SIMAGENTS: Bridging Literature and the Universe Via A Multi-Agent
Large Language Model System

Xiaowen Zhang®*, Zhenyu Bi”*, Patrick Lachance®,

Xuan Wang", Tiziana Di Matteo®, Rupert A. C. Croft*"
#Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
@Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
(xiaowen4,plachanc, tizianad)@andrew.cmu.edu, rcroft@cmu.edu,
Y (zhenyub, xuanw)@vt.edu

Abstract

As cosmological simulations and their as-
sociated software become increasingly com-
plex, physicists face the challenge of search-
ing through vast amounts of literature and
user manuals to extract simulation parame-
ters from dense academic papers, each us-
ing different models and formats. Translat-
ing these parameters into executable scripts
remains a time-consuming and error-prone pro-
cess. To improve efficiency in physics re-
search and accelerate the cosmological sim-
ulation process, we introduce SIMAGENTS,
a multi-agent system designed to automate
both parameter configuration from the litera-
ture and preliminary analysis for cosmology
research. SIMAGENTS is powered by special-
ized LLM agents capable of physics reason-
ing, simulation software validation, and tool
execution. These agents collaborate through
structured communication, ensuring that ex-
tracted parameters are physically meaningful,
internally consistent, and software-compliant.
We also construct a cosmological parameter ex-
traction evaluation dataset by collecting over
40 simulations in published papers from Arxiv
and leading journals that cover diverse sim-
ulation types. Experiments on the dataset
demonstrate a strong performance of SIMA-
GENTS, highlighting its effectiveness and po-
tential to accelerate scientific research for physi-
cists. Our demonstration video is available
at: https://youtu.be/w1zLpm_CaWA. The com-
plete system and dataset are publicly available
at https://github.com/xwzhang98/SimAgents.

1 Introduction

Modern cosmological simulations are essential
tools for advancing our understanding of the uni-
verse, enabling researchers to study the forma-
tion of galaxies and the evolution of structures.
Setting up such simulations is a highly manual,

*Equal contribution
Corresponding author.

55

time-consuming, and error-prone process. Re-
searchers must extract parameters from dense scien-
tific papers, convert values between units, interpret
context-specific model assumptions, and then for-
mat them into executable scripts compatible with
domain-specific software such as MP-GADGET
(Feng et al., 2018), GADGET-4 (Springel et al.,
2022), Arepo (Springel et al., 2019), GIZMO code
(Hopkins, 2015) and ENZO (Bryan et al., 2014).
In addition to the diversity of the simulations them-
selves, the complexity of using the software adds
another layer of difficulty. Software user manuals
are often dozens of pages long and filled with in-
tricate rules about parameter dependencies, default
settings, and strict formatting requirements.

As aresult, even experienced physics researchers
face a steep learning curve when trying to adopt a
new simulation tool. For example, when given a
cosmology paper covering several simulations, the
average time cost for a human researcher to formu-
late the correct parameter files is in the range of
hours to days, depending on the familiarity with the
software. Ideally, we want this labor-intensive pro-
cess to be done in minutes. The above challenges
raise a crucial question: How can we design a
highly professional automated toolkit to assist
cosmologists with the lengthy and complex task
of setting up simulations?

Large Language Model (LLM) agents have
demonstrated significant potential on many scien-
tific tasks (Zhao et al., 2023). Recently, researchers
have proposed multi-agent reasoning frameworks
that enable collaborative debates among multiple
LLM agents to enhance their problem-solving abil-
ities (Wu et al., 2023; Liang et al., 2024; Zhuge
et al., 2024; Bi et al., 2025). Following this path,
researchers have explored LLM-agent-based work-
flows on several highly professional scientific and
technical applications, such as biomedical tasks
and clinical tasks (Bi et al., 2024; Lu et al., 2024).

In the field of cosmology, researchers have ex-

Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics: System Demonstrations, pages 55-66
December 20-24, 2025 ©2025 Association for Computational Linguistics

=

User &~
(Physicist) el =
Physics Software
Agent Agent :
. Parameter Extraction :
Simulation
Paper \l/
+
>_ Prompt

Script to
generation
initial
conditions

the
simulation

Parse the paper for
all parameter values
needed to run the
simulation

genic

Executable Script

Script to run

gadget

Analysis Code Writer
Post Simulation
Processing

PR (Mpemy®

Other
Packages

g T
K (Mpo)

Statistics

Visualization

\ Various Visualizations for Analysis

Figure 1: The workflow of our proposed multi-agent system, SIMAGENTS.

plored various LLM agent tools to provide assis-
tance to researchers, targeting several tasks, such
as a programming assistant specialized in differ-
ent cosmology tasks. For example, CLAPP! is a
single LLLM agent that specializes in the CLASS
cosmology code. CAMEL agents 2 provide a suite
of Al-powered agents designed specifically to nav-
igate and analyze the extensive CAMELS cosmo-
logical simulation dataset, automating tasks such as
data exploration and code generation. In addition,
CMBAgent (Laverick et al., 2024) and Mephisto
(Sun et al., 2024) utilize a multi-agent LLM system
to aid physicists in cosmological parameter analy-
sis. Each of these systems focuses on a different
scope of research, ranging from coding support
to data analysis research directions. However, to
our knowledge, no prior LLLM agent system au-
tomates the whole workflow from parameter
configuration from the literature to initial simu-
lation output analysis on cosmology simulation
software.

