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Abstract

There has been a growing research interest in
in-image machine translation, which involves
translating texts in images from one language
to another. Recent studies continue to explore
pipeline-based systems due to its straightfor-
ward construction and the consistent improve-
ment of its underlined components. However,
the existing implementation for such pipeline
often lack extensibility, composability, and sup-
port for real-time translation. Therefore, this
work introduces ImageTra—an open-source
toolkit designed to facilitate the development
of the pipeline-based system of in-image ma-
chine translation. The toolkit integrates state-
of-the-art open-source models and tools, and
is designed with a focus on modularity and ef-
ficiency, making it particularly well-suited for
real-time translation. The toolkit is released at
https://github.com/hour/imagetra.

1 Introduction

In-image machine translation (IIMT) refers to the
task of translating texts in an image from one lan-
guage to another, and generating a new image that
embeds the translations (Mansimov et al., 2020;
Tian et al., 2023, 2025). Ultimately, the back-
ground and text style of the translations inherit the
characteristics of the original texts, as illustrated
in Figure 1. Such systems have a significant value
for research and a wide range of applications, in-
cluding platform-independent automatic subtitle
translation, manga translation, and real-time trans-
lation from camera input. Although commercial
products like Google Translate offer real-time trans-
lation features, their underlying technical solutions
are not transparent and difficult to customize for
other purposes or downstream applications.

Recent studies continue to explore pipeline-
based systems due to their straightforward construc-
tion (Qian et al., 2024; Vaidya et al., 2025; Kaing
et al., 2025). These systems typically consist of

ImageTra

Figure 1: A translation example using ImageTra.

three main components: optical character recogni-
tion (OCR), machine translation (MT), and scene
text editing (STE). The pipeline-based systems re-
main the state-of-the-art compared to end-to-end
solutions (Salesky et al., 2024), primarily because
of the task difficulty and data bottlenecks where
the models training rely heavily on synthetic data
in end-to-end approaches (Li et al., 2025). In con-
trast, the data available for each component of the
pipeline-based systems is richer and multilingual
(Long et al., 2022; Bañón et al., 2020), making
it easier to enhance individual components and,
in turn, improve the overall performance of the
pipeline-based systems.

Although open-source tools are available for
each component thanks to active research commu-
nities, they were developed and improved inde-
pendently, without consideration for compatibility
with other components when building a pipeline-
based system. While assembling these tools into
an IIMT pipeline may seem straightforward, re-
searchers and practitioners still need to invest a
significant amount of effort in implementation. Al-
though several studies have released code to repro-
duce their pipelines (Qian et al., 2024; Vaidya et al.,
2025), existing implementations often lack extensi-
bility and composability, and they do not support
real-time translation.

This work aims to reduce that burden by in-
troducing ImageTra—an open-source toolkit de-
signed to facilitate the development of IIMT sys-
tems. For composibility, our toolkit enable re-
searchers and practitioners to plug and play various
state-of-the-art open-source models and tools to
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build IIMT systems capable of translating text in
images, videos, or a live camera video (real-time
translation)1. For extensibility, the toolkit is feasi-
ble to customize each component to support other
tools or models, which is beneficial for both aca-
demic and industrial research. Both composibility
and extensibility of our toolkit are demonstrated in
Section 3.3. Additionally, for real-time translation,
our toolkit has features to enhance efficiency such
as translation caching, text tracking, and API host-
ing. For accessibility, our toolkit is implemented
in Python and is pip-installable, and is released un-
der the MIT license, permitting unrestricted use,
modification, and redistribution.

For evaluation, we assess the efficiency and qual-
ity of various pipeline configurations, with partic-
ular focus on OCR, and analyze the impact of the
translation caching and text tracking features on
efficiency in Section 4. The experimental results
demonstrate that both features significantly reduce
the pipeline’s inference time.

