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Abstract

Recent research has delved into Retrieval-based
In-Context Learning (RetICL), leveraging the
power of large language models (LLMs) for
text classification. Despite its promise, a persis-
tent challenge lies in effectively retrieving rele-
vant demonstrations from a support set. Many
existing approaches have overlooked the essen-
tial role of linguistic label information in guid-
ing this retrieval process. To bridge this gap, we
present Contrastive Linguistic Label Retrieval-
based In-Context Learning (CLL-RetICL), a
novel framework designed to identify the most
relevant and impactful sentences without al-
tering the model parameters. Our approach
uniquely integrates sentence-query similarity
with sentence-label similarity, enabling a more
nuanced and comprehensive evaluation of rele-
vance. We tested CLL-RetICL across diverse
text classification tasks and evaluated its perfor-
mance on various LLMs. Experimental results
demonstrate that CLL-RetICL consistently out-
performs previous retrieval methods that do not
incorporate linguistic label information. These
findings highlight the critical importance of lin-
guistic label-aware selection in enhancing text
classification accuracy.1

1 Introduction

A linguistic label represents the semantics of a cat-
egory and plays a vital role in text classification
tasks. Human annotators rely on the meaning con-
veyed by these labels to accurately categorize text.
Depending on the specific requirements of a cus-
tom classification task, a linguistic label can often
be substituted with synonyms or more descriptive
phrases to better align with the task’s context.

Recently, researchers have begun exploring few-
shot in-context learning (ICL) using LLMs for text
classification tasks (Luo et al., 2024; Yu et al.,
2023; Chae and Davidson, 2023; Rouzegar and

1Our code is available: https://github.com/Toby28/
CLLRetICL.

Figure 1: An illustration of CLL-RetICL with N = 2
and k = 3, demonstrating a prediction between Positive
and Negative classes. Here, y0 and y1 represent the
vector representations of the linguistic labels "Negative"
and "Positive", respectively, in a pre-trained sentence
embedding model. Similarly, s0, s1, . . . represent the
vector representations of the sentences in a support set
within the same pre-trained sentence embedding model.

Makrehchi, 2024). Instead of selecting static, pre-
defined demonstration sets for ICL, RetICL adopts
a dynamic, context-sensitive approach (Zhao et al.,
2021; Lu et al., 2022; Xu et al., 2024; Wu et al.,
2023). At its core, adaptive demonstration selec-
tion leverages a specialized retriever to intelligently
curate tailored demonstrations for each task in-
put. RetICL has gained popularity because prior
research suggests that context-insensitive demon-
strations can limit the full potential of LLMs (Luo
et al., 2024; Wu et al., 2022). Despite RetICL con-
sistently surpassing approaches based on random
or static demonstrations, it still remains an open
challenge to retrieve relevant demonstrations.

To address the problem, previous researchers
have proposed various strategies, including k-
nearest neighbors (KNN), NwayKshot, and
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(a) KNN (b) NwayKshot (c) Clustering-Based (d) Ours

Figure 2: A comparison of four different approaches to RetICL strategies. (a) KNN suffers from two key weaknesses:
the copying effect and misleading by similarity. (b) NwayKshot always ignores any linguistic cues conveyed through
the labels. (c) The performance of clustering-based approaches is constrained by challenges in accurately estimating
category centers, typically denoted by triangles, as well as by the omission of query similarity considerations. (d)
Our method avoids the copying effect, prevents misleading similarity, incorporates linguistic label information,
utilizes fixed label category centers, and integrates query similarity.

clustering-based RetICL (Li et al., 2024; Pecher
et al., 2024; Zhang et al., 2022a). However, these
methods suffer from various challenges, as shown
in Figure 2. To identify the most effective demon-
strations, we analyzed failure cases. Our investi-
gation revealed that there always exists a specific
combination of demonstrations that enables LLMs
to classify accurately. Additionally, our analysis
uncovered that failure cases are error-prone: they
often lie closer to the representation of an opposing
linguistic label or near the representation of an in-
correct label cluster center, despite their similarity
to the query. In contrast, when the demonstrations
are correctly combined, they align more closely
with the representation of the intended linguistic
label. A detailed discussion of these findings is
presented in Section 3.

Building on these observations, we present
a novel RetICL framework, CLL-RetICL (Con-
trastive Linguistic Label Retrieval-based In-
Context Learning) as illustrated in Figure 1.
Our approach introduces a trade-off method that
computes a relevance score by integrating both
sentence–query and sentence–label similarities,
thereby effectively leveraging label information.
Furthermore, to optimize the effectiveness of CLL-
RetICL, we developed a universal N-way K-shot
prompt structure applicable to all text classification
tasks. This prompt design mitigates the copying
effect and prevents LLMs from being misled by
overly similar examples. Moreover, we demon-
strate that the sentence embeddings of linguistic
labels can serve as clustering centers—generated
by a pre-trained sentence embedding model—to
address the challenge of estimating clustering cen-
ters. Additionally, we initiate four variations for

integrating the linguistic label style into RetICL
and evaluate their effectiveness on four text classifi-
cation datasets. Finally, to assess the generalizabil-
ity of CLL-RetICL, we conduct experiments using
Gemini (Team et al., 2024), Llama (Dubey et al.,
2024), and Mistral (Jiang et al., 2024). Empirical
experiments show that CLL-RetICL consistently
outperforms both previous RetICL baselines and
other variants across multiple datasets and LLMs.
Ablation studies further reveal several key findings:
(1) Effectiveness across variations: CLL-RetICL
maintains strong performance across different k-
shot settings, various pre-trained sentence embed-
ding models, and multiple similarity functions. (2)
Component dependency: The proposed method
relies on the original component responsible for
calculating sentence-query similarity; omitting this
component degrades performance. (3) Impact of
hyperparameters: Trade-off hyperparameters have
a minor influence on the final classification accu-
racy. The following summarizes our main contri-
butions:

• We present a novel perspective in which sen-
tence embeddings of linguistic labels serve as
highly accurate clustering centers, free from
the biases introduced by limited support data
and independent of data-driven constraints.

• We propose an innovative method, CLL-
RetICL, which employs a rigorous relevance
scoring metric that leverages linguistic label
information to select high-quality demonstra-
tions for improving LLMs in text classifica-
tion tasks. Our approach does not require
fine-tuning the pre-trained weights of either
the sentence embedding models or LLMs.
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• We conduct extensive experiments to evaluate
the proposed method, achieving better perfor-
mance on most datasets compared to existing
RetICL methods.

2 Related Work

Text Classification via LLMs. Text classifica-
tion via LLMs has recently demonstrated excep-
tional generalizability and reasoning capabilities,
attracting significant research interest in their ap-
plication to text classification tasks (Zhang et al.,
2024; Wang et al., 2024; Fields et al., 2024). Ex-
isting methods can be broadly divided into two
groups, depending on whether they involve adapt-
ing the parameters of LLMs or not. The first
group concentrates on fine-tuning the parameters
of LLMs to excel in custom text classification tasks
(Chae and Davidson, 2023; Zhang et al., 2024;
Yu et al., 2023; Jin et al., 2023). However, this
approach generally demands significant compu-
tational resources to load the full LLM model
parameters, and fine-tuning these models can of-
ten diminish their generalizability. The other cat-
egory is known as ICL, or prompt engineering
(Guo et al., 2024; Luo et al., 2024; Fan et al.,
2024). While this method avoids the need to up-
date LLM model parameters, it heavily depends
on well-designed prompts, making it challenging
to guide LLMs to consistently meet human expec-
tations (Shi et al., 2023; Mavromatis et al., 2023;
Edwards and Camacho-Collados, 2024).

