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Abstract

The diversity across outputs generated by
LLMs shapes perception of their quality and
utility. High lexical diversity is often desirable,
but there is no standard method to measure
this property. Templated answer structures and
“canned” responses across different documents
are readily noticeable, but difficult to visualize
across large corpora. This work aims to stan-
dardize measurement of text diversity. Specifi-
cally, we empirically investigate the convergent
validity of existing scores across English texts,
and release diversity, an open-source Python
package1 for measuring and extracting repeti-
tion in text. We also build a platform2 based
on diversity for users to interactively explore
repetition in text. We find that fast compres-
sion algorithms capture information similar to
what is measured by slow-to-compute n-gram
overlap homogeneity scores. Further, a combi-
nation of measures—compression ratios, self-
repetition of long n-grams, and Self-BLEU—
are sufficient to report, as they have low mutual
correlation with each other.

1 Introduction

LLM-generated texts are typically evaluated with
respect to accuracy or factuality, e.g., as measured
via entailment (Tang et al., 2023), or text quality as-
pects such as coherence and fluency (e.g., estimated
using LLMs as evaluators Liu et al. 2023). When
reference summaries are available, the similarity
of generated outputs to these is also often mea-
sured (e.g., via ROUGE; Lin and Och, 2004). A
complementary dimension of model performance
is diversity, or how much “boilerplate” content is
repeated across LLM outputs.

There is a distinct lack of standardization in
reporting diversity in ML datasets (Zhao et al.,
2024). We address this by introducing diversity,

†Partial work completed while at Adobe Research.
1https://pypi.org/project/diversity/
2https://ai-templates.app

an open-source Python package for evaluating text
diversity,1 along with a web-based UI that allows
users to visualize repetition in their corpus,2 pro-
viding an intuitive, efficient tool for text analysis
that permits: (i) Viewing repetitive text and Part-
of-Speech n-grams; (ii) Quickly computing diver-
sity metrics, and; (iii) Interactively highlighting
and matching repetition in documents. Both the
package3 and UI code4 are open-sourced under the
Apache 2.0 license.

We run existing diversity metrics over English
language outputs from several LLMs to identify a
few (mostly) independent scores that characterize
repetition. We also examine diversity in down-
stream datasets such as instruction tuning. Finally,
we show that compression ratio—compressed over
original texts size—is a fast, easy to compute score
sufficient to capture the information in all token/-
type ratio related alternatives. But we emphasize
text length as an important confounder when as-
sessing diversity: No reliable conclusions can be
drawn without taking this into consideration.

Our contributions are as follows. (1) We intro-
duce diversity, a Python package implementing
diversity metrics. (2) We host and release source
code to a user interface to explore repetition and
diversity. (3) We evaluate the convergent validity
of existing lexical diversity metrics and highlight
compression ratios as efficient measures of diver-
sity.

2 Related Work
Lack of diversity in text may result from repetition
of lengthy strings or owe to subtle distributional pat-
terns (Holtzman et al., 2019; Meister et al., 2022,
2023a). We focus on scores that aim to capture
overt repetition across outputs, and leave for fu-
ture work similar analysis of semantic and struc-
tural diversity scores (Bär et al., 2012; Shaib et al.,

3https://github.com/cshaib/diversity
4https://github.com/cshaib/diversity_demo
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Figure 1: (A) Users start by uploading their own dataset on the right or by selecting one of the existing demo
datasets on the left. Once uploaded, users can (B) interactively visualize part-of-speech patterns in the data, (C)
interactively search for exact repeated text matches, and (D) calculate lexical diversity metrics.

2024). Conditional generation tasks such as image
captioning have offered observations regarding the
diversity of produced texts. Prior work has shown
that models tend to repeat the same text for differ-
ent contexts in these tasks (Li et al., 2016; Devlin
et al., 2015). Self-repetition (Salkar et al., 2022)—
exact repetition of the same n-gram (n ≥ 4) across
outputs—is a practical way of measuring repeti-
tion in lengthy outputs. In such cases repetition is
common, especially relative to training data (Wang
et al., 2023a).

