SPORTSQL: An Interactive System for Real-Time Sports Reasoning and
Visualization

Sebastian Martinez Naman Ahuja

Fenil Bardoliya

Chris Bryan
Arizona State University
{sjmart28, nahujall, fbardoli, srchowd3, cbryanl16, vguptl140}@asu.edu

Abstract

We present a modular, interactive system
SPORTSQL for natural language querying and
visualization of dynamic sports data, with a
focus on the English Premier League (EPL).
The system translates user questions into ex-
ecutable SQL over a live, temporally indexed
database constructed from real-time Fantasy
Premier League (FPL) data. It supports both
tabular and visual outputs, leveraging sym-
bolic reasoning capabilities of Large Language
Models (LLMs) for query parsing, schema
linking, and visualization selection. To eval-
uate system performance, we introduce the
Dynamic Sport Question Answering bench-
mark (DSQABENCH), comprising 1,700+
queries annotated with SQL programs, gold
answers, and database snapshots. Our demo
highlights how non-expert users can seamlessly
explore evolving sports statistics through a nat-
ural, conversational interface.

1 Introduction

What if a soccer fan could ask, “How did Mohamed
Salah’s scoring performance trend over the last five
seasons?” or “Which midfielders in the Premier
League are the most creative this season?” and
instantly receive not only a precise answer but also
a dynamic visualization, grounded in up-to-date,
real-world data?

Large language models (LLMs) have shown re-
markable progress in translating natural language
into executable programs, such as SQL. How-
ever, most existing systems are designed for static,
domain-specific datasets. In contrast, domains like
sports are inherently dynamic and structurally com-
plex: match outcomes, player statistics, team for-
mations, and injury reports evolve daily across mul-
tiple interlinked and semi-structured tables. Query-
ing such data effectively requires compositional,
temporal, and relational reasoning, along with
the ability to operate over continuously changing
schemas and distributed sources.

94

Suparno Roy Chowdhury
Vivek Gupta

We introduce SPORTSQL, a fully automated
system for Dynamic Sports Question Answering
(DSQA), enabling users to pose rich natural lan-
guage queries over live sports data and receive
grounded, executable, and often visual responses.
SPORTSQL operates through a modular pipeline:
it begins by scraping and normalizing dynamic data
and transforming it into a unified, temporally in-
dexed relational database. Given a user question,
the system uses only the schema (not the data it-
self) to prompt an LLM to generate symbolic SQL
queries, making the approach scalable and robust
to changes in content (Kulkarni et al., 2025). When
appropriate, SPORTSQL also generates visualiza-
tion code (in matplotlib, seaborn) to produce bar
charts, timelines, or other graphical responses.

For instance, a user might ask, “Compare Arse-
nal’s goals scored in home vs away matches” or
“List forwards with at least ten goals and five as-
sists.” SPORTSQL retrieves accurate answers by
executing SQL over the latest data, rather than re-
lying on potentially outdated or hallucinated infor-
mation from pretrained language models (Kulkarni
and Srikumar, 2025). To evaluate the effective-
ness of the system, we introduce Dynamic Sports
Question Answering Benchmark (DSQABENCH),
a new benchmark containing over 1700 questions
that span various soccer metrics, reasoning types,
and output formats. Each question is paired with
its corresponding SQL program, gold answer, and
the database snapshot at the time of execution. We
further provide a type-aware evaluation framework
that supports multiple answer formats, schema-only
SQL generation, and fine-grained error analysis to
assess system performance under dynamic condi-
tions. Our contributions are threefold:

* We introduce the task of Dynamic Sports
Question Answering and present SPORTSQL,
a modular and interpretable system that en-
ables real-time, schema-driven symbolic rea-

Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics: System Demonstrations, pages 94-101
December 20-24, 2025 ©2025 Association for Computational Linguistics

soning and dynamic visualization over evolv-
ing sports databases.

¢ We construct and release DSQABENCH, the
first benchmark of executable sports queries
paired with live data, supporting multiple an-
swer modalities.

* We develop a type-aware evaluation frame-
work with support for diverse answer formats
(textual, numeric, tabular, visual), schema-
only SQL generation, and fine-grained error
analysis to assess symbolic QA systems over
dynamic content.