RetICL. RetICL can generally be divided into
two categories: approaches that retrain or fine-tune
a retriever for specific text classification tasks, and
approaches that utilize pre-trained language models
without additional fine-tuning. An intuitive strategy
for RetICL involves directly selecting a few similar
sentences, leveraging readily available demonstra-
tion retrievers like those based on sentence em-
beddings. Existing methods include KATE (Liu
et al., 2021), Z-ICL (Lyu et al., 2022) and ICL-
ML (Milios et al., 2023). However, recent research
has shown that selecting the most similar demon-
strations can lead to the copying effect and mis-
leading by similarity, degrading performance in
text classification tasks (Olsson et al., 2022; Zhang
et al., 2022b). To mitigate the issue of homogeneity
in retrieval, clustering retrieval approaches ensure
the selection of a diverse and representative set of
demonstrations, which is critical to its effectiveness
(Luo et al., 2024). Several methods exist, including

Figure 3: A comparison of the correct and incorrect
demonstration combinations is presented. On the left,
NwayKshot retrieves the top-k sentences most similar
to the query from each group; however, this approach
fails to classify the query correctly. In contrast, on the
right, CLL-RetICL does not rely solely on proximity to
the query, resulting in an accurate classification.

NwayKshot (Li et al., 2024), Votek (Su et al., 2022)
and D-CALM (Hassan and Alikhani, 2023). While
these approaches leverage label information and
offer improvements, accurately estimating the clus-
tering center for each category remains challenging.
This difficulty arises because clustering center esti-
mation is a data-driven process that depends on a
support set.

The second category of RetICL involves fine-
tuning or retraining a retriever model to rank rel-
evant sentences using either in-domain or out-of-
domain datasets for text classification tasks. There
are established methods, such as PEFT (Tunstall
et al., 2022), UDR (Li et al., 2023) and Ambig-
ICL (Gao et al., 2023). These methods utilize label
information and feedback to optimize model pa-
rameters, highlighting the essential role of labeled
data in yielding valuable insights for text classifica-
tion tasks. However, they often demand substantial
computational resources and considerable time to
construct a retriever.

3 Linguistic Label Retrieval Hypothesis

Previous studies have shown that retrieving sen-
tences closest to the query and applying a
clustering-based selection method can enhance the
diversity of demonstrations while mitigating the
risk of misleading results due to similarity (Li et al.,
2020; Luo et al., 2024). Therefore, a question
arises: are the clustering centers reliable? To ex-
plore this further, we analyze the distribution of
clustering centers, as shown in Appendix C. Vary-

1577



ing the proportion of fully supported data from 10%
to 100% reveals that the distribution of clustering
centers shifts according to the number of sentences
in the support set. Notably, negative-labeled cluster-
ing centers tend to be less distinct within a certain
range compared to positive-labeled ones. These
findings suggest that clustering center estimation
is inherently data-driven and prone to bias, mak-
ing it difficult to accurately identify true clustering
centers. On the other hand, by analyzing failure
cases, we find that, for a given query, there is an
optimal combination of demonstrations that can
effectively guide LLMs to classify the query cor-
rectly. However, relying solely on the top-ranked
closest demonstrations retrieved does not always
yield accurate results. An example of this limita-
tion is illustrated in Figure 3. To further investigate,
we compared cases where the top-k closest demon-
strations led to incorrect results versus cases where
randomly selected demonstrations produced cor-
rect outcomes. We provide five examples of such
instances in Appendix C. We found that incorrect
nearest-neighbor demonstrations exhibit an error-
prone tendency, being either closer to the linguistic
representation of an opposite label, closer to the
center of an incorrect label cluster, or both—despite
being similar to the query. Conversely, in correct
combinations, the selected demonstrations exhibit
a stronger alignment with the correct tendency. For
example, sentences with a Negative label tend to
show higher similarity to the linguistic word "Neg-
ative" and the same holds for "Positive" label. Al-
though correct demonstrations align closely with
their respective cluster centers, we observe excep-
tions where a correct output contains sentences that
are nearer to the center of an incorrect label cluster.
Furthermore, even sentences closest to their correct
cluster centers can still lead to classification errors
due to inaccurate estimation of those centers.

Based on these observations, we hypothesize
that the vector representations of linguistic labels
should be explicitly incorporated into the retrieval
process rather than relying on cluster center esti-
mation. Compared to traditional clustering center
estimation, this approach offers two advantages: (1)
Independence from data Bias – The linguistic la-
bel clustering center is not data-driven, preventing
bias introduced by the support set. (2) Leveraging
linguistic information – Linguistic labels play a
crucial role in zero-shot ICL, as LLMs rely entirely
on these labels for text classification tasks.

4 Our Method: CLL-RetICL

Preliminary. Let the query set Q represent a task,
where q ∈ Q denotes a sample query for which we
aim to find an answer via an LLM. In the context of
RetICL, multiple demonstrations (d1, . . . , dk) are
retrieved from a support set C. Each demonstration
di consists of a sentence and its label, (si, yi) ∈ C,
where yi belongs to the label set Y .

Overview. We present CLL-RetICL, a novel Ret-
ICL approach leveraging information extraction
between demonstrations and linguistic labels to
predict the correct label for a given query input qi
(Wang et al., 2023). Unlike earlier methods (Liu
et al., 2021; Su et al., 2022; Li et al., 2022; Milios
et al., 2023) that create input-label pairs by retriev-
ing sentences closest to a given query, CLL-RetICL
selects demonstrations that balance a trade-off by
augmenting the corresponding label while penaliz-
ing others.

CLL-RetICL involves three key steps, as illus-
trated in Figure 1: (1) Retrieving more relevant
sentences by integrating sentence-query similarity
with sentence-label similarity (detailed in Section
4.1), (2) Forming demonstrations by organizing
the retrieved demonstrations into an N-way K-shot
format (discussed in Section 4.2), and (3) Making
inferences through ICL (explained in Section 4.3).