Toward this end, we introduce SIMAGENTS, a
multi-agent system that automates parameter ex-
traction, validation and configuration for cosmolog-
ical simulations. The system is composed of spe-
cialized LLM agents with different distinct roles:

* Physics Agent that reads and interprets simula-
tion papers using domain knowledge

"https://github.com/santiagocasas/clapp/
*https://github.com/franciscovillaescusa/
CAMELS_Agents/

56

* Software Agent that parses and enforces the con-
straints specified in the software user manual

* Analysis Code Writer that provides codes for re-
sult visualization and produces preliminary anal-
ysis (e.g. power spectra and density fields plot)

These agents collaborate through structured com-
munication, ensuring that extracted parameters are
physically meaningful, internally consistent, and
software-complaint. To assess the effectiveness of
SIMAGENTS, we construct a benchmark dataset
of 41 simulations and evaluate the system’s perfor-
mance using metrics such as precision and recall,
and error-specific breakdowns (e.g. Value Error,
Type Error and Hallucinations). Our results show
that SIMAGENTS achieves high accuracy while sig-
nificantly reducing the manual workload typically
required for simulation setup.

2 SIMAGENTS

In this section, we present the structure and im-
plementations of SIMAGENTS. As illustrated in
Figure 1, SIMAGENTS is composed of the follow-
ing key components:

* Parameter extraction: This module automates
the process of generating simulation scripts by ex-
tracting relevant parameters from user-uploaded
papers and formatting them according to the in-
ternal requirements of the target simulation soft-
ware. The extraction is performed through itera-
tive communication between a dual-agent setup,
ensuring accuracy and consistency.

https://github.com/santiagocasas/clapp/
https://github.com/franciscovillaescusa/CAMELS_Agents/
https://github.com/franciscovillaescusa/CAMELS_Agents/

Post Simulation Processing: This module han-
dles code generation and execution for prelimi-
nary simulation analysis, including power spectra
and density field plotting.

Together, the simulation preparation and prelim-
inary analysis step allows users to move quickly
from a published paper to actionable simulation
output, closing the loop from literature reading to
research insight.

2.1 Parameter Extraction

The parameter extraction module is responsible
for transforming scientific papers into structured
simulation-ready configurations. Given a user-
uploaded paper, the system initiates a dual-agent
collaboration between Physics Agent and Soft-
ware Agent. The Physics Agent reads the input
paper using domain knowledge in cosmology to
identify relevant parameters such as cosmological
constants, simulation box size, redshift and simu-
lation types (dark matter, gas, stars and neutrinos).
The Software Agent utilizes the simulation soft-
ware’s official user manual to query all required
and optional parameters, including their default
values, units, and inter-parameter dependencies.

These two agents collaborate through participa-
tion in multiple rounds of discussions based on the
provided material, including a research paper and
the software manual, to refine the parameter ex-
traction process. Specifically, after Physics Agent
reads the paper and extracts the parameters, the
results will be sent to the Software Agent, which
will then use the software user manual to check the
coverage and validity of the extracted parameters.
Then Software Agent will generate the parameter
file following the required format and constraints.
The generated file will then be sent to Physics
Agent for another round of refinement. This it-
erative process, together with specialized task as-
signment on each agent, ensures:

High accuracy, including scientific parameter
accuracy and software requirement compliance,
through task-specific expertise;

Modular adaptability, as the formatting agent
can be extended to support different simulation
software by referencing alternative user manuals
without altering the extraction logic.

2.2 Post-Simulation Processing

Once parameter extraction is completed, the gener-
ated script is passed to the simulation software for

57

execution. After obtaining the output, the system
transitions to the post-simulation processing stage,
where an Analysis Code Writer automatically gen-
erates Python scripts to assist users with early-stage
analysis of the simulation output. These generated
scripts support:

* Visualization: Generating 2D/3D density plots
from slices of the simulation box.

* Statistical Analysis: Generating code to plot
summary statistics like matter power spectrum.

* Custom Post-Processing: Capability to use user-
provided custom packages

The scripts are designed to be executable with
minimal modification and make use of standard
Python libraries such as NumPy, Matplotlib. For
specialized cosmology packages, the system gener-
ates code based on example usage provided to the
agent. This stage helps researchers validate simula-
tions, identify issues early and prepare for deeper
scientific investigation.

3 Experimental Setup

Our experiments are conducted in two parts: the
first focuses on parameter extraction, where we
evaluate quantitative accuracy; the second ad-
dresses simulation post-processing, which is more
subjective and demonstrated through a representa-
tive pipeline. In our paper, we use MP-GADGET
as our simulation software. In the following, we
describe the experimental setup for parameter ex-
tractions.