We invite the readers to explore SportsSQL’s
functionalities at the following links:

* Code & Data: https://github.com/
coral-lab-asu/SportSQL

e Main Demo Video: https://youtu.be/
xqUyiA-R6al

e Try it out: https://coral-lab-asu.
github.io/SportsSQL

Although SPORTSQL is designed for sports, its
architecture is general and can extend to other dy-
namic, structured domains such as finance, health-
care, or elections, where users seek timely, accurate
insights from evolving data.

2 SPORTSQL Architecture

SPORTSQL translates free-form user queries into
executable answers via a tightly integrated, mul-
tistage pipeline. The system operates over a live,
dynamically updated EPL database, refreshed peri-
odically via cronjobs and at runtime based on query
requirements. Upon receiving a natural language
query, the system first performs entity grounding by
executing SQL lookups against curated reference
tables (e.g., teams, players), mapping surface forms
to canonical entities. Conditioned on this context
and the database schema, it generates an executable
SQL query, which is run on the live database to
produce a structured result. If the query involves
visual reasoning (e.g., comparisons, trends, rank-
ings), the output is forwarded to a visualization
agent, which selects an appropriate chart type and
returns self-contained Python code (Matplotlib +
Seaborn) to render the plot. The full workflow is
outlined below.

1. Database Streaming Our system ingests data
from the public Fantasy Premier League (FPL)

95

APL! which offers structured, frequently updated
endpoints covering players, teams, fixtures, and
per-match statistics. After normalization and de-
duplication, the data is stored in a MariaDB back-
end.

Hybrid Storage Strategy Storing full historical
data for every player would require ~2,400 tables
per season (3 per player x 800 players), resulting in
a bloated schema and largely idle data. To balance
granularity with efficiency, we adopt a two-tiered
storage design:

* Query-agnostic tables: Core relations
(players, teams, fixtures) that evolve pre-
dictably week-by-week. These are updated
nightly via cronjob to maintain freshness.

* Query-dependent tables: Fine-grained views
(e.g., “past 5 games”, “next 3 fixtures”)
fetched on demand from the FPL API. These
are materialized in memory for the duration
of a query and discarded after use.

This hybrid architecture ensures (i) freshness via
automated updates, (ii) coverage through just-in-
time API access, and (iii) efficiency by limiting
persistent storage. Figure 1 illustrates the relational
schema and data flow.

2. Entity Recognition User queries often contain
abbreviations, nicknames, or informal spellings
(e.g., “CR7” for Cristiano Ronaldo, “Donatello”
for Kylian Mbappé), making exact string matching
unreliable. Additionally, the LLM operates only
over the database schema and lacks direct access
to cell-level values. To resolve entity mentions, we
employ a prompt-guided procedure. The prompt
instructs the LLM to: (i) use domain knowledge to
infer canonical player or team names, and (ii) gen-
erate a case-insensitive wildcard SQL query over
reference tables. The database returns a filtered
set of candidate rows with unique IDs, which are
retained as the resolved entity identifiers.

3. SQL Generation and Execution Given the
resolved entity identifiers, we prompt a large lan-
guage model to generate an executable SQL query.
The model is provided with: (i) the user question,
(i1) the set of resolved primary keys, and (iii) the
database schema, along with targeted instructions
to mitigate common pitfalls:

* Table hints: e.g., players is preferred for
individual statistics

"https://fantasy.premierleague.com/

https://github.com/coral-lab-asu/SportSQL
https://github.com/coral-lab-asu/SportSQL
https://youtu.be/xqUyiA-R6aI
https://youtu.be/xqUyiA-R6aI
https://coral-lab-asu.github.io/SportsSQL
https://coral-lab-asu.github.io/SportsSQL
https://fantasy.premierleague.com/

teams
player_id int (PK) team.id int (PK) . n season name varchar (PK) player_id int event int (PK)
web_name varchar ~ team.name varchar gane-id !nt (PK) goals_scored int event int (PK) eventname varchar
player_position varchar position int ?:nished glotolean assists int goals_scored int team h name varchar
team_id int played int team hname varchar minutes int assists int team_aname varchar
goals._scored int win int yellow.cards int minutes int is_home boolean

team a name varchar

dr:
a kickoff time varchar

loss

int
int

int
int

assists
minutes

red cards
saves

int
int

yellow cards int
red.cards int

difficulty int
kickoff time varchar

Figure 1: DB schema, all tables shown, not all columns. Here, PK represent primary key.

