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Abstract

Accurate assessment of generated chart qual-
ity is crucial for automated document creation
and editing across diverse applications like fi-
nance, medicine, policy making, and education.
Current evaluation approaches suffer from sig-
nificant limitations: human evaluation is costly
and difficult to scale, pixel-based metrics ig-
nore data accuracy, while data-centric mea-
sures overlook design quality. Recent multi-
modal LLLM evaluators show promise but ex-
hibit concerning inconsistencies due to prompt
sensitivity and subjective biases. Existing met-
rics fail to evaluate chart quality holistically
across visual similarity, semantic alignment,
and data fidelity, often producing misleading
scores that unfairly penalize good charts while
rewarding bad ones. We introduce ChartEval,
a novel chart evaluation system that compares
generated chart images with ground truth by
leveraging scene graph parsing to decompose
chart images into hierarchical scene graphs of
chart objects, attributes, and relations. Subse-
quently, it applies graph-based similarity mea-
sures to compare candidate chart scene graphs
against reference scene graphs for measuring
chart quality. We demonstrate that our evalu-
ation approach achieves significantly stronger
correlation with human judgments compared
to existing metrics like GPT-Score, SSIM, and
SCRM using a comprehensive benchmark of
4K chart images paired with generation intents
and human quality ratings. We demonstrate the
utility of the ChartEval system as a reliable
automatic chart quality metric on diverse tasks
including language-guided chart editing, chart
reconstruction, and text-to-chart synthesis us-
ing both open-source and API-based LLMs.
Demo Website & Video: chartEval.ai

1 Introduction

Effective data visualization transforms vast
amounts of information into actionable insights,
playing a critical role across professional domains
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Demo Link: chartEval.ai

including financial reporting, scientific publishing,
policy analysis, and clinical documentation. How-
ever, creating high-quality charts requires substan-
tial technical expertise, driving growing demand for
automated chart generation systems. While chart
question-answering and captioning have been ex-
tensively studied, text-to-chart generation and chart
editing have recently gained significant attention
as Large Language Models (LLMs) enable users to
create visualizations through natural language.

Despite these advances, evaluating chart quality
presents significant challenges that existing metrics
fail to address comprehensively. Human evalua-
tion, while thorough, is costly and impractical for
scaling across large datasets with diverse visualiza-
tion types. Existing automated evaluation methods,
though scalable, suffer from fundamental limita-
tions that compromise their reliability. Data-centric
approaches such as SCRM (Xia et al., 2023) ex-
tract underlying data tables from charts, but focus
exclusively on data accuracy while ignoring visual
design quality like mismatched color schemes, mis-
leading labels, or cluttered layouts. Pixel-based
metrics like SSIM perform direct image compar-
isons at the pixel level (Yan et al., 2024), but un-
fairly penalize semantically equivalent charts that
exhibit minor visual differences due to different
rendering libraries or styling choices. LLM-as-a-
judge methods leverage multimodal LLM prompt-
ing to assess generated visualizations (Shi et al.,
2025; Xia et al., 2024), offering better scalabil-
ity but suffering from inconsistent outputs due to
prompt sensitivity and subjective biases. These lim-
itations result in evaluation systems that frequently
mischaracterize chart quality, incorrectly penaliz-
ing well-designed charts while rewarding ones with
poor visual communication.

We propose ChartEval (Fig.1) - a novel chart
evaluation system that views chart images as vi-
sual scene graphs. In this representation, visual
objects such as data marks and legends form nodes,
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Figure 1: ChartEval evaluates chart quality by (1) decomposing predicted and reference charts into visual scene graphs via
ChartSceneParse prompting using multimodal LLMs; (2) applying graph-based similarity measures: Graph-BERTScore for
semantic correctness and completeness, Hallucination Rate for spurious content, and Omission Rate for missing information.
Red crosses (<) highlight values in scene graph of candidate chart that do not match the ground truth chart.