We discuss several metrics but it is unclear which
of these to use when, and how to efficiently visual-
ize lower diversity in text-only tasks. Further, prior
work has shown that human judgments of diversity
are difficult to reliably collect. Humans tend to
implicitly conflate quality of text with its diversity,
and it can be difficult to separate content and lexi-
cal diversity in such assessments (Tevet and Berant,
2021). We design an interactive tool to allow users
to browse highlighted instances of “lower diversity”
text (Figure 1 (B)).

2.1 A Smorgasbord of Text Diversity Scores

Scores used to measure diversity across a corpus
of texts derive from two core ideas: Computing
average similarity between pairs of outputs pro-
duced by the same model for different inputs, and
computing variants of token/type ratio. The former
are adapted from common approaches to reference-

based text generation using standard measures of
pairwise similarity; the latter track the diversity of
vocabulary measured as the ratio of unique words
to total words produced, with outputs from a model
concatenated into a single text. We first describe
each score, and then present insights regarding their
mutual redundancy. All scores are defined for a set
of generated texts D, each conditioned on its re-
spective input.

Self-BLEU The quality of text in machine trans-
lation, summarization, and image captioning is of-
ten reported in terms of overlap with a reference
text. This idea can be adapted to measure diver-
sity across different outputs by using one generated
text as a “reference” and measuring the similar-
ity of other outputs against this. Self-BLEU mea-
sures similarity between all text pairs in D using
BLEU (Zhu et al., 2018). BLEU could be replaced
with other similarity scores, e.g., ROUGE-L or
BERTScore. These variants are called homoge-
nization scores and have recently been used to
compare the diversity of texts produced under sev-
eral conditions (Padmakumar and He, 2023).

Homogenization Score (ROUGE-L) All homog-
enization scores calculate an aggregate similarity
across pairs of examples (Equation 1). Here the
similarity score of choice is ROUGE-L (Lin and
Och, 2004), which quantifies overlap in terms of
longest common sub-sequences between all pairs
of text in a corpus instead of the fixed n-gram size
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used in other ROUGE variants:

hom(D) =
1

|D| − 1

∑

d,d′∈D; d̸=d′
sim(d, d′) (1)

Homogenization Score (BERTScore) This ho-
mogenization score uses BERTScore to measure
similarity between documents in Equation 1. Un-
like the other scores, it does not count the repetition
of specific tokens, but instead uses BERT embed-
dings to (ideally) capture “semantic” similarity be-
yond verbatim n-gram matches.

Self-repetition Score Self-repetition measures the
tendency of LMs to repeat long n-grams across
different outputs (Salkar et al., 2022).

SRS(d) = log

(
k∑

i=1

Ni + 1

)
(2)

Where k is the total number of 4-grams in a single
document d and Ni the number of other summaries
in which 4-gram i appears. The final score is the
sum of SRS(d) divided by |D|.
Moving Average Token-Type Ratio The token-
type ratio for a text is the unique token count di-
vided by the total token count. This metric captures
the repetition of a given word in segments of text
and does not explicitly account for longer repeated
sequences (Covington and McFall, 2010).

N -Gram Diversity Score NGD extends the idea of
token-type ratio to longer n-grams (Padmakumar
and He, 2023; Meister et al., 2023b; Li et al., 2023),
taking a ratio of unique to all n-gram counts:

NGD(D) =
4∑

n=1

# unique n-grams in D⊕
# n-grams in D⊕ (3)

Where D⊕ denotes the dataset D concatenated
into a single string. We use four as the maximum
n-gram length. This method captures repeated se-
quences in addition to single token diversity.