4.1 Linguistic Label Retriever
RetICL employs a retrieval mechanism to iden-
tify k examples from C that are most relevant to a
given query q. This process is guided by a similar-
ity function, sim, which quantifies the relationship
between a sentence si and a query q. The corre-
sponding formula is as follows:

scoreRetICL = sim(q, si) (1)

To build on this hypothesis, CLL-RetICL incor-
porates sentence-query similarity with sentence-
label similarity. Rather than solely considering
the similarity distance between a sentence si and
the query q, CLL-RetICL employs the following
formula:

scoreCLL-RetICL = sim(q, si)

+ w1 ∗ log
expsim(si,yi)

1
n−1

∑y ̸=yi
y∈Y expsim(si,y)

(2)

where w1 is a trade-off hyperparameter that bal-
ances the relative importance of the corresponding
terms in the objective function.
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CLL-RetICL considers the relationship between
sentences and linguistic labels by utilizing a simi-
larity function. It increases the score based on the
similarity between a sentence and its assigned cor-
rect label (referred to as the positive label) while
decreasing the score based on the similarity be-
tween the sentence and other labels (referred to as
negative labels). Additionally, we propose several
variations and evaluate their performance through
experiments. These include Positive Label Aug-
ment (PLA), Negative Label Penalty (NLP), and
Contrastive Label (CTL). The corresponding for-
mulas are provided below:

scorePLA = sim(q, si) + w1 ∗ sim(si, yi) (3)

scoreNLP = sim(q, si)− w1 ∗ 1
n−1

∑y ̸=yi
y∈Y sim(si, y)

(4)

scoreCTL =sim(q, si) + w1 ∗ sim(si, yi)

− w2 ∗
1

n− 1

y ̸=yi∑

y∈Y
sim(si, y)

(5)

where w1 and w2 are trade-off hyperparameters.
Our methods ensure that the selected sentences

(1) maintain a safe distance from q to prevent the
copying effect (Olsson et al., 2022; Zhang et al.,
2022b), (2) incorporate the information between
sentences and linguistic labels and (3) align closely
with the requirements of the custom text classifica-
tion task.

4.2 N-way K-shot
We adopt a clustering-based retrieval method, as
prior research suggests that N-way K-shot effec-
tively addresses the issue of homogeneity (Li and
Qiu, 2023). Here, we partition all sentences into N
sub-groups, aiming to cluster sentences that share
the same label. Our retriever selects top K high
demonstrations according to above score formula
from each sub-group, resulting in a final set of
N ×K demonstrations.

4.3 Inference
Finally, CLL-RetICL constructs a prompt by
concatenating N-way K-shot input-label pairs
(s1, y1), (s2, y2), . . . , (sk, yk) for each N-way la-
bel, along with the query input q. This prompt
is then fed into a LLM, which generates a predic-
tion using argmaxy∈Y P (y|prompt). The univer-
sal prompt template for each text classification task
is outlined in Table 7 in Appendix B.

5 Experimental Analysis

5.1 Experimental Setup

We evaluate multiple LLMs to identify factors af-
fecting classification accuracy across four tasks.
Key results are summarized in the main text, with
additional details presented in the Appendix D.

5.1.1 Datasets
We conduct experiments on four widely recognized
text classification tasks: SST2 (Socher et al., 2013),
CoLA (Warstadt et al., 2018), CARER (Saravia
et al., 2018) and BBCnews (Greene and Cunning-
ham, 2006). Similar to conventional text classifi-
cation methodologies, we treat the training sets as
support sets and the test sets as query sets, while
disregarding development sets if they exist. The
detailed data statistics are provided in Appendix A
and summarized in Table 5.

5.1.2 Baselines
We compare CLL-RetICL with the zero-shot ap-
proach as well as various RetICL methods.

Zero-shot predicts argmaxy∈Y P (y|q) without
using any demonstrations (Radford et al., 2019;
Brown et al., 2020). This method utilizes LLMs
and linguistic label information to enhance text
classification.

Z-ICL leverages physical neighbors to avoid se-
lecting demonstrations that are overly similar to
the query. Furthermore, it introduces the use of
synonymous labels to mitigate the copying effect,
highlighting the potential for effectively utilizing
the linguistic meaning of labels (Lyu et al., 2022).

KATE employs a standard KNN approach to
retrieve demonstrations, which remains the most
widely used method in RetICL (Liu et al., 2021).

NwayKshot is a clustering-based retrieval
method designed to tackle the challenge of
homogeneity in demonstrations (Li et al., 2024).

Cluster-TopN builds on NwayKshot but applies
k-means clustering to identify the cluster centers. It
then selects the demonstration closest to the center
from each sub-group (Zhdanov, 2019; Hassan and
Alikhani, 2023).

Votek selects k representatives from N sub-
groups through a voting mechanism to best rep-
resent the group (Su et al., 2022).
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LLM
Zero-shot Z-ICL KATE Cluster-TopN Votek Nwaykshot CLL-RetICL

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
SST2

Gemini 93.29.56 .933.002 92.31.29 .923.005 94.17.42 .941.004 94.93.47 .950.003 94.16.33 .942.004 94.67.47 .947.002 95.17.37 .952.004
Llama 94.83.62 .948.004 96.21.54 .962.006 94.78.56 .948.004 93.61.63 .936.005 94.77.47 .948.004 90.82.71 .908.003 95.06.43 .951.004
Mistral 90.08.32 .901.002 90.72.51 .906.003 93.78.21 .938.003 94.88.37 .949.004 94.34.46 .943.002 94.34.29 .943.003 95.60.21 .956.003
Avg. 92.73 .927 93.08 .930 94.24 .942 94.47 .945 94.42 .944 93.27 .933 95.28 .953

CoLA
Gemini 68.26.56 .663.008 60.21.67 .583.007 70.08.84 .641.008 80.32.49 .765.005 81.43.63 .783.007 82.74.72 .795.008 83.60.91 .801.006
Llama 61.74.89 .585.006 52.34.72 .511.007 68.36.83 .650.005 71.62.76 .711.007 61.42.69 .607.004 74.52.71 .686.008 77.66.84 .742.003
Mistral 74.30.34 .697.006 71.52.56 .666.003 78.71.56 .752.004 84.29.56 .811.005 84.48.56 .821.006 85.23.56 .816.007 85.52.56 .828.004
Avg. 68.10 .648 61.36 .587 72.38 .681 78.74 .762 75.78 .737 80.83 .766 82.26 .790

CARER
Gemini 59.20.51 .493.004 65.85.60 .607.002 70.85.52 .621.002 61.65.49 .533.004 59.95.67 .541.004 66.25.41 .596.002 72.65.67 .669.005
Llama 56.75.31 .488.005 65.70.60 .594.003 61.95.49 .537.006 57.35.32 .499.002 59.50.71 .526.003 64.25.54 .579.004 69.15.32 .635.002
Mistral 56.50.41 .506.002 67.10.48 .617.004 68.89.37 .601.003 60.25.29 .515.003 58.75.50 .498.002 72.10.43 .670.003 76.85.20 .717.004
Avg. 57.48 .495 66.22 .606 67.23 .586 59.75 .516 59.40 .521 67.53 .615 72.88 .674

BBCNews
Gemini 87.00.31 .869.013 87.70.45 .872.007 90.99.21 .909.005 85.30.64 .850.010 86.20.35 .858.011 88.60.56 .884.008 89.50.37 .892.006
Llama 94.89.56 .948.008 93.43.41 .933.004 94.70.31 .946.006 93.60.41 .935.004 96.00.21 .960.008 96.10.52 .960.007 96.80.50 .967.005
Mistral 91.70.26 .915.005 90.6031 .903.002 92.99.29 .929.006 83.10.46 .826.017 83.00.41 .825.007 87.20.29 .872.010 88.10.49 .879.009
Avg. 91.20 .910 90.57 .902 92.89 .928 87.33 .870 88.40 .881 90.63 .905 91.47 .912

Table 1: Text classification results evaluated on four datasets using three LLMs. Bold indicates the best result and
underline indicates the result worse than the best result.

