dataset (Mohammad et al., 2016), VAST (All-
away and Mckeown, 2020), EZ-STANCE noun-
phrase and claim datasets (Zhao and Caragea,
2024), P-STANCE (Li et al., 2021), and the multi-
turn conversational stance detection datasets M'T-
CSD (Niu et al., 2024) and CTSDT (Li et al., 2023).
The use of the multi-turn datasets means that our
library supports documents with contextual threads,
common in media data. Corresponding to the
datasets we select, the specific form of stance de-
tection we focus on is topic/entity stance detection
(Zhu et al., 2025).

We use 16-bit models to maintain high through-
put on older GPUs 2. We use vLLM (Kwon et al.,
2023) for fast LLM inference. This enables pro-
cessing of a dataset of ~1300 posts in 4 minutes.

Stance detection using inputs from audio data,
whether from social media videos or podcasts, is
a common use-case. We therefore provide helper
functions to transcribe audio and video files, using
WhisperX (Bain et al., 2023) and pyannote (Plaquet
and Bredin, 2023). Our library does not currently
support image/video inputs.

Stance Trend Inference GP models use a base
model that outputs a set of Gaussian distributions
corresponding to input points, and a likelihood, that

Zhttps://docs.vllm.ai/en/latest/features/quantization/
supported_hardware.html
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Figure 2: System diagram of stancemining. Origin items in blue are inputs to the system, origin items in orange are
optional models (stancemining provides these models by default), intermediate items in green are components of
the stancemining library, and endpoint items in red are outputs from the library.

takes as input samples from the base model, and
defines how those signals correspond to the actual
data seen. In our case, the base model is modelling
the function between time and true latent stance,
and the likelihood is modelling the relationship be-
tween the true latent stance and the observed stance
classifications. Stance classifications are ordinal in
nature: a ‘neutral’ post favors a target more than
an ‘against’ post, and an ‘favor’ post favors a target
more than a ‘neutral’ post. We therefore use an
ordinal likelihood (Chu et al., 2005), and model the
stance as a continuous time-varying value between
-1 (‘against’) and 1 (‘favor’).

There are two conditions specific to our use-case.
First and most importantly, stance detection is done
with classification models that make errors. If a
stance detection model is better at classifying ‘fa-
vor’ posts than ‘against’ posts, we will have a sys-
tematic error in our trend inferences if we do not
account for this error. We can estimate the error of
the classifier from its performance on an evaluation
set. The ordinal likelihood function for the 3 true
stance labels would generally be defined as:
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where ¢ is the cumulative density function of
a Gaussian (the inverse probit function), o is a
parameter to be learned, the data are integer values
from O to k, and the bin edges where the labels
switch are [ag, a;], which we set to [—0.5, 0.5]

However, we want to model the observed prob-
abilities. So first we normalize the confusion ma-
trix C such that each row sums to 1: Z;’:l Cij =

1 forallt € 1,2,3. We then multiply the
true stance probability vector pg [p(Y
Fav.|F),p(Y = Neu.|F),p(Y = Aga.|F)] with
the normalized confusion matrix to obtain the final
observed stance probabilities pg = Cpg, which
are used as the probabilities of the likelihood cate-
gorical output.

The second condition specific to our use-case is
that the stance should be clamped between -1 and
1. Without this, for an array of ‘favor’ observations,
the GP model could reasonably infer a stance of any
value over 1, whereas we want to limit the stance at
1 for the sake of trend comparison. We model this
by inferring the inverse hyperbolic tangent with the
GP base model, and then transform the output of
this model for predictions and the likelihood by
applying a hyperbolic tangent transform.

We use a GP model with constant mean and the
radial basis function for the covariance kernel, with
a log-normal prior for the lengthscale parameter. In
this case, we are inferring the time-varying trend
of a person’s stance on an issue (as opposed to an
organization etc.), so we choose a lengthscale prior
of u = 2,0 = 0.1 based on prior work studying the
correlation of user attitudes over time in Krosnick
(1988). We use the ordinal likelihood developed
by Chu et al. (2005), and optimize the model us-
ing stochastic variational inference, using natural
gradient descent (Salimbeni et al., 2018).