2.2 Compression Ratios for Diversity

Compression Ratios (CRs) The diversity scores
introduced so far are all a function of the number
of repeated substrings across outputs. We use gZip
to compress the concatenated text of all outputs
generated by a model. CR is then the ratio between
the size of the compressed file to that of the original.
High CRs imply more redundancy:

CR(D) =
size of D⊕

compressed size of D⊕ (4)

Part-of-Speech Compression Ratio To capture
repeated syntactic patterns, we also compute com-
pression ratios for part-of-speech (POS) tag se-
quences. We use the NLTK POS tagger 5 and the
Penn Treebank set of 36 tags.

3 Evaluating Repetition with diversity

3.1 Design of the Diversity Package
The diversity package incorporates measures of
diversity including lexical, syntactic, and semantic
diversity. For lexical/syntactic diversity, we use
NLTK (Bird and Loper, 2004) and SpaCY (Honni-
bal et al., 2020) to tag text with parts of speech and
extract n-grams. We also include implementations
of embedding-based measures (Cox et al., 2021),
and QUDSim (Namuduri et al., 2025). Users can
install the package via pip (assuming Python 3.10+)
and can calculate various diversity metrics over a
list of texts as follows:

1 from diversity import *
2

3 text = ["I enjoy walking with my cute
dog ...", "I enjoy walking outside
with ...", "I enjoy jogging on a
sunny ..."]

4 # compression ratios
5 cr = compression_ratio(text , ’gzip’)
6 cr_pos = compression_ratio(get_pos(

text)[1], ’gzip’)
7 # homogenization scores
8 hs_rougel = homogenization_score(text ,

’rougel ’)
9 hs_bert = homogenization_score(text ,

’bertscore ’)
10 self_bleu = homogenization_score(text ,

’bleu’)
11 # other
12 self_rep = self_repetition_score(text)
13 nds = ngram_diversity_score(text , n=4)
14

15 # Embedding -based
16 rc = remote_clique(text , model="Qwen/

Qwen3 -Embedding -0.6B", verbose=
False)

17

18 cd = chamfer_dist(text , model="Qwen/
Qwen3 -Embedding -0.6B", verbose=
False)

19

20 # QUDSim
21 key = os.environ.get("OPENAI_API_KEY")

# requires an OpenAI key
22 qud_alignment = qudsim(text , key=key)

# list of QUD -based alignments/
scores

5https://www.nltk.org/api/nltk.tag.html
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Users can extract PoS patterns using the
extract_patterns function by specifying the n-
gram length to search for, and the top_n most re-
peated n-grams to return:

1 extract_patterns(text , n=5, top_n =100)

This returns a Python dictionary where the keys are
the part-of-speech n-grams and the values are the
raw text n-grams matching those patterns. The pat-
tern matches are based on the frequency seen across
the entire dataset, i.e., a part-of-speech pattern is
only a pattern if it appears in more than 2 texts in
the original input. Default values consider the top
100 part-of-speech patterns (sorted by frequency).

Then, using match_patterns, a user can iden-
tify all patterns in a single text from the input:

1 idx = 2
2 match_patterns(text[idx], patterns)

which returns a list of tuples containing the pattern
and matched substring, respectively. Many diver-
sity metrics require pairwise comparisons. With
larger datasets, this can become infeasible to com-
pute (see Appendix A). We implement a few meth-
ods to increase efficiency: memoization of already
computed pairs, and batch pattern searching in the
UI.

We also include a function for users to run all
metrics and display them in a table to easily com-
pare values:

1 compute_all_metrics(corpus=text)

3.2 Metric Visualization and the Web UI

The diversity Web UI offers the same function-
ality as the package via a no-code UI. Figure 1
shows the main pages of the site: users can begin
by (A) either uploading their own text file for anal-
ysis or selecting one of the demo datasets provided
on the site. Then, the user is prompted to select
one of three types of analyses: either (B) to explore
part-of-speech patterns, (C) to explore verbatim
repeated text, or (D) to measure various diversity
metrics of the dataset. Datasets are processed upon
upload, and nothing is stored on the backend server
aside from the existing demo datasets.