Gemini Llama Mistral Avg.

Method ACC F1 ACC F1 ACC F1 ACC F1
SST2

Baseline 94.67.47 .947.002 90.82.71 .908.003 94.34.29 .943.003 93.27 .932
PLA 95.44.28 .954.003 93.46.31 .934.004 94.34.36 .943.005 94.41 .943
NLP 95.38.30 .954.003 92.31.16 .922.004 96.37.46 .963.002 94.68 .946
CTL 95.44.35 .954.002 91.65.62 .916.004 95.11.28 .951.003 94.06 .940
Ours 95.1737 .952.004 95.06.43 .951.004 95.60.21 .956.004 95.28 .953

CoLA
Baseline 82.74.72 .795.008 64.52.71 .586.008 85.23.56 .816.007 77.49 .732
PLA 83.31.54 .798.006 73.53.86 .656.008 85.31.75 .832.008 80.72 .762
NLP 82.45.43 .791.005 64.05.79 .579.008 85.04.64 .823.005 77.18 .731
CTL 82.74.86 .794.007 62.79.62 .579.004 85.04.95 .824.011 76.86 .732
Ours 83.60.91 .801.006 77.66.84 .742.003 85.52.58 .828.004 82.26 .790

CARER
Baseline 66.25.41 .596.002 64.25.54 .579.004 72.10.43 .670.003 67.53 .615
PLA 65.75.64 .598.005 61.65.52 .556.011 65.55.61 .596.008 64.32 .583
NLP 67.35.39 .619.004 64.40.25 .583.007 70.00.38 .644.005 67.25 .615
CTL 66.90.45 .605.007 65.40.50 .586.005 67.80.44 .615.007 66.70 .602
Ours 72.65.67 .669.005 69.15.32 .635.002 76.85.20 .717.004 72.88 .673

BBCNews
Baseline 88.60.56 .884.008 96.10.52 .960.007 87.20.29 .872.010 90.63 .905
PLA 89.40.35 .891.005 96.70.60 .966.003 89.50.29 .895.002 91.86 .917
NLP 89.00.37 .889.002 96.40.56 .964.004 88.40.42 .883.006 91.20 .875
CTL 90.30.54 .901.003 96.50.71 .964.003 89.40.63 .893.006 92.06 .919
Ours 89.50.37 .892.006 96.80.50 .967005 88.10.45 .879.009 91.47 .912

Table 2: A comparative analysis of various linguistic
label retrieval methods across four datasets.

5.1.3 Experimental Details

LLMs. We conduct experiments using three
LLMs: Gemini (Team et al., 2024), Llama (Dubey
et al., 2024) and Mistral (Jiang et al., 2024). Specif-
ically, we utilize fixed versions of these models,
namely Gemini 1.5 Flash, Llama 3.2-90b-Vision,
and Mistral Large. These recently developed mod-
els demonstrate strong performance and excep-
tional generalization across a variety of tasks.

Similarity function. We define a similarity func-
tion, sim, as the cosine similarity between two
sentence embeddings. These embeddings are gen-
erated using the all-MiniLM-L6-v2 model from the
SBERT (Reimers and Gurevych, 2019).

Implementation details. For all LLMs, we use
two random seeds and report the average results.
We set the default number of demonstrationsk per
class to 3 for all experiments. We adopt the typi-
cal prompt design methodology proposed by (Luo
et al., 2024). To ensure accurate and consistent
results in text classification tasks, we employ fixed
hyperparameters for LLMs, thereby minimizing
variability and limiting creative outputs. Further
details are provided in Appendix B.

5.2 Experimental Results

5.2.1 Main results
Table 1 presents the results obtained using vari-
ous retrieval strategies across three LLMs. The
zero-shot approach, which does not rely on retriev-
ing relevant demonstrations from the support set,
leverages only the semantic understanding of la-
bels. This strategy enables LLMs to achieve a base-
line level of accuracy without additional context.
Although Z-ICL mitigates the Copying Effect by
leveraging physical neighbors and synonym labels,
it only marginally outperforms the zero-shot base-
line. However, it lags behind other methods, likely
due to the inherent complexity and challenges as-
sociated with selecting appropriate synonym labels.
KATE achieves better performance than zero-shot
and Z-ICL by utilizing the most similar demon-
strations to the query. However, it is susceptible
to errors caused by misleading similarities. As a
result, KATE still struggles to perform well on the
CoLA and CARER datasets. To mitigate the effects
of misleading similarities, NwayKshot generally
outperforms KATE in most scenarios. However, as
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Figure 4: A comparison of the performance of various
shot configurations is presented across a baseline and
four linguistic label retrieval strategies. Evaluations for
the SST2 task (using Llama) are on the left, while results
for the CARER task (using Mistral) appear on the right.

Figure 5: A comparison of the performance of various
sentence embedding models is presented, with evalua-
tions conducted on SST2 on the left and CARER on the
right.

noted earlier, NwayKshot still struggles to identify
an optimal combination of demonstrations. VoteK
attempts to further select more effective and rel-
evant demonstrations from the support set. How-
ever, this method still fails to utilize label informa-
tion effectively. On the other hand, Cluster-TopN
leverages label information from a distributional
perspective but does not account for the linguis-
tic meaning of the labels. While both VoteK and
Cluster-TopN show improvements in accuracy for
certain tasks, they fall short in addressing a fun-
damental issue: the importance of linguistic label
meaning in text classification tasks. This oversight
leads to inconsistent performance and highlights
their inherent weaknesses. Finally, our proposed
method, CLL-RetICL, significantly outperforms all
baseline approaches. On average, CLL-RetICL im-
proves RetICL’s performance by an absolute mar-
gin of 2–15% over the zero-shot strategy and by
0.57–13.48% over existing RetICL-based methods.
These results demonstrate consistent performance
gains across all datasets and LLMs by effectively
leveraging the relationships between linguistic la-
bels and their corresponding sentences.

Comparison to Variants of Label-Related Ret-
ICL. We use the NwayKshot method as our base-
line, a retrieval-based approach that does not uti-
lize linguistic label information. To enhance per-

formance, we evaluate four proposed strategies
that incorporate linguistic label related retrieval
methods, with the results summarized in Table 2.
All four strategies outperform the baseline across
all datasets and LLMs, demonstrating the bene-
fits of leveraging label information. Among these,
CLL-RetICL consistently delivers the best perfor-
mance, achieving an average absolute improvement
of 0.8–5.3% over the NwayKshot method. While
PLA, NLP, and CTL also surpass the baseline, they
show minor performance drops on certain tasks. In
contrast, CLL-RetICL not only outperforms these
methods in most tasks but also achieves consistent
gains in classification accuracy.

5.3 Ablation Study
We conduct detailed ablation studies to analyze the
significance of each component in CLL-RetICL. In
our ablation study, the NwayKshot approach serves
as the baseline, as shown in the following tables
and figures.