2 Related Works

In-Image Machine Translation. This task is re-
cently getting many attentions due to the advance-
ment of machine learning techniques. Many works
have explored the end-to-end approaches (Mansi-
mov et al., 2020; Salesky et al., 2021; Ma et al.,
2023; Lan et al., 2024; Tian et al., 2023, 2025),
which are not generalized yet particularly on the
scene text scenario. Meanwhile, the pipeline-based
systems have been explored as well by integrat-
ing OCR, MT, and STE systems into a pipeline
(Qian et al., 2024; Vaidya et al., 2025; Kaing et al.,
2025). The implementation of these works are
mostly opened mainly to reproduce their results,
which are not easy to be adapted especially to sup-
port real-time translation.

Optical Character Recognition. This task is
a long-standing task in computer vision, and mod-
ern OCR systems face increasingly complex chal-
lenges, such as handling document-level and scene
text images. These tasks are typically divided into
two subtasks: text detection (Zhou et al., 2017;
Baek et al., 2019; Liao et al., 2020) and text recog-
nition (Shi et al., 2016; Bautista and Atienza, 2022;
Du et al., 2025). A wide range of open-source
OCR tools are available, many of which continue
to improve in terms of accuracy, efficiency, and

1A video is technically a set of images and the IIMT task
can be generalized to a video as well as a live camera video.

language coverage. For example, but not limited
to, DocTR supports multiple model architectures,
allowing users to choose specific models for detec-
tion and recognition. Similarly, OpenOCR supports
several detection and recognition models including
its own state-of-the-art models (Du et al., 2025).
On the other hand, tools like EasyOCR and Pad-
dleOCR emphasize support for diverse languages,
with PaddleOCR also being recognized for its com-
putational efficiency (Cui et al., 2025).

Machine Translation. Text-based machine
translation provides an efficient way to transform
information from one language into another (Bah-
danau et al., 2014; Vaswani et al., 2017). Many ef-
fective techniques have been introduced for improv-
ing translation quality of low-resource languages
such as data augmentation (Sennrich et al., 2016;
Kaing et al., 2024), multilingual training (Dabre
et al., 2020; Costa-Jussà et al., 2022), and multi-
modal training (Elliott et al., 2016; Hirasawa et al.,
2020; Gu et al., 2021), among others. Multilingual
models offer other advantages especially their effi-
ciency, as they can handle diverse languages within
a single model. Therefore, our toolkit begins with
support for the NLLB200 model family (Costa-
Jussà et al., 2022), which is considered the state-of-
the-art in multilingual machine translation.

Scene Text Editing. This task involves modi-
fying texts within natural scene images while pre-
serving the visual consistency and contextual in-
tegrity of surrounding elements. SRNet was the
first model introduced for this purpose, explic-
itly separating foreground and background com-
ponents (Wu et al., 2019). Subsequent works ex-
tended this approach to better handle irregular or
curved text (Yang et al., 2020), enable character-
level editing (Roy et al., 2020; Qu et al., 2023),
and incorporate diffusion-based frameworks (Zeng
et al., 2024; Fang et al., 2025). Subramanian et al.
(2021) extended SRNet to edit videos and incor-
porated additional techniques to make the edited
text in videos smoother. It is worth noting that
these studies primarily focus on model architec-
ture and are restricted to editing English text. Be-
sides the fact that SRNet remains impressive and
has consistently been used as a baseline, it has
recently been adapted to perform cross-lingual
editing, particularly within the IIMT pipeline, in-
cluding English↔Hindi (Vaidya et al., 2025) and
English→Japanese (Kaing et al., 2025). Hence, our
toolkit begins with SRNet support in this version.
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Figure 2: Overview of a pipline in ImageTra. Green indicate proposed features to enhance real-time translation.

3 The Toolkit: ImageTra

ImageTra is a playground where researchers and
practitioners can quickly build an IIMT pipeline
using the existing tools and models. The pipeline
in ImageTra is composed of three main compo-
nents: RecoDetector, Translator, and Editor.
The composed pipeline can then be applied to an
image, a video, or a live stream video. Additional
features include translation caching, text tracking,
and API hosting for server-client use cases, as il-
lustrated in Figure 2.