(B) Templates The templates tab allows users to
explore extracted part-of-speech n-grams in their
selected dataset. The left-most column displays
pattern length of n = [2, 10]. The user can then
scroll through all of the templates, select some or
all, and see the highlighted text in the middle panel

corresponding to the template. The templates are
assigned a colour when selected to indicate the cor-
responding matched text. The right-most column
provides a reference for all the part-of-speech tags
from SpaCY. 6 The default pattern length is set to
n = 4. Other lengths will load when selected.

(C) Exact Match The exact matches tab allows a
user to explore exact text matches in their dataset.
The top provides two sliders: the left slider al-
lows the user to set a string length to search for
(n = [2, 10]), and the right the minimum num-
ber of documents in which the string must appear
(n = [2, 10]). The minimum document occurrence
slider defaults to 2. Once selected, the user can
scroll through to see the repeated text in bold, and
the full document text in which the string appears,
as well as the number of documents.

(D) Diversity Metrics The diversity metrics tabs
reports the recommended metrics from our evalua-
tion: Compression Ratio, POS Compression, Self-
BLEU, Self-Repetition, and Homogenization with
BERTScore. We display these values alongside a
guide to the metrics on the right-hand side.

3.3 Use-Cases

Our implementation of compression ratios over
PoS tags and tokens (along with BERTScore, Self-
BLEU, and self-repetition) have already been used
in prior works (by other groups) to evaluate diver-
sity in model evaluation and alignment (Lake et al.,
2024; Moon et al., 2024; Fernandez et al., 2024),
and for reporting diversity over synthetic datasets
(Chang et al., 2024; Hastings et al., 2024). Due
to its computational efficiency, compression ratios
have also been used as optimization parameters in
decoding strategies (Lanchantin et al., 2025).

Shaib et al. (2024) use the pattern analysis in
diversity to measure and evaluate the prevalence
of syntactic patterns in LLMs. Wadhwa et al.
(2025) extract PoS patterns in distillation tasks for
model attribution. Further, insights from our eval-
uation of diversity metrics have informed how to
report diversity with respect to text length and data
sizes (Guo et al., 2023; Hastings et al., 2024).

6https://spacy.io/usage/linguistic-features
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Figure 2: Correlations between diversity scores on CN-
N/DM. CR correlates strongly with most other metrics.

4 Platform Evaluation: Comparative
Analysis of Diversity Metrics

4.1 Data and Models

We compute diversity scores for the outputs of
six instruction tuned models on the CNN/Daily-
Mail (Hermann et al., 2015) and XSUM (Narayan
et al., 2018) English news summarization datasets:
Llama-2 (Touvron et al., 2023a), GPT-4 (OpenAI,
2023), FlanT5-XXL (Longpre et al., 2023), Sta-
bleLM (Taori et al., 2023; Chiang et al., 2023;
Anand et al., 2023), Mistral (Jiang et al., 2023),
and StableBeluga (Touvron et al., 2023b; Mukher-
jee et al., 2023).7 We selected these models to
cover a range of availability (open and closed), and
architectures (encoder-decoder, decoder-only). The
lengths of texts vary considerably by source, for
reference and model-produced text alike, so we
also note average lengths when reporting diversity.

5 Text Length as a Confounder

To keep compute time and costs manageable, we
randomly sample 500 inputs from CNN/DailyMail
and XSUM for analysis. Table 1 reports diver-
sity scores for outputs generated by the six LLMs
for these inputs. Table 1 (top) reports scores for
human-written texts: The article given as input for
summarization, the baseline summary comprising
the first three sentences of the news article, and the
reference summary. These scores serve as a refer-
ence point for the diversity scores of the models.

One would expect that human-authored texts
would be more diverse than those produced by
LLMs (with the caveat that the texts were scraped

7All models—except GPT-4—downloaded from HUG-
GINGFACE (https://huggingface.co/models).

from the web, and so may contain HTML and page
layout artifacts which might be repetitive (Salkar
et al., 2022)). The human texts differ by length and
the sources of longer texts appear to be less diverse.

