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Abstract

Evaluating free-form Question-Answering
(QA) remains a challenge due to its diverse
and open-ended nature. Traditional automatic
metrics fail to capture semantic equivalence
or accommodate the variability of open-ended
responses. Leveraging Large Language Mod-
els (LLMs) as evaluators offers a promising
alternative due to their strong language under-
standing and instruction-following capabilities.
We propose the Consensus via Lightweight
Efficient Voting (CLEV), which employs two
primary LLMs as judges and engages a third
judge only in cases of disagreement. This ap-
proach prioritizes evaluation reliability while
reducing unnecessary computational demands.
Through experiments, including human evalua-
tion, we demonstrate CLEV’s ability to provide
consistent, scalable, and resource-efficient as-
sessments, establishing it as a robust framework
for evaluating LLMs on free-form QA.

1 Introduction

One of the practical limitations in evaluating
free-form Question-Answering (QA) is the lexi-
cal-semantic mismatch between Large Language
Model (LLM) outputs and the reference answers.
For the query “Who wrote 1984?”, a dataset may
list simply “George Orwell”, while a helpful model
replies: “It was penned by the British author Eric
Arthur Blair” Although both refer to the same
person, there is no surface token overlap, caus-
ing lexical-matching and even embedding-based
metrics to assign it an unduly low score. For in-
stance, Exact Match (EM) requires strict lexical
alignment (e.g., failing to equate “nuclear weapon”
and “atomic bomb”’) and ignores semantic equiva-
lence (Doostmohammadi et al., 2024).

A reference-aware LLM-as-a-judge can instead
reason over meaning, recognize that the candidate
entails the gold fact, and deliver a verdict, thereby
overcoming this lexical-semantic gap (Zheng et al.,
2024; Verga et al., 2024). Existing studies using
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LLM as judges primarily focus on subjective pair-
wise comparison (Wang et al., 2023b; Vu et al,,
2024) and single-answer scoring (Chiang and Lee,
2023; Hu et al., 2024a; Liu et al., 2023). However,
objective evaluation using LLM judges, particu-
larly for free-form QA, has received limited atten-
tion. Furthermore, LLM-based judging also lies on
a cost—quality spectrum. Querying a single judge
is efficient but is less reliable due to the known lim-
itations, such as prompt sensitivity, inconsistency,
and bias (Ye et al., 2024), as no individual model
captures the full diversity of reasoning styles, long-
tail knowledge, and user values (Feng et al., 2025).
To improve robustness, some studies employ fixed
ensembles of three or more LLM judges and aggre-
gate their decisions via majority voting (Badshah
and Sajjad, 2025; Verga et al., 2024). While this
improves reliability, it increases computational cost
and latency (Badshah and Sajjad, 2024), limiting
scalability for large-scale evaluation (Jung et al.,
2024; Adlakha et al., 2024).

To address these trade-offs, we propose the Con-
sensus via Lightweight Efficient Voting (CLEV)
that balances the reliability and efficiency of using
LLMs as judges for free-form QA. CLEV employs
two primary judges for initial assessments and in-
vokes a third judge only when disagreements occur.
By minimizing redundant calls in the fixed three-
judge majority vote setting, CLEV reduces com-
putational overhead by roughly 80 to 95% (vary-
ing by task) while achieving substantial to perfect
agreement. Our key contributions include: 1) es-
tablishing a principled LLM-as-a-judge evaluation
setup for free-form QA that moves beyond token-
level string matching metrics, 2) proposing CLEYV,
a lightweight consensus-based evaluation method
that preserves the reliability of multi-judge voting
while significantly reducing computational cost, 3)
empirically validating CLEV across diverse QA
datasets and multiple state-of-the-art LLMs, and 4)
systematic analysis of failure cases.
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Figure 1: CLEV: Consensus via Lightweight Efficient Voting.

2 Methodology

Given a question and a candidate model’s answer,
the evaluation task is to determine whether the an-
swer is factually correct with respect to a refer-
ence. Because free-form QA requires an objective
correctness decision rather than scalar scoring, we
prompt LLM judges to return a binary verdict along
with a brief rationale explaining their judgment.
The verdict serves as the evaluation signal, while
the rationale provides interpretability and supports
later analysis.

2.1 Consensus via Lightweight Efficient
Voting (CLEYV)

In traditional human evaluation settings, when two
annotators disagree on a judgment, a third expert is
often called upon to resolve the dispute. Drawing
inspiration from this efficient practice, we propose
CLEV. As illustrated in Figure 1, rather than im-
mediately employing three LLMs, CLEV adopts
an efficient approach by beginning with two mod-
els as primary judges. When these judges reach a
consensus, no further evaluation is needed. Only in
cases of disagreement, the third LLM is engaged,
whose decision then creates a majority verdict.

2.2 Judges inclusion and exclusion criteria

To systematically select suitable judges for CLEV,
we evaluate various LLMs (see Figure 2) using 100
random instances from HotpotQA. For each model,
we compare binary verdicts against human annota-
tions and compute Cohen’s Kappa (x) and Macro
F1. We interpret « following the commonly used
guideline where values between 0.61-0.80 indi-
cate substantial agreement, and values above 0.80
indicate near-perfect agreement (McHugh, 2012).
However, since « is known to be sensitive to class
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Figure 2: Judges selection based on the defined criteria
in Section 2.2.

imbalance (Cicchetti and Feinstein, 1990), we to-
gether consider Macro F1 to ensure balanced eval-
uation across both classes:

primary judges, & > 0.6 and F1 > 0.85,
status = ¢ third judge, x> 0.8 and F1 > 0.9,
excluded, otherwise.

3 Experiments
We utilize the following settings to evaluate CLEV:

Models Our candidate models includes Llama-
3.1 70B (Meta Al, 2024), GPT-3.5-turbo (Brown
et al., 2020), Mistral 7B (Jiang et al., 2023), and
Mixtral 8x7B (Jiang et al., 2024). For judges,
Mistral-7B met our inclusion criteria (x > 0.6,
F1 > 0.85) while offering low cost and fast in-
ference. Llama-3.1-70B, though more expensive,
provided substantial agreement. We therefore use
both as primary judges to capture a range of capa-
bilities (Feng et al., 2025; Liang et al., 2024; Sun
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et al., 2024). GPT-3.5-turbo serves as the third
judge because it exceeds the required thresholds
(k > 0.8, F1 > 0.9). All models are run with
temperature 0 to ensure reproducibility, as higher
temperatures degrade evaluator reliability (Hada
etal., 2024).

Datasets We utilize four datasets: Am-
bigQA (Min et al., 2020), HotpotQA (Yang et al.,
2018), Natural Questions (Kwiatkowski et al.,
2019), TriviaQA (Joshi et al., 2017). We only
utilize FreshQA to evaluate the judge’s ability to
detect outdated information. See Appendix A for
details.

Prompts We design minimal zero-shot role-
playing prompts (Kong et al., 2024) for both candi-
date and judge LLMs. The judge LLM is instructed
to return a binary verdict with a brief explanation,
which reduces subjectivity and simplifies automatic
evaluation (see Appendix F).

Baselines We compare individual LLM judges
and CLEV against EM, BERTScore (Zhang et al.,
2020) computed with microsoft/deberta-xlarge-
mnli and thresholded at 7 = 0.5 to yield binary
decisions and majority voting, which always in-
vokes a fixed setup of LLM judges and returns the
model verdict (see Appendix B).