Rephrased 1

Give the best <NUMBER>
scorers for <TEAM>.

Original

Who are the top
<NUMBER> scorers on
<TEAM>?

_
Rephrased 2
Tell me the names of
<NUMBER> players with
the most goals for <TEAM>.

1. Who are the top 10 goal scorers on Liverpool?

2. Give the best 5 goal scorers on the team Arsenal.

3. Tell me the names of the 6 players with the most goals on Nott’ Forest.
4. Who are the top 9 goal scorers on Chelsea?

18. Tell me the names of the 7 players with the most goals on Brighton.

Figure 2: Sample Question Creation Expansion

¢ Synonym mappings: e.g.,
league_rank

“team position” >

* Column cautions: e.g., penalty saves are al-
most always non-zero for goalkeepers only

* Derived-field formulas: e.g., formis the 30-
day average of match points

* Scale explanations: e.g., strength ranges
from 1 (weakest) to 5 (strongest)

These prompt elements help ensure syntactic cor-
rectness and reduce semantic errors arising from
natural language variability.

SQL Execution. The generated SQL is parsed
and executed against the dynamic MariaDB store.
If the query references a non-materialized query-
dependent table (e.g., a player’s upcoming fixtures),
the system issues a just-in-time API call to fetch the
necessary data, loads it into an in-memory buffer,
and re-executes the query. The temporary table is
discarded post-aggregation, ensuring the persistent
database remains lightweight.

4. Visual Output Generation Some informa-
tion needs are better served through visualizations
than text. To support this, the system automatically
generates plots when either: (i) the user explic-
itly requests a “plot,” “graph,” or “trend,” or (ii)
the output dataframe exhibits structures—such as
multi-season time series or long categorical rank-
ings—that benefit from visual interpretation. For
example, the query “Plot a line graph of Kylian
Mbappé’s goal totals over the past five seasons”
produces a line chart with seasons on the z-axis
and goals on the y-axis, revealing temporal trends.
Similarly, the query “Which five teams recorded
the highest average possession in the 2024-25 cam-
paign?”—though not explicitly visual—triggers a
horizontal bar chart ranking clubs by possession.

96

When comparative or temporal reasoning is de-
tected, the result and original query are passed to
a secondary code-generating LLLM, which returns
self-contained Matplotlib code (e.g., line plots
for trends, bar charts for rankings). A validation
layer ensures the dataframe referenced in the code
matches the SQL output byte-for-byte; any mis-
match triggers automatic re-querying.

This architecture enables near real-time visual
responses, maintains the persistent database under
5GB, and supports fine-grained, player-level analyt-
ics without compromising freshness or correctness.
Figure 3 presents an overview of the full system
pipeline.

3 DSQABENCH Benchmark

To evaluate the SPORTSQL system, we introduce
the Dynamic Sport Question Answering bench-
mark (DSQABENCH), designed to assess natural
language interfaces over dynamic, multi-relational
sports data.

Query Creation. We construct a diverse set
of natural language questions targeting various
schema elements and reasoning skills. The process
begins with manually written question templates,
each rephrased to capture linguistic variation. Tem-
plates contain placeholders (e.g., team names, nu-
merical thresholds), which are instantiated using
real-world entities and context-appropriate values.
This approach balances lexical diversity with se-
mantic control. Additionally, we include a set of
manually crafted, challenging questions to probe
complex and multi-hop reasoning. An illustration
of this process is shown in Figure 2.

Answer Annotation. Each question is paired
with a manually authored SQL query, serving
as the gold standard. These queries are exe-
cuted against the underlying MariaDB-based “Fut-

Extract
player id

Return SQL
for partial
player/team
matches

Natural
Language
Question

Prompt

Prompt + NL Question
+ Player/Team Matches

Return SQL
for NL
Question

Answer

Visualization

Send request to
API to update
player-specific

tables
SQL Code
! '
o\ e‘ltea
P a('t\a\ma‘c\»\e‘-
Answer
gt

\)GN PR Y . PR
Q\’Q e‘}\o Visualization

S \&Q‘) Prompt

Figure 3: SportSQL Architecture and Workflow

SQL_FPL” database to verify correctness. This en-
sures high-quality supervision for evaluating both
SQL generation and execution accuracy.