with each object defined by attributes like colors,
sizes, and positions, while edges capture relations
such as spatial arrangements and data mappings be-
tween objects. Given a candidate chart image and
its ground truth reference, ChartEval decomposes
both charts into structured representations using
standardized grammar formats (e.g., Vega JSON
specifications) that captures overall chart seman-
tics. To enable this decomposition, we introduce
ChartSceneParse, a novel prompting technique
that leverages Chain-of-Thought reasoning (Wei
et al., 2022) to systematically extract scene graphs
from chart images using multimodal LLMs. We
compute graph similarity between the extracted
scene graphs of predicted and ground truth charts
using four complementary metrics to judge for se-
mantic correctness, completeness, hallucination of
spurious content, and omission of critical compo-
nents. Users can utilize ChartEval to evaluate
charts generated via multiple methods, including
but not limited to SOTA open-source and API-
based multimodal LLMs, considering their seman-
tic similarity, visual alignment, and data fidelity.

Lastly, we propose a new benchmark - ChartGen
comprising of 4K diverse reference chart im-
ages paired with their generation intents and hu-
man quality ratings across three diverse tasks:
language-guided chart editing, chart reconstruc-
tion, and text-to-chart synthesis. This bench-
mark was assembled by integrating four open-
source datasets - ChartCraft, ChartMimic, ChartX,
and Text2Chart31. @ We validate the perfor-
mance of ChartEval on ChartGen benchmark to
demonstrate that ChartEval achieves significantly
stronger correlation with human judgments com-
pared to existing metrics across most scenarios,
confirming its effectiveness as a reliable chart eval-
uation tool. Results show that participants find the
ChartEval metric to be an accurate and reliable
metric for fact checking generated charts.
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Our main technical contributions are:

* ChartSceneParse prompting technique that
leverages Chain-of-Thought reasoning to sys-
tematically extract hierarchical scene graphs
from chart images using multimodal LLMs
and Vega JSON grammar.

ChartEval system that compares generated
charts with ground truth by decomposing both
into scene graphs and applying graph-based
similarity measures (Graph-BERTScore, Hal-
lucination Rate, Omission Rate) for compre-
hensive quality assessment.

ChartGen benchmark of 4K diverse chart
images with human quality ratings across
chart editing, reconstruction, and text-to-
chart synthesis tasks, achieving significantly
stronger correlation with human judgments
than existing metrics.

Our main system-level contributions are:

(1) Interpretability: ChartEval promotes inter-
pretable chart evaluation by providing granular de-
scriptions of visual, semantic, and data hallucina-
tions/omissions through ChartSceneParse.

(2) Explainability: ChartEval provides logical
rationales alongside metric scores to clarify the rea-
soning behind identified hallucinations and omis-
sions. By transforming charts into hierarchical
entity representations, it transcends simple visual
similarity metrics and enables direct attribution to
chart metadata.

(3) Reliability: ChartEval assists professionals
across business, education, and finance domains by
reducing time spent fact-checking generated charts,
allowing users to focus on more productive tasks
while enhancing overall evaluation reliability.

2 ChartEval - Target Audience

ChartEval’s scene graph representation unlocks
powerful reference-free applications by transform-



ing charts into structured, analyzable formats: (1)
Automated Quality Control: Analyze scene graph
structure to detect missing legends, unlabeled axes,
or inconsistent data encodings in document edit-
ing workflows. (2) Enterprise Style Compliance:
Define corporate chart standards as scene graph
templates to ensure all generated charts follow con-
sistent color schemes, font choices, and layout
patterns across reports. (3) Cross-Chart Consis-
tency: Verify that multiple visualizations within
documents use compatible scales, similar encod-
ing principles, and coherent design languages. (4)
Data Integrity Validation: Compare extracted
scene graph data points against source datasets to
automatically flag discrepancies, incorrect calcu-
lations, or missing information without requiring
reference charts. (5) Collaborative Quality Stan-
dards: Enable teams to maintain quality standards
by detecting when charts violate readability prin-
ciples, accessibility guidelines, or domain-specific
conventions. (6) Template-Based Generation: Al-
low users to define desired chart patterns as scene
graphs, then automatically evaluate whether gener-
ated visualizations match these structural require-
ments. This structured representation transforms
chart evaluation from purely comparative assess-
ment to comprehensive quality analysis, enabling
automated editorial assistance, style enforcement,
and accuracy verification in production document
workflows where reference charts don’t exist.