Human evaluation We invite three volunteer
graduate students from our lab to act as annota-
tors. We provided the questions, reference answers,
and candidate LLLM responses, without information
about model identity, to avoid bias. Each response
is scored on a binary scale based on correctness
and relevance (see Appendix C).

Evaluation metrics We compute Fleiss’ Kappa
(k) (Fleiss and Cohen, 1973) and percent agree-
ment to measure inter-rater reliability among hu-
man annotators. To compare evaluators with
humans, we calculate Cohen’s Kappa (McHugh,
2012) against the human majority on an instance
level. Because of class imbalance, kappa can ap-
pear low despite high agreement (Cicchetti and
Feinstein, 1990). Therefore, we also frame the task
as binary classification and report Macro-F1 scores.

4 Results

In this section, we briefly report the results and
refer the readers to Appendix E for detailed results.

Correlation with human evaluation As de-
picted by consistently high Cohen’s kappa in Ta-
ble 1, CLEV maintains strong agreement with hu-
man evaluation. This represents an improvement
over individual model performance, where indi-
vidual judges generally showed varying levels of
agreement with human evaluation.

LLM-based evaluators demonstrate strong abil-
ities in recognizing semantic variations while
maintaining the core meaning, especially when as-
sessing responses that use different terminology or
structural approaches to convey the same informa-
tion. For instance, evaluators correctly identified
that “Salma Hayek” and “Salma Hayek Pinault”
refer to the same individual, acknowledging the
semantic equivalence despite differences in phras-
ing. Similarly, when assessing responses that use
different terms for the same entity, such as recog-
nizing “Nick Fury, Agent of S.H.LE.L.D.” as part
of the broader “Marvel” universe, the evaluators
effectively maintain the core meaning and contex-
tual relevance. Their explanations show systematic
assessment patterns that combine multiple evalua-
tion criteria (e.g., factual accuracy and contextual
relevance).

CLEY reducing third-judge calls by 80-95%
while maintaining the performance across tasks.
As depicted in Table 1, even on TriviaQA, where
disagreement is high, CLEV scores remain in sub-
stantial to perfect agreement.

EM underestimates and BERTScore overes-
timates. Interestingly, EM typically accom-
plishes better correlation with human evaluation
on the instance-level in Table 1 than neural-based
BERTScore. EM’s strict nature leads to lower
overall performance, but its high precision ensures
that when it identifies a match, it strongly aligns
with human annotations. In contrast, BERTScore
takes a more lenient approach to semantic match-
ing. As a result, it shows more false positives, con-
sequently reducing instance-level agreement with
human judgments.

4.1 Impact of selective third judge

A core benefit of CLEV is that it avoids unnec-
essary third-judge evaluations by only invoking a
judge when the two primary judges disagree. Ta-
ble 2 summarizes the frequency of such escala-
tion events across five datasets and five candidate
LLMs. Across all 7,500 evaluated instances (300
examples x 5 models x 5 tasks), only 17.6% re-
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Evaluators (Cohen’s < [Macro-F1] vs Human Majority)

Candid. Tasks EM BERTScore Llama GPT Mistral MV CLEV Disagr. (%)
AmbigQA 0.52[0.74] 0.28[0.64] 0.89[0.94] 0.84[0.92] 0.86[0.93] 0.91[0.96] 0.91[0.96] 10.0
Llama HotpotQA  0.58 [0.78] 0.50[0.75] 0.88[0.94] 0.90[0.95] 0.83[0.92] 0.95[0.98] 0.95[0.98] 13.0
NQ-Open 0.38[0.65] 0.44[0.72] 0.83[0.92] 0.79[0.90] 0.74[0.87] 0.93[0.96] 0.92[0.96] 18.0
TriviaQA  0.28 [0.61] 0.56[0.78] 0.55[0.77] 0.44[0.72] 0.30[0.64] 0.68 [0.84] 0.68 [0.84] 17.0
AmbigQA 0.56[0.79] 0.25[0.62] 0.94[0.97] 0.90[0.95] 0.85[0.93] 0.97[0.98] 0.96[0.98] 7.0
GPT HotpotQA  0.60 [0.79] 0.30[0.62] 0.95[0.98] 0.97[0.99] 0.93[0.97] 0.99[0.99] 0.98[0.99] 5.7
NQ-Open 0.45[0.70] 0.22[0.61] 0.88[0.94] 0.82[0.91] 0.83[0.91] 0.96[0.98] 0.95[0.98] 13.0
TriviaQA  0.34[0.65] 0.36[0.68] 0.65[0.82] 0.40[0.70] 0.47[0.73] 0.81[0.90] 0.77[0.89] 15.7
AmbigQA 0.55[0.76] 0.34[0.67] 0.90[0.95] 0.78[0.89] 0.89[0.94] 0.98[0.99] 0.95[0.98] 9.0
Mixtral HotpotQA  0.55[0.76] 0.35[0.66] 0.94[0.97] 0.93[0.97] 0.94[0.97] 0.97[0.99] 0.97[0.99] 4.7
NQ-Open 0.37[0.65] 0.30[0.65] 0.88[0.94] 0.73[0.86] 0.82[0.91] 0.97[0.98] 0.91[0.96] 13.0
TriviaQA  0.32[0.63] 0.39[0.70] 0.63[0.81] 0.61[0.80] 0.44[0.72] 0.90[0.95] 0.76[0.88] 17.0
AmbigQA 0.60[0.79] 0.25[0.62] 0.89[0.95] 0.89[0.95] 0.86[0.93] 0.95[0.98] 0.95[0.98] 11.7
Mistral HotpotQA  0.61 [0.80] 0.38 [0.67] 0.94[0.97] 0.90[0.95] 0.94[0.97] 0.96[0.98] 0.95[0.98] 6.0
NQ-Open 0.48[0.73] 0.29[0.64] 0.85[0.93] 0.84[0.92] 0.84[0.92] 0.95[0.98] 0.95[0.98] 14.7
TriviaQA  0.47[0.72] 0.24[0.61] 0.76[0.88] 0.73[0.86] 0.47[0.74] 0.87[0.94] 0.85[0.93] 20.3

Table 1: Cohen’s Kappa and [Macro-F1] scores showing the agreement of individual evaluators, Majority Vote (MV),
and CLEV with human majority across models and tasks. Disagr. (%) indicates the percentage of disagreements in
the majority voting (Llama+GPT+Mistral), i.e., when the third judge is called in CLEV.

Tasks Third judge calls (of 1,500) Rate (%)
AmbigQA 190 12.7
FreshQA 543 36.2
HotpotQA 120 8.0
NQ-Open 212 14.1
TriviaQA 253 16.9
Total 1,318 /7,500 17.6

Table 2: Aggregated third-judge usage under CLEV
across tasks. Each task has 1,500 evaluation instances
per candidate model (300 examples X 5 candidate
LLMs), and the reported counts sum over all five
models '. Lower values indicate fewer disagreement-
triggered escalations.

quired a third judge. This reduction is substantial
when compared to the fixed three-judge majority
voting setup, which always incurs 100% of third-
judge calls. In other words, CLEV reduces eval-
uation overhead by approximately 80-95% while
preserving agreement levels that match majority
vote outcomes (see Table 1). Tasks with stable fac-
tual grounding (e.g., HotpotQA) trigger few escala-
tions, whereas more temporally dynamic datasets
like FreshQA show higher disagreement rates due
to shifts in real-world facts.

