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Abstract

We present LITMUS++, an agentic system
for predicting language-model performance for
queries of the form “How will a Model per-
form on a Task in a Language?”, a persis-
tent challenge in multilingual and low-resource
settings, settings where benchmarks are in-
complete or unavailable. Unlike static evalua-
tion suites or opaque LLM-as-judge pipelines,
LITMUS++ implements an agentic, auditable
workflow: a Directed Acyclic Graph of spe-
cialized Thought Agents that generate hypothe-
ses, retrieve multilingual evidence, select pre-
dictive features, and train lightweight regres-
sors with calibrated uncertainty. The system
supports interactive querying through a chat-
style interface, enabling users to inspect rea-
soning traces and cited evidence. Experiments
across six tasks and five multilingual scenar-
ios show that LITMUS++ delivers accurate
and interpretable performance predictions, in-
cluding in low-resource and unseen conditions.
Code is available at https://github.com/
AvniMittal13/litmus_plus_plus.

1 Introduction

Large Language Models (LLMs) now support di-
verse tasks such as reasoning, summarization, code
synthesis, and multilingual communication across
more than a hundred languages (OpenAI, 2023;
Huang et al., 2024). Yet, evaluating their perfor-
mance remains a critical bottleneck. Benchmark-
driven resources such as XTREME-R and XGLUE
(Ruder et al., 2021; Liang et al., 2020), along with
broader stress tests like BIG-Bench and HELM
(Srivastava et al., 2023; Liang et al., 2023), provide
systematic measurement but cannot scale to the
vast Task–Model–Language space, especially in
low-resource settings. LLM-as-judge approaches
(Zhou et al., 2024; Tan et al., 2024) offer scala-
bility but raise concerns about bias, opacity, and
reproducibility.

Predictive multilingual analysis has gained trac-
tion as an alternative to direct evaluation. Early
methods like LangRank leveraged typological and
corpus features for transfer prediction (Lin et al.,
2019), while lightweight proxies such as LEEP
and LogME offered fast transferability estimates
(Nguyen et al., 2020; You et al., 2021). The founda-
tional LITMUS predictor (Srinivasan et al., 2022)
combined diverse linguistic and task features but
required expert feature design and manual setup.
More recent approaches, including Bayesian fac-
torization and information-parity models (Schram
et al., 2023; Tsvetkov and Kipnis, 2024), and multi-
task zero-shot prediction frameworks (Ahuja et al.,
2022b), improved scalability but still rely on pre-
defined features and static configurations. Overall,
existing predictors struggle to generalize under data
scarcity and lack automation.

We introduce LITMUS++, an agentic system
that transforms predictive evaluation into a fully
autonomous workflow. A Directed Acyclic Graph
(DAG) of specialized Thought Agents (Zhang et al.,
2024) hypothesizes, gather multilingual evidence,
select predictive features, and train lightweight re-
gressors with calibrated uncertainty. This design
enables interpretable and auditable predictions for
unseen Task–Model–Language combinations, in-
cluding challenging low- and zero-resource cases.
The system is accessible through a browser-based
interface (Figure 1), which combines three comple-
mentary views: a chat entry point for user queries,
a live reasoning trace of DAG orchestration, and an
evidence panel showing citations and exportable
reports. Users can pose questions such as “How
will a Model perform on a Task in a Language?”,
observe autonomous reasoning unfold in real time,
and inspect the provenance of predictions.

We evaluate LITMUS++ across six represen-
tative tasks in five multilingual settings, measur-
ing predictive accuracy, Q&A correctness, and rea-
soning quality dimensions such as plausibility, co-
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Figure 1: The interactive interface of LITMUS++. The system is organized into three coordinated panels: (left) the
chat interface where users submit queries and receive structured analysis reports, (center) the DAG reasoning view
showing the orchestration of Thought Agents and their outputs, and (right) the agent details panel exposing internal
reasoning steps and expert knowledge retrieval. This design emphasizes transparency, allowing users to follow how
predictions are generated and to inspect the provenance of evidence used in multilingual evaluation.

herence, and hallucination control. Our results
show that DAG-based orchestration consistently
reduces errors and enhances reasoning quality com-
pared to single-agent and generalist multi-agent
baselines. We have hosted a live demo at https:
//litmusplusplus.azurewebsites.net/.