Dataset Statistics. DSQABENCH contains
1,793 questions derived from 180 base tem-
plates, each rephrased in three distinct ways and
instantiated with real-world values. Among these:

* 1,395 questions yield scalar answers (e.g.,
strings, numbers); 398 require tabular outputs.

* 396 questions involve dynamic queries to
player-specific tables via just-in-time API ac-
cess:

— player_past: 270 queries
— player_history: 72 queries
— player_future: 54 queries

* All questions are paired with manually val-
idated SQL programs executable on the
database.

DSQABENCH provides a rich and realistic bench-
mark for studying compositional generalization,
schema coverage, and executable reasoning in
sports QA systems.

4 Experiments and Analysis

Models. We evaluate two state-of-the-art LLMs:
GPT-40 and GEMINI-2.0 FLASH. GEMINI-2.0-

97

FLASH is selected for its balance of performance,
latency, and cost, making it suitable for scalable
deployment. GPT-40 is used to assess generaliza-
tion. Both models use a temperature of 0.1 (for
deterministic outputs) and a maximum token limit
of 2048 (for reduced latency).

Evaluation Metrics. As the system produces
both string and tabular outputs, we employ a type-
aware evaluation. String Answers: Evaluated us-
ing exact match. We also employ LL.Ms as judges
and prompt frontier models with the NL query,
ground truth SQL, and system-generated SQL, and
their SQL outputs, which models classify as equiv-
alent/not equivalent. We use 3 frontier models:
GPT-40, GEMINI-2.5, and QWEN3-235b-A22B-
INSTRUCT-2507, and take majority voting. Ta-
ble Answers: Assessed using TABEVAL (Ramu
et al., 2024), which converts tables into atomic nat-
ural language statements and computes pairwise
entailment via ROBERTA-MNLI, yielding preci-
sion (Correctness), recall (Completeness), and F1
(Overall) scores.

4.1 Results and Analysis

Table 1 reports performance on both string and
table-structured questions. The system achieves
up to 80% exact-match accuracy and 0.75 macro-
F1, indicating strong performance on structured

QA. GPT-40 consistently outperforms GEMINI-
2.0 FLASH, with gains of 4.2 points in exact match
and 0.05 in macro-F1. Completeness scores exceed
correctness for both models, suggesting that rele-
vant columns are more reliably identified than spe-
cific rows, a reflection of the higher complexity of
row selection driven by SQL predicates. Moreover,
we observe that the LLM-as-judge (majority vot-
ing) shows significantly higher accuracy than EM.
This follows findings from previous works (Chan-
dak et al., 2025) where deterministic evaluations
over-penalize semantically coherent outputs. We
observe multiple such cases, especially for more
complex queries, where selecting extra/different
columns in the output can lead to mis-evaluation.
Hence, we use LLM as a Judge as our primary
metric for further analysis.

Table 1: Model performance comparison on string and
tables answered. Here, EM represents an Exact Match.
Corr stands for Correctness, Comp stands for Complete-
ness.

Model String Table (TabEval)
EM LLM as Judge|Corr Comp Overall

Gemini-2.0|76.23 92.39 0.64 0.76 0.69

GPT-40 80.48 93.82 0.70 0.81 0.75

4.2 Primitive-Based Analysis

To systematically assess performance across SQL
query types, we annotate each ground-truth SQL
template with a set of six reasoning primitives:

* Calculate: Arithmetic operations (SUM,
COUNT, AVG, etc.)

* Compare: Value comparisons

¢ Filter: Conditional constraints (WHERE)

* Order: Sorting (ORDER BY ASC/DESC)

¢ Manipulate:
UNION, MERGE)

* Retrieve: Direct lookups of values (e.g., en-
tity or attribute selection)

Data transformations (JOIN,

Clause Combinations and Their Impact. The
system performs perfectly on single-primitive
queries such as Retrieve (“Show all EPL goalkeep-
ers”, 100%) and Order (“Rank Premier League
clubs by points”, 97.6%). It also handles Calcu-
late + Compare well (“Did Haaland score more
goals than Salah last season?”, 96.3%). How-
ever, performance drops sharply with added com-
plexity: Retrieve + Filter + Calculate (“What'’s
the average pass accuracy for midfielders under
23?”)yields 69.3%, and Calculate + Order reaches

98

50.0%. Other challenging cases involve Manipu-
late operations (e.g., table joins) scoring 75%, and
four-way compositions (e.g., Compare + Manipu-
late + Order + Calculate) showing similar results.