4.2 Error analysis

We randomly sampled 100 error cases (50 false
positives and 50 false negatives) from each evalua-
tor to study their behavior. Given EM had 11 false

'We also included DeepSeek as our fifth model in the
Appendix. See Table 8.

positives, we included all of them in our analysis.

LLMs are prone to hallucination in justification
where they fabricate reasoning to support their eval-
uations, and produce detailed but incorrect explana-
tions. In LLM judges, false positives and negatives
often result from overlooking critical distinctions
between candidate LLM outputs and failing to ac-
count for the specificity required by the reference
answer. This pattern is particularly noticeable in
Mistral 7B, where the model disregards the ground
truth and provides evaluations influenced by un-
known factors. For example, when evaluating can-
didate GPT-3.5°s response “The foreign minister of
Germany who signed the Treaty of Versailles was
Hermann Miiller” which is correct according to
the reference answer “Hermann Miiller” and hu-
man evaluation, Mistral 7B as-a-judge incorrectly
marked this response as false and fabricated rea-
soning in support of its decision.

Specificity bias occur in some judges. This ap-
proach shifts the evaluation towards false negatives
by missing semantically similar but structurally dif-
ferent answers. We found many cases when such
evaluators failed to account for valid variations in
phrasing or granularity, focusing instead on rigid
adherence to the reference answer. Compound-
ing these issues are reasoning errors within the
evaluators’ own explanations, which often contain
overconfident assertions.

Temporal limitations in LLM-based evaluators.
Despite using mostly older datasets with up-to-date
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Evaluators

Candid. Llama GPT Mistral CLEV Disagr. (%)
Llama 0.835 0.737 0.730 0.917 31.3
GPT 0.695 0.824 0.746 0.891 443
Mixtral 0.708 0.779 0.703 0.936 37.3
Mistral 0.665 0.802 0.723 0.880 39.7

Table 3: Macro-F1 of judges on FreshQA and cor-
responding disagreement rates. Higher disagreement
indicates a more frequent need for a resolving judge
(CLEV).

models, we observed failures on recent events or
evolving contexts. The FreshQA dataset (Vu et al.,
2023), being recent, highlights these temporal lim-
itations. As shown in Table 3, LLM judges devi-
ate more from human judgment on FreshQA com-
pared to older datasets like HotpotQA. In dynamic
or time-sensitive contexts, they often hallucinate
by marking incorrect responses as True. For in-
stance, when asked: “On what date did the Patri-
ots last play the Miami Dolphins?”, the evaluator
accepted an outdated answer, “January 1, 2023,”
as correct, ignoring the reference “November 24,
2024,” and justifying its mistake. Because multi-
ple judges rely on this same outdated parametric
knowledge, FreshQA exhibits substantially higher
disagreement between judges, who often converge
on answers that were once correct but no longer
reflect the current ground-truth.

5 Related work

Recent advances in LL.Ms have unlocked new op-
portunities for automatic and context-aware evalua-
tion (Li et al., 2024; Chiang and Lee, 2023; Zheng
et al., 2024). Early work primarily focused on sub-
jective evaluation tasks, such as pairwise compari-
son for ranking model outputs or single-response
scoring for open-ended generation (Chan et al.,
2024; Zheng et al., 2024; Chen et al., 2024). These
approaches leverage LLMs’ strong language un-
derstanding and reasoning capabilities to assess
qualities like coherence, fluency, and helpfulness.
However, such subjective criteria and continuous
scoring schemes are less suitable for evaluating ob-
jective QA (Badshah et al., 2025), where free-form
answers are expected to be factually correct with re-
spect to a reference answer (Krumdick et al., 2025;
Shi et al., 2024).

To address this gap, recent work has explored
reference-grounded LL.M-as-judge approaches that
instruct LLMs to directly verify candidate answers
against gold references and output binary True/-

False verdicts (Kamalloo et al., 2023; Wang et al.,
2023a). However, this line of work also highlights
key challenges: individual LLM judges can be in-
consistent across questions, may over-rely on para-
metric knowledge when references are incomplete,
and often require additional judges or majority vot-
ing to stabilize decisions (Khan et al., 2024). Fur-
thermore, single judges often lack robustness to ad-
versarial inputs and may hallucinate justifications
that appear plausible but are factually incorrect (Hu
et al., 2024b).

To mitigate the reliability issues of single-
judge systems, multi-judge setups have been ex-
plored (Badshah and Sajjad, 2025; Verga et al.,
2024). These approaches employ multiple diverse
LLM judges and aggregate their decisions, typi-
cally through majority voting, to improve reliabil-
ity and alignment with human evaluation. Bad-
shah and Sajjad (2025) demonstrated that using
multiple models reduces individual model biases
and improves agreement with human judgments.
However, these approaches typically rely on fixed
ensembles, where all judges are invoked for every
instance, regardless of whether the initial judges
already agree. This design leads to substantial and
unnecessary computational overhead, especially
when disagreements are rare. Our work builds on
these foundations that invoke a third judge only
when needed, achieving the reliability benefits of
multi-judge voting while saving compute.

6 Conclusion

We studied the challenge of evaluating free-form
QA, where traditional metrics fail to capture se-
mantic correctness and single LLM judges may be
inconsistent. To address this, we introduced CLEV,
a lightweight multi-judge framework that preserves
the reliability of majority voting while avoiding its
computational cost. By invoking a third judge only
when necessary, CLEV achieves substantial to near-
perfect agreement with human evaluation while
reducing redundant evaluation calls by 80-95%
across tasks. This makes LLLM-based evaluation
more scalable for large-scale benchmarking. While
our study focuses on binary correctness, future
work can extend CLEV to capture dimensions such
as partial correctness. Looking forward, an impor-
tant direction is reference-free evaluation, where
judges are supported by external verifiers (e.g., re-
trieval) to assess correctness in settings where ex-
plicit references are lacking.
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7 Limitations

We acknowledge certain limitations in our study:
1) The accuracy of evaluations depends on the qual-
ity and clarity of reference answers, which serve
as the basis for determining correctness. Incorrect
or ambiguous references could affect evaluation
outcomes. 2) While we conducted an error analysis
of LLM judges and automatic metrics, there may
be error cases that were not identified during our
manual review, leaving gaps in understanding the
full spectrum of evaluation inaccuracies. 3) We
acknowledge that our current study is limited to
English QA datasets. Extending CLEV to multi-
lingual settings is a promising and important fu-
ture direction. 4) Since the evaluation is binary,
which is standard for free-form QA, signals around
partial correctness, fluency, reasoning, and justi-
fication are not captured. To tackle this, we also
collected detailed rationales that justify each ver-
dict. In our analysis, we leveraged these rationales
to capture various insights. We acknowledge the
limitation of binary verdicts in representing par-
tial correctness, but we emphasize that this design
choice reduces the subjectivity inherent in con-
tinuous scoring and promotes clearer agreement
between judges. 5) CLEV assumes that primary
judges maintain a minimum reliability threshold
(based on x and Macro-F1) established during cal-
ibration. These thresholds require recalibration
when adopting new judge models, domains, or lan-
guages. Thus, applying CLEV to new settings may
involve additional upfront calibration cost.
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A Free-form Question-Answering

In our experiments, we include AmbigQA (Min
et al., 2020), FreshQA (Vu et al., 2023), Hot-
potQA (Yang et al., 2018), Natural Ques-
tions (Kwiatkowski et al., 2019), and Trivi-
aQA (Joshi et al., 2017).