Dataset We construct a dataset for the evaluation
of cosmological parameter extraction by collecting
more than 40 different simulations from published
articles from ArXiv and leading journals (e.g. ApJ,
MNRAS). To run MP-GADGET, two input files are
required: a .genic file and a .gadget file. The .genic
file generates the initial positions and velocities of
particles, along with essential simulation metadata.
The .gadget file evolves the initial particle distri-
bution over time and contains numerous configu-
ration options for selecting and enabling various
physical models. Each paper is manually annotated
with all MP-GADGET relevant parameter value
pairs, covering cosmological parameters (2, {1,
Qa, h, og, ng), initial-condition settings (BoxSize,
Ngrid, Redshift), and key model switches (e.g.
StarformationOn, WindOn). To our knowledge,
this is the first publicly released dataset of cos-

mological simulations with parameters derived di-
rectly from published text.

Implementation We use OpenAl GPT-4 (Ope-
nAl et al., 2023) for our zero-shot extraction ex-
periments. Our SimAgents framework utilizes the
publicly available Autogen framework>. We also
conduct an ablation study of our SIMAGENTS us-
ing the Qwen3-4B model (Yang et al., 2025). We
set the temperature to 0.01 and top_p to 0.1. For
the simulation software, we use MP-GADGET as
an example in this paper. All outputs are formatted
directly in MP-GADGET configuration syntax. We
conduct all the experiments with user manual since
the LLM does not have sufficient knowledge of
current simulation software.

Baselines We compare our methods against two
baseline methods.

Chain-of-thought (CoT) (Kojima et al., 2022)
We implement zero-shot CoT prompting with a
single LLM agent. The agent is provided with
both the literature and the manual.
Exchange-of-thought (EoT) (Yin et al., 2023)
We implement EoT using two agents with the
same initialization, and provide them both with
the literature and the manual. The agents engage
in a discussion with one another.

SIMAGENTS Our approach employs two task-
specific agents: Physics Agent and Software
Agent, each with role-specialized profiling. We
provide Physics Agent with only the literature
and Software Agent with only the manual. The
agents engage in a discussion with one another.

We recognize that there are other LLM-based
retrieval augmented generation frameworks (Gao
et al., 2023). However, these RAG methods are un-
necessary for our current work, as the information
we provide is straightforward and does not need
special design on the RAG techniques. Other LLM-
based multi-agent tools in the field of cosmology
(Laverick et al., 2024; Sun et al., 2024) do not fit
into the scope of the current work. Thus, we do not
compare with these methods in our baselines.

Evaluation We evaluate our framework using
F1-score and different error metrics and provide
the details of these metrics in Appendix B. Due
to time constraints, we only annotated one version
of the executable files. For each simulation, there

3https ://microsoft.github.io/autogen/

58

Method Micro-F1 Precision Recall
CoT (1-Agent) 93.64 92.46 94.84
EoT (2-Agent) 94.95 93.87 96.05
Ours (2-Agent) 98.67 97.80 99.55

Table 1: Performance comparison of SIMAGENTS
with baseline methods on the cosmological simulation
dataset. We report Micro-F1 score, Precision, and Re-
call as percentages. Higher values indicate better per-
formance. The best-performing methods are bolded,
and the second-best are underlined.

Method Value Type Hallucination
Error Error

CoT (1-Agent) 097 0.51 0.21

EoT (2-Agent) 1.21 0.21 0.34

Ours (2-Agent) 0.46 0.02 0.30

Table 2: Performance comparison of SIMAGENTS
with baseline methods on the cosmological simulation
dataset, in terms of average number of errors made per
simulation. Each error type is reported as the average
number of errors per case. Lower values indicate bet-
ter performance. The best-performing methods are
bolded, and the second-best are underlined.

exist multiple variants that contain parameters not
covered in the original paper, but which could still
yield the same output. To facilitate a fair com-
parison with the baselines, we conduct a human
evaluation covering as many variants as possible
and report the results in Table 1 and Table 2. The
automated evaluation against the annotated dataset
is reported in Section C.

4 Results

In this section, we first present the quantitative
results, which contains baseline comparisons, de-
tailed error analysis, ablation studies, and cost anal-
ysis. We then present a brief overview of the post-
simulation processing capabilities of our system.

4.1 Main Results

The performance of our system compared to the
baseline methods is shown in Table 1. Our pro-
posed method, SIMAGENTS, outperforms CoT and
EoT, achieving improvements of 5.03% and 3.72%
in Micro-F1 score, respectively. Reduces the over-
all error rate by 80% compared to CoT and 70%
compared to EoT, demonstrating significantly im-
proved reliability in parameter extraction.

https://microsoft.github.io/autogen/

Comparison with Baseline Methods We exam-
ine the reasoning process of the CoT method and
find that it struggles to handle excessive task in-
structions and information at input time, consis-
tently making errors, and is unable to complete
any tasks effectively. Simply involving multiple
agents is not sufficient for optimal performance:
EoT benefits from multi-agent interaction, but its
lack of specialized task decomposition and clear
communication structures results in imprecise out-
comes. In contrast, SIMAGENTS incorporates task-
specialized agents with specialized inputs, signifi-
cantly reducing critical error types and leading to
more accurate and robust parameter extraction.