3 ChartEval - System Architecture

ChartEval (Fig.1) evaluates the representational
fidelity of a candidate chart against a ground
truth chart in two stages. First, it employs
ChartSceneParse prompting to decompose the
chart images into a structured grammar representa-
tions (eg. Vega Json) with a standardized taxonomy
to construct hierarchical scene graphs. Second, we
compare the extracted chart scene graphs using
three complementary evaluation metrics: Graph-
BERTScore for semantic similarity, Hallucination
Rate for spurious content detection, and Omission
Rate for missing information assessment.

3.1 Chart Scene Graph Parsing

ChartEval decomposes chart images into struc-
tured scene graphs in three steps:

(1) Chart Structure parsing describes data visu-
alization designs into a declarative JSON specifi-
cation language by leveraging the Vega visualiza-
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tion grammar' (Satyanarayan et al., 2016). Vega
grammar represents charts as hierarchical compo-
sitions of primitive graphical properties such as
view dimensions, data definitions, map scales, axes,
legends, marks (like lines, points, bars), and sym-
bols that encode the underlying data, neatly orga-
nized into nested groups with explicit coordinate
systems and data bindings. By structuring the ex-
traction process around these core Vega primitives,
ChartSceneParse systematically converts visual
chart elements into their corresponding declara-
tive representations, enabling precise reconstruc-
tion and analysis of the original visualizations.
We employ ChartSceneParse prompting, an
LLM-based Chain-of-Thought reasoning (Wei
et al., 2022) technique to systematically extract
chart elements as Vega structural primitives: (i)
mark types (line, bar, point) and chart layout, (ii)
titles and axis labels with exact transcriptions, (iii)
axis components (domains, ticks, and grid lines),
visual properties (stroke, fill, opacity), and (iv) data
points with both visual coordinates and semantic
values. We provide prompt instructions to use the
identified axis domains and tick positions as spatial
anchors for accurate coordinate mappings of data
points, pairing pixel positions with actual data val-
ues. The extraction follows Vega’s hierarchy—first
identifying the root frame, then cataloging nested
components (axes, marks, titles) with their func-
tional roles. Each extracted element is mapped
to Vega’s declarative format where visual proper-
ties become explicit JSON attributes and spatial
relationships are encoded through coordinate trans-
formations. For charts with incomplete informa-
tion, the system infers reasonable scales while flag-
ging approximations. The LLM is prompted to
provide exact textual transcriptions of all visible
labels and numerical values to mitigate any hallu-
cinations. Few-shot examples guide the LLM to
enforce Vega grammar compliance such that it pre-
serves the proper z-ordering and coordinate system
relationships between chart annotations to maintain
visual parity with the source image.
(2) Self-Reflection Prompting: LLM-based pars-
ing may be prone to hallucinations which need
to be mitigated to avoid spurious results. Hence,
we utilize Altair API ? to convert the intermediate
Vega specification back into a chart image and its
corresponding data table. The intermediate chart

"https://vega.github.io/vega/docs/
Zhttps://altair-viz.github.io/



image, its data table, and the reference chart image
are sent to GPT-5 to illicit a match score (0-10) and
a comparative feedback via Reflexion (Shinn et al.,
2023) to correct the generated Scene Graph in the
next iteration. We continue this iterative process
until match score > 8 or maximum of 3 rounds.
(3) Scene Graph Construction — The Vega gram-
mar JSON is converted into a directed graph
G = (V, E)) where vertices represent chart compo-
nents and edges encode their relationships. Node
Creation: The algorithm generates typed ver-
tices v; € V for each functional component—
title nodes (vgge), chart-type nodes (vgype), axis
nodes (Vx-axis, Vy-axis)» and data-point nodes (vgaca; )-
Each node stores attributes extracted from cor-
responding Vega elements: data nodes contain
both visual coordinates (Zpixel, Ypixel) and seman-
tic values (Zdata, Ydata), While axis nodes store do-
main information and labels. Edge Formation:
Directed edges e;; € FE establish semantic re-
lationships — data-to-axis edges (vdata,, Ux-axis)
and (Vdata, , Vy-axis) €ncode which axes govern each
data point’s positioning, while sequential edges
(Vdata; » Udata;, ) CONNECt consecutive points to pre-
serve spatial ordering. Graph Attributes: Node
and edge attributes capture multi-level abstractions
— visual properties (colors, styling), semantic con-
tent (trends, statistical summaries), and structural
metadata (chart type, dimensions). This graph rep-
resentation Gehayy Standardizes heterogeneous visu-
alizations into a unified format enabling systematic
structural comparison while preserving both geo-
metric layout and data semantics.