* AmbigQA: Focuses on 14K ambiguous ques-
tions derived from NQ, requiring systems to
identify multiple valid interpretations and gen-
erate disambiguated questions alongside cor-
responding answers.

* FreshQA: A QA benchmark containing 600
questions that consist of a diverse range of
types, including those requiring fast-changing
world knowledge and questions with false
premises that need debunking. It is regularly
updated to reflect current information and is
designed to evaluate the factual accuracy of
LLMs in handling up-to-date and evolving
knowledge.

* HotpotQA: Contains 113K questions based
on Wikipedia. It is designed to test multi-
hop reasoning, requiring connections across
multiple paragraphs, and includes annotated
supporting facts for evaluation.
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¢ Natural Questions (NQ): Consists of real
user queries from Google Search, paired with
Wikipedia articles. The dataset includes 307K
training examples annotated with both long
(paragraph) and short (entity-level) answers.

e TriviaQA: Features approximately 650K
trivia questions, with evidence sourced from
Wikipedia and web searches. These questions
often require reasoning across multiple docu-
ments for complex answer synthesis.

We utilize the validation splits across multiple
datasets: the standard validation split for Am-
bigQA and Natural Questions, the “distractor” sub-
set’s validation split for HotpotQA, and the “unfil-
tered.nocontext” subset’s validation split for Triv-
1aQA. We randomly sampled 300 examples from
each dataset using Seed 42.

B Baselines

Exact Match (EM): For our selected datasets
and also free-form QA tasks, EM serves as a stan-
dard lexical matching metric to evaluate candidate
LLM performance (Izacard and Grave, 2021; Lewis
et al., 2020; Gou et al., 2024). Due to the verbose
nature of LLM-generated responses, we adapt EM
to classify an answer as correct if any golden an-
swer ; € R appears within the generated response
y (.e., r; C 7g), rather than requiring complete
strict string equality (i.e., ¥ = 7;).

BERTScore: We use BERTScore (Zhang et al.,
2020) which measures similarity by comparing con-
textualized word embeddings derived from a pre-
trained BERT model. This enables the evaluation
to focus on semantic correctness rather than exact
lexical matches. As BERTScore is based on contin-
uous values between -1 and 1, we set a threshold
of 7 = 0.5 to convert continuous similarity scores
into binary 0 and 1. The purpose of this conversion
is to allow direct comparison with other evalua-
tion methods. For our implementation, we use the
microsoft/deberta-xlarge-mnli’> model (He et al.,
2021).

Majority voting This uses three fixed LLM
judges to independently evaluate each instance.
The final decision is determined by a simple major-
ity across the three verdicts. Unlike CLEV, which
selectively invokes the third judge only in cases of

https://huggingface.co/microsoft/
deberta-xlarge-mnli

disagreement, this method uniformly engages all
judges, leading to a higher computational cost.

C Human evaluation

This section provides detailed guidelines for human
annotators responsible for evaluating the outputs of
candidate LLMs. The goal is to ensure consistency
and objectivity across all evaluations (Yu et al.,
2024). These guidelines provide clear instructions
for assessing each model’s response based on its
alignment with the reference answer and contextual
relevance.

C.1 Guidelines

Dear Evaluator,

Thank you for your valuable contribution to this
evaluation process. These guidelines outline the
process for evaluating Large Language Model
(LLM) outputs for the given tasks. As annotators,
you will receive three components for each
evaluation instance: the input question, reference
answer(s), and the model’s response. Your task is
to evaluate the responses independently and score
them on a binary scale: ‘1’ for “True’ (correct) and
‘0’ for ‘False’ (incorrect).

A response warrants a score of ‘1’ when it demon-
strates semantic equivalence with the reference
answer, even if expressed through alternative
phrasing or structure. This includes acceptable
variations such as synonym usage and structural
variations. Additional contextual information is
acceptable as long as it doesn’t introduce errors.

Responses receive a score of ‘0° when they contain
factual errors, miss crucial elements from the
reference answer, or demonstrate contextual
misalignment. Partial answers that omit essential
information should be marked incorrect, regardless
of the accuracy of included content. When multiple
reference answers are provided, a response is
correct if it fully aligns with at least one reference.

You are encouraged to use internet resources when
needed to verify specific facts, terminology, or
potential synonyms that may affect your evaluation
decision. However, the reference answer should
remain the primary basis for evaluation. Focus
on whether the model’s response conveys the
same core information as the reference answer. To
maintain reliability, document any challenging
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LLMs AmbigQA FreshQA HotpotQA NQ-Open TriviaQA
DeepSeek 0.975 0.949 0.986 0.889 0.456 (k paradox)
Llama 0.945 0.962 0.973 0.985 0.935

GPT 0.989 0.973 0.982 0.990 0.948
Mixtral 0.981 0.945 0.996 0.977 0.936
Mistral 0.978 0.932 0.981 0.978 0.975

Table 4: Fleiss’ Kappa scores of human annotators across models and tasks.

LLMs AmbigQA FreshQA HotpotQA NQ-Open TriviaQA
DeepSeek 99.0% 98.0% 99.7% 92.0% 90.0%
Llama 96.3% 98.0% 98.0% 99.0% 99.0%
GPT 99.3% 99.3% 98.7% 99.3% 99.0%
Mixtral 98.7% 98.0% 99.7% 98.3% 98.3%
Mistral 98.3% 97.0% 98.7% 98.3% 99.0%

Table 5: Human annotators percent agreement scores across candidate models and tasks.

cases requiring further discussion with other
annotators.

D Evaluation Metrics

We compute Fleiss’ Kappa (x) (Fleiss and Cohen,
1973) and percent agreement to assess inter-rater
reliability among human annotators. Similarly, we
use Cohen’s kappa (McHugh, 2012) to find the
agreement between each evaluator and the human
majority to obtain instance-level comparison. Due
to the high-class imbalance in TriviaQA, kappa
scores can be misleadingly low despite high raw
agreement - a known limitation called the “kappa
paradox” (Cicchetti and Feinstein, 1990). There-
fore, we treat the evaluation as a binary classifi-
cation task where we consider each evaluator’s
predictions against the human majority and report
Macro-F1 scores which give equal weight to both
classes regardless of their frequency in the selected
random samples.

To quantify the efficiency of our approach, we
report the disagreement rate between the two
primary judges that indicates how often the third
model is required, thereby revealing the reduction
in third-model usage compared to always employ-
ing three judges. Formally,

N
1
Disagreement rate (%) = (N ZH[Vil # Vi2]> x 100
i=1

where N is the total number of evaluation instances
and II[-] is the indicator function that equals 1 when

the condition is satisfied and O otherwise.

D.1 Inter-human annotator agreement

We calculate Fleiss’ Kappa (x) (Fleiss and Cohen,
1973) and percent agreement to assess inter-rater
reliability among human annotators.

Fleiss’ Kappa is defined as:

P—-P.

AR e

where P is the average observed agreement among
annotators, and P, is the expected agreement by
chance.

Percent agreement is calculated as:

A t
greemen .s 100
Total Annotations

Percent Agreement = <

Table 4 and 5 show the inter-annotator agree-
ment across models and tasks. The results demon-
strate high reliability, with Fleiss’ Kappa scores
consistently above 0.93 for most tasks. The highest
agreement is observed in Mixtral evaluations on
HotpotQA (k = 0.996), and GPT on NQ-Open
(k = 0.990). In FreshQA, which shows lower
Kappa scores, the agreement among annotators re-
mains high including 99.3% in GPT and 98.0% in
Mixtral.