Text length as a confounder for diversity has
been reported in prior work (Salkar et al., 2022),
along with methods to account for this, e.g., sam-
pling blocks of fixed size (Covington and McFall,
2010).

All scores of the token/type ratio family are
highly correlated with length, while the pairwise
similarity ones are only moderately correlated.
Self-BLEU has low correlation with length.

6 Diversity of Model Summaries

The confound of length complicates reporting.
On CNN/DM (cf. Table 1) StableLM produces
the longest summaries. All scores indicate that
these are the least diverse, probably due to length.
Three types of differences are marked in the tables.
Model summaries that are shorter but less diverse
than human summaries are marked in bold. Human
texts here are written by journalists, so the expecta-
tion is that they would be more diverse. More bold
entries in a column indicate that the score captures
differences between human and machine diversity,
a desirable trait. Underlined entries denote models
that are less diverse than other models that produce
longer summaries. The more underlined entries
there are for a model, the more indicators there
are that its output is less diverse. Asterisks mark
models that appear more diverse than a human text
of shorter length.

The most interesting diversity scores are those
that capture differences between human and auto-
matically produced text. On the CNN/DM dataset,
Hom. (BERT) and MATTR are the two scores that
detect no differences between human and model
texts. Compression ratio for part of speech se-
quences is the score that identifies the most dif-
ferences between human and model-generated text.
Self-repetition stands out as the only score that
identifies model generated text as more diverse on
the CNN/DM dataset. From this analysis, CR:POS
and self-repetition emerge as prime candidates of
reportable scores, while Hom. BERT is less useful.

7 Correlation Analysis

We present three sets of correlation analyses be-
tween (i) different diversity scores, (ii) the same
diversity score across datasets, and (iii) diversity
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Model Avg.
Length

CR
(↓)

CR: POS
(↓)

NGD
(↑)

Self-
Rep. (↓)

Hom.
(R-L) (↓)

Hom.
(BERT) (↓)

Self-
BLEU (↓)

MATTR
(↑)

HD-D
(↑)

Article 452.25 2.615 5.544 2.637 6.216 0.118 0.696 0.003 0.837 0.896
Article (Lead 3) 75.87 2.369 5.497 3.041 4.276 0.105 0.686 0 0.856 0.892
Reference 51.78 2.277 5.330 3.164 3.842 0.074 0.683 0 0.875 0.919

StableLM 132.71 2.724 5.940 2.673 4.940 0.126 0.689 0.002 0.792 0.867
Mistral 114.88 2.499 5.621 2.926 4.688 0.123 0.697 0.036 0.831 0.880
Llama-2 106.52 2.543 5.684 2.874 4.159* 0.125 0.694 0.001 0.820 0.873
StableBeluga 91.17 2.452 5.644 3.028 4.467 0.121 0.702 0.047 0.846 0.889
FlanT5 63.84 2.453 5.608 2.939 3.608* 0.084 0.667 0 0.833 0.887
GPT-4 55.4 2.361 5.463 3.124 3.909 0.098 0.684 0.001 0.853 0.891

Table 1: Diversity scores for the CNN/Daily Mail dataset. Arrows indicate direction of more diversity. Values
indicating less diversity compared to at least one text source that produces longer human texts are bolded; models
with scores that are less diverse than those from a model that produces longer summaries are underlined. An asterisk
indicates a model more diverse than a shorter human text.

scores and standard reference-based evaluations.
Despite the large number of diversity scores in our
list, they all revolve around n-gram repetition. Do
these capture different (complementary) informa-
tion? To assess this we compute the correlations
between all pairs of scores, reported in Figure 2.

Compression ratio is highly to moderately corre-
lated with other n-gram scores. The only weak cor-
relations are with Self-BLEU and Hom. (BERT).
Given the degenerate behavior of Hom. (BERT) on
the analysis of summaries, reporting Self-BLEU
only is advisable. Finally, self-repetition is only
moderately correlated with other scores, and is
therefore informative to report. Correlations are
similar on XSUM summaries (Appendix 5).