3.2 Graph-based Scoring

After obtaining scene graphs Gg = (Vi Egt)
and Gpred = (Vpred; Fpred) from ground truth and
predicted charts respectively, we employ Graph-
BERTScore (G-BS) (Saha et al., 2021), a semantic-
level metric which extends the BERTScore (Zhang
et al., 2019) for graph matching. Each edge in the
graph is considered as a sentence and BERTScore
is used to calculate the score between a pair of
predicted and ground-truth edges. Both graphs
are decomposed into semantic statements S =
{s1, s2,..., sk} encoding chart components (e.g.,
“X-axis represents: Year”, “Data trend: increas-
ing from 2010 to 2020). We use pre-trained
BERT (Devlin et al., 2019) contextual embeddings
e; = BERT(s;) and compute pairwise cosine sim-
ot pred

v J

—a —5ea- between all statement
[leZ [I-l1e5™"11

ilarities M;; =
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pairs. Following recent work in graph evalua-
tion (Ghanem and Cruz, 2024), we calculate:

ChartCraft
5550
1000

Editing

Image + NL

SSIM
Synthetic

ChartMimic
500/500
1000
Editing/Reconstruction
Image + NL
GPT-Score
Human

ChartX
6000
1000
Reconstruction
Image
SCRM & GPT-score
Synthetic

Text2Chart31
1423
1000

Desc-to-Chart
Text

CodeBLEU
Synthetic

Statistic

# charts (test)
# human rated
Task

Input Format
Eval Metric
Source

Table 1: Comparative data statistics

(i) Correctness: Average of the maximum simi-
larity scores between each predicted statement in
Sprea and all ground truth statements Sg: P =

1 ‘Spred| .
‘Spred| 2]21 maxl
(ii) Completeness: Average of the maximum sim-
ilarity scores between each ground truth state-

ment in Sg and all predicted statements Spreq:
R = iy Y% max; My,
We perform direct scene graph comparison via:

(iii) Hallucination Rate (Ghanem and Cruz, 2024)
quantifies spurious information in predictions. Hal-
lucinations are defined as the presence of an entity
or relation in predicted graph that is not present
in the gold graph. We extract structured element
sets &y and Epreq from the ground truth and pre-
dicted graphs, encompassing data points (z;, v;),

axis labels, chart metadata, and visual properties.

|€prea—Eetl
|gprcd‘ ’

fuzzy matching with e-tolerance for numerical val-

ues to account for minor coordinate differences
while preserving semantic accuracy.

(iv) Omission Rate (Ghanem and Cruz, 2024) ac-
counts for critical missing elements that compro-
mise chart completeness, such as absent data points,
unlabeled axes, or missing titles. Omissions are de-
fined as missing entities or relations in the predicted
graph that are present in the gold graph. Mathemat-

. |Eat—Epred|
ically, Opae = gt‘gigt‘pre

M;;, analogous to precision.

analogous to recall.

Mathematically, Hiae We employ

4 System Demonstration

Figure 2 shows the ChartEval demo app (chartE-
val.ai) which has been created using Gradio, and
can use OpenAl GPT-40 or Claude Sonnet-3.7
for chart evaluation. The interface includes a
panel to upload pairs of predicted/reference chart
images and an alternative option to select from
pre-uploaded examples. The user can choose
which LLM to use for the evaluation from the UI
and also reset the interface for new evaluations.
ChartEval shows an evaluation report with scores
for completeness, correction, Hallucination Rate,
and Omission Rate, along with an explanation on
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ul Chart Evaluation System

 Quick Examples.