The percent agreement scores in Table 5 further
confirm strong inter-annotator consistency. Most
models achieve over 98% agreement across Am-
bigQA, HotpotQA, NQ-Open, and TriviaQA. How-
ever, DeepSeek exhibits lower agreement on NQ-
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Evaluators

LLMs  Tasks EM BS Llama GPT Mixtral Mistral CLEV

Evaluators

LLMs  Tasks EM BS Llama GPT Mixtral Mistral CLEV

AmbigQA 0.518 0283 0.888 0.844  0.824 0.858 0.911
HotpotQA  0.577 0.498 0.877 0.899  0.820 0.832 0.953
NQ-Open  0.381 0.437 0833 0.793 0.816 0.738 0.927
TriviaQA  0.281 0.564 0.547 0.439  0.396 0.299 0.684

Llama

AmbigQA  0.744 0.641 0944 0922 0912 0.929 0.955
HotpotQA  0.778 0.745 0.939 0949 0910 0.916 0.976
NQ-Open  0.653 0.718 0916 0.896  0.907 0.869 0.964
TriviaQA  0.612 0.782 0.772  0.717  0.695 0.640 0.842

Llama

AmbigQA  0.561 0252 0944 0.897  0.861 0.853 0.967
HotpotQA  0.604 0300 0.953 0973  0.873 0.933 0.987
GPT NQ-Open 0.453 0218 0884 0824 0.824 0.829 0.956
TriviaQA  0.335 0364 0.650 0.401  0.580 0.467 0.775

AmbigQA  0.792 0.622 0972 0949  0.930 0.927 0.984
HotpotQA  0.794 0.623 0977 0987  0.936 0.966 0.993
GPT NQ-Open 0.703 0.606 0942 0911 0911 0914 0.978
TriviaQA  0.646 0.681 0.824 0.700  0.789 0.730 0.887

AmbigQA 0.546 0337 0.896 0.781  0.909 0.887 0.951
HotpotQA  0.546 0349 0940 0933  0.859 0.940 0.973
NQ-Open  0.371 0301 0.879 0.728  0.899 0.815 0.913
TriviaQA  0.317 0.390 0.625 0.605 0.678 0.436 0.764

Mixtral

AmbigQA  0.760 0.666 0948 0.891  0.955 0.944 0.975
HotpotQA  0.761 0.657 0.970 0.966  0.930 0.970 0.987
NQ-Open  0.650 0.649 0939 0.863  0.950 0.908 0.956
TriviaQA  0.625 0.695 0812 0.803  0.838 0.716 0.882

Mixtral

AmbigQA  0.599 0254 0.893 0.893  0.893 0.860 0.953
HotpotQA  0.605 0.383  0.937 0902  0.895 0.937 0.958
NQ-Open 0.484 0291 0851 0838 0.878 0.840 0.953
TriviaQA 0467 0239 0.758 0.725  0.645 0.470 0.854

Mistral

AmbigQA  0.792 0.622  0.947 0.947  0.947 0.930 0.977
HotpotQA  0.796  0.673  0.969 0.951  0.947 0.969 0.979
NQ-Open 0.726 0.639 0.925 0919 0.939 0.920 0.976
TriviaQA  0.718 0.608 0.879 0.863  0.822 0.735 0.927

Mistral

Table 6: Cohen’s Kappa scores displaying the agreement
levels of individual and multiple (CLEV) evaluators
with human judgments across candidate models and
tasks.

Open (92.0%) and TriviaQA (90.0%). This indi-
cates a variance in human ratings for these tasks.

E Additional results

This section provides further results and analysis of
conventional metrics and LLM-based evaluators.

As evidenced by high Cohen’s kappa and Macro
F1 scores in Table 6 and 7, CLEV maintains a
strong alignment with human evaluation. This rep-
resents a substantial improvement over individual
model performance, where individual judges gen-
erally showed varying levels of agreement with
human evaluation. Overall, LLM-as-a-judge works
better with larger models. This is particularly no-
ticeable in Llama and GPT, which achieve greater
performance across AmbigQA, HotpotQA, and
NQ-Open compared to smaller models. This in-
dicates an important scaling law in evaluation ca-
pability (Kaplan et al., 2020; Zheng et al., 2024;
Team, 2024). However, we also found that the most
advanced models are not always guaranteed to be
the best evaluators. We observed slightly compa-
rable performance through the small open-source
Mistral7B. For instance, when evaluating candi-
date Mixtral 8x7B on AmbigQA (see Table 7),
Mistral 7B as-a-judge outperformed (0.944) judge
GPT-3.5-turbo (0.891). Regardless, we observe rel-
atively lower Macro-F1 scores for all LLM judges
in TriviaQA.

Unlike lexical matching and neural-based met-
rics, each LLLM-as-a-judge shows overall perfor-
mance close to the human majority. The proposed
CLEV method consistently achieves comparable
or slightly better alignment with the human ma-

Table 7: Macro-F1 scores of individual and multiple
(CLEV) evaluators applied to different candidate LLMs
and associated tasks.

jority. Conventional metrics such as EM severely
underestimate the candidate LLMs’ performance.
Contrarily, BERTScore tends to overestimate the
performance except in some cases such as when
evaluating Llama on AmbigQA and NQ-Open.

EM underestimates performance because it re-
quires a candidate’s response to exactly match one
of the reference answers. This rigid, lexical ap-
proach fails to account for valid paraphrases, syn-
onyms, or alternative expressions that convey the
same meaning. In free-form QA tasks, where there
can be multiple correct answers phrased in various
ways, EM’s strict criteria often penalize responses
that are semantically accurate but differ slightly in
wording. As a result, it underestimates the true
capabilities of candidate LLLMs, leading to an in-
complete assessment of their performance.

BERTScore relies on token-level semantic simi-
larity, which rewards shallow lexical overlap rather
than actual factual accuracy. For example, in cases
where minor differences in wording (e.g., “The
Treaty of Versailles was signed in 1919.” versus
“The Treaty of Versailles ended in 1919.”) lead to
opposing factual claims, BERTScore still scores
the response high due to its emphasis on matching
tokens (e.g., “signed” versus “ended”). Addition-
ally, verbosity bias and threshold instability further
inflate its raw accuracy (see Table 10). However,
when comparing raw accuracy with instance-level
agreement metrics like Cohen’s kappa, which ad-
justs for class imbalance and penalizes asymmetric
errors, the limitations of BERTScore become ap-
parent.
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E.1 Cost analysis

To assess the efficiency of CLEV, we track the
number of times the third judge is invoked, which
directly corresponds to disagreement between the
two primary judges. As shown in Table 8, across
7,500 evaluation instances, the third judge is re-
quired only 1,318 times, representing just 17.6%
of the total cases. This implies an 82.4% reduction
in third-judge usage compared to a full majority-
voting setup, where every instance would involve
all three models.

Disagreement rates vary across tasks and models.
For example, GPT shows only 5.7% disagreement
on HotpotQA, while FreshQA exhibits higher dis-
agreement (up to 44.3%) for some judge combi-
nations. This behavior allows CLEV to scale effi-
ciently: it concentrates computational effort only
where model uncertainty exists, minimizing redun-
dant inference. In contrast to fixed-cost evaluation
schemes, CLEV offers a cost-efficient alternative
that maintains high evaluation quality while signifi-
cantly reducing compute usage.