8 Truncating to Control for Length

We truncate all summaries to the length of the
shortest one produced by any source as a crude
means to control scores for length. The resulting
scores are directly comparable (see Table 5 in the
Appendix). CRs and Self-BLEU scores indicate
that model-generated text is less diverse than hu-
man text. Hom. (BERT) scores barely vary across
sources. On the CNN/DM dataset, Self-BLEU in-
dicates that Llama-2 and StableLM are the most
repetitive models. CR also ranks these two models
as the least diverse. The results are consistent on
XSUM, but for that dataset Flan-T5 is also highly
ranked and the most repetitive.

Truncation to control for length is impractical
for published research or leaderboards. Introducing
a new source of texts would require recomputing
scores for other sources for comparison, which is
sometimes impossible (when outputs from other
sources are not available). Future research might
search for more practical alternatives.

9 Discussion and Recommendations

The diversity package and platform provides a
useful way to analyze and visualize diversity in
datasets. Our analyses of metrics reveal that com-
pression ratio (CR) is an excellent score to report,
easy to compute and strongly correlated with other
scores used in past work. CR of PoS sequences
captures differences between human and model-
generated text. Self-repetition focusses on repeti-
tion of longer n-grams across generations, and is
only moderately correlated with CRs. Finally Self-
BLEU is only weakly correlated with the previous
three, so is a good complement score to report. We
found BERTScore limited: It does not show dif-
ferences between human and model-generated text
and barely varies when adjusted for length.

Length of the analyzed text has to be reported
alongside all these scores. When length differs,
scores are not meaningfully comparable. Truncat-
ing text is one way to control for this. Different
random draws of the sample chosen to represent a
dataset may differ in diversity, in turn leading to un-
warranted conclusions. Truncating texts prevents
quantifying repetition towards the end of longer
texts. Finally, diversity offers a platform and
package in which researchers from a variety of do-
mains can use to facilitate evaluation and gather in-
sights about diversity between human- and model-
produced texts.

10 Limitations

In this work, we do not attempt to measure human
judgments of diversity, which are straightforward
for short texts (e.g., questions) but far more difficult
for longer summaries or large instruction datasets
(Tevet and Berant, 2021); we leave this for future
work. All evaluations are conducted in English.
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Figure 3: Mean run time (log-scale) on CNN/DM sum-
maries. Run times increase with the number of text for
the analysis. Even for small datasets, Self-BLEU and
BERTScore homogenization are slow.
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Figure 4: Correlations between diversity metrics,
BERTScore, and ROUGE-1. Both reference-based met-
rics are weakly correlated with CR and Hom. (BERT),
and moderately anti-correlated with Self-BLEU.

Appendix

A Run-Time Considerations

Figure 3 provides insights about the feasibility of
obtaining scores for large samples.8 The compres-
sion ratio scores are fast compared to other diversity
measures.

B Correlations with Evaluation Metrics

Output diversity and self-repetition are aspects of
model behavior that are not captured by existing
evaluation approaches. We compute the system
level correlation between the diversity scores and
the traditional BERTScore and ROUGE evalua-
tions, shown in Figure 4.

C Controlling for Length

Scores on CNN/DM summaries truncated to the
shortest summary reveal a different model order
with respect to diversity (Table 2).

D Additional Evaluations

Story Writing Padmakumar et al. (2023) pre-
sented an analysis of human-written stories, where
people wrote either by themselves or with the help
of GPT-3 or GPT-3.5 Turbo. We also find that all

8Run on a single NVIDIA Quadro RTX 8000 GPU.