Chart 2 (Predicted/Generated) ] X

~ Chart Images

@ Quick Examples

Choose from pre-loaded examples

Example 2: Market Share Analysis

[ Example Loaded: Example 2: Market Share Analysis
Description: Pie chart displaying market share distribution among

competitors

Files:
o Ground Truth: examples/ex_2/ground_truth.png

o Predicted: examples/ex_2/output.png

@ If you see placeholder images, replace the file paths in the code with your

actual example images.

< Or Upload Your Own

Chart 1 (Ground Truth) i — ] 1R

Evaluation Completed Successfully!

ul Chart Analysis Summary
© Chart 1 line chart with O data points
o Chart 2: line chart with O data points

¥ Overall Scores
o Correctness: 1.000
o Completeness: 1.000
Semantic Similarity F1:1.000
o Hallucination Rate: 0.000 (lower is better)
o Omission Rate: 0.000 (lower is better)

o Structural Difference: 0.000 (lower is better)

Figure 2: Demo App Ul for ChartEval(chartEval.ai)

Chart 1 (Ground Truth) Chart 2 (Predicted/Generated) =

A
s

Metric Score

Hallucination Rate 0.333
Model Used Claude

Hallucination Count 4
Correctness (Precision) 1.000

Omission Rate 0.000

Completeness (Recall) 1.000

F1 Score 1.000 Omission Count

Figure 3: ChartEval Example

the structural differences between compared charts.
System License: ChartEval is a proprietary sys-
tem developed for research experimentation, and is
not intended for any commercial purposes.

Usage Scenario Example: Figure 3 shows an ex-
ample of our tool usage where a user can upload
a chart image edited based on user request - "Add
a data point (30,25,90) on the line chart" and eval-
uates it against the reference desired chart. user
generated chart erroneously has added more than
one data point which is accurately captured by
ChartEval as part of H-rate. Further, axis rotation
and deviation in rendering quality due to different
software does not affect our evaluation system.

S Experiments - User Study

Datasets: Table 1 summarizes our proposed
ChartGen benchmark that comprises of four chart
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generation datasets spanning three real-world tasks:
instruction-based chart image editing, chart re-
drawing, and text-to-chart generation.

(1) ChartCraft (Yan et al., 2024) is a dataset of
synthetically generated line and bar charts covering
style, layout, format, and data-centric edits. We
evaluate the language-based chart editing task to
modify plot attributes based on user’s intent while
preserving the integrity of the original plot.

(2) ChartMimic (Shi et al., 2025) contains human-
curated visualization from academic documents
and scientific papers, covering 22 common chart
types. ChartMimic evaluates two tasks: (a) Direct
Mimic, where models generate code to reproduce
a given chart, and (b) Customized Mimic, where
models generate code incorporating new data while
preserving the original chart’s design.

(3) ChartX (Xia et al., 2024) contains synthetic
chart images for re-drawing tasks, where models
generate Python code and compare rendered out-
puts against ground-truth charts.

(4) Text2Chart31 (Pesaran Zadeh et al., 2024)
provides chart data across 31 unique plot types,
including 3D, volumetric, and gridded charts. We
evaluate the description-to-chart task, where each
input sample consists of an input textual description
and corresponding reference chart.

Settings: We use GPT-4V and Claude-3.7 for
ChartSceneParse prompting; GPT-40, Claude
Sonnet-3.5, and Qwen2.5-VL:32b for chart gen-
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Metric Model ChartCraft ChartMimic