2 System Overview

LITMUS++ is a multi-agent orchestration frame-
work for automated, interpretable, and extensible
evaluation of language models in multilingual and
low-resource settings. The system transforms what
is traditionally a manual research process into a
fully autonomous workflow. At its core, a DAG ar-
chitecture of collaborative ThoughtAgents enables
structured decomposition of queries, parallel in-
vestigation of hypotheses, and traceable reasoning
paths. By allowing multiple branches to expand
or be pruned dynamically, the DAG ensures both
efficiency and transparency. This design provides
scalability across languages and tasks while pre-
serving auditability.

2.1 End-to-End Workflow

Query Ingestion and Initialization: A natural
language query (e.g., “How will model X per-
form on task Y in language Z?”) is first received
by the MainAgent, which distinguishes between
new and follow-up queries. For new queries, the
ThoughtCreatorAgent generates hypotheses and
spawns corresponding ThoughtAgents as nodes in

the DAG. For the follow-up queries, the Though-
tAnalyzerAgent routes new information, spawns
additional nodes, or prunes irrelevant ones to refine
the DAG.

DAG-Based Reasoning: Each node in the DAG
corresponds to a ThoughtAgent, which validates
a single hypothesis. Dependencies across nodes
allow for both parallel and conditional reasoning.
The DAG evolves dynamically, expanding when
new evidence emerges and pruning branches that
are unproductive. Figure 3 illustrates the internal
pipeline of a single ThoughtAgent, which itself
orchestrates multiple specialized sub-agents.

Agent Internal Structure: A ThoughtAgent
is in itself a groupchat of multiple collaborative
sub-agents. The Research Planner coordinates
investigations and decides what should be done
next based on the current evidence provided by
other agents such as Web Search and Crawl, Ex-
pert Knowledge and Coder agents. Creating these
as separate agents, rather than just providing tools
for web search, coding, and querying the curated
multilingual knowledge base, leads to improved
context management and allows individual itera-
tive reasoning of sub agents with only relevant con-
text for the groupchat. The Send User Message
observes the conversation and produces a detailed
report of the conversation at the end when either
the hypothesis testing is complete successfully or
some clarification is needed from the User. To-
gether, they maintain a shared history of tool calls,
reasoning steps, and outputs, ensuring reproducibil-
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Figure 2: LITMUS++ pipeline: a user query triggers orchestration that initializes and refines a DAG of Though-
tAgents. Each agent retrieves evidence from the curated knowledge base, web search, and benchmarks, and may
perform predictive modelling with lightweight regressors. The Response Analyzer aggregates results with uncer-
tainty estimates and delivers both predictions and full reasoning traces to the user interface.

ity and transparency. More details on the design
and curation of the knowledge base are provided in
Appendix C.

Iterative Management: The ThoughtAnalyz-
erAgent monitors active hypotheses and manages
progression. It routes clarifications, creates new
agents, marks completed ones, and discards irrele-
vant branches. This iterative refinement keeps the
system aligned with evolving queries while main-
taining focus on the evaluation goal. The full life-
cycle of ThoughtAgents is detailed in Appendix A.

Execution and Aggregation: Active ThoughtA-
gents run in parallel, producing validated hypothe-
ses, predictive outputs, and evidence traces. Re-
sults are aggregated by the ResponseAnalyzerAgent,
which synthesizes a final response that includes
predictions, supporting evidence, confidence mea-
sures, and tradeoffs.