Error Analysis In detailed error analysis, we
observe that both CoT-based extraction and EoT-
based extraction exhibits a higher frequency of both
value error and type errors as shown in Table 2. Al-
though our system exhibits slightly higher halluci-
nation per case than the other baselines, these hallu-
cinated parameters are easier to detect and filter (we
provide an example in Appendix A). In contrast,
value errors involve plausible-looking parameters
whose values or units are subtly incorrect, often
bypassing sanity checks and undetected during the
simulation stage. Figure 2 shows that a single value
error leads to drastically different structures, due to
the different unit convention between the literature
and simulation software.

4.2 Ablation study

Rounds of Discussion We conduct an ablation
study to investigate the optimal number of dis-
cussion rounds between Physics Agent and Soft-
ware Agent. In our parameter extraction module,
each agent contributes domain-specific expertise to
achieve high extraction accuracy while maintaining
computational efficiency. By varying the number
of discussions between these agents, we observe
that two iterations yield the highest Micro-F1 score,
as shown in Figure 3.

Smaller Backbone Model We also conduct ex-
periments using Qwen3-4B as the backbone model
to examine the generalizability of SIMAGENTS on
Small Language Models. We provide the detailed
results in Table 5 and Table 6 in Appendix C. Com-
pared with GPT-4 which is significantly larger in
model size, Qwen3-4B has inferior reasoning abil-
ity, leading to a decreased performance of an 81.23
F1 score, and an average of 3.05 value errors and
2.59 type errors per simulation.

59

Initial Conditions

-

Simulation Outputs
__using .gadget file

Correct Box Size

Wrong Box Size

Figure 2: Impact of incorrect parameters (Value Error)
on cosmological simulation outputs. Varying a single
parameter, such as box size (correct top row: 100 Mpc/h;
incorrect bottom row: 100 Kpc/h), while keeping all
others fixed, can result in drastically different structures.

1.00
B °
098{ ___--=""
o-
<
]
A 0.96
o
[
©0.94
e e e ey I
=
0.92 -@- SimAgent
-== CoT
=== EoT
0.90

2 3

Rounds of Discussion

Figure 3: Results for the ablation study on the number
of rounds of discussion.

4.3 Time and Cost Analysis

We conducted a survey of researchers to estimate
the time cost of using simulation software. Results
show that first-time users require an average of
166 minutes to replicate experiments, while experi-
enced users average 44.4 minutes. In contrast, SIM-
AGENTS completes the same step in about 2 min
per simulation, giving an 83x speedup (—98.8%)
for first-time users and 22.2x (—95.5%) speed up
for familiar users. At current GPT-4 API rates, a
full extraction consumes around $0.25 per paper.
Additionally, SIMAGENTS can run on smaller, lo-
cally executable language models with no monetary
cost and an increased time cost. We report detailed
numbers in Table 7 and 8 in Appendix D.

def visualize_density(path, config):
extract particles from simulation output
positions = extract_particles(path, config)
calculate density field from particles
channels = calc_density(config, positions)
create image from density field
figure = create_image(channels, config)

Visualization

return figure

Analysis
Code Writer

+

def
load redshifts

Statistics

plot power spectrum

Simulation return figure

Output

prepare data

Other Packages # run super resolution

return SR_data

plot_power_spectrum(path, config):
rs = load_redshift(path, config)
calculate power spectrum

pspec = calc_power_spectrum(data) " \\‘\\

figure = plot_power_spectrum(pspec, rs)

run_super_resolution(path, config):
data = load_data(path, config)

SR_data = run_SR_model(data, config)

Figure 4: Illustration of post-simulation processing pipeline

4.4 Post-Simulation Processing

The output of simulation software typically con-
sists of particle data, including positions, veloci-
ties, masses and optional quantities such as internal
energy and star formation rate depending on the
physical models enabled. These particles represent
matter components in the universe, and the evo-
lution over cosmic time encodes the formation of
large-scale structures such as filaments, voids and
halos. Some preliminary analysis are crucial for
validating and interpreting simulation results:

* Matter Power Spectrum: Quantifies the sta-
tistical distribution of matter at different scales,
sensitive to cosmological parameters such as €2,,,,
os, and n,. Comparing the measured power spec-
trum with theoretical expectations helps to assess
whether the simulation correctly reproduces the
output we want.

Density Visualization: Provides intuitive insight
into particle distribution, particularly useful for
identifying issues like incorrect box sizes or phys-
ical model settings.

Specialized Packages: Generates code for spe-
cialized cosmology tools using sample code or
minimal user input.

The Analysis Code Writer agent automatically
provides the user with Python scripts designed to
facilitate preliminary analysis of the complex and
non-straightforward simulation output. As shown
in Figure 4, the generated code processes the simu-
lation output using various packages to produce the
figures described above. Due to the lengthy running

60

time of the simulation software, we were only able
to perform visualization analysis and evaluation
on a subset of our annotate dataset. The code pro-
vided by the Analysis Code Writer agent is highly
reliable, with an execution rate of 100% in the eval-
uation subset.