E.2 DeepSeek as the third judge

To assess the impact of using DeepSeek as the third
judge in CLEV, we conducted experiments by re-
placing GPT-3.5-turbo with DeepSeek-R1 (Team,
2025). We evaluated this setup using candidate
GPT-3.5 on TriviaQA, candidate DeepSeek on NQ-
Open, and candidate Llama on FreshQA. The pri-
mary judges remained Llama and Mistral, and the
third judge (i.e., DeepSeek-R1) is invoked only in
cases of disagreement. Our findings indicate that
DeepSeek, as the third judge, achieves strong per-
formance, with Macro-F1 scores of 91.23 on Trivi-
aQA, 79.11 on NQ-Open, and 0.914 on FreshQA.

E.3 Evaluating with GPT-40 as-a-judge

While a single state-of-the-art evaluator can achieve
strong performance in many cases, the dual-LLM
framework remains critical for ensuring robustness,
particularly in high-stakes or ambiguous scenarios.

To explore the potential of a more powerful sin-
gle LLM, we evaluated GPT-3.5-turbo on Hot-
potQA and TriviaQA using GPT-40 as a judge.
With this configuration, GPT-40 as the evaluator
achieved a Macro-F1 score of 0.946 on HotpotQA,
demonstrating its exceptional capability. How-
ever, the same GPT-40 judge achieved only 0.784
on TriviaQA, which falls short of CLEV’s perfor-
mance of 0.887. This shows that even the most

advanced models show inconsistencies when eval-
uating free-form QA. This is particularly critical
in precision-sensitive domains where minor errors
can have outsized consequences.

In such settings, CLEV’s ensemble approach
acts as a safeguard. When employing CLEV with
GPT-3.5-turbo as the third judge, we achieved an
even higher Macro-F1 of 0.984 on HotpotQA, sur-
passing the performance of a single GPT-4o. In-
terestingly, when we experimented with DeepSeek
as the third judge in CLEV, performance remained
strong at 0.963 Macro-F1, indicating that CLEV’s
benefits are not solely tied to a specific third judge
model.

E.4 Majority voting-based evaluation

We conducted additional experiments utilizing a
traditional majority voting approach for evaluating
candidate LLMs performance. Given n annotators
and a binary classification, the majority label is
defined as:

D LI 5 7 S
ty — .
maony 0 otherwise,

where y; represents the label assigned by the ith
annotator.

In this setup, we employed three LLM judges
of equal weight: Llama, GPT-3.5, and Mistral to
evaluate candidate models’ generated responses.
For every evaluation instance, each judge provided
an independent binary verdict (True or False). The
final decision is determined through a simple ma-
jority vote across these three verdicts.

As presented in Table 9, CLEV matches or
closely approaches the Macro F1 and Cohen’s
Kappa scores of the three-judge majority across
almost all tasks and candidate LLMs. For example,
on HotpotQA, evaluating candidate Llama with
CLEV achieves a Macro F1 of 97.6% (compared
to 97.6% for majority voting) and a Cohen’s Kappa
of 0.95, while for GPT-3.5 on AmbigQA, CLEV
reaches a Macro F1 of 98.4% (versus 98.3% for ma-
jority voting), indicating a negligible performance
difference. Even in high-disagreement tasks like
TriviaQA, where the primary judges (e.g., Mistral)
disagree 20.3% of the time, CLEV retains strong
alignment (with a Macro F1 of 92.7 compared to
93.5 for majority voting). Minor deviations, such
as the one observed for candidate Mixtral on Triv-
1aQA (CLEV’s Macro F1 = 0.88 vs. 0.95 for ma-
jority voting), reflect rare instances where both the
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Candidate LLMs Tasks Samples Disagreement Rates (%) Third Judge Usage
DeepSeek AmbigQA 300 25.7 77
FreshQA 300 28.3 85
HotpotQA 300 10.7 32
NQ-Open 300 12.0 36
TriviaQA 300 14.3 43
Llama AmbigQA 300 10.0 30
FreshQA 300 31.3 94
HotpotQA 300 13.0 39
NQ-Open 300 18.0 54
TriviaQA 300 17.0 51
GPT AmbigQA 300 7.0 21
FreshQA 300 443 133
HotpotQA 300 5.7 17
NQ-Open 300 13.0 39
TriviaQA 300 15.7 47
Mixtral AmbigQA 300 9.0 27
FreshQA 300 37.3 112
HotpotQA 300 4.7 14
NQ-Open 300 13.0 39
TriviaQA 300 17.0 51
Mistral AmbigQA 300 11.7 35
FreshQA 300 39.7 119
HotpotQA 300 6.0 18
NQ-Open 300 14.7 44
TriviaQA 300 20.3 61
Total 7500 1318

Table 8: Cost-efficiency analysis of CLEV: Summary of disagreement rates and third judge usage across candidate

models and tasks

primary judges and the third judge make errors, yet
these outliers are substantially outweighed by the
computational savings offered by the selective third
judge.

E.5 Impact of prompt variations

The effectiveness and consistency of LL.M-based
evaluation are significantly influenced by prompt
design. Variations in prompt structure, reasoning
order, explanation requirements, and task-specific
examples can lead to notable differences in model
verdicts. To analyze the robustness of the LLM
judges in free-form QA, we conducted ablation
studies on different prompt variations using Mistral
as the candidate model and GPT as the judge.

E.5.1 Consistency in judgment across
multiple trials

LLMs generate random text even at a temperature
of 0. To assess whether this affects evaluation con-
sistency, we repeated the same evaluation task five
times for 300 Mistral-generated responses for Hot-
potQA. In this ablation study, we use GPT-3.5 as a
judge.

* Verdict stability: GPT produced identical
True/False verdicts in 98% of cases, with mi-
nor variations observed in only 1-2 instances.
This suggest that its binary decision-making
process remains largely stable even across
multiple trials.

* Explanation variability: While verdicts re-
mained consistent, the rationales and expla-
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Majority Voting

CLEV

Candidate LLM Task Disagreement (%)
Macro F1 Kappa Macro F1 Kappa
AmbigQA 95.5 0.91 10.0 95.5 0.91
Llama HotpotQA 97.6 0.95 13.0 97.6 0.95
NQ-Open 96.3 0.93 18.0 96.4 0.92
TriviaQA 84.1 0.68 17.0 84.2 0.68
AmbigQA 98.3 0.97 7.0 98.4 0.96
GPT HotpotQA 99.3 0.99 5.7 99.3 0.98
NQ-Open 97.8 0.96 13.0 97.8 0.95
TriviaQA 90.5 0.81 15.7 88.7 0.77
AmbigQA 98.9 0.98 9.0 97.5 0.95
. HotpotQA 98.6 0.97 4.7 98.7 0.97
Mixtral NQ-Open 983 0.97 13.0 95.6 0.91
TriviaQA 95.0 0.90 17.0 88.2 0.76
AmbigQA 97.6 0.95 11.7 97.7 0.95
. HotpotQA 97.9 0.96 6.0 97.9 0.95
Mistral
NQ-Open 97.6 0.95 14.7 97.6 0.95
TriviaQA 93.5 0.87 20.3 92.7 0.85

Table 9: Comparison between Majority Voting (Llama+GPT-3.5+Mistral) and CLEV (GPT-3.5 as the third judge).
For each candidate LLM and task, the table reports Macro F1 and Cohen’s Kappa scores under Majority Voting, the
disagreement rate (in %), and the corresponding scores using CLEV. Small differences in performance between the
majority voting setup and CLEV are due to randomness (see Section E.5.1).

nations provided by GPT across trials, often
cited different supporting facts for the same
judgment.