2.2 User Interface
The browser-based interface is organized into three
coordinated panels as shown in Figure 1. The
Chat Window (left) displays user queries and fi-
nal system responses. The Agent Reasoning View
(middle) logs the main orchestration flow, with ex-
pandable views of ThoughtAgents. The Sub-agent
Panel (right) exposes detailed conversations of Web
Search and Crawl and Expert Knowledge Agents.
This design promotes transparency, allowing re-
searchers to inspect intermediate reasoning and

intervene when needed. The interface outputs com-
prehensive reports that combine retrieved evidence,
predictions, and uncertainty estimates. These re-
ports can be exported for reproducibility and inte-
gration into research workflows.

Implementation: LITMUS++ runs locally or
in-browser with minimal setup, requiring only an
API key for external search. The agentic backend
uses Autogen1 for orchestration, ChromaDB2 as the
curated knowledge base, and Firecrawl3 for web
search and scraping. Further details are provided
in Appendix B.

3 Evaluation Framework

We design an evaluation framework to probe both
the predictive accuracy and the reasoning quality
of LITMUS++ in realistic multilingual conditions.
The framework combines representative tasks, con-
trolled scenarios, constrained knowledge access,
and multi-dimensional evaluation metrics, balanc-
ing correctness with interpretability.

3.1 Evaluation Tasks and Scenarios
The benchmark spans six tasks: code generation,
mathematical reasoning, question answering, text
classification, text summarization, and machine

1https://microsoft.github.io/autogen/stable/
/index.html

2https://github.com/chroma-core/chroma
3https://www.firecrawl.dev/
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Figure 3: Single ThoughtAgent pipeline. Each agent
operates as a group chat of specialized sub-agents (e.g.,
Web Search, Expert Knowledge, Coder) that validate a
hypothesis and return structured results. These agents
form the nodes of the DAG.

translation. To reflect practical multilingual chal-
lenges, each task is evaluated under five controlled
scenarios: Scenario 1 (Same Lang + Same Model):
the same language and model are available. Sce-
nario 2 (Same Lang + Diff Model): the language
is available but only with a different model. Sce-
nario 3 (Similar Lang + Same Model): transfer
from a typologically related language using the
same model. Scenario 4 (Distant Lang + Same
Model): transfer from a distant language with the
same model. Scenario 5 (No Lang + No Model):
neither the language nor the model is represented.

Each scenario contains 60 questions (10 per
task), covering high- to zero-resource conditions
and testing how well the system adapts as prior
evidence decreases. Scenario labels are used con-
sistently in the Results.

3.2 Evaluation Sets and Knowledge Access
Constraints

We evaluate the system using two complemen-
tary query sets, each consisting of 150 questions.
The PredSet contains predictive analysis questions
of the form “How will a model perform on a
task in a language?”, probing the system’s abil-
ity to generate quantitative performance estimates.
The QnASet contains comparative and factoid-style

questions about models, languages, and bench-
marks. Figure 4 shows representative examples.

While the system supports unrestricted web ac-
cess, we constrain evidence sources during evalu-
ation. The web-search tool is redirected to a fixed
corpus of research papers, retrieving the top can-
didate via a retrieval-augmented setup that ranks
paper abstracts by embedding similarity to the gen-
erated query. This ensures consistent, controlled
conditions across scenarios while providing a real-
istic retrieval signal for multilingual evaluation.

Q1: How does cross-lingual summarization work for low-
resource Ukrainian?
Answer: 13.5

Q2: What is the performance of GPT-4o on MT for
Amharic?
Answer: 14

Q3: Which models have been benchmarked on code gen-
eration in Sanskrit?
Answer: Gemini 1.5, Gemini 2.0, LLaMA 7B

Q4: Which model performs best for Math Reasoning in
Italian?
Answer: LLaMA 3.1 70B

Q5: Compare Aquila-VL2 and Aria-MoE for QA/VQA in
German.
Answer: Aria-MoE

Figure 4: Illustrative queries from PredSet (predictive
analysis) and QnASet (Q&A).