A critical aspect of getting the model to train fast
and effectively is the learning rates of the natural
gradient optimizer, and the learning rate and learn-
ing rate scheduler of the hyperparameter and likeli-
hood parameter optimizer. We run hyperparameter
sweeps of these three variables in Section C. To
implement the model, we use GPyTorch (Gardner
et al., 2018). To improve training speed, we add
a number of optimizations, including compiling
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the model using PyTorch 3, converting functions to
TorchScript, and a batching process which trains
models of comparable size in parallel.

When calling the infer trends function on the
library, the user can specify filter columns. These
are columns in the dataframe where trends should
be calculated for each unique value. This is useful
for when a user wants to calculate time series trends
for different users, sources, accounts etc.

4 Application Use

Once stance features have been extracted from the
corpus using stancemining, it is useful to be able to
quickly explore them using an interactive applica-
tion. We therefore include a ready-to-use web-app
for this purpose. This web-app can be easily de-
ployed via Docker Compose for any user data via
the use of environment variables, as long as the data
has been saved in the format and structure specified
in the documentation. There is an option to enable
authentication in the application if necessary for
sensitive data. The backend of the application uses
FastAPI 4, and the frontend uses React °.

The user is presented with two main views in the
app: a stance target map view, and a timeline view.
The map view (Fig. 3a) shows a 2-dimensional
map of stance targets, where stance targets are em-
bedded using the ‘GIST-small-Embedding-v0’ text
embedding model (Solatorio, 2024), those embed-
dings are reduced to 2-dimensions using UMAP
(Mclnnes et al., 2018), and plotted as a scatter plot.
Points are coloured with the mean stance of docu-
ments on that target, and hovering over the point
shows the proportions of each stance on that tar-
get. This plot allows the user to explore stance
targets in a 2D semantic space, and the discovery
of more stance targets than semantic search alone.
If a user clicks on a point, they are shown the tem-
poral trends of that target in the timeline view.

The timeline view (Fig. 3b) shows the inferred
trend mean for each stance target, alongside its
confidence intervals as computed by the GP model.
When we load the trend data, the backend auto-
matically finds filter types, and allows the user to
display trends broken down by filter value side by
side, or one at a time. This is useful when breaking
down stance target trends into individual users or
sources.

We summarise the full use of the stancemining

3https://pytorch.org/
*https://fastapi.tiangolo.com/
Shttps://react.dev/
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library and web app in the following steps. While
each component of the system can be used sepa-
rately, this sequence represents its full potential:

1. Extract Targets (Optional): Extract stance
targets (noun-phrases or claims) from corpus,
using default model or custom model if there
are specific domain requirements.

Stance Detection: Detect stance of docu-
ments on targets using default models, or cus-
tom models if there are specific domain re-
quirements.

. Stance Trend Inference: Do stance trend
inference if corpus has timestamps.

Load Web App: Load web app using saved
stancemining outputs, specify options via en-
vironment variables.

. Explore Target Map: Explore stance targets
in the target map view.

View Target Trend: Zoom in on a specific
target timeline, filter by metadata attributes.

5 Evaluation

Where possible, we evaluate components of our
system against prior work. Otherwise, we provide
multiple competing methods to add context to the
range of possible metrics. We did not do any formal
evaluation of the web application with end users.
Stance Target Extraction We evaluate the
model using BERTScore (Zhang et al., 2019)
and BLEU (using the SacreBLEU package) (Post,
2018), and show our results in Table 1. We com-
pare to the smallest open-source model evaluated
in Akash et al. (2024). No other direct task and
dataset comparisons exist. For the task of noun-
phrase stance target extraction, we fine-tune our
models on a combined dataset of the document -
stance target noun phrases from VAST (Allaway
and Mckeown, 2020) and the noun-phrase targets
of EZ-STANCE (Zhao and Caragea, 2024). We do
not compare against prior work here, as previous
work has only evaluated one extracted stance target
per document (Akash et al., 2024), as opposed to
extracting multiple targets per document. For these
tasks we use Qwen 3 models (Yang et al., 2025)
and SmolLM2 models (Allal et al., 2025), with
specific sizes reported in the tables. For our claim
extraction models, we fine-tune them on the docu-
ment - stance target claims pairs from EZ-STANCE
(Zhao and Caragea, 2024). We show metrics from
this fine-tuning in Table 2. No comparable results
are available for this task on this dataset to our
knowledge.



