

CLEV: LLM-Based Evaluation Through Lightweight Efficient Voting for Free-Form Question-Answering

Sher Badshah¹, Moamen Moustafa², Hassan Sajjad¹

¹Dalhousie University

²Alamein International University

{sh545346, hsajjad}@dal.ca mmoustafa@aiu.edu.eg

Abstract

Evaluating free-form Question-Answering (QA) remains a challenge due to its diverse and open-ended nature. Traditional automatic metrics fail to capture semantic equivalence or accommodate the variability of open-ended responses. Leveraging Large Language Models (LLMs) as evaluators offers a promising alternative due to their strong language understanding and instruction-following capabilities. We propose the Consensus via Lightweight Efficient Voting (CLEV), which employs two primary LLMs as judges and engages a third judge only in cases of disagreement. This approach prioritizes evaluation reliability while reducing unnecessary computational demands. Through experiments, including human evaluation, we demonstrate CLEV’s ability to provide consistent, scalable, and resource-efficient assessments, establishing it as a robust framework for evaluating LLMs on free-form QA.

1 Introduction

One of the practical limitations in evaluating free-form Question-Answering (QA) is the lexical–semantic mismatch between Large Language Model (LLM) outputs and the reference answers. For the query “*Who wrote 1984?*”, a dataset may list simply “*George Orwell*”, while a helpful model replies: “*It was penned by the British author Eric Arthur Blair.*” Although both refer to the same person, there is no surface token overlap, causing lexical-matching and even embedding-based metrics to assign it an unduly low score. For instance, Exact Match (EM) requires strict lexical alignment (e.g., failing to equate “nuclear weapon” and “atomic bomb”) and ignores semantic equivalence (Doostmohammadi et al., 2024).

A reference-aware LLM-as-a-judge can instead reason over meaning, recognize that the candidate entails the gold fact, and deliver a verdict, thereby overcoming this lexical–semantic gap (Zheng et al., 2024; Verga et al., 2024). Existing studies using

LLM as judges primarily focus on subjective pairwise comparison (Wang et al., 2023b; Vu et al., 2024) and single-answer scoring (Chiang and Lee, 2023; Hu et al., 2024a; Liu et al., 2023). However, objective evaluation using LLM judges, particularly for free-form QA, has received limited attention. Furthermore, LLM-based judging also lies on a cost–quality spectrum. Querying a single judge is efficient but is less reliable due to the known limitations, such as prompt sensitivity, inconsistency, and bias (Ye et al., 2024), as no individual model captures the full diversity of reasoning styles, long-tail knowledge, and user values (Feng et al., 2025). To improve robustness, some studies employ fixed ensembles of three or more LLM judges and aggregate their decisions via majority voting (Badshah and Sajjad, 2025; Verga et al., 2024). While this improves reliability, it increases computational cost and latency (Badshah and Sajjad, 2024), limiting scalability for large-scale evaluation (Jung et al., 2024; Adlakha et al., 2024).

To address these trade-offs, we propose the Consensus via Lightweight Efficient Voting (CLEV) that balances the reliability and efficiency of using LLMs as judges for free-form QA. CLEV employs two primary judges for initial assessments and invokes a third judge only when disagreements occur. By minimizing redundant calls in the fixed three-judge majority vote setting, CLEV reduces computational overhead by roughly 80 to 95% (varying by task) while achieving substantial to perfect agreement. Our key contributions include: 1) establishing a principled LLM-as-a-judge evaluation setup for free-form QA that moves beyond token-level string matching metrics, 2) proposing CLEV, a lightweight consensus-based evaluation method that preserves the reliability of multi-judge voting while significantly reducing computational cost, 3) empirically validating CLEV across diverse QA datasets and multiple state-of-the-art LLMs, and 4) systematic analysis of failure cases.