3.1 Main Components

RecoDetector. This component takes an image
as input, detects text regions, recognizes the texts
inside the regions, and returns the coordinates of
the regions and the recognized texts. Currently,
our toolkit wraps four popular open-source OCR
tools under this component: DocTR2, OpenOCR3,
EasyOCR4, and PaddleOCR5.

Translator. This component takes recognized
texts from RecoDetector and translates them into
a specific language. We wrap the family of NLLB
models (Costa-Jussà et al., 2022) and the TexTra
API service6 under this component.

Editor. This component aims to convert the
translated texts from Translator into pieces of
images and embed them into the whole scene im-
age. The component takes several inputs, including
the coordinates of detected texts and the transla-
tions. Two types of editors can be created in this
component. The first one is a renderer that outputs
a rendered translation. To fit the translation into the
region of its original text, the font size is estimated

2https://github.com/mindee/doctr
3https://github.com/Topdu/OpenOCR
4https://github.com/JaidedAI/EasyOCR
5https://github.com/PaddlePaddle/PaddleOCR
6https://mt-auto-minhon-mlt.ucri.jgn-x.jp

based on the character length of the translations and
the width and height of the region. It’s worth noting
that the lengths of the translation and its original
text are often different, which may not fit the trans-
lation nicely. The second type of editor returns a
fused translation that shares the same background
and text style as its original text. For the second
type of editor, we wrap the conventional SRNet
model (Wu et al., 2019), which also leverages the
rendered translation as part of its generation.

3.2 Real-Time Video Translation

To improve the efficiency of real-time translation,
we introduce three additional features: translation
caching, text tracking, and an API-based service.

Translation Caching. When translating texts
in video, texts repetition across video frames is
inevitable and using a translator to translate them
all the time is not efficient especially when the
translator model is large and the inference speed
is slower. This could make the pipeline slow and
less practical for real-time translation. We address
this by introducing a simple solution by caching
the already translated sentence using a dictionary
that maps a source text with a target text.

Text Tracking. Translation caching eliminates
redundant translator calls by reusing previously
processed texts. To further improve efficiency, we
apply text tracking to match detected regions across
consecutive frames, allowing translated text from
the prior frame to be directly reused in the cur-
rent frame. This reduces computation for both the
translator and the editor, thereby accelerating the
pipeline. Specifically, the tracker identifies text re-
gions matched between the previous and current
frames. If a matched region in the previous frame
has a score greater than or equal to that of its coun-
terpart in the current frame, the region in the current
frame is directly replaced with the translated text

3

https://github.com/mindee/doctr
https://github.com/Topdu/OpenOCR
https://github.com/JaidedAI/EasyOCR
https://github.com/PaddlePaddle/PaddleOCR
https://mt-auto-minhon-mlt.ucri.jgn-x.jp


image from the previous frame. For tracking, we
leverage the existing multi-object tracking library—
boxmot7, which supports a variety of algorithms,
including botsort (Aharon et al., 2022), strongsort
(Du et al., 2023), deepocsort (Maggiolino et al.,
2023), bytetrack (Zhang et al., 2022), and ocsort
(Cao et al., 2023).

API. The pipeline can also be served as an API,
which allows us to run the pipeline on a server and
call the pipeline from a local machine. This will
enable broader application especially for real-time
translation scenario where a local machine has a
camera but no GPU.

3.3 Usage Examples
Here we present a basic example for building an
IIMT pipeline and how to use it to translate texts
in an image and a video with a few lines of code.
Specifically, we first create the three components
and then integrate them into the pipeline named
Image2Image. Since this pipeline can take multiple
images as input, we can use it to translate a video
frame-by-frame. Lastly, the translated image and
video are saved simply using a save function.
from imagetra.detector.paddleocr import PaddleOCRRecoDetector
from imagetra.translator.nllb import NLLBTranslator
from imagetra.editor.render import RenderEditor
from imagetra.pipeline.img2img import Image2Image

recodetector = PaddleOCRRecoDetector(lang='en')
translator = NLLBTranslator(

'facebook/nllb-200-distilled-600M',
trg_lang='jpn_Jpan',
cache=True, # translation cache