Effect of the number of shots. The number
of shots significantly impacts the performance of
LLMs. We explore experiments comparing four
different shot configurations for each label class:
1-shot, 3-shot, 5-shot, and 8-shot. Figure 4 presents
partial results, while the complete results are pro-
vided in Appendix D.1. The results in Figure 4
demonstrate that CLL-RetICL consistently outper-
forms the baseline methods across different values
of k. While some alternative strategies occasionally
achieve better performance than CLL-RetICL, they
lack robustness and often fall short of both CLL-
RetICL and the baselines. This indicates that CLL-
RetICL delivers more stable performance across a
range of scenarios. Based on the experimental re-
sults, we selected k = 3 as the hyperparameter for
the number of shots, as CLL-RetICL demonstrated
higher improvement with a 3-shot configuration.

Effect of sentence embedding model. Pre-
trained sentence embeddings play a crucial role
in ICL. The objective is to evaluate the effective-
ness of the proposed methods by comparing them
against four off-the-shelf sentence embedding mod-
els. Figure 5 illustrates the average performance
of three LLMs across two datasets. CLL-RetICL
consistently outperforms the baseline and the other
three strategies across all sentence embedding mod-
els, with the exception of SimCSE (Gao et al.,
2021) in the CARER dataset. We attribute the
relatively lower performance of our method with
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Figure 6: A comparison of the performance of various
similarity functions is presented, with evaluations con-
ducted on CoLA on the left and CARER on the right.

SimCSE to the fact that SimCSE has already em-
ployed contrastive learning to fine-tune the pre-
trained sentence embedding model. This suggests
that our approach is generally more effective for
pre-trained sentence embeddings that do not uti-
lize contrastive learning strategies. Compared to
other sentence embedding models, MiniLM demon-
strates the greatest improvement over the baseline;
therefore, we have chosen it as our default. Full
results are presented in Appendix D.2.

Effect of similarity function. To evaluate the
effect of the similarity function in our CLL-RetICL
model, we compare its performance using another
similarity function, L1, as described in (Winata
et al., 2023). The results are presented in Figure 6
with detailed results provided in Appendix D.3.

CLL-RetICL performs effectively with both co-
sine and L1 similarity functions. However, ex-
periments show that cosine similarity outperforms
the L1 function, suggesting that it better leverages
CLL-RetICL’s potential. Consequently, we use co-
sine similarity as the default.

Effect of w/o similarity between demonstra-
tion and query. Because our proposed additional
component can serve as a scoring criterion for se-
lecting demonstrations, the question arises whether
the similarity score between demonstrations and
the query should be included in CLL-RetICL.

We evaluate the problem and present the results
in Figure 7. Our findings indicate that the per-
formance without the component addressing the
similarity between queries and sentences is con-
sistently lower than that of linguistically labeled
RetICL. In fact, it performs even worse than the
baseline. These results highlight that the similarity
component between queries and sentences is an es-
sential part of the retrieval process. Detailed results
are presented in Appendix D.4.

Figure 7: A comparison of the retrieval process with
and without incorporating the similarity score between
the query and the sentence is illustrated on BBCNews
dataset. The baseline is represented by a dashed line.

Effect of trade-off hyperparameters. We use a
trade-off approach to balance the impact between
sentences and their label set. Based on the results of
the previous experiment, sentence-query similarity
remains a crucial factor in selecting relevant demon-
strations. This raises an important question: how
should we trade off between the original method,
which retrieves the closest demonstrations to the
query, and our approach? To address this question,
we evaluate the effects of various hyperparameter
settings. Specifically, we focus on hyperparameters
lower than 1.0, as previous research has consis-
tently shown that closer demonstrations generally
outperform those that are further away. We main-
tain the principle that proximity to the query re-
mains a core factor in our approach. Based on
these observations in Appendix D.5, we found that
the trade-off hyperparameter has some influence
on the final results. However, their impact on PLA,
NLP, and CTL methods is relatively small. Interest-
ingly, we observed that a trade-off hyperparameter
value of 1.0 yields the best performance for our
CLL-RetICL method. Consequently, we adopt 1.0
as the default hyperparameter.

6 Conclusion

This paper introduces a new paradigm Contrastive
Linguistic Label Retrieval-based In-Context Learn-
ing. Unlike existing approaches that universally
sample demonstrations without considering the lin-
guistic label information, we propose a general
framework for identifying more effective and rel-
evant demonstrations. This framework enhances
the capabilities of LLMs to produce more accu-
rate text classification results. Additionally, we
design a universal prompt that is adaptable to all
text classification tasks. Empirical evaluation on
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four datasets demonstrates that CLL-RetICL sig-
nificantly outperforms conventional practices in
RetICL by incorporating the similarity between lin-
guistic labels and sentences. This highlights the
promising performance of CLL-RetICL and opens
up several intriguing research opportunities for fur-
ther methodological exploration.

7 Limitations

Requiring Semantic Labels. Our approach fo-
cuses exclusively on the semantic label text clas-
sification task. Certain text classification scenar-
ios, however, may involve ambiguous label classes,
such as class0, class1, . . . . Ambiguities in labeling
may introduce additional challenges and Address-
ing these issues remains an open area for future
research.

Handling complex classification tasks with am-
biguous labels presents additional challenges for
our method, as CLL-RetICL relies heavily on se-
mantic label representations. To illustrate this is-
sue, we use the TREC dataset (Li and Roth, 2002;
Hovy et al., 2001), which provides both abbrevi-
ated and full-form class labels. In our analysis,
we adopt the coarse-label scheme and specifically
compare the abbreviated class labels with their cor-
responding full descriptive labels. The abbreviated
labels include [ABBR, ENTY, DESC, HUM, LOC,
NUM], while their full counterparts are [Abbrevia-
tion, Entity, Description and abstract concept, Hu-
man being, Location, Numeric value]. The results,
shown in Table 3, demonstrate that using abbrevi-
ated labels weakens the performance of our method
compared to using the full descriptive labels.

TREC
Abbr. Full

ACC F1 ACC F1
Llama

Nwaykshot 57.40 0.591 56.60 0.577
CLL-RetICL 56.40 0.603 57.60 0.603

Table 3: A comparison of classification accuracy (%)
and F1 score to evaluate the impact of abbreviated labels
versus full labels on the TREC dataset.

Better Descriptive Labels Recently, the use of
class-label synonyms has become a popular and
compelling topic of research (Pawar et al., 2024).
In our work, we also present results using class-
label synonyms on the SST-2 dataset, as shown in
Table 4. Our findings indicate that CLL-RetICL
consistently performs well across different label

synonym settings. However, the overall perfor-
mance with label synonym settings is lower com-
pared to using the original labels. These results
suggest that more accurate, semantic, and suitable
labels could further enhance the effectiveness of
our method.

Moreover, some classification tasks include ex-
planations for the meaning of each label. Using
more descriptive sentences and designing multi-
label descriptors can help reduce the risk of bias
and support effective mitigation strategies. In this
work, we did not utilize those explanations. Incor-
porating these explanations into the classification
process is left as a direction for future work.