3.3 Evaluation Metrics

Outputs are judged using the LLM-as-Judge
paradigm (Şahinuç et al., 2025; Li et al., 2024),
complemented with task-specific correctness. For
the PredSet, we measure mean absolute error
(MAE) between predicted and ground truth perfor-
mance values. For the QnASet, we report accuracy
based on exact or task-appropriate matching.

Ground-truth values come from the fixed cor-
pus of research papers. Scenario conditions are
simulated by removing papers containing the target
language–task–model results, the values in these re-
moved papers serve as ground truth. In Scenario 1,
the relevant paper remains in the corpus, making
the task a retrieval case. In all other scenarios,
ground-truth papers are excluded, creating con-
trolled evidence scarcity for prediction. We plan to
release additional dataset details in future work.

Beyond correctness, we evaluate multiple as-
pects of reasoning quality, including predictive
plausibility under low-resource settings, citation
verification (whether cited works exist and are rele-
vant), citation emphasis (how strongly reasoning is
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grounded in citations), the depth of feature selec-
tion and modeling choices, and overall coherence
in logical flow and linguistic fluency. We further
conduct human validation of the LLM judge’s out-
puts, with details provided in Appendix D.

4 Results

We present quantitative results of LITMUS++,
evaluating its predictive accuracy and Q&A per-
formance under the five controlled scenarios intro-
duced in Section 3. All experiments use GPT-4.14

as the underlying LLM. Detailed task-level num-
bers are provided in the supplementary material
due to space constraints.

Figure 5: Quantitative results for PredSet (Mean Abso-
lute Error, top) and QnASet (Accuracy, bottom) across
the five scenarios (S1–S5). Lower is better for PredSet,
higher is better for QnASet.

We compare against two baselines. The first,
ThoughtAgent, is a simplified variant that processes
the full query with a single agent, isolating the
benefits of DAG-based coordination. The second,
Magentic-One, is a generalist multi-agent frame-
work from Microsoft,5 included as a strong open-
ended, general-purpose baseline.

4.1 Predictive and Q&A Performance
Figure 5 shows results on the two evaluation sets.
On the PredSet (left), we report mean absolute er-

4https://openai.com/index/gpt-4-1/
5https://microsoft.github.io/autogen/stable/

/user-guide/agentchat-user-guide/magentic-one.
html

ror (↓). We observe that error generally increases
from Scenario 1 to Scenario 4 as the prediction task
becomes harder: in S1 and S2, the target language
and model are available, so predictions are rela-
tively straightforward; in S3 and especially S4, the
system must rely on increasingly distant evidence
and construct more complex transfer paths, which
increases error. Interestingly, S5 shows a drop com-
pared to S4: since neither language nor model is
available, most systems fall back to predicting con-
sistently low performance, which reduces variance
and makes the case less challenging than S4 where
nuanced feature-based modeling is required.

Across systems, Magentic-One shows the high-
est errors, especially in mid- and low-resource con-
ditions, reflecting its lack of task-specific orchestra-
tion. Both LITMUS++ and ThoughtAgent main-
tain mean absolute error below or close to 12 in all
scenarios except S4, highlighting the effectiveness
of specialized reasoning even in harder conditions.
Between the two, LITMUS++ achieves lower er-
rors on average, showing the benefit of orchestrated
DAG reasoning over a single-agent baseline.

On the QnASet (bottom in Figure 5), there
is no uniform trend across scenarios: accuracy
fluctuates depending on the combination of task
and resource availability. Overall, LITMUS++
achieves the best performance in most scenarios,
while Magentic-One consistently underperforms.
ThoughtAgent remains competitive, often close to
LITMUS++, but falls behind in scenarios requir-
ing more complex reasoning (e.g., S3 and S4).
These results confirm that orchestration in LIT-
MUS++ provides a measurable advantage, though
the single ThoughtAgent performs strongly, likely
because the queries are relatively simple, reduc-
ing the need for multi-step reasoning and causing
LITMUS++ to occasionally overdo the reasoning.