)
editor = RenderEditor('<font_path>')

pipeline = Image2Image(
recodetector=recodetector,
editor=editor,
translator=translator,

)

from imagetra.common.media import Image
img = Image.load('image.jpeg')
result = pipeline([img])[0]
result.img.save('result.jpeg')

from imagetra.common.media import Video
video = Video.load('video.mp4')
results = pipeline(video.frames)
for i, result in enumerate(results):

video.replace(result.img, i)
video.save('result.mp4')

You may have noticed that the translation
caching is activated when the Translator compo-
nent is created with cache=True. We can further
speed up the pipeline on the video translation us-
ing a tracker. To do that, we just need to replace
Image2Image with Video2Vdieo and specify the
tracker type during inference, e.g, bytetrack. The
rest of the codes are the same.

7https://github.com/mikel-brostrom/boxmot

pipeline = Video2Video(...)
results = pipeline(video.frames, tracker_type='bytetrack')

As there are plenty of other tools and models
that are not directly supported yet, we can also in-
tegrate them into the pipeline by simply inheriting
the base class and overriding the main function of
each component as follows.

from imagetra.detector.base import BaseRecoDetector
from imagetra.translator.base import BaseTranslator
from imagetra.editor.base import BaseEditor

class CustomRecoDetector(BaseRecoDetector):
def recodetect(self, imgs):

# code here
return bboxs, det_scores, texts, reco_scores

class CustomTranslator(BaseTranslator):
def translate(self, texts, src_lang, trg_lang):

# code here
return translations

class CustomEditor(BaseEditor):
def edit(self, texts, imgs):

# code here
return edited_imgs

The above example are explained in python code
to show how a pipeline can be constructed and
customized. Beside this, we can quickly run the
pipeline using a command line interface, of which
details can be found in our project homepage.

4 Evaluation

We assume that the overall quality of the
pipeline primarily depends on the intrinsic qual-
ity of its underlying components, which we ex-
pect will continue to be actively improved and
domain-generalized by their respective commu-
nities. Therefore, our evaluation focuses on the
pipeline’s efficiency and its trade-off with quality,
particularly in the context of real-time translation.
We analyze the impact of both translation caching
and text tracking features, while also examining op-
timal configurations, with particular attention to the
OCR component. To simulate a realistic real-time
translation scenario, our evaluation is conducted on
the DSText video dataset from ICDAR2023 (Wu
et al., 2023), which provides ground-truth coordi-
nates of English text and their transcriptions. Fur-
thermore, the pipeline is constrained to translating
only one frame at a time.

4.1 Impact of Translation Caching

Figure 3 compares the latency of the NLLB model
family with 600M, 1.3B, and 3.3B parameters. The
models translate the DSText dataset transcriptions
into German, one frame at a time. Latency is mea-
sured as the average time per frame (in seconds)

4
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Figure 3: Translation latency of NLLB models across
different sizes, with and without translation cache. The
y-axis is the latency per frame in seconds.
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Figure 4: F1-score and average latency of the pipeline
with different OCRs.

for each MT model. The results show that larger
models tend to have slower inference speeds, as
expected, and that model depth significantly con-
tributes to higher latency. Our translation caching
substantially improves inference speed, achieving
a twofold increase in this experiment.

4.2 Performance of OCRs

Figure 4 compares four OCR tools in terms of la-
tency and accuracy. For latency, we measure the
inference time of the pipeline using different OCRs,
while keeping the MT model (NLLB-600M) and
the editor (RenderEditor) fixed. For accuracy,
we compute F1-scores on the OCR outputs fol-
lowing the evaluation protocol of the end-to-end
text detection and recognition task in ICDAR2019
(Nayef et al., 2019). Specifically, we first observed
that the DSText dataset contains labels marked
as “##DONT#CARE##”, which are typically used
when text in the image is unreadable by annotators
due to low resolution or other distortions. Follow-
ing the ICDAR2019 protocol, both ground-truth
regions labeled as “##DONT#CARE##” and pre-
dicted regions overlapping with them are excluded
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Figure 5: F1-score and average latency of the pipeline
using different trackers.