SST2
Positive/Negative Great/Terrible Good/Bad

ACC F1 ACC F1 ACC F1
Llama

Nwaykshot 90.82 0.908 92.48 0.927 91.98 0.923
CLL-RetICL 95.06 0.951 93.90 0.939 94.23 0.944

Table 4: A comparison of classification accuracy (%)
and F1 score to evaluate the impact of synonym labels
on the SST2 dataset. The synonym pairs used in this
study are drawn from previously published work (Pawar
et al., 2024).

Enhance prompt clarity. In previous work, re-
searchers observed that well-crafted prompts can
lead to better results. However, in this study, we did
not compare the effects of different prompt formats.
Determining how to construct optimal prompts to
leverage the potential of our CLL-RetICL frame-
work fully remains an open question and is left for
future exploration.
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A Data Statistics

We take the four text classification tasks including
SST2, CoLA, CARER, and BBCNews. See the
descriptions and statistics in Table 5.

We use the original SST-2 dataset that only com-
prises the complete sentences that are not labeled
neutral, and its original split is 6920/872/1821
(Socher et al., 2013).

CoLA comprises 10,657 sentences sourced from
23 linguistics publications. Each sentence has been
expertly annotated for acceptability (i.e., grammat-
icality) by the original authors (Warstadt et al.,
2018). CoLA is divided into two subsets: a training
set and a development set. In our work, we treat
the development set as the test set.

CARER is a dataset of English Twitter messages
with six basic emotions: anger, fear, joy, love, sad-
ness, and surprise (Saravia et al., 2018). The orig-
inal CARER dataset has been split into trainsets,
validation, and test sets.

The BBC News Topic Classification dataset con-
sists of 2,225 articles published on the BBC News
website between 2004 and 2005. Each article is
labeled under one of 5 categories: business, enter-
tainment, politics, sport, or tech (Greene and Cun-
ningham, 2006). The original BBCNews dataset
has been split into trainsets and test sets.

As stated in the main text, we exclude the vali-
dation set.

B Implementation Details

All implementations are done in PyTorch.

Prompt template. We adopt the prompt used in
the CARER task as a template. Following the ap-
proach of Luo et al. (2024), we design our prompt
for universal text classification tasks, as shown in
Table 7. (demo_1), (demo_2), (demo_3) are se-
lected demonstration from support set. (query) is
the current query sentence.

Budget. We conducted experiments on LLMs
across four public datasets, utilizing APIs to com-
pute the results. To ensure consistency and avoid
generating creative outputs, we fixed the LLMs’
hyperparameters, as detailed in Table 6. The total
cost of running these experiments through the APIs
amounted to approximately 1,000 US dollars.

C Linguistic Label Retrieval Hypothesis

To explore the question: Are the clustering centers
reliable, we analyze the distribution of clustering

Figure 8: An example illustrating the distribution of
queries, linguistic labels, and clustering centers in a
pre-trained sentence embedding model using t-SNE.
10%_N and 10%_P represent a pair, indicating that
10% of the support set is used to estimate the clustering
center. In this notation, "N" refers to the Negative-
labeled clustering center, while "P" denotes the Positive-
labeled clustering center.

Figure 9: A comparison of the retrieved demonstrations
between NwayKshot and our method in the sentence
embedding vector space. A yellow circle indicates a
selected sentence.

centers, as shown in Figure 8.
We present five examples in Table 8 to illustrate

our findings. The experiment was conducted on
the SST2 dataset, where we treated the training
set as the support set and the test set as the query
set. For each query example in the test set, we
provide its index and the indices of the selected
demonstrations from the training set. Additionally,
we report the similarity scores calculated using
cosine distance within the vector space of a pre-
trained sentence embedding model (Reimers and
Gurevych, 2019).

D Additional Results

D.1 Effect of the number of shots.

We present the detailed results in Table 9.
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Dataset Trainset Testset Label
SST2 6,920 1,821 "Negative","Positive"
CoLA 8,551 1,043 "Unacceptable", "Acceptable"
CARER 16,000 2,000 "Sadness", "Joy", "Love", "Anger", "Fear", "Surprise"
BBCNews 1,225 1,000 "Business", "Entertainment", "Politics", "Sport", "Tech"

Table 5: Statistics of datasets as well as their labels.

Configure Gemini Llama Mistral
”temperature” 0.2 0.01 0.01
”top_p” 0.9 0.9 0.5
”top_k” 1 1 1
”max_output_tokens” 2 2 2

Table 6: generation_configure of hyperparameters in
various LLMs.

D.2 Effect of sentence embedding model.
We present the detailed results in Table 10.

D.3 Effect of similarity function.
We present the detailed results in Table 11.

D.4 Effect of w/o similarity between
demonstration and query.

We present the detailed results in Table 14.

D.5 Effect of trade-off hyperparameters.
We present the detailed results in Table 12, Table
13, Table 15, Table 16, Table 17.

System "You are given a task where there are
message multiple classes, and for each class,

a few labeled examples are provided.
Based on these examples, you need
to classify a new unseen instance.
Choose ONLY one tag and output the
tag. Do Not output others."

CARER
Prompt Class0: sadness

1. Example 1: (demo_1) -> "sadness"
2. Example 2: (demo_2) -> "sadness"
3. Example 3: (demo_3) -> "sadness"
Class1: joy
1. Example 1: (demo_1) -> "joy"
2. Example 2: (demo_2) -> "joy"
3. Example 3: (demo_3) -> "joy"
Class2: love
1. Example 1: (demo_1) -> "love"
2. Example 2: (demo_2) -> "love"
3. Example 3: (demo_3) -> "love"
Class3: anger
1. Example 1: (demo_1) -> "anger"
2. Example 2: (demo_2) -> "anger"
3. Example 3: (demo_3) -> "anger"
Class4: fear
1. Example 1: (demo_1) -> "fear"
2. Example 2: (demo_2) -> "fear"
3. Example 3: (demo_3) -> "fear"
Class5: surprise
1. Example 1: (demo_1) -> "surprise"
2. Example 2: (demo_2) -> "surprise"
3. Example 3: (demo_3) -> "surprise"
Query: (query)
Prediction:

Table 7: Designed a universal prompt for all text classi-
fication tasks.
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query label
Not Correct Correct

index sentence label_N label_P center_N center_P index sentence label_N label_P center_N center_P

36

N
3465 0.501 0.111 0.187 0.576 0.626 1344 0.379 0.173 0.087 0.432 0.417
5169 0.447 0.095 0.162 0.434 0.454 5012 0.399 0.124 0.063 0.656 0.613
4441 0.436 0.096 0.131 0.477 0.526 6432 0.399 0.188 0.131 0.461 0.450

P
5529 0.603 0.232 0.187 0.393 0.479 4310 0.580 0.170 0.247 0.363 0.444
4310 0.580 0.247 0.170 0.363 0.444 5529 0.603 0.187 0.231 0.393 0.479
5879 0.507 0.175 0.106 0.561 0.646 6723 0.427 0.129 0.291 0.442 0.591