Model CR
(↓)

CR: POS
(↓)

Self-
Rep. (↓)

Hom.
(BERT) (↓)

Self-
BLEU (↓)

Article 2.268 5.25 2.763 0.676 0
Article (Lead 3) 2.274 5.25 2.762 0.658 0
Reference 2.189 5.179 2.763 0.674 0

Llama-2 2.96 5.627 2.847 0.674 0.001
GPT-4 2.287 5.376 2.761 0.672 0
FlanT5 2.288 5.389 2.779 0.673 0
StableLM 2.393 5.537 2.884 0.672 0.001
Mistral 2.32 5.415 2.812 0.67 0
StableBeluga 2.288 5.46 2.766 0.671 0

Table 2: Scores on CNN/DM summaries truncated to
the shortest summary length for a given input.

Dataset CR (↓) CR: POS (↓) Self-Rep. (↓)

Open Assistant 2.886 6.731 3.969
Unnatural Instructions 4.191 7.278 9.868
Alpaca 3.119 6.61 3.105
Super-NaturalInstructions 2.675 5.749 3.456
Dolly 2.578 6.214 2.935

Table 3: Diversity scores for instruction datasets. We do
not include Self-BLEU nor Hom. (BERT) due to long
run times.

diversity scores agree that people writing indepen-
dently produce the more diverse texts (cf. Table 5).
Length is not an issue because the average length of
stories in each setting are comparable: 375 words
for writing without help, 372 words when writing
with GPT-3 and 370 when writing with GPT-3.5.

Instruction-tuning Datasets The quality and di-
versity of instructions are likely to result in more
robust and capable systems (Sanh et al., 2022;
Mishra et al., 2022). We analyze the diversity
of five instruction-tuning datasets: Open Assis-
tant (Köpf et al., 2024), Super-NaturalInstructions
(Wang et al., 2022), Unnatural Instructions (Hon-
ovich et al., 2023), Alpaca (Wang et al., 2023b),

CR

CR: 
PO

S
NGD

Se
lf-R

ep
.

Hom
. 

(R-
L) Hom

. 

(BER
T)

Se
lf-B

LEU
MAT

TR
HD-D

CR

CR: 
PO

S

NGD

Se
lf-R

ep
.

Hom
. 

(R-
L)

Hom
. 

(BER
T)

Se
lf-B

LEU

MAT
TR

HD-D

1.00 0.90 0.95 0.27 0.79 0.20 -0.04 0.94 0.85

0.90 1.00 0.80 -0.13 0.62 -0.15 -0.01 0.98 0.95

0.95 0.80 1.00 0.37 0.72 0.25 0.07 0.86 0.70

0.27 -0.13 0.37 1.00 0.61 0.90 -0.27 -0.02 -0.22

0.79 0.62 0.72 0.61 1.00 0.59 -0.46 0.68 0.56

0.20 -0.15 0.25 0.90 0.59 1.00 -0.59 -0.10 -0.21

-0.04 -0.01 0.07 -0.27 -0.46 -0.59 1.00 0.04 -0.00

0.94 0.98 0.86 -0.02 0.68 -0.10 0.04 1.00 0.95

0.85 0.95 0.70 -0.22 0.56 -0.21 -0.00 0.95 1.00

Figure 5: Correlation table between scores on XSUM.
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Model Avg.
Length

CR
(↓)

CR: POS
(↓)

NGD
(↑)

Self-
Rep. (↓)

Hom.
(R-L) (↓)

Hom.
(BERT) (↓)

Self-
BLEU (↓)

MATTR
(↑)

HD-D
(↑)

Article 310.20 2.511 5.555 2.756 5.643 0.110 0.695 0.002 0.838 0.892
Article (Lead-3) 55.94 2.316 5.454 3.107 3.999 0.103 0.683 0 0.860 0.891
Reference 21.04 2.276 5.409 3.211 2.914 0.081 0.673 0 0.877 0.888

StableLM 109.20 2.745 6.008 2.636 4.687 0.130 0.695 0.002 0.78 0.854
Llama-2 102.48 2.634 5.802 2.795 4.618 0.128 0.687 0.002 0.795 0.858
Mistral 95.18 2.531 5.708 2.911 4.495 0.132 0.698 0.044 0.819 0.867
StableBeluga 88.46 2.461 5.673 2.992 4.418 0.124 0.698 0.046 0.837 0.88
GPT-4 62.15 2.394 5.531* 3.079 4.041 0.104 0.682 0 0.848 0.886
FlanT5 20.93 2.666 6.222 2.743 2.868 0.114 0.665 0.001 0.756 0.842

Table 4: Diversity scores for XSUM summaries. Arrow indicate the direction of more diverse texts for each score.