ChartX Text2Chart31

SSIM SCRM  GPT-S¢  CB  O-G SSIM SCRM _ GPT-S¢  CB

0-G

SSIM_ SCRM  GPT-S¢  CB O-G O-C | SSIM  SCRM  GPT-S¢  CB

GPTdo
Sonnet-3.5
Qwen25-VL

0.09
0.10
0.15

0.13 0.25 0.34
0.15 0.23 0.33
0.18 0.28 0.36

0.76
0.75
0.79

0.11
0.13

0.15 0.27 0.29
Correct. 0.16 0.24 0.31
3 0.26 0.37

0.17 0.19

0.7
0.77

0.79

0.24
0.25
0.28

0.29 0.33 0.38
0.27 0.31 0.37
0.29 0.33 0.39

0.84
0.86
0.88

0.85
0.86

0.18
0.19
0.22

0.19 0.25
0.19 0.27
0.23 0.29

0.26

0.89 0.28

GPT-do
Sonnet-3.5
Qwen2.5-VL

0.10
0.08
0.19

0.14 023 0.31
0.12 0.21 0.28
0.19 0.24

0.74
070  0.72

0.12
0.10

0.12
0.15
0.20

0.28
g 021
Compl. 023

035 076 0.77 0.18

0.76
0.75
0.73

0.22
0.77 0.23
0.75° 0.27

0.26 0.31 0.35
0.24 0.28 033
0.28

0.81
0.82
0.81

0.82
0.84
0.82

0.20
0.21
0.24

0.19 0.24
022 0.35
0.25

0.22
0.23

0.34 0.36 0.28 0.28

GPT-d0
Sonnet-3.5
Qwen2.5-VL

0.07
0.08
0.10

0.11 0.15
0.12 0.15
0.12

0.18
0.19
0.19

0.45
0.49
0.40

0.06
0.08
0.09

0.13
0.17
0.14

0.15
0.19

H-Rate 0.19

0.14

0.42
0.48
0.45

0.05
0.52° 0.10
0.08

0.13
0.15
0.15

0.20
0.19
0.22

0.24
0.35
0.27

0.50
0.54
0.52

0.5
0.56
0.54

0.09
0.11
0.08

0.12
0.14
0.14

0.18
0.20
0.13

0.21
0.24
0.23

GPT-do
Sonnet-3.5
Qwen2.5-VL

0.13
0.14
0.18

0.15
0.17
0.19

0.19
0.20
0.24

0.22
0.24
0.26

0.51
0.54
054 057

0.08
0.10
0.16

011
0.13
0.18

0.18
0.21
0.23

O-Rate 0 Z:S

0.54
0.55
0.57

0.12
0.14
0.19

0.14
0.15
0.19

0.23
0.22
0.24

0.28
0.27
0.29

0.48
0.49
0.51

0351
0.53
0.54

0.08
0.12
0.17

0.11
0.14
0.18

0.19
0.18
0.19

0.20
0.22
0.23

0.61 0.55

Table 2: Correlations of ChartEval and existing metrics with human ratings. Correct: Correctness, Compl:

Completeness, H:

Hallucination, O: Omission, CB: CodeBLEU, GPT-Sc: GPT-Score, O-C(G): Our proposed ChartEval with Claude Sonnet-3.5
(GPT-4) for ChartSceneParse prompting. * indicates statistical significance over GPT-Score (p < 0.005) under Wilcoxon’s Signed Rank test.

eration tasks. More experiment settings in Sec. A.
Baselines Metrics: We compare ChartEval with
(1) GPT-Score (Shi et al., 2025; Xia et al., 2024)
uses GPT-40 to compare the candidate and ground
truth chart images on a 0-100 scale (normalized to
0-1) based on prompt-based scoring criteria.

(2) SSIM (Wang et al., 2004; Yan et al., 2024)
assesses the degree to which the candidate chart
visually mirrors the expected outcome, capturing
subtle and nuances in the pixel space.

(3) SCRM (Xia et al., 2023) evaluates extracted
chart information by converting model-predicted
linearized CSV tokens into triplet format, enabling
transpose-invariant evaluation of chart data.

(4) CodeBlue (Ren et al., 2020) evaluates the simi-
larity between the predicted and ground truth code
for respective charts as in (Pesaran Zadeh et al.,
2024). Note that code execution success rate is a
standard metric for code generation tasks where
unsuccessful executions are assigned a score of 0.