E.5.2 Few-shot vs. zero-shot prompting

We investigated the impact of few-shot prompting
where we included three task-specific examples
in the prompt to guide the judge’s decision-making
process. We found that adding few-shot examples
resulted in a 2% increase in Macro-F1 scores. How-
ever, few-shot prompting introduced rigid decision
patterns—the model sometimes over-applied rea-
soning from the examples rather than adapting flex-
ibly to novel cases. For instance, multi-hop reason-
ing cases from HotpotQA, the judge model consis-
tently followed the structure of the provided exam-
ples, even when the correct reasoning required a
different approach.

E.5.3 Explanation requirement: Binary
verdict vs. justification-based evaluation

To test whether requiring the model to generate
explanations alongside verdicts improves judgment
reliability, we compared two settings:

¢ Binary verdict-only evaluation: The model

was instructed to provide only a True/False
response without any explanation.

* Justification-based evaluation: The model
was required to explain its reasoning before
delivering the final verdict.

We found that:

* Higher verdict volatility in verdict-only
mode: When explanations were removed,
13% of verdicts changed between repeated
evaluations of the same responses.

* Reduced alignment with human judgment:
Cohen’s Kappa agreement with human anno-
tators dropped from 0.95 to 0.72, highlighting
that rationale-based prompts lead to more sta-
ble and accurate decisions.

E.5.4 Reason-first vs. verdict-first prompting

In the verdict-first approach, the model is instructed
to provide a True/False answer before justifying
its decision, whereas in the reason-first approach,
the model is asked to generate reasoning first and
then conclude with a verdict. Experimental results
showed no significant difference in accuracy or
agreement scores between these two formats.
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E.6 G-Eval: reference-free evaluation of
free-form question-answering

Existing LLM-based evaluators such as G-
Eval (Liu et al., 2023) are designed for reference-
free, subjective tasks (e.g., summarization, dia-
logue), where evaluation criteria (e.g., coherence,
fluency) are inherently ambiguous and scored on
Likert scales. These frameworks prioritize qualita-
tive judgments rather than binary factual correct-
ness. In contrast, CLEV is explicitly tailored for
reference-dependent, objective evaluation in free-
form QA, where answers are either factually cor-
rect or incorrect based on alignment with explicit
ground-truth references.

To validate this distinction, we tailored the G-
eval (Liu et al., 2023) to investigate the capability
of LL.M-as-a-judge in reference-free settings. In
this setting, we modify the evaluation prompt by ex-
cluding the reference answer 7 and directly prompt
the evaluator model as P = {x, y} along with in-
structions such as correctness.

The performance of LLM-as-a-judge drastically
changes in reference-free settings. Without access
to the ground truth references, we observe a stark
decline in evaluation capability across all models
(see Table 10 and 11 values in blue). This sys-
tematic deterioration spans all tasks and model
combinations, though its severity varies by context.
HotpotQA and NQ-Open, with their demands for
complex reasoning, exemplify this challenge most
clearly. The substantial gap between reference-
based and reference-free evaluation underscores
the crucial role of reference answers in reliable
assessment.

E.7 CLEYV in multi-reference answers

CLEV explicitly accommodates multiple gold ref-
erence answers by incorporating all available refer-
ences into the judge LLM’s prompt during evalu-
ation. For datasets like AmbigQA and TriviaQA,
where questions often have multiple valid answers
(e.g., synonyms, rephrased answers, or alternative
factual representations), CLEV aggregates all ref-
erence answers into the judge’s input prompt (e.g.,
concatenating them as a comma-separated list).
This design ensures that the judge evaluates the
candidate’s output against the full spectrum of ac-
ceptable answers, mirroring the human evaluation
protocol, where annotators are instructed to mark a
response as correct if it aligns with any reference
answer. However, as presented in our paper, LLM-

based judges encounter challenges with multiple
reference answers. This confusion is particularly
evident in TriviaQA, where multiple reference an-
swers introduce difficulties for the judges to recog-
nize and evaluate a range of correct responses.

E.8 Analysis of automatic metrics

Figures 3, 4, 5, and 6 illustrate the fundamental
trade-offs in automatic metrics. In TriviaQA, where
multiple normalized reference answers exist, EM
achieves impressive true positives (61.7-74.3%)
compared to HotpotQA (23.0-34.3%) which con-
tains single reference answers. EM’s near-zero
false positives across tasks (0-0.7%) stem from
its strict string matching — it only flags matches
when answers are identical to references. Our er-
ror analysis found three primary causes of such
rare false positives including preprocessing errors,
where character normalization removes crucial dis-
tinctions, and reference ambiguities, where incom-
plete or ambiguous references lead to incorrect
matches. Additionally, a semantic mismatch oc-
curs when the EM incorrectly labels a prediction as
true by matching text without considering its con-
text. For instance, despite their different contextual
meanings, EM wrongly marks a match between a
model prediction of “1944” (describing the start of
a war) and a reference answer containing “1944”
(representing the end of the war).

EM string-matching guarantees high precision
and makes EM particularly effective when exact
wording is crucial, such as mathematical problems.
However, its rigid criteria also result in substantial
false negatives (17.0-34.7%). These false negatives
primarily occur when the candidate LLM generates
semantically correct responses that differ from ref-
erences in format or expression. Common cases
include synonym usage and paraphrases, structural
variations in phrasing (e.g., “School of Medicine
at Harvard” vs. “Harvard Medical School”), granu-
larity discrepancies where answers differ in levels
of detail from references (e.g., answering “British
writer” instead of “William Shakespeare”), and par-
tial matches that contain valid information but don’t
exactly mirror the reference.