Impact of Query Complexity. We examine how
performance varies with the number of reasoning
primitives in a query. Figure 4 plots accuracy
against the number of primitives (k), with 95%
Wilson confidence intervals.

Complexity-Accuracy Curve (EM with 95% Cl) + LLM-Judge Accuracy Lines

Accuracy (%)

40

2 3 4
Number of primitives per query (k)

Figure 4: Accuracy Trend over Number of Clauses with
LLM as Judge scores

LILM-as-a-judge accuracy is high for retrieval-
based queries (99%) but drops to 91.2% with two
primitives. This further drops for 3 primitives and
slightly improves for queries having 4 or more
clauses, possibly due to the scarcity of such com-
plex queries generated from user questions. This
trend highlights the importance of robust eval-
uation metrics as we see divergent trends with
EM and LLM as a judge, especially for complex
queries showcasing capabilities of frontier mod-
els like gemini/gpt to interpret NL questions into
executable programs. It also suggests that future
benchmarks should include more 3 and 4-primitive
questions to better probe system limitations.

Pairwise — LLM-as-judge Accuracy (%) — Contains (Alllk)

00
50 . 07

75.0

Calculate { 81.6 843

Compare 90.8 929

et ‘|_ 78.1

Manipulate 1

Retrieve 1

812 815

75.0

84.3

Order 82.0

Category / Primitive (rows)
LLM-as-judge Accuracy (%)

95.1

& & &
& & &

®

@
&

<

o\#

. R
« @

&
Category / Primitive (columns)

Figure 5: Pairwise Primitive Accuracy with LLM as
Judge

Bottleneck Clause Pairs. Figure 5 shows accu-
racy for all pairs of reasoning primitives. Retrieve +

Compare performs well (>92%), indicating strong
compatibility between basic operations. In con-
trast, any pair involving Manipulate or Calculate
drops sharply, even when combined with other-
wise reliable primitives like Filter. These patterns
align with the decline in Figure 4, where queries in-
volving aggregation or table restructuring introduce
significant error.

5 Related Works

Text-to-SQL. Text-to-SQL research has primar-
ily framed the task as cross-domain semantic pars-
ing over static relational schemas. Benchmarks
like Spider (Yu et al., 2018b) and its extensions (Li
etal., 2023; Zhang et al., 2024; Pourreza and Rafiei,
2023) focus on generalization to unseen databases,
yet operate over fixed snapshots with limited do-
main dynamics. SyntaxSQLNet (Yu et al., 2018a)
introduced syntax-tree decoders for nested queries,
while recent advances (Zhang et al., 2023; Xie et al.,
2024) improve compositional reasoning and execu-
tion accuracy.

However, these methods assume immutable
schemas, overlook temporal drift in cell values,
and sidestep challenges like domain-specific entity
resolution (e.g., player aliases) that arise in contin-
uously evolving datasets.

Sports QA. Prior work in sports question an-
swering has largely centered on unstructured text
or multiple-choice formats. LiveQA (Liu et al.,
2020) explores NBA commentary, using timeline-
based MCQs grounded in broadcast text. AskSport
(Stoisser et al., 2025) retrieves top-k passages via
BM25+RoBERTa, but lacks symbolic execution
and numerical guarantees. These systems do not
support natural language aggregation (e.g., “av-
erage points in last 5 matches”) or multi-table
joins—capabilities native to SQL.

Our work bridges Text-to-SQL and SportsQA
by introducing SPORTSQL, a pipeline tailored to
dynamic sports data, and DSQABENCH, the first
benchmark pairing natural language queries with
executable SQL over temporally indexed, continu-
ously refreshed soccer statistics.

6 Conclusion and Future Work

SPORTSQL demonstrates how natural language
interfaces can make complex, evolving sports data
accessible to everyday users without technical ex-
pertise. The release of DSQABENCH provides a
valuable resource for benchmarking and advancing

99

research in dynamic, temporally grounded question
answering.