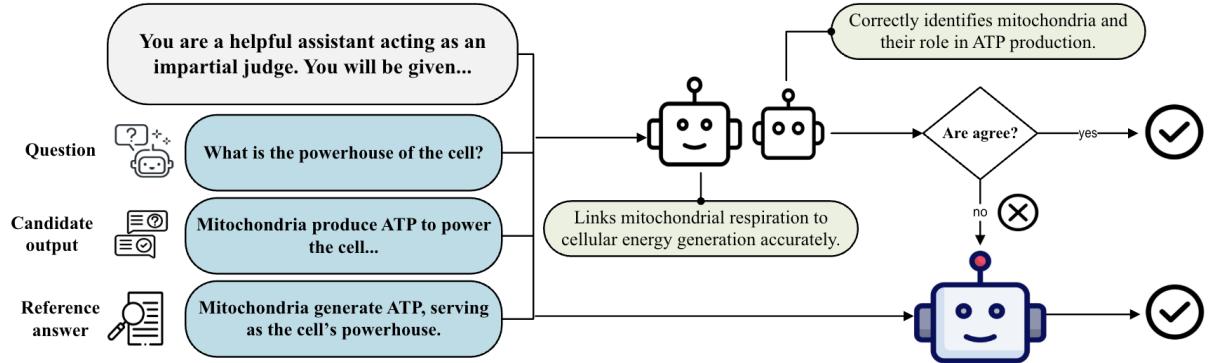


Figure 1: CLEV: Consensus via Lightweight Efficient Voting.

2 Methodology

Given a question and a candidate model’s answer, the evaluation task is to determine whether the answer is factually correct with respect to a reference. Because free-form QA requires an objective correctness decision rather than scalar scoring, we prompt LLM judges to return a binary verdict along with a brief rationale explaining their judgment. The verdict serves as the evaluation signal, while the rationale provides interpretability and supports later analysis.

2.1 Consensus via Lightweight Efficient Voting (CLEV)

In traditional human evaluation settings, when two annotators disagree on a judgment, a third expert is often called upon to resolve the dispute. Drawing inspiration from this efficient practice, we propose CLEV. As illustrated in Figure 1, rather than immediately employing three LLMs, CLEV adopts an efficient approach by beginning with two models as primary judges. When these judges reach a consensus, no further evaluation is needed. Only in cases of disagreement, the third LLM is engaged, whose decision then creates a majority verdict.

2.2 Judges inclusion and exclusion criteria

To systematically select suitable judges for CLEV, we evaluate various LLMs (see Figure 2) using 100 random instances from HotpotQA. For each model, we compare binary verdicts against human annotations and compute Cohen’s Kappa (κ) and Macro F1. We interpret κ following the commonly used guideline where values between 0.61–0.80 indicate *substantial agreement*, and values above 0.80 indicate *near-perfect agreement* (McHugh, 2012). However, since κ is known to be sensitive to class

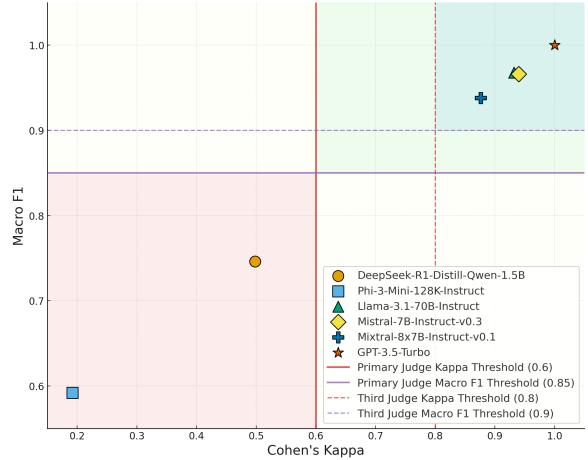


Figure 2: Judges selection based on the defined criteria in Section 2.2.

imbalance (Cicchetti and Feinstein, 1990), we together consider Macro F1 to ensure balanced evaluation across both classes:

$$\text{status} = \begin{cases} \text{primary judges}, & \kappa \geq 0.6 \text{ and } F1 \geq 0.85, \\ \text{third judge}, & \kappa \geq 0.8 \text{ and } F1 \geq 0.9, \\ \text{excluded}, & \text{otherwise.} \end{cases}$$

3 Experiments

We utilize the following settings to evaluate CLEV:

Models Our candidate models includes Llama-3.1 70B (Meta AI, 2024), GPT-3.5-turbo (Brown et al., 2020), Mistral 7B (Jiang et al., 2023), and Mistral 8x7B (Jiang et al., 2024). For judges, Mistral-7B met our inclusion criteria ($\kappa \geq 0.6$, $F1 \geq 0.85$) while offering low cost and fast inference. Llama-3.1-70B, though more expensive, provided substantial agreement. We therefore use both as primary judges to capture a range of capabilities (Feng et al., 2025; Liang et al., 2024; Sun

et al., 2024). GPT-3.5-turbo serves as the third judge because it exceeds the required thresholds ($\kappa \geq 0.8$, $F1 \geq 0.9$). All models are run with temperature 0 to ensure reproducibility, as higher temperatures degrade evaluator reliability (Hada et al., 2024).