5 Conclusions

In this paper, we propose SIMAGENTS, a multi-
agent system that could accelerate physicist re-
search for cosmological research by automati-
cally performing parameter extraction from user-
uploaded paper and simulation setup with prelimi-
nary analysis. We demonstrate the system’s ability
to accurately extract parameters from various sim-
ulations and translate them into valid software con-
figuration files. Through benchmark evaluations,
SIMAGENTS achieves F1 score of 98%, show-
ing its utility in improving reproducibility, reduc-
ing human workload and accelerating the research
pipeline. We envision extending SIMAGENTS to
support additional simulation engines, incorporat-
ing more advanced reasoning techniques to interac-
tively assist the researcher during post-simulation
analysis. Our system and dataset are released to
support further development.

Limitations

Due to time constraints, we annotated only one ex-
ecutable variant per paper. SIMAGENTS currently
supports a small set of pretrained models and sim-
ulation codes, we will expand both datasets and
coverage in the future.

Acknowledgments

This work was supported by The Block Center for
Technology and Society at Carnegie Mellon Uni-
versity, the NSF NAIRR Pilot with PSC Neocortex
and NCSA Delta, Commonwealth Cyber Initiative,
Children’s National Hospital, Fralin Biomedical
Research Institute (Virginia Tech), Sanghani Center
for Al and Data Analytics (Virginia Tech), Virginia
Tech Innovation Campus, and generous gifts from
Nivida, Cisco, and the Amazon + Virginia Tech
Center for Efficient and Robust Machine Learning.

Ethics Statement

All models used in our system are commercially
available and operated via the OpenAl API under
their usage policies. No private, sensitive data were
used in this paper. To ensure reproducibility and
transparency, we use only publicly available papers,
software and user manuals.

References

Zhenyu Bi, Sajib Acharjee Dip, Daniel Hajialigol, Sind-
hura Kommu, Hanwen Liu, Meng Lu, and Xuan
Wang. 2024. Ai for biomedicine in the era of large
language models.

Zhenyu Bi, Daniel Hajialigol, Zhongkai Sun, Jie Hao,
and Xuan Wang. 2025. StoC-TOT: Stochastic tree-of-
thought with constrained decoding for complex rea-
soning in multi-hop question answering. In Proceed-
ings of the 4th International Workshop on Knowledge-
Augmented Methods for Natural Language Process-
ing, pages 141-151, Albuquerque, New Mexico,
USA. Association for Computational Linguistics.

G. L. Bryan, M. L. Norman, B. W. O’Shea, T. Abel,
J. H. Wise, M. J. Turk, D. R. Reynolds, D. C. Collins,
P. Wang, S. W. Skillman, B. Smith, R. P. Hark-
ness, J. Bordner, J.-h. Kim, M. Kuhlen, H. Xu,
N. Goldbaum, C. Hummels, A. G. Kritsuk, E. Tasker,
S. Skory, C. M. Simpson, O. Hahn, J. S. Oishi, G. C.
So, F. Zhao, R. Cen, Y. Li, and The Enzo Collabora-
tion. 2014. ENZO: An Adaptive Mesh Refinement
Code for Astrophysics. apjs, 211:19.

Yu Feng, Simeon Bird, Lauren Anderson, Andreu Font-
Ribera, and Chris Pedersen. 2018. Mp-gadget/mp-
gadget: A tag for getting a doi.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. ArXiv, abs/2312.10997.

Philip F. Hopkins. 2015. A new class of accurate,
mesh-free hydrodynamic simulation methods. mnras,
450(1):53-110.

61

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
Language Models are Zero-Shot Reasoners. arXiv
e-prints, page arXiv:2205.11916.

Andrew Laverick, Kristen Surrao, Inigo Zubeldia, Boris
Bolliet, Miles Cranmer, Antony Lewis, Blake Sher-
win, and Julien Lesgourgues. 2024. Multi-Agent
System for Cosmological Parameter Analysis. arXiv
e-prints, page arXiv:2412.00431.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2024. Encouraging divergent thinking
in large language models through multi-agent debate.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
17889-17904, Miami, Florida, USA. Association for
Computational Linguistics.

Meng Lu, Brandon Ho, Dennis Ren, and Xuan Wang.
2024. TriageAgent: Towards better multi-agents col-
laborations for large language model-based clinical
triage. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 5747-5764,
Miami, Florida, USA. Association for Computational
Linguistics.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,

http://arxiv.org/abs/2403.15673
http://arxiv.org/abs/2403.15673
https://doi.org/10.18653/v1/2025.knowledgenlp-1.12
https://doi.org/10.18653/v1/2025.knowledgenlp-1.12
https://doi.org/10.18653/v1/2025.knowledgenlp-1.12
https://doi.org/10.1088/0067-0049/211/2/19
https://doi.org/10.1088/0067-0049/211/2/19
https://doi.org/10.5281/zenodo.1451799
https://doi.org/10.5281/zenodo.1451799
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://doi.org/10.1093/mnras/stv195
https://doi.org/10.1093/mnras/stv195
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2412.00431
https://doi.org/10.48550/arXiv.2412.00431
https://doi.org/10.18653/v1/2024.emnlp-main.992
https://doi.org/10.18653/v1/2024.emnlp-main.992
https://doi.org/10.18653/v1/2024.findings-emnlp.329
https://doi.org/10.18653/v1/2024.findings-emnlp.329
https://doi.org/10.18653/v1/2024.findings-emnlp.329