In future work, we plan to (1) support more
advanced query types, including comparative and
multi-turn analyses across players, teams, and sea-
sons (see Appendix (8)) and (2) generalize the
framework to additional structured domains such
as finance, healthcare, and other sports like basket-
ball or American soccer. We also plan to perform
comprehensive user studies (3) that showcase the
effectiveness and applicability of this system for
real-time analytics. This work lays the groundwork
for scalable, domain-agnostic natural language ac-
cess to complex, real-world databases.

7 Limitations

While our system performs well on natural lan-
guage to SQL translation over dynamic sports data,
several limitations remain. First, ranked queries
using LIMIT (e.g., “top 5 goal scorers”) may omit
tied results due to default lexicographic ordering,
yielding incomplete answers. Second, the system
supports only English input, limiting accessibil-
ity for multilingual users. Third, context length
constraints restrict the ability to encode real-time
metadata such as recent transfers or lineup changes.

Moreover, the current system is tailored to the
English Premier League and does not readily gen-
eralize to other sports or leagues without domain-
specific adaptation. Expanding to new domains
would require schema remapping and possible
model fine-tuning. Future work may incorporate
multilingual LLMSs, retrieval-augmented genera-
tion, and adaptive components to improve robust-
ness across languages, domains, and evolving con-
texts.

References

Nikhil Chandak, Shashwat Goel, Ameya Prabhu, Moritz
Hardt, and Jonas Geiping. 2025. Answer matching
outperforms multiple choice for language model eval-
uation. arXiv preprint arXiv:2507.02856.

Atharv Kulkarni, Kushagra Dixit, Vivek Srikumar, Dan
Roth, and Vivek Gupta. 2025. LLM-symbolic in-
tegration for robust temporal tabular reasoning. In
Findings of the Association for Computational Lin-
guistics: ACL 2025, pages 19914—19940, Vienna,
Austria. Association for Computational Linguistics.

Atharv Kulkarni and Vivek Srikumar. 2025. Re-
inforcing code generation: Improving text-to-sql
with execution-based learning. arXiv preprint
arXiv:2506.06093.

https://doi.org/10.18653/v1/2025.findings-acl.1022
https://doi.org/10.18653/v1/2025.findings-acl.1022

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, and 1 others. 2023. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36:42330-42357.

Qianying Liu, Sicong Jiang, Yizhong Wang, and Sujian
Li. 2020. LiveQA: A question answering dataset
over sports live. In Proceedings of the 19th Chinese
National Conference on Computational Linguistics,
pages 1057-1067, Haikou, China. Chinese Informa-
tion Processing Society of China.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Evaluating cross-domain text-to-SQL models and
benchmarks. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1601-1611, Singapore. Association for
Computational Linguistics.

Pritika Ramu, Aparna Garimella, and Sambaran Bandy-
opadhyay. 2024. Is this a bad table? a closer look at
the evaluation of table generation from text. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 22206—
22216, Miami, Florida, USA. Association for Com-
putational Linguistics.

Josefa Lia Stoisser, Marc Boubnovski Martell, and
Julien Fauqueur. 2025. Sparks of tabular reasoning

via text2sql reinforcement learning. arXiv preprint
arXiv:2505.00016.

Yuanzhen Xie, Xinzhou Jin, Tao Xie, Matrixmxlin Ma-
trixmxlin, Liang Chen, Chenyun Yu, Cheng Lei,
Chengxiang Zhuo, Bo Hu, and Zang Li. 2024. De-
composition for enhancing attention: Improving
LLM-based text-to-SQL through workflow paradigm.
In Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 10796-10816, Bangkok,
Thailand. Association for Computational Linguistics.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev. 2018a.
SyntaxSQLNet: Syntax tree networks for complex
and cross-domain text-to-SQL task. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1653—1663, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018b. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu,
Zhishuai Li, Sun Yang, Chi Harold Liu, Rui Zhao,

Ziyue Li, and Hangyu Mao. 2024. Benchmark-
ing the text-to-sql capability of large language mod-
els: A comprehensive evaluation. arXiv preprint
arXiv:2403.02951.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023. ACT-SQL: In-context learn-
ing for text-to-SQL with automatically-generated
chain-of-thought. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3501-3532, Singapore. Association for Computa-
tional Linguistics.

8 Appendix

8.1 Qualitative Examples

Query 1: Show me the top 10 goal scorers and
their goal count.