6 Results - User Evaluation

We collected human quality ratings for 4K test
charts (1K per dataset) from three annotators,
achieving high inter-annotator agreement (o =
{0.74,0.82,0.76,0.85}) across all evaluation met-
rics. Table 2 presents Pearson correlations between
various metrics and these human ratings across
different dataset-model combinations. ChartEval
consistently demonstrates stronger correlations
with human judgments than existing metrics for
both proprietary and open-source models across
all four datasets. This superior performance indi-
cates that our metric evaluates chart semantics more
accurately than baseline approaches. Our analy-
sis reveals several key advantages of ChartEval
over existing approaches. Unlike SSIM, our metric
avoids over-sensitivity to pixel-level perturbations
while successfully capturing meaningful variations
in visual attributes such as color schemes, text
fonts, and sizing. Code-based metrics like Code-
BLEU fail to evaluate spatial misalignment of chart
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components, which are typically under-specified
in generated code. ChartEval offers a decisive ad-
vantage over SCRM, which exclusively evaluates
underlying data accuracy while ignoring spatial
layout and visual design features. Our approach
surpasses GPT-Score by mitigating subjective bi-
ases inherent in prompt-based evaluation methods.
ChartEval is the only metric that provides com-
prehensive evaluation across semantic, visual, and
data dimensions simultaneously, establishing itself
as a reliable chart quality assessment tool.

Qualitative Examples: Figures 4-6 illustrate
ChartEval’s performance across different scenar-
ios. Figure 4 demonstrates accurate evaluation of a
2D area plot where ChartEval correctly identifies
near-perfect similarity with zero hallucination rates,
avoiding the over-penalization issues of pixel-based
metrics. Figure 5 shows ChartEval successfully
detects a hallucinated data point in the 3D surface
plot, with the Correctness score (0.87) appropri-
ately capturing both spatial inaccuracy and color
scheme deviation. Limitation: Figure 6 reveals a
key limitation that ChartEval struggles with low-
resolution input images where the underlying LLM
(GPT-4V) hallucinates during scene graph parsing,
leading to inaccurate evaluation results. This limi-
tation suggests that ChartEval performs optimally
with high-quality images and may require prepro-
cessing steps for low-resolution scenarios. Overall,
these examples confirm ChartEval provides more
nuanced assessment than existing metrics.

7 Conclusion

We introduced ChartEval, an evaluation system
that converts chart images into visual scene graphs
and compares their graph-based similarity with
ground truth. Extensive experiments across chart
reconstruction, text-to-chart synthesis, and editing
tasks demonstrate the effectiveness of ChartEval
as a reliable chart assessment tool. Future work
will explore finetuning VLMs on low resolution
chart images for better data extraction.
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Detailed Metrics

10
Metric Score
o8 LLM Provider = Claude
GraphBERT Correctness 0.976
bl GraphBERT Completeness 0.976
& GraphBerT F1 0.976
as
Hallucination Rate 0.000
Hallucination Count 0
02
Omission Rate 0.000
LI Omission Count e
Graph Edit Distance o
Normalized GED 0.000
10
& OVERALL PERFORMANCE ASSESSMENT
" Accuracy Score: 10/10 Perfect replication with no discrepancies in data or visualization elements.
Key Strengths:
Exact matching of all 6 ruit data points (Mango, Kiwi, Banana, Orange, Pineapple, Apple)
s Identical axis ranges (0-10g Glucose, 0-8a Fructose)
£ Consistent color scheme using burgundy markers on pale yellow background
Y critical tssues:
None detected
“\ DETAILED BREAKDOWN BY CHART ELEMENTS
o Title and Labels:
Ground Truth: “Fruit Sugar Content Distribution - Glucose vs. Fructose Composition”
Predicted: Identical title and axis labels

Assessment: Perfect match in all text elements

Description

Chart analysis performed using Claude

Semantic similarity precision

Semantic similarity recall

Overall semantic similarity

False information rate

Number of hallucinated elements

Missing information rate

Number of omitted elements

Raw structural differences

Normalized structural similarity

Data Accuracy:

Al fruit positions match exactly:

Mango: (19 glucose, -2g fructose)
Kiwi (~4g glucose, ~2g fructose]
Bananc: (~4g glucose, ~4g fructose)
Orange: (-6g glucose, ~7g fructose)

Pineapple: (+8g glucose, ~5g fructose)
Apple: (-39 glucose, -5 fructose)

Visual Design:
Identical scatter plot implementation
Consistent grid lines and marker sizes
Matching color scheme and plot dimensions

1. SPECIFIC ERRORS WITH EXAMPLES

No errors detected in any aspect of the visualization.