49

N
4084 0.694 0.022 −0.033 0.525 0.458 4084 0.694 0.022 −0.033 0.525 0.458
3465 0.564 0.111 0.187 0.576 0.626 6331 0.562 0.122 0.015 0.647 0.569
6331 0.562 0.122 0.015 0.647 0.569 4290 0.543 0.093 0.044 0.583 0.569

P
1625 0.672 0.072 0.134 0.531 0.567 1625 0.672 0.072 0.134 0.531 0.567
4273 0.576 0.040 0.038 0.533 0.579 1268 0.506 −0.024 0.136 0.428 0.482
1936 0.565 0.669 0.103 0.510 0.550 543 0.516 0.126 0.272 0.379 0.448

1690

N
1613 0.569 -0.029 −0.053 0.341 0.321 1613 0.569 -0.029 −0.053 0.341 0.321
5550 0.520 0.025 0.015 0.283 0.247 4127 0.497 0.037 −0.033 0.271 0.250
4127 0.497 0.037 −0.033 0.271 0.250 801 0.466 0.127 0.047 0.464 0.396

P
3043 0.600 0.019 0.056 0.194 0.217 3043 0.600 0.019 0.056 0.194 0.217
444 0.502 0.112 0.093 0.334 0.338 4941 0.401 −0.029 0.091 0.464 0.562
1856 0.480 −0.008 -0.004 0.327 0.363 1856 0.480 −0.008 -0.004 0.327 0.363

1694

N
2433 0.545 −0.054 0.038 0.434 0.441 3367 0.485 0.092 0.061 0.586 0.540
3367 0.485 0.092 0.061 0.586 0.540 4925 0.478 -0.002 −0.041 0.507 0.456
4925 0.478 -0.002 −0.041 0.507 0.456 3643 0.428 0.057 −0.026 0.557 0.543

P
613 0.455 −0.031 -0.011 0.356 0.405 6713 0.433 0.110 0.258 0.549 0.615
324 0.447 0.181 0.105 0.572 0.623 5337 0.424 0.056 0.188 0.337 0.478
5135 0.446 0.114 0.198 0.470 0.572 5135 0.446 0.114 0.198 0.470 0.572

1809

N
5557 0.512 0.168 0.138 0.321 0.292 5557 0.512 0.168 0.138 0.321 0.292
2756 0.405 0.045 0.061 0.328 0.336 4071 0.388 0.114 0.099 0.402 0.376
2690 0.397 0.088 0.910 0.566 0.507 1430 0.382 0.038 0.023 0.331 0.332

P
2193 0.480 0.090 0.130 0.570 0.567 2193 0.480 0.090 0.130 0.570 0.567
6385 0.465 0.094 0.046 0.470 0.477 296 0.347 0.018 0.135 0.295 0.417
679 0.391 0.149 0.095 0.427 0.444 897 0.359 0.162 0.254 0.394 0.398

Table 8: Five examples comparing incorrect demonstration combinations with their correct counterparts, as evaluated
on SST2 task. In this notation, "N" refers to the "Negative" label, while "P" denotes the "Positive" label.

1-shot 3-shot 5-shot 8-shot

Method Gemini Llama Mistral Gemini Llama Mistral Gemini Llama Mistral Gemini Llama Mistral
SST2

Baseline 94.67 94.50 94.61 94.67 90.82 94.34 95.16 93.86 95.00 95.60 93.07 95.00
PLA 94.78 94.94 94.34 95.44 93.46 94.34 95.00 94.62 95.22 95.33 93.35 95.00
NLP 95.38 95.60 96.59 95.38 92.31 96.37 95.94 94.16 95.44 95.00 93.62 95.10
CTL 94.28 94.56 94.28 95.44 91.65 95.11 95.28 94.50 94.89 95.00 93.52 95.16
CLL-RetICL 94.89 95.05 95.33 95.17 95.06 95.60 95.28 95.00 95.71 96.21 93.66 95.16

CARER
Baseline 66.55 63.45 64.70 66.25 64.25 72.10 68.23 70.95 71.35 69.50 69.35 73.50
PLA 63.80 60.30 65.25 65.75 61.65 65.55 67.70 62.10 69.80 67.10 65.40 68.15
NLP 66.30 64.60 67.15 67.35 64.40 70.00 70.31 65.35 67.25 69.69 72.30 73.60
CTL 64.30 61.20 66.15 66.90 65.40 67.80 68.61 68.05 72.25 68.30 68.65 70.35
CLL-RetICL 66.75 65.50 67.95 72.65 69.15 76.85 69.05 74.45 72.30 70.75 71.35 75.10

Table 9: Full results of various shots effect in our proposed methods.

Approach
Bert Simcse Mpnet MiniLM

Gemini Llama Mistral Avg. Gemini Llama Mistral Avg. Gemini Llama Mistral Avg. Gemini Llama Mistral Avg.
SST2

Baseline 95.93 95.76 96.54 96.070.33 95.11 93.85 95.21 94.720.62 95.66 94.93 96.48 95.690.63 94.67 90.82 94.34 93.271.74
PLA 95.93 96.26 96.76 96.310.34 94.78 95.27 95.66 95.230.36 95.71 95.02 96.15 95.620.46 95.44 93.46 94.34 94.410.81
NLP 96.26 95.60 96.59 96.150.41 95.38 93.90 95.66 94.980.77 95.55 94.87 96.32 95.580.59 95.38 92.31 96.37 94.681.73
CTL 95.88 95.60 96.76 96.080.49 94.94 94.56 95.82 95.110.53 95.40 95.18 96.32 95.630.49 95.44 91.65 95.11 94.061.71

CLL-RetICL 96.32 96.37 96.92 96.530.27 95.77 94.83 95.39 95.330.39 95.44 95.60 96.48 95.840.46 95.17 95.06 95.60 95.280.23
CARER

Baseline 58.65 59.45 60.90 59.670.93 64.45 60.60 61.20 62.081.69 63.95 68.30 68.85 67.032.19 66.25 64.25 72.10 67.533.33
PLA 58.75 58.85 59.65 59.080.40 62.65 62.30 60.45 61.800.96 62.50 63.25 65.05 63.601.07 65.75 61.65 65.55 64.321.88
NLP 59.10 59.30 60.50 59.630.62 63.10 63.75 65.30 64.050.92 63.00 67.15 68.00 66.052.18 67.35 64.40 70.00 67.252.29
CTL 59.80 61.12 61.70 60.870.79 61.90 61.75 62.20 61.950.18 62.90 65.05 66.15 64.701.35 66.90 65.40 67.80 66.700.99

CLL-RetICL 59.90 60.05 62.20 60.721.05 59.05 62.80 63.15 61.671.86 64.65 69.15 69.30 67.702.16 72.65 69.15 76.85 72.883.14

Table 10: A Comparison of various pre-trained sentence embedding models.
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Approach
Cosine L1

Gemini Llama Mistral Avg. Gemini Llama Mistral Avg.
CoLA

Baseline 82.74 64.52 85.23 77.509.23 85.43 79.65 86.28 83.792.95
PLA 83.31 73.53 85.31 80.725.14 84.66 80.09 85.62 83.462.41
NLP 82.45 64.05 85.04 77.189.34 85.13 82.64 86.57 84.781.62
CTL 82.74 62.79 85.04 76.869.99 84.56 81.17 86.57 84.102.23
CLL-RetICL 83.60 77.66 85.52 82.263.34 85.81 83.51 86.86 85.391.39