(a) 2-dimensional map view of stance targets.

,,,,,,,,

(b) Trend timelines view of a stance target broken down by filter
values.

Figure 3: Two screenshots from the stancemining dashboard.

EZ-STANCE VAST
Model Num. params. | BERTScore F1 ~BLEU F1 | BERTScore F1 =~ BLEU F1
Llama-3-8B (Akash et al., 2024) 8B 0.78 - 0.84 -
Qwen3-0.6B (ours) 752M 0.90 0.67 0.91 0.33
SmolLM2-360M-Instruct (ours) 360M 0.90 0.67 0.92 0.20

Table 1: Noun-phrase stance target extraction evaluation results. We compare to the smallest open-source model
evaluated in Akash et al. (2024). No other direct task and dataset comparisons exist.

EZ-STANCE
Num. BERTScore BLEU
Model params. F1 F1
Qwen3-1.7B (ours) 2.03B 0.89 0.16
Qwen3-0.6B (ours) 752M 0.88 0.04

Table 2: Claim stance target extraction evaluation. No
comparable results are available for this task on this
dataset to our knowledge.

Stance Detection We evaluate our fine-tuned
stance detection models using the macro F1
score, as is typical in stance detection (Zhao and
Caragea, 2024; Allaway and Mckeown, 2020),
and show our results in Table 3. We experi-
mented with several hyperparameters and report
the best results here, using 4 epochs, batch_size X
grad_accumulation_size = 32, a learning rate
of 0.0001, and classifying using a classification
head (instead of using causal language modelling
to generate the label). We report other hyperparam-
eters experimented with in App. A. In the table
we also highlight the number of parameters in each
model, given that part of the aim of stancemining
is to make it accessible, thereby necessitating small
models that work with limited resources.

Stance Trend Inference To test the GP model,
we use synthetic data. This also allows us to model
the relationship between a true latent stance and
stance classifications across time, lacking a dataset
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for fine-grained stance over time. We detail our
synthetic data generation process in Section B. We
use 3 parameters to parameterize our synthetic data,
the number of observations n4, the random walk
scale 0, Which determines how much the latent
stance trend varies, and 0,,,;s¢ Which determines
the amount of noise in the stance expressions (i.e.
someone who consistently favors a stance target or
producing varied views on it).

To improve training time and model perfor-
mance, we ran hyperparameter sweeps on the learn-
ing rates of the natural gradient optimizer for the
GP model, and the learning rate and scheduler for
the likelihood parameters and model hyperparame-
ters. We averaged across several synthetic data con-
figurations, including ng, 0neise, and oq%. We de-
termine scheduler performance by averaging across
all learning rate values, and then sorting by mini-
mum loss achieved in 1000 epochs. We detail this
experiment in Sec. C. Using no scheduler achieves
the best loss, but a cosine scheduler achieves the
fastest convergence. We therefore use no learning
rate scheduler in our library. When using no learn-
ing rate scheduler, the most effective learning rate
was (.2 for both learning rates.

Next, we evaluate our method of inferring stance
trends against other regression methods. Other
methods have used a rolling average to smooth
user stance observations (Introne, 2023) or simply



Flmacro

Model Num. params. | SemEval ~VAST  EZ-STANCE  EZ-STANCE claim P-STANCE  MT-CSD  CTSDT
TGA Net 111M 0.665 - -
BART-MNLI-e,, 205M - 0.669 0.885
COLA Prop. - 0.73 - - - -
SmolLM2-135M-Instruct (Ours) 135M 0.57 0.71 0.61 0.81 0.78 0.56 0.67
SmolLM2-360M-Instruct (Ours) 360M 0.59 0.75 0.64 0.85 0.82 0.60 0.64