4.2 Reasoning Quality
We evaluate reasoning quality across five dimen-
sions: predictive plausibility, feature selection, co-
herence, citation emphasis, and hallucination rate
(Figure 6). Starting with Predictive Plausibility,
LITMUS++ achieves the strongest and most stable
scores (∼4.0–4.5), consistently producing reason-
able and interpretable predictions even in challeng-
ing scenarios. ThoughtAgent remains competitive
but slightly weaker (∼3.4–3.6), while Magentic-
One trails at ∼3.0 across all scenarios, highlighting
the value of structured orchestration.

On Feature Selection, the advantages of or-
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Figure 6: Qualitative results across non-accuracy metrics. Each subplot reports performance averaged across all
tasks and scenarios, enabling comparison of model behavior under multiple evaluation dimensions.

chestration become even clearer. LITMUS++
reaches as high as ∼3.8 in S3–S4, precisely the
settings where feature-driven reasoning is essen-
tial. ThoughtAgent improves under the same condi-
tions but stays ∼0.5 points behind, while Magentic-
One struggles at ∼2.2–2.8. For Coherence, both
LITMUS++ and ThoughtAgent maintain excellent
fluency and logical consistency (∼4.9–5.0), with
LITMUS++ slightly ahead. Magentic-One, how-
ever, lags behind with lower scores of ∼4.3–4.6,
underscoring its weaker reasoning discipline.

For Citation Emphasis, LITMUS++ grounds its
outputs more consistently in cited evidence, scor-
ing ∼2.5–3.0 in S1–S2. Although this decreases in
S3–S4, it remains above both baselines. ThoughtA-
gent follows the same trend at lower levels, while
Magentic-One is lowest throughout. Hallucina-
tion Rate shows an unexpected pattern: instead of
rising as evidence grows scarcer, hallucinations ac-
tually decrease from S1 to S5. In high-resource
cases like S1, models sometimes hallucinate non-
existent papers due to strong priors, whereas in low-
resource cases they adhere strictly to constrained
citations. Magentic-One hallucinates the most
(42%→24%), while LITMUS++ and Though-
tAgent remain substantially lower (23%→10%).
Overall, while ThoughtAgent stays close to LIT-
MUS++ in surface-level coherence, it lags behind
on citation grounding, feature-driven reasoning,
and hallucination control, whereas Magentic-One
underperforms across all dimensions.

4.3 Ablation Study

To examine the impact of the underlying LLM in
LITMUS++, we ran an ablation study in the Web
Search configuration, testing o3-mini,6 a model re-
ported to have stronger reasoning than GPT-4.1 on
30 questions. Table 1 reports results across plau-
sibility, feature selection, citation emphasis, and

6https://openai.com/index/openai-o3-mini/

coherence. Despite o3-mini’s reasoning-oriented
design, results were highly competitive: GPT-4.1
achieved stronger citation grounding, while o3-
mini offered slight gains in feature selection. Over-
all, LITMUS++ remains robust across backbones,
indicating that orchestration matters more than the
choice of a single LLM. Extending this to open-
source LLMs is left for future work.

Model Predictive
Plausibility

Feature
Selection

Citation
Emphasis

Coh-
erence

o3-mini 3.97 3.68 1.19 5.00
GPT-4.1 3.90 3.10 2.10 4.97

Table 1: Ablation study of LITMUS++ with different
underlying LLMs in the Web Search configuration, eval-
uated on reasoning quality metrics.