from evaluation (Nayef et al., 2019). After this
filtering, true positives are defined as the number
of matched texts between the ground truth and pre-
dictions, denoted |M |. Two texts are considered
matched if (i) the intersection-over-union (IoU)
of their regions exceeds 0.5, and (ii) their surface
forms are exactly identical. Precision P and recall
R are then computed as |M |

|T | and |M |
|G| , respectively,

where |T | is the number of predicted texts and |G|
is the number of ground-truth texts. The F1-score
is calculated as 2·P ·R

P+R .
The results show that OpenOCR achieve the best

accuracy while PaddleOCR has the best inference
speed. This findings is equivalent what is claimed
by these tools, for instance, in each of their home
page, the OpenOCR teams claims that their tool
outperform PaddleOCR and the PaddleOCR teams
present their tool as a lightweight OCR system. On
another hand, EasyOCR maintains similar perfor-
mance with PaddleOCR but has the worst inference
time. The performance of DocTR is the worst but
maintains similar inference speed with OpenOCR.
To this end, this result suggest OpenOCR for accur-
racy and PaddleOCR for inference speed.

4.3 Impact of Text Tracking

Since PaddleOCR is the most efficient system
among the four OCRs, we use it to establish a
baseline performance and evaluate the impact of
trackers on pipeline translation, as shown in Fig-
ure 5. The results demonstrate the efficiency gains
from using trackers, which reduce the average la-
tency per frame by up to 0.34 seconds. However,
a trade-off between accuracy and efficiency is ob-
served; for example, the fastest tracker, ocsort,
achieves a 0.02 lower F1-score compared with the
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refers to ground truth where both coordinates and texts are provided in the dataset. The image in the second row
under “Input” is used to highlight the “##DONT#CARE##” regions since it is identical with the image above it.

baseline. To this end, the results suggest employ-
ing bytetrack or botsort in the pipeline, as they
achieve performance comparable to the baseline
while reducing latency.

4.4 Qualitative Analysis

Figure 6 presents an output example translated
from English to Japanese using pipelines that in-
tegrate different OCR systems and editors. For
comparison, we also include the output generated
from ground-truth detection and recognition (GT),
excluding the “##DONT#CARE##” regions. The
editors compared are Render and SRNet; for the
latter, we retrained an English-to-Japanese SRNet
model on synthetic data following the same set-
tings as Kaing et al. (2025). The example shown is
a cropped frame from a video in the DSText dataset.
We selected a slow-motion video and chose a rela-
tively sharp frame, further cropping it to enhance
readability in the illustration.

Overall, the pipeline produces reasonable results
across different OCRs. The outputs are generally
consistent, with only minor variations in handling
off-angle or blurry text and in the detected coor-
dinates. Among them, OpenOCR achieves results
most closely aligned with the ground truth (GT),
consistent with the findings in Figure 4. When SR-
Net is used, the translations of the word “daiya”
are clearly readable, and the original text is cleanly
erased—except for the small green dot above the

letter i, which is preserved. These results are no-
table given that the model was trained solely on
synthetic data. Nevertheless, the model contin-
ues to face challenges with more complex cases,
such as text over colorful backgrounds or charac-
ters with higher visual complexity (e.g., Kanji). We
believe that integrating state-of-the-art scene text
editors could substantially enhance the quality of
the pipeline’s outputs.

5 Conclusion

This work introduces ImageTra—an open-source
toolkit for building pipeline-based IIMT systems
that leverage state-of-the-art models and tools. The
toolkit supports real-time translation and integrates
two key features to enhance efficiency: translation
caching and text tracking. Our evaluation demon-
strates that these features significantly reduce infer-
ence latency without compromising accuracy.

While the current implementation yields promis-
ing results, there remains considerable room for
improvement in both efficiency and accuracy. For
instance, real-time translation could be enhanced
by adopting lightweight, unified models that op-
erate in a more end-to-end manner. Furthermore,
translation quality could be improved by leverag-
ing contextual information rather than translating
words or phrases in isolation. Pursuing these direc-
tions is a core part of our development roadmap as
we work toward practical, real-world applications.
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