Table 3: Stance detection F1 scores for each dataset. With models BART-MNLI-e,, (Zhao and Caragea, 2024),
TGA Net (Allaway and Mckeown, 2020), and COLA (Lan et al., 2024) (COLA uses GPT 3.5 Turbo, hence the
proprietary label in the number of parameters cell.) (While COLA evaluates on P-Stance and SemEval, they report
separate macro Fls for each target, making comparison here difficult).

aggregate user stance observations on a time period
basis (Almadan et al., 2023), but we consider it
very useful to be able to interpolate the values, and
as such, we only use methods capable of interpola-
tion here. We evaluate LOWESS (Cleveland, 1979)
and a spline model (De Boor and De Boor, 1978).
Specifically, we found using a cubic smoothing
spline with ridge regression with o = 0.1 as a reg-
ularization parameter to produce the best data fits.
We evaluated each method at 10 values of 0,0
between 0.05 and 0.5, 10 values of o, between
0.005 and 0.05, and ng randomly sampled from
the range (5,30) (Detailed in App. D). Our GP
method consistently obtains lower mean squared
error (MSE) values than the other two methods
evaluated. To obtain the overall MSEs, we simply
take all MSEs measured for each point in the noise
and random walk scales, and obtain their mean. We
show these results, plotted against training time, in
Fig. 4, showing that our GP method obtains a better
mean MSE overall compared to the two methods.

However, this is not without a cost in training
time: the process of training and obtaining predic-
tions from GPs is much slower than for LOWESS
and splines. This training time is acceptable when
we want to have confidence in the stance trends
we obtain for further modelling, but we provide
LOWESS as a faster alternative in the library for
those who want faster stance trend inference. Ac-
tual numbers are in Appendix D.

6 Conclusion

We developed a library that allows a user to provide
a document corpus expressing stance on unknown
issues, optionally with associated timestamps and
metadata, and detect the stance of the texts on
the discovered targets. We believe that —just as
easy-to-use topic modelling tools have enabled
widespread use of these tools where they were pre-
viously inaccessible —easy-to-access stance detec-
tion can unlock new experimental approaches for
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Figure 4: Comparison of median training time and me-
dian MSE between our GP, LOWESS, and splines over
100 runs with varying synthetic data parameters. Error
bars indicate quartiles. Error bars for runtime are not
visible as the runtime variance is small relative to marker
size. Our GP method outperforms the other methods,
but at the cost of increased training time.

groups where stance detection was previously in-
accessible. We hope this tool unlocks improved
understanding of opinion and attitude processes for
a larger community of social scientists.

7 Ethical Considerations

Stance detection enables inference of attitudes from
unconsenting text authors on issues they discuss,
which is privacy-violating. It also allows greater in-
sight into social processes, allowing researchers to
work towards understanding social processes. How-
ever, the current nature of stance detection is that
it requires dedicated work from an NLP engineer
to implement, in addition to compute resources to
train models, meaning that only large incumbents
can use it. Our library aims to democratize access
to stance detection, such that groups with fewer
resources can use it in their studies, while larger
groups were always able to use it.
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A Stance Detection Training

We tested several models and hyperparameters
to improve our final fine-tuned stance detection
model, results shown in Table 4. In some cases
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where epochs are low we aborted training early due
to low evaluation set metrics.

B Synthetic Data Generation

Then sample the observed post stances by sampling
them from categoricals indexed by the true quan-
tized post stances, using categorical probabilities
obtained by normalizing the confusion matrix of
the stance detection classifier on the test set.

We start with our timestamps representing each
day in a year of 365 days.

t=10,1,2,...,365]
We then sample the stance on the first day.
2o ~U(-1,1)

Then simulate a random walk for each times-
tamp.

z; = maz(min((N (zi-1, U?)valk)? -1),1)

Z‘:1727"'7ntime_1

We then draw n,ps elements from the vectors ¢
and z to serve as our observations ¢, and z,bs. We
model diversity of stance expression (i.e. someone
in favor of something will sometimes say things
neutral or even against that thing) by sampling the
latent user post stance values from normal distribu-
tions centred at the true stance, with scale opp;se:

Yi ~ N(Zi’ O'noise)Vi

We then clamp these values between -1 and 1,
and round them to the nearest integer to simulate
the quantizing nature of classification.