5 Conclusion

We introduced LITMUS++, a demo system for
multilingual performance prediction that combines
DAG-based orchestration of thought agents with
transparent reasoning and uncertainty-aware out-
puts. The system enables users to query tasks,
inspect evidence traces, and obtain plausible pre-
dictions even under distant and zero-resource con-
ditions. Compared to strong baselines such as
ThoughtAgent and Magentic-One, LITMUS++
achieves lower prediction error, higher Q&A accu-
racy, and stronger reasoning quality, making it both
effective and trustworthy. The demo illustrates how
complex evaluation workflows can be transformed
into interactive, auditable experiences, lowering the
barrier for researchers and practitioners to explore
multilingual model behavior. We have hosted a live
demo for review while a broader public release is
under active development. Future work will focus
on optimizing latency, expanding task coverage,
and extending the curated knowledge base to fur-
ther strengthen the system’s utility.
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Ethical Considerations

LITMUS++ operates in sensitive settings such as
multilingual fairness. Although evaluated under
controlled evidence access, it provides predictive
estimates and is not a replacement for ground-truth
benchmarks. We mitigate risks through curated
knowledge bases and transparent reasoning traces
and will extend coverage responsibly in future.

A Agent Lifecycle Details

Each ThoughtAgent transitions between three core
states: Active: investigating a hypothesis with
assigned tools; Completed: finished investiga-
tion and returned validated evidence; Discarded:
pruned when deemed irrelevant, redundant, or di-
vergent. State transitions are managed by the
ThoughtAnalyzerAgent, which monitors progress
and determines whether to continue, complete, or
discard a ThoughtAgent. This lifecycle ensures
only relevant outputs contribute to the final analy-
sis, while providing auditable reasoning paths.

B Implementation Details

Tooling. Agents access a modular suite of reusable
tools, including web search and scraping utilities,
knowledge-base retrieval functions, and code ex-
ecutor. Tools are independently registered and can
be added, replaced, or modified without altering
agent logic, enabling easy integration of new APIs
or analysis modules. Deployment. The system
supports both local and hosted execution, running

via a command-line interface or local server, with
a hosted variant for reproducible experiments. Ex-
ternal search and LLM calls require user-provided
API keys; all other components run offline. Per-
formance. Predictions include evidence traces and
calibrated uncertainty estimates, offering transpar-
ent and confidence-aware reasoning. Extensibility.
The DAG orchestration is model- and task-agnostic.
New agents or tools are added by registering them
within the MainAgent or ThoughtAgent logic, with-
out modifying control flow, supporting ongoing
extensibility as evaluation needs evolve.

C Knowledge Base Curation

A curated multilingual knowledge base grounds
LITMUS++ in linguistic and computational ev-
idence. It integrates (i) literature-derived re-
sources from peer-reviewed papers, benchmarks,
and typological databases (Lauscher et al., 2020;
Dolicki and Spanakis, 2021; Srinivasan et al., 2022;
Ahuja et al., 2022a; Kumar et al., 2023), and
(ii) expert annotations for under-documented or
low-resource languages. It is organized as de-
tailed reports over language–task–model combina-
tions, combining few-shot examples, known failure
modes, and best-practice guidelines. We employ a
retrieval-augmented generation setup, where top-
K chunks from this knowledge base are passed
as tool outputs to the Expert Knowledge Agent,
which synthesizes answers for the current query.
The knowledge base can be expanded as new re-
search, experimental findings, and expert inputs
become available, supporting hypothesis genera-
tion, feature selection, and provenance tracking.

D Human Validation of LLM-as-Judge
Evaluation

To assess the reliability of LLM-as-Judge, we ran
a human validation study on a subset of reports.
Annotators received the report, LLM reasoning,
rating criteria and scores (1–5) on four metrics:
predictive plausibility, coherence, feature selection,
and emphasis on citations. Their task was to mark
agreement or disagreement (binary 1/0) with each
score. The results showed that an annotator agreed
with the LLM evaluations in 81.25% of the cases,
while the second annotator agreed in 78.1% of the
cases. The high agreement indicates that the LLM-
as-Judge framework provides evaluations that are
generally consistent with human judgment, though
some divergences remain.
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