F.ukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
MEély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambattista
Parascandolo, Joel Parish, Emy Parparita, Alex Pas-
sos, Mikhail Pavlov, Andrew Peng, Adam Perelman,
Filipe de Avila Belbute Peres, Michael Petrov, Hen-
rique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell,
Alethea Power, Boris Power, Elizabeth Proehl, Raul
Puri, and Alec Radford. 2023. GPT-4 Technical Re-
port. arXiv e-prints, page arXiv:2303.08774.

Volker Springel, Riidiger Pakmor, and Rainer Wein-
berger. 2019. AREPO: Cosmological magnetohy-
drodynamical moving-mesh simulation code. Astro-
physics Source Code Library, record ascl:1909.010.

Volker Springel, Riidiger Pakmor, Oliver Zier, and Mar-
tin Reinecke. 2022. GADGET-4: Parallel cosmo-
logical N-body and SPH code. Astrophysics Source
Code Library, record ascl:2204.014.

Zechang Sun, Yuan-Sen Ting, Yaobo Liang, Nan Duan,
Song Huang, and Zheng Cai. 2024. Interpreting
Multi-band Galaxy Observations with Large Lan-
guage Model-Based Agents. arXiv e-prints, page
arXiv:2409.14807.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-
lah, Ryen W. White, Doug Burger, and Chi Wang.
2023. Autogen: Enabling next-gen 1lm applications
via multi-agent conversation.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi
Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai
Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao
Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,
Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan
Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao
Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xu-
ancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang,

62

Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. 2025. Qwen3 technical report.

Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo,
Junqi Dai, Xuanjing Huang, and Xipeng Qiu. 2023.
Exchange-of-Thought: Enhancing Large Language
Model Capabilities through Cross-Model Communi-
cation. arXiv e-prints, page arXiv:2312.01823.

Xiaowen Zhang, Patrick Lachance, Yueying Ni, Yin Li,
Rupert A. C. Croft, Tiziana Di Matteo, Simeon Bird,
and Yu Feng. 2024. Al-assisted super-resolution
cosmological simulations III: time evolution. mnras,
528(1):281-293.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A
Survey of Large Language Models. arXiv e-prints,
page arXiv:2303.18223.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. 2024. Language agents as optimizable
graphs. ArXiv, abs/2402.16823.

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2409.14807
https://doi.org/10.48550/arXiv.2409.14807
https://doi.org/10.48550/arXiv.2409.14807
https://api.semanticscholar.org/CorpusID:263611068
https://api.semanticscholar.org/CorpusID:263611068
http://arxiv.org/abs/2505.09388
https://doi.org/10.48550/arXiv.2312.01823
https://doi.org/10.48550/arXiv.2312.01823
https://doi.org/10.48550/arXiv.2312.01823
https://doi.org/10.1093/mnras/stad3940
https://doi.org/10.1093/mnras/stad3940
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://api.semanticscholar.org/CorpusID:268032156
https://api.semanticscholar.org/CorpusID:268032156

A Example script and type of errors An example script containing an incorrect option

that enables gas production in a dark matter only
A correct version of the MP-GADGET simulation simulation (Type Error), caused by a mismatch

script to match the low-resolution simulation in between the paper specifications and the generated

Zhang et al., 2024. script.
"genic": { "genic": {

"OutputDir"”: "./ICs/", "QutputDir”: "./ICs/",
"FileBase"”: "LR_100Mpc_64", "FileBase"”: "LR_100Mpc_64",
"BoxSize": 100000.0, "BoxSize": 100.0,
"Ngrid”: 64, "Ngrid”: 64,
"WhichSpectrum”: 2, "WhichSpectrum": 2,
"FileWithInputSpectrum”: "./ "FileWithInputSpectrum”: "./

WMAP9_CAMB_matterpower.dat”, WMAP9_CAMB_matterpower.dat"”,
"Omega@": 0.2814, "Omega@": 0.2814,
"OmegaBaryon": 0.0464, "OmegaBaryon": 0.0464,
"OmegalLambda": 0.7186, "OmegalLambda": 0.7186,
"HubbleParam”: ©.697, "HubbleParam”: 0.697,
"ProduceGas": 0, "ProduceGas”: 1,

"Redshift"”: 99, "Redshift": 99,
"Seed": 12345 "Seed": 12345
3 }
"gadget": {
"InitCondFile"”: "./ICs/