Figure 4: Example of 2D area plot generated by GPT-4o. ChartEval correctly identifies near-perfect chart similarity with zero
hallucination or omission rates, demonstrating accurate evaluation of high-quality generated charts.
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Detailed Metrics

Metric Score
LLM Provider Claude
GraphBERT Correctness 0.871
08
0  GraphBERT Completeness 1.000
0.4 GraphBERT F1 0.931
02 .
Hallucination Rate 0.077
Hallucination Count 1
10
0,75
Omission Rate 0.000
0, omission Count °
0.75
10 Graph Edit Distance 1
Normalized GED 0.333

@ OVERALL PERFORMANCE ASSESSMENT

Key Strengths:

Critical Issues:

Description
Chart analysis performed using Claude
Semantic similarity precision
Semantic similarity recall

Overall semantic similarity

False information rate

Number of hallucinated elements
Missing information rate

Number of omitted elements

Raw structural differences

Normalized structural similarity

Accuracy Score: 9/10 Based on the high GraphBERT F1 score (0.931) and very low hallucination

Accurate reproduction of the complex 3D surface topology
Consistent color gradient mapping from blue (low values) to red (high values)

Preservation of key mathematical features in both f(x) and solution plots

Minor axis labeling discrepancy in the presentation of x and y coordinates

Slight variation in viewing angle between ground truth and predicted plots

Figure 5: Example of 3D surface plot where ChartEval successfully identifies a hallucinated data point causing curvature
distortion. Graph-BERTScore Correctness also accurately detects deviation in the color scheme (Correctness score = 0.87).
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4 Chart1 (Ground Truth) A
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@ OVERALL PERFORMANCE ASSESSMENT

Accuracy Score: 9.8/10 Based on the near-perfect F1 score (1.000) and minimal graph edit distance (0.026), with only minor axis labeling omissions.

Key Strengths:
Perfect reproduction of three data series (2000, 2007, 2010) across all 12 countries
€xact matching of peak values (e.g, Moldova's ~1000 ratio in 2007)

Consistent color coding and line styles (dotted red for 2007, solid blue for 2010, dashed yellow for 2000)

Critical Issues:
Minor omission in x-axis labeling granularity

slight differences in grid line presentation
A DETAILED BREAKDOWN BY CHART ELEMENTS

Title and Labels:
Ground Truth: "Maternal mortality ratio" with country names on x-axis
Predicted: Identical title and country labeling
Assessment: Perfect match in primary labeling elements

Detailed Metrics: Data Accuracy:

Key points precisely matched (eg. Benin's spike of ~570in 2007)

Metric scoxe. Description

Ruwanda

Consistent grid sustem with minor presentational differences

A 2007,
LUK Provider Claude Chart analysis perforned using Claude
GraphBERT Correctness  ©.871 Semantic sinilarity precision Visual Design:
Identical ine chartimplementation
GraphBERT Completeness  1.000 Semantic sinilarity recall e e
GraphBERT F1 0.931 Overall semantic similarity
1 SPECIFIC ERRORS WITH EXAMPLES
Hallucination Rate .07 False infornation rate
Data Errors:
Hallucination Count 1 Number of hallucinated elements
None detected in dota point vlues
Onission Rate 6.000 Missing information rate e
Onission Count o Number of onitted elements Minor differences in axis gid lne presentation
Stight voriation n lobel positioning
Graph Edit Distance 1 Raw structural differences
‘Added Elements (Hallucinations):
Normalized GED 0.333 Normalized structural sinilarity e

Figure 6: Example of ChartEval limitation on low-resolution images. The predicted chart contains significant data hallucinations
and omissions that ChartEval fails to detect due to image quality constraints. Low-resolution inputs cause the underlying LLM
(GPT-4V) to hallucinate during scene graph parsing, leading to inaccurate evaluation results.
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