Unlike EM, BERTScore offers advantages in
capturing semantic similarities. In TriviaQA,
it gains high true positive rates (81.3-92.0%)
with relatively low false positives (2.0-13.0%).
BERTScore’s performance varies significantly
across tasks and is influenced by its sensitivity to
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Figure 3: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on AmbigQA.
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Figure 4: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on HotpotQA.
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Figure 5: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on NQ-Open.
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Figure 6: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on TriviaQA.
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Candidate LLMs  Tasks Evaluators
EM BERTScore  Human Majority  Llama-3.1-70B  GPT-3.5-turbo  Mixtral-8x7B  Mistral-7B
AmbigQA 423 63.0 67.0 65.3 [83.3] 64.7 [84.7] 63.0 [76.0] 66.0 [80.3]
Llama-3.1-70B HotpotQA 343 67.7 56.3 58.3 [81.0] 54.0 [81.0] 50.7 [67.3] 52.7[69.3]
’ NQ-Open 31.7 61.7 66.3 62.7 [89.0] 60.0 [89.3] 59.0 [81.0] 66.7 [81.0]
TriviaQA 74.3 94.0 94.7 90.3 [90.3] 90.0 [90.3] 88.7 [89.0] 84.7 [84.0]
AmbigQA  49.7 78.0 1.7 70.0 [79.0] 68.0 [81.0] 65.7[79.0] 71.0 [84.3]
GPT3.5 HotpotQA  33.7 80.0 54.0 53.0[85.3] 52.7[85.7] 51.7 [82.3] 54.0 [86.3]
e NQ-Open 36.3 74.0 65.3 62.7 [83.7] 59.0[90.7] 59.0 [87.0] 67.0 [89.7]
TriviaQA 74.3 95.3 93.0 89.3 [89.0] 90.7 [88.7] 89.7 [90.3] 86.3 [84.3]
AmbigQA 377 70.3 61.7 57.3 [74.7] 62.0 [82.3] 59.3[79.7] 61.7 [80.7]
Mixtral-8x7B HotpotQA  25.0 69.7 47.0 45.3 [80.0] 45.7 [84.7] 44.7[72.0] 46.0 [78.0]
. NQ-Open 23.7 63.7 56.7 52.7[81.7] 47.7190.3] 52.3[85.7] 59.7 [89.7]
TriviaQA 64.7 91.3 90.7 86.3 [85.7] 89.7 [89.0] 86.0 [86.7] 85.3[86.0]
AmbigQA  31.0 61.7 49.7 46.3 [61.0] 47.7[78.7] 46.3 [74.7] 53.3[85.0]
Mistral-7B HotpotQA  23.7 64.7 40.0 39.0 [64.3] 38.0[83.3] 37.0 [62.0] 39.0 [77.0]
NQ-Open 22.7 60.0 46.0 40.0 [72.3] 43.3[85.7] 41.3[78.0] 50.0[92.3]
TriviaQA 62.0 94.3 83.7 81.3 [80.7] 81.0 [81.0] 79.7 [80.7] 85.0 [84.7]

Table 10: Overall performance (Raw Accuracy) of candidate LLLMs across free-form QA tasks. Values [in blue]
represent LLM-as-a-judge in the reference-free mood.

Candidate LLMs  Tasks Evaluators
EM BERTScore Llama-3.1-70B GPT-3.5-turbo Mixtral-8x7B Mistral-7B CLEV

AmbigQA  0.744 0.641 0.944 [0.629] 0.922 [0.604] 0.912 [0.669] 0.929 [0.631]  0.955[0.637]
Llama-3.1-70B HotpotQA  0.778 0.745 0.939 [0.628] 0.949 [0.574] 0.910 [0.665] 0.916 [0.640]  0.976 [0.623]
o NQ-Open 0.653 0.718 0.916 [0.606] 0.896 [0.560] 0.907 [0.639] 0.869 [0.622]  0.964 [0.610]
TriviaQA 0.612 0.782 0.772[0.772] 0.717 [0.628] 0.695 [0.678] 0.640 [0.633]  0.842[0.747]
AmbigQA  0.792 0.622 0.972 [0.686] 0.949 [0.603] 0.930 [0.596] 0.927[0.553]  0.984 [0.607]
GPT3.5 HotpotQA  0.794 0.623 0.977 [0.566] 0.987 [0.521] 0.936 [0.543] 0.966 [0.494]  0.993 [0.522]
_' NQ-Open 0.703 0.606 0.942 [0.671] 0.911 [0.544] 0.911 [0.601] 0.914 [0.536]  0.978 [0.575]
TriviaQA 0.646 0.681 0.824 [0.817] 0.700 [0.690] 0.789 [0.760] 0.730 [0.701]  0.887 [0.882]
AmbigQA  0.760 0.666 0.948 [0.704] 0.891 [0.636] 0.955 [0.654] 0.944 [0.622]  0.975 [0.650]
Mixtral-8x7B HotpotQA  0.761 0.657 0.970 [0.587] 0.966 [0.470] 0.930 [0.582] 0.970[0.577]  0.987 [0.536]
NQ-Open 0.650 0.649 0.939 [0.652] 0.863 [0.517] 0.950 [0.590] 0.908 [0.529]  0.956 [0.563]
TriviaQA 0.625 0.695 0.812 [0.800] 0.803 [0.754] 0.838 [0.818] 0.716 [0.725]  0.882[0.858]
AmbigQA  0.792 0.622 0.947 [0.730] 0.947 [0.627] 0.947 [0.628] 0.930[0.523]  0.977 [0.647]
Mistral-7B HotpotQA  0.796 0.673 0.969 [0.649] 0.951 [0.478] 0.947 [0.680] 0.969 [0.578]  0.979 [0.673]
NQ-Open 0.726 0.639 0.925 [0.652] 0.919 [0.515] 0.939 [0.597] 0.920[0.433]  0.976 [0.527]
TriviaQA 0.718 0.608 0.879 [0.881] 0.863 [0.840] 0.822 [0.846] 0.735[0.744]  0.927[0.913]

Table 11: Performance (Macro F1) of various evaluators across candidate LLMs and tasks. Values [in blue] represent

the reference-free mode.

the threshold setting. In HotpotQA, where answers
require multi-hop reasoning, true positives reach
36.0-50.3%, with an increase in false positives
(17.7-29.7%). A similar pattern appears in NQ-
Open, with true positives of 43.3-53.0% and false
positives of 10.7-21.0%. Its tendency toward false
positives indicates that relying solely on embedding
similarity often accepts answers that are contextu-
ally related but factually incorrect. The false posi-
tives emerge through semantic drift (where similar
embeddings yield false matches), contextual mis-
alignment (where word meanings shift based on
context), and threshold instability (where similarity
cutoffs fail to distinguish subtle semantic differ-
ences). Additionally, false positives emerge due
to the verbose responses where additional content
artificially increases similarity scores.

F Prompting

In our main experiment, we performed zero-shot
prompting in the two stages. First, we prompted
candidate LLMs to obtain outputs for the given
asks. Then, we instructed LLM judges to perform
evaluations.
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Candidate Prompt

You are a helpful assistant. Which comic book was also written by the writer of Crossed?

Figure 7: Prompt given to candidate GPT-3.5-turbo to elicit an answer for HotpotQA.

Candidate Response

Crossed was written by Garth Ennis. The Boys is a comic book series also written by Garth Ennis. So the comic
book that was also written by the writer of Crossed is The Boys.

Figure 8: Candidate GPT-3.5-turbo response to the prompt shown in Figure 7.

Judge Prompt

You are a helpful assistant acting as an impartial judge. You will be given a Question and a Proposed Answer.
Your task is to judge whether the Proposed Answer is correct by comparing it to the Reference Answer. If the
Proposed Answer is correct, choose *True’, otherwise, choose 'False’. Provide a brief explanation for your
decision.

Question: Which comic book was also written by the writer of Crossed?

Provided Answer: Crossed was written by Garth Ennis. The Boys is a comic book series also written by Garth
Ennis. So the comic book that was also written by the writer of Crossed is The Boys.

Reference Answer: the Vertigo series “Preacher”
Evaluation:
Provide your response in the following format:

Decision: [True/False]
Explanation: [Your brief explanation]

Figure 9: Prompting judge Llama-3.1-70B for evaluating the candidate GPT-3.5-turbo answer.

Judge Response

Decision: False

Explanation: The Proposed Answer incorrectly identifies "The Boys" as the comic book written by the writer
of Crossed. While it is true that Garth Ennis wrote Crossed, the Proposed Answer fails to consider other works
written by Garth Ennis. The Reference Answer, "Preacher”, is indeed another comic book series written by Garth
Ennis, specifically for the Vertigo imprint.

Figure 10: Llama-3.1-70B-Judge verdict on the candidate GPT-3.5-turbo answer.
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