LR_100Mpc_64", An example of script containing an incorrect
"QutputDir”: "./output/", . . . :
POutputlist”: "0.333.1.0" variable name that mismatch with the one in soft-
"TimeLimitCPU": 86400, ware user manual. (Hallucination)
"MetalReturnOn": 0,
"CoolingOn": 0,
"SnapshotWithFOF": @,
"BlackHoleOn": @, "genic": {
"StarformationOn": @, "OQutputDir”: "./ICs/",
"WindOn": @, "FileBase": "LR_100Mpc_64",
"MassiveNuLinRespOn": @, "BoxSize": 100.0,
"DensityIndependentSphOn": o, "Ngrid": 64,
"Omega0"”": 0.2814 "WhichSpectrum"”: 2,

3 "FileWithInputSpectrum”: "./

WMAP9_CAMB_matterpower.dat”,
"Omega0": 0.2814,

An example script with an incorrect simulation ! 8me g aEa "g 3 n": g : gq‘gg ,
. . "OmegalLambda”: 0. ,
box size (Vah.le Error)? caused by a mismatch be- "HubbleParam”: ©.697 .
tween the units used in the paper and those ex- "ProduceGas”: 1,
pected by the simulation software. "Redshift”: 99,
"Seed"”: 12345,
"FinalRedshift": @
3
rgenic’: ¢ 1 |-
"QutputDir”: "./ICs/",
"FileBase"”: "LR_100Mpc_64",
"BoxSize": 100.0, .
"Ngrid”: 64 B Evaluation Protocol
"WhichSpectrum”: 2, .
"FileWithInputSpectrum”: "./ We define our parameter-level metrics as follows:
WMAP9_CAMB_matterpower.dat"”, .
"Omegad": 0.2814, * True Positives (TP): Number of extracted pa-
"OmegaBaryon”: 0.0464, rameters whose names and values are exactly
"OmegalLambda": ©.7186,
"HubbleParam”: ©.697, correct.
"ProduceGas”: @, False Positives (FP): Number of extracted pa-
., E:: Z hi fﬁ 2:3 . 2 o rameters with incorrect values/settings .
} False Negatives (FN): Number of required pa-
----- rameters that are missing from the extraction out-

63

put.

Our primary evaluation metric is the F; Score,
which captures the overall balance between preci-
sion and recall in all extracted parameter instances.

Precision x Recall
X

Fy

Precision + Recall

Precision and recall are defined as:

Precisi TP
recision = ————
TP + FP
TP
l= ——.
Reca TP+ TN

A higher F; indicates more accurate extractions
with fewer missing or incorrect parameters.
We categorize error cases into the following

types:

* Value Error: The extracted parameter exists but
its numerical value is incorrect. This includes
errors due to unit mismatch, incorrect scaling, or
misinterpretation of scientific notation.

Type Error: A parameter is extracted from an
incompatible simulation context. (e.g. hydrody-
namic settings mistakenly used in a dark matter
only simulation)

Hallucination: The system outputs parameters
that do not appear in the user manual, inventing
values or name unsupported by the source.

Each of these types of error is reported as the
average number of errors per simulation.

C Additional Experiments and Results

We provide the automatic evaluation results on
SIMAGENTS and the baselines in Table 3 and Table
4. The evaluation results are slightly worse for the
baselines compared to the human evaluation, as the
automatic evaluation does not consider all possible
executable variations of the input file. We provide
the automatic evaluation results on SIMAGENTS
using different backbone models in Table 5 and
Table 6.

D Time and Cost Analysis

We provide the average time and cost of SIMA-
GENTS using GPT-4 and Qwen3-4B as the back-
bone model, respectively. For GPT-4, we do direct
API calling; for Qwen3-4B, we run experiments
on a single NVIDIA A40 GPU and report the time
cost.

64

Method Micro-F1 Precision Recall
CoT (1-Agent) 91.27 85.84 97.44
EoT (2-Agent) 90.69 84.94 97.27
Ours (2-Agent) 98.13 97.77 98.50

Table 3: Performance comparison of SIMAGENTS
with baseline methods on the cosmological simulation
dataset. We report Micro-F1 score, Precision, and Re-
call as percentages. Higher values indicate better perfor-
mance. The best-performing methods are bolded, and
the second-best are underlined.

Method Value Error Type Error
CoT (1-Agent) 1.76 1.00
EoT (2-Agent) 1.97 0.95
Ours (2-Agent) 0.40 0.05

Table 4: Performance comparison of SIMAGENTS
with baseline methods on the cosmological simulation
dataset, in terms of average number of errors made per
simulation. Each error type is reported as the average
number of errors per simulation. Lower values indicate
better performance. The best-performing methods are
bolded, and the second-best are underlined.

E Additional Discussion and
Clarifications

In this appendix, we provide additional details and
clarifications in response to reviewer questions.

E.1 Manual Inspection and Physical
Equivalence

For simulations that can be completed within a
few days on our available compute resources, we
manually inspected the outputs, focusing primarily
on the matter power spectrum and density fields.
For huge simulations that would require months of
computation, we did not rerun the full simulations
from published results. Instead, we verified that
the automatically generated configurations (e.g.,
cosmological parameters, resolution, and activated
physical modules) match those described in the
corresponding publications.