Dataset CR
(↓)

CR: POS
(↓)

Self-
Rep. (↓)

Hom.
(BERT) (↓)

Self-
BLEU (↓)

Solo 2.901 5.314 5.873 0.604 0.018
GPT-3 2.940 5.371 5.911 0.613 0.020
InstructGPT 3.064 5.462 5.966 0.631 0.022

Table 5: Diversity scores over essays. Working with an
LLM correlates with lower diversity.

Model CR
(↓)

CR: POS
(↓)

Self-
Rep. (↓)

Hom.
(BERT) (↓)

Self-
BLEU (↓)

Article 2.162 5.095 2.719 0.666 0
Article (Lead 3) 2.179 5.093 2.719 0.663 0
Reference 2.230 5.314 2.663 0.667 0

Llama-2 2.345 5.636 2.919 0.663 0.002
GPT-4 2.213 5.425 2.666 0.663 0
FlanT5 2.490 5.737 2.707 0.665 0.001
StableLM 2.342 5.521 2.823 0.664 0.001
Mistral 2.308 5.689 2.736 0.659 0
StableBeluga 2.210 5.436 2.663 0.659 0

Table 6: Diversity metrics for XSUM summaries, with
outputs from each model truncated to the length of the
shortest. All scores are directly comparable.

and Dolly (Conover et al., 2023) (Table 3).
Open Assistant instructions are remarkably di-

verse compared to the other datasets across all di-
versity scores. Unnatural instructions are remark-
able in the opposite direction. We provide an analy-
sis of the diversity scores with the length controlled
in Appendix D.2.

Given the large dataset sizes, ranging from 15-
80k data points, we do not compute the homoge-
nization scores nor Self-BLEU, as the computation
time is infeasible. For approximately 50k instruc-
tions, the estimated computation times ranged from
48 to 800 hours for these scores. This case study
highlights the relevancy of the run-time analysis for
computing score that we presented in the previous
section.

D.1 Correlation Between Metrics

Self-BLEU scores are almost perfectly correlated
between the two datasets; they appear to not be

Dataset CR (↓) CR: POS (↓) Self-Rep. (↓)

Open Assistant 2.370 5.402 1.741
Unnatural Instructions 6.036 8.421 5.595
Alpaca 3.301 6.044 2.020
Super-NaturalInstructions 2.458 1.844 4.859
Dolly 2.832 5.504 2.235

Table 7: Truncated diversity scores for instruction
datasets.

affected by text source. The other scores are still
moderately to highly correlated but as already ob-
served, models are ranked differently. When report-
ing diversity, source of analyzed data also has to be
taken into account, in addition to length.

D.2 Instruction Datasets, Length Controlled
Table 7 shows scores for instructions downsampled
to the size of the smallest dataset, and truncated
to the length of the shortest instructions in the re-
maining data. Again, the Open Assistant dataset
stand out as most diverse, while the Unnatural In-
structions dataset is markedly less diverse than the
others. Self-repetition in the related Super-Natural
and Unnatural instructions is notably high. The
human instructions in Dolly compare favorably
with automatic instructions, especially when bear-
ing in mind that only eight tasks are covered in it.
CR:POS points to Super-natural instructions as the
most diverse. We do not have a convincing explana-
tion of why it compares so favorably against others
on this score.

D.3 XSUM Metrics
Tables 4, 6 show the full diversity metrics over
XSUM with and without controlling for length.

Figure 5 shows the correlations between all pairs
of metrics for the XSUM dataset. The correlations
show that compression ratio is highly to moderately
correlated with other n-gram scores, similar to the
findings for the CNN/DM dataset.
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