s; = round(min(maz((y;, —1),1))Vi

where s; € {—1,0,1}

Then, using the normalized confusion matrix of
the classifier, let P , be the probability of predict-
ing class ¢ given true class k:

Py 1 Paig P
P=1 F_-1 Fo P
Py Py P

where each row sums to 1: " ycr_; o1y Pry =
1

We get the classification probabilities as indexed
by the true latent classifications to obtain the ob-
served classifications:

5; ~ Categorical(Py, .), j=1,2,...,Nobs


https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2402.16829
https://doi.org/10.18653/v1/N18-5005
https://doi.org/10.18653/v1/N18-5005
https://doi.org/10.18653/v1/N18-5005

Model Name | Epochs | Grad Accum Steps | Batch Size | LR. | Classification Method | Flmacro
SmolLLM2-360M-Instruct 4 8 4 1.0e-4 | head 0.744
SmolLM2-360M-Instruct 2 8 4 1.0e-4 | head 0.738
SmolLLM2-360M-Instruct 1 8 4 1.0e-4 | head 0.724
SmolLM2-135M-Instruct 4 4 8 1.0e-4 | head 0.715
SmolLLM2-135M-Instruct 8 4 8 1.0e-4 | head 0.709
SmolLM-135M-Instruct 4 4 8 1.0e-4 | head 0.708
SmolLLM2-135M-Instruct 4 4 8 1.0e-4 | head 0.708
SmolLM2-135M-Instruct 4 4 8 1.0e-4 | head 0.707
SmolLM-135M-Instruct 8 8 8 1.0e-4 | head 0.705
SmolLM-135M-Instruct 8 4 8 5.0e-5 | head 0.703
SmolLLM-135M-Instruct 1 4 8 1.0e-4 | head 0.651
SmolLM2-135M 2 8 4 1.0e-4 | head 0.621
SmolLM2-135M-Instruct 1 8 4 1.0e-4 | generation 0.562
SmolLM2-135M 2 2 4 1.0e-4 | head 0.473

Table 4: Hyperparameter sweep with F'1,,,.., across all datasets.

Hyperparameter ‘ Tested values
LR. [0.001, 0.01, 0.1, 0.2, 0.5, 1.0]
NGD LR. [0.05, 0.1, 0.2, 0.5]
Num. Data Points [20, 100, 200]
Onoise [0.2, 0.5]
Owalk [0.1, 0.5]

Table 5: NGD LR. stands for natural gradient descent
optimizer learning rate. It is typical to use a large learn-
ing rate for the learning rate of natural gradient descent
(Salimbeni et al., 2018).

We then use the observed classifications § and
observed timestamps %5 as the observations, and
the full timestamp vector ¢ as the timestamps to
infer the latent stance on.

C Learning Rate Hyperparameter Sweep

We trialled several hyperparameter settings when
searching for the best learning rates and learn-
ing rate schedulers. We detail them in Table 5,
alongside logging the number of epochs needed to
achieve 90% loss reduction as a measure of conver-
gence speed.

We report the aggregated scheduler metrics in
Table 6.

D Time Series Inference Results

Synthetic data generation parameter sensitivity ex-
periment outputs are shown in Figs. 5a and 5b.

Overall output metrics from our time-series infer-
ence comparison experiments are shown in Table
7.
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Figure 5: Mean MSE from 5 runs for each of 10 values
of an adjusted synthetic data generation parameter, used
to compare the GP, LOWESS, and spline models.



Scheduler Min. Loss

Num Epochs Conv.

None
Cosine Warm Restarts
Cosine
Step
Exponential

1.12
1.19
1.19
1.22
1.22

97
112
73
74
87

Table 6: Evaluation of learning rate schedulers, using minimum loss achieved and number of epochs to 90% loss
reduction as measures of efficacy and speed, respectively.

Method MSE Training Time

GP 0.069 £0.13 21.7+£7.2
LOWESS | 0.197 £ 0.46 0.003 £ 0.001
Spline 0.130 £0.12 0.002 £ 0.007

Table 7: Comparison of time series inference methods.

Numbers listed are mean = standard deviation.
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