As a future validation goal, we plan to move
toward more systematic checks of physical equiv-
alence between SIMAGENTS-generated simula-
tions and published benchmarks. This includes
extending our current limited manual inspection
on smaller runs to broader, human-verified com-
parisons on standardized benchmark setups, once
additional compute resources are available.

Method Micro-F1 Precision Recall
SIMAGENTS
(GPT-4) 98.13 97.77 98.50
SIMAGENTS
(Qwen3-4B) 81.23 70.16 96.10

Table 5: Performance comparison of SIMAGENTS using
Qwen3-4B as the backbone model and GPT-4 as the
backbone model. Experiments are conducted on the
cosmological simulation dataset. We report Micro-F1
score, Precision, and Recall as percentages.

Method Value Error Type Error
SIMAGENTS (GPT-4) 0.40 0.05
SIMAGENTS (Qwen3-4B) 3.05 2.59

Table 6: Error analysis of SIMAGENTS using Qwen3-
4B as the backbone model and GPT-4 as the backbone
model. Experiments are conducted on the cosmological
simulation dataset. Each error type is reported as the
average number of errors per simulation.

E.2 Definition of Simulation Success

In our evaluation, success requires both executabil-
ity and basic physical consistency. First, the simu-
lation script must run to completion without errors
raised by the simulation software. Second, we per-
form lightweight checks of physical consistency,
such as verifying units and ensuring that critical
physical parameters and models are set in a way
that is compatible with the problem specification.
These considerations are reflected in the examples
and analyses presented in the main paper.

E.3 Agent Decomposition and Coordination

We did consider alternative agent decompositions
when designing SIMAGENTS. The current two-
agent setup is chosen to balance information dis-
tribution and domain expertise: both agents are
prompted to use physics knowledge, while the Soft-
ware Agent focuses on interacting with the code
and its manual. In a two-agent interaction, there is
limited room for different coordination strategies
and patterns in a two-agent interaction. We will
explore this in future work as we implement more
varieties of agent groups.

E.4 Generalizability to Other Simulation
Codes

Our framework is designed to be largely adaptable
to different simulation codes. Many widely used
codes (e.g., Arepo, ENZO, GIZMO, GADGET-4)

65

Manual Paper/rel. Draft+dbg Iter Total

First-time 64 42 60 5.2 166
Familiar 12 19 13.4 2 444
SIMAGENTS 2 (total only) 2

Table 7: Average setup effort. Times are averages in
minutes. Manual = reading the software manual; Pa-
per/rel. = reading the paper or related materials and
extracting needed parameters; Draft+dbg = drafting
and debugging the configuration; Iter = iterations/de-
bug cycles to first successful run. For SIMAGENTS,
only the total time applies (no per-step times).

Backbone Average Time Average Cost

Model (seconds))
GPT-4 124 0.25
Qwen3-4B 406 -

Table 8: Average time and cost per paper of SIMA-
GENTS using GPT4 and Qwen3-4B, respectively

share similar high-level physical models and work-
flows (configuration — initial conditions — run
— analysis), but differ in file structures, parameter
names, units, and other conventions.

In principle, the overall multi-agent structure of
SIMAGENTS can be reused across codes. Adapt-
ing to a new code primarily requires:

* Providing the Software Agent with the corre-
sponding manuals and documentation.

* Adding code-specific guidance about file for-
mats, execution commands, and key parame-
ters.

* Performing modest prompt engineering to ac-
count for different naming conventions, error
messages, and pipeline structures.

Thus, extending SIMAGENTS to other simula-
tion environments is not a matter of re-engineering
the entire framework, but of combining new docu-
mentation with few adaptations.

E.5 Model Dependency and Smaller
Open-Source Models

We observe a substantial performance gap between
GPT-4 and the smaller open-source model Qwen3-
4B (F1 score dropping from 98.13% to 81.23%).
A key limitation of Qwen3-4B in our setting is its
weaker long-context reasoning ability: given very
long inputs such as a ~100-page software manual,
it struggles to fully interpret and integrate the nec-
essary information. Thus, giving it more examples

would not be that helpful, as we are feeding it with
more contexts, which are usually dozens of pages
of physics papers. Fine-tuning on the dataset could
be beneficial, but it would be very time-consuming
and dataset-specific. We will explore light fine-
tuning in later works.

E.6 Error Analysis and Hallucination Errors

As noted in Section 3 of the main paper, all base-
lines, including SIMAGENTS, have access to the
user manual, since current LLMs do not possess
sufficient built-in knowledge of cosmological sim-
ulation software. In SIMAGENTS, we prompt the
specialized Software Agent to focus particularly on
parameter explanations rather than just parameter
names, because type and value errors are especially
critical from a physicist’s perspective. As a result,
many of the hallucination errors made are errors
that a physicist can understand which physical pa-
rameter they correspond to. Still, the naming is dif-
ferent from that of the software. We expect these er-
rors to be reducible by prompting the agents to pay
closer attention to exact parameter names during
inter-agent communication and by strengthening
consistency checks between proposed configura-
tions and the documentation. Such improvements
are a natural direction for future iterations of the
framework.

66