Generated SQL 1:

SELECT web_name, goals_scored
FROM players
ORDER BY goals_scored DESC
LIMIT 10;

Generated Table 1:

web_name goals_scored
M.Salah 27
Haaland 21
Isak 20
Wood 18
Mbeumo 16
Watkins 14
Wissa 14
Palmer 14
Cunha 14
Mateta 13

Generated Visual 1:

Top 10 Premier League Goal Scorers

scored

Goals

5 & & ; & » 3

3 e # & i 5

R o & # o o e
Player Name

Query 2: Give me the player history table for
James Milner.

Generated SQL 2:
SELECT * FROM player_history;
Generated Table 2:

100

https://aclanthology.org/2020.ccl-1.98/
https://aclanthology.org/2020.ccl-1.98/
https://doi.org/10.18653/v1/2023.emnlp-main.99
https://doi.org/10.18653/v1/2023.emnlp-main.99
https://doi.org/10.18653/v1/2024.emnlp-main.1239
https://doi.org/10.18653/v1/2024.emnlp-main.1239
https://doi.org/10.18653/v1/2024.findings-acl.641
https://doi.org/10.18653/v1/2024.findings-acl.641
https://doi.org/10.18653/v1/2024.findings-acl.641
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227

season total minutes goals assists clean
name points scored sheet
2006/07 114 2675 3 7 0
2007/08 84 2227 2 2 0
2008/09 128 3060 3 9 0
2009/10 184 3172 7 12 0
2010/11 97 2134 1 7 11
2011/12 86 1586 3 5 6
2012/13 96 1724 4 4 11
2013/14 67 1373 1 6 5
2014/15 107 1749 5 8 7
2015/16 123 2409 5 11 8
2016/17 139 3154 7 4 12
2017/18 77 1759 0 3 6
2018/19 101 1778 5 5 9
2019/20 49 924 2 2 4
2020/21 44 1056 0 2 4
2021/22 38 844 0 1 4
2022/23 42 889 0 1 3
2023/24 28 770 0 2 4

e scdAES Milner - Premier League Perfon

Figure 6: Visualization Output Query 1.

Query 3: Show me the team names, positions,
points, and strength in a color scatterplot.

Generated SQL 3:

SELECT team_name, position, points, strength

FROM teams;
Generated Table 3:
team_name position points strength
Liverpool 1 76 5
Arsenal 2 63 4
Nott’m Forest 3 57 4
Newcastle 4 56 4
Man City 5 55 4
Chelsea 6 54 4
Aston Villa 7 54 3
Bournemouth 8 48 4
Fulham 9 48 3
Brighton 10 48 3
Brentford 11 43 3
Crystal Palace 12 43 3
Everton 13 38 3
Man Utd 14 38 3
Spurs 15 37 3
Wolves 16 35 3
West Ham 17 35 3
Ipswich 18 21 3
Leicester 19 18 3
Southampton 20 10 2

premier League Team Perfarmance

Position

Figure 7: Visualization Output Query 3.

8.2 Deep-Analysis Mode: Multi-Step
Reasoning Architecture

To address the limitations of single-shot natural
language to SQL translation for complex analyt-
ical queries, we introduce a deep-analysis mode
that implements a hierarchical decomposition strat-
egy. This mode is specifically designed to handle
subjective user questions requiring comprehensive
insights that span multiple data dimensions, tempo-
ral ranges, and comparative analyses.

¢ Stage 1: Entity Extraction and Resolution The
system first extracts entities using the same work-
flow as described in section 2.1.

» Stage 2: Hierarchical Query Decomposition
After entity extraction, the system uses a plan-
ning module to break the query into focused
sub-questions. The system analyzes the query’s
intent (player insight, team comparison, multi-
season analysis) and generates 3-10 prioritized
sub-questions that address the user’s needs. Each
sub-question targets a specific data retrieval re-
quirement, with table hints and priority rankings
to guide execution.

 Stage 3: Parallel SQL Compilation and Execu-
tion Each sub-question is compiled into SQL us-
ing a prompt-based translation mechanism, with
added context for overall intent. Queries are exe-
cuted in parallel where possible, and the results
are aggregated into a comprehensive response,
preserving the semantic relationships across di-
mensions.

We further plan to extend this feature by adding an
insight generation module, extending the utility of
this work to support real-time sports analytics at
scale. To use this feature, toggle to deep analytics
on the platform.

101