CARER
Baseline 66.25 64.25 72.10 67.533.33 57.30 57.20 59.40 57.971.01
PLA 65.75 61.65 65.55 64.321.88 55.95 56.75 58.75 57.151.18
NLP 67.35 64.40 70.00 67.252.29 57.95 58.75 57.95 58.220.38
CTL 66.90 65.40 67.80 66.700.99 56.75 57.20 59.30 57.751.11
CLL-RetICL 72.65 69.15 76.85 72.883.14 57.95 57.30 59.50 58.250.92

Table 11: A Comparison of Similar Function Methods

CTL ACC

LLM (0.3, 0.3) (0.3, 0.5) (0.3, 1.0) (0.5, 0.3) (0.5, 0.5) (0.5, 1.0) (1.0, 0.3) (1.0, 0.5) (1.0, 1.0)
CoLA

Gemini 82.92 83.30 84.35 83.39 83.40 84.05 83.84 83.76 83.60
Llama 62.24 63.44 62.73 63.26 63.44 63.53 65.45 64.04 62.79
Mistral 85.91 85.33 85.90 85.71 85.62 85.33 85.71 85.33 85.04

CARER
Gemini 65.55 65.80 65.45 67.00 66.50 65.35 63.65 63.65 66.90
Llama 64.35 62.95 63.30 68.25 67.75 63.15 63.10 63.05 65.40
Mistral 68.30 67.75 67.10 71.10 70.90 66.60 65.10 64.95 67.80

Table 12: A comparison of classification accuracy (%) to assess the impact of various trade-off hyperparameters in
the CTL strategy.

CTL F1

LLM (0.3, 0.3) (0.3, 0.5) (0.3, 1.0) (0.5, 0.3) (0.5, 0.5) (0.5, 1.0) (1.0, 0.3) (1.0, 0.5) (1.0, 1.0)
CoLA

Gemini 0.791 0.795 0.809 0.798 0.797 0.806 0.802 0.801 0.801
Llama 0.552 0.584 0.570 0.581 0.581 0.589 0.603 0.588 0.579
Mistral 0.825 0.817 0.824 0.823 0.821 0.819 0.820 0.816 0.824

CARER
Gemini 0.594 0.596 0.595 0.612 0.607 0.590 0.575 0.573 0.605
Llama 0.576 0.559 0.567 0.612 0.602 0.570 0.570 0.566 0.586
Mistral 0.631 0.605 0.607 0.648 0.645 0.595 0.585 0.582 0.615

Table 13: A comparison of F1 score (%) to assess the impact of various trade-off hyperparameters in the CTL
strategy.
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Gemini Llama Mistral Avg.

Method ACC F1 ACC F1 ACC F1 ACC F1
CARER

Baseline 66.25 0.596 64.25 0.579 72.10 0.670 67.53 0.615

PLA 65.75 0.598 61.65 0.556 65.55 0.596 64.32 0.583
w/o 57.80 0.514 56.75 0.497 56.10 0.488 56.88 0.499

NLP 67.35 0.619 64.40 0.583 70.00 0.644 67.25 0.615
w/o 57.05 0.502 58.90 0.512 59.70 0.529 58.55 0.514

CTL 66.90 0.605 65.40 0.586 67.80 0.615 66.70 0.602
w/o 58.40 0.521 56.30 0.494 57.75 0.505 57.48 0.507

Ours 72.65 0.669 69.15 0.635 76.85 0.717 72.88 0.673
w/o 52.25 0.468 55.50 0.486 51.70 0.463 53.15 0.472

BBCNews
Baseline 88.60 0.884 96.10 0.960 87.20 0.872 90.63 0.905

PLA 89.40 0.891 96.70 0.966 89.50 0.895 91.86 0.917
w/o 79.50 0.777 94.20 0.940 80.30 0.796 84.67 0.837

NLP 89.00 0.889 96.40 0.964 88.40 0.883 91.20 0.875
w/o 84.60 0.843 80.20 0.801 85.50 0.854 83.43 0.832

CTL 90.30 0.901 96.50 0.964 89.40 0.893 92.06 0.919
w/o 83.40 0.822 94.20 0.942 80.10 0.792 85.90 0.852

Ours 89.50 0.892 96.80 0.967 88.10 0.879 91.47 0.912
w/o 77.00 0.750 70.10 0.698 78.50 0.770 75.20 0.739

Table 14: A comparison of the retrieval process with
and without incorporating the similarity score between
the query and sentence.

CLL-RetICL 0.3 0.5 0.7 1.0

LLM ACC F1 ACC F1 ACC F1 ACC F1
CoLA

Gemini 82.92 0.791 83.21 0.794 83.01 0.793 83.60 0.801
Llama 77.60 0.746 77.68 0.757 76.53 0.737 77.66 0.742
Mistral 85.43 0.818 85.33 0.817 85.71 0.822 85.52 0.828

CARER
Gemini 69.10 0.636 69.85 0.640 70.10 0.640 72.65 0.669
Llama 68.50 0.625 68.65 0.625 69.95 0.635 69.15 0.635
Mistral 72.20 0.665 72.20 0.671 71.65 0.656 76.85 0.717

Table 15: A comparison of classification accuracy (%)
and F1 score to assess the impact of various trade-off
hyperparameters in CLL-RetICL strategy.

PLA 0.3 0.5 0.7 1.0

LLM ACC F1 ACC F1 ACC F1 ACC F1
CoLA

Gemini 83.57 0.799 82.42 0.784 83.17 0.794 83.31 0.798
Llama 73.12 0.661 73.03 0.649 74.29 0.681 73.53 0.656
Mistral 85.71 0.821 85.42 0.817 85.23 0.813 85.31 0.832

CARER
Gemini 66.60 0.602 66.70 0.603 65.85 0.598 65.75 0.598
Llama 65.15 0.585 64.90 0.585 62.50 0.562 61.65 0.556
Mistral 65.80 0.595 65.15 0.579 62.50 0.558 65.55 0.596

Table 16: A comparison of classification accuracy (%)
and F1 score to assess the impact of various trade-off
hyperparameters in PLA strategy.

NLP 0.3 0.5 0.7 1.0

LLM ACC F1 ACC F1 ACC F1 ACC F1
CoLA

Gemini 83.51 0.798 83.31 0.802 83.69 0.801 82.45 0.791
Llama 64.11 0.553 62.73 0.539 63.10 0.542 64.05 0.579
Mistral 85.52 0.820 85.53 0.820 85.33 0.817 85.04 0.823

CARER
Gemini 65.75 0.594 65.25 0.586 66.05 0.595 67.35 0.619
Llama 64.60 0.586 64.10 0.581 63.05 0.567 64.40 0.583
Mistral 70.40 0.636 68.65 0.625 69.70 0.632 70.00 0.644

Table 17: A comparison of classification accuracy (%)
and F1 score to assess the impact of various trade-off
hyperparameters in NLP strategy.
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