Datasets We utilize four datasets: AmbigQA (Min et al., 2020), HotpotQA (Yang et al., 2018), Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017). We only utilize FreshQA to evaluate the judge’s ability to detect outdated information. See Appendix A for details.

Prompts We design minimal zero-shot role-playing prompts (Kong et al., 2024) for both candidate and judge LLMs. The judge LLM is instructed to return a binary verdict with a brief explanation, which reduces subjectivity and simplifies automatic evaluation (see Appendix F).

Baselines We compare individual LLM judges and CLEV against EM, BERTScore (Zhang et al., 2020) computed with microsoft/deberta-xlarge-mnli and thresholded at $\tau = 0.5$ to yield binary decisions and majority voting, which always invokes a fixed setup of LLM judges and returns the model verdict (see Appendix B).

Human evaluation We invite three volunteer graduate students from our lab to act as annotators. We provided the questions, reference answers, and candidate LLM responses, without information about model identity, to avoid bias. Each response is scored on a binary scale based on correctness and relevance (see Appendix C).

Evaluation metrics We compute Fleiss’ Kappa (κ) (Fleiss and Cohen, 1973) and percent agreement to measure inter-rater reliability among human annotators. To compare evaluators with humans, we calculate Cohen’s Kappa (McHugh, 2012) against the human majority on an instance level. Because of class imbalance, kappa can appear low despite high agreement (Cicchetti and Feinstein, 1990). Therefore, we also frame the task as binary classification and report Macro-F1 scores.

4 Results

In this section, we briefly report the results and refer the readers to Appendix E for detailed results.

Correlation with human evaluation As depicted by consistently high Cohen’s kappa in Table 1, CLEV maintains strong agreement with human evaluation. This represents an improvement over individual model performance, where individual judges generally showed varying levels of agreement with human evaluation.

LLM-based evaluators demonstrate strong abilities in recognizing semantic variations while maintaining the core meaning, especially when assessing responses that use different terminology or structural approaches to convey the same information. For instance, evaluators correctly identified that “*Salma Hayek*” and “*Salma Hayek Pinault*” refer to the same individual, acknowledging the semantic equivalence despite differences in phrasing. Similarly, when assessing responses that use different terms for the same entity, such as recognizing “*Nick Fury, Agent of S.H.I.E.L.D.*” as part of the broader “*Marvel*” universe, the evaluators effectively maintain the core meaning and contextual relevance. Their explanations show systematic assessment patterns that combine multiple evaluation criteria (e.g., factual accuracy and contextual relevance).

CLEV reducing third-judge calls by 80–95% while maintaining the performance across tasks. As depicted in Table 1, even on TriviaQA, where disagreement is high, CLEV scores remain in substantial to perfect agreement.

EM underestimates and BERTScore overestimates. Interestingly, EM typically accomplishes better correlation with human evaluation on the instance-level in Table 1 than neural-based BERTScore. EM’s strict nature leads to lower overall performance, but its high precision ensures that when it identifies a match, it strongly aligns with human annotations. In contrast, BERTScore takes a more lenient approach to semantic matching. As a result, it shows more false positives, consequently reducing instance-level agreement with human judgments.

4.1 Impact of selective third judge

A core benefit of CLEV is that it avoids unnecessary third-judge evaluations by only invoking a judge when the two primary judges disagree. Table 2 summarizes the frequency of such escalation events across five datasets and five candidate LLMs. Across all 7,500 evaluated instances (300 examples \times 5 models \times 5 tasks), only 17.6% re-

Evaluators (Cohen’s κ [Macro-F1] vs Human Majority)									
Candid.	Tasks	EM	BERTScore	Llama	GPT	Mistral	MV	CLEV	Disagr. (%)
Llama	AmbigQA	0.52 [0.74]	0.28 [0.64]	0.89 [0.94]	0.84 [0.92]	0.86 [0.93]	0.91 [0.96]	0.91 [0.96]	10.0
	HotpotQA	0.58 [0.78]	0.50 [0.75]	0.88 [0.94]	0.90 [0.95]	0.83 [0.92]	0.95 [0.98]	0.95 [0.98]	13.0
	NQ-Open	0.38 [0.65]	0.44 [0.72]	0.83 [0.92]	0.79 [0.90]	0.74 [0.87]	0.93 [0.96]	0.92 [0.96]	18.0
	TriviaQA	0.28 [0.61]	0.56 [0.78]	0.55 [0.77]	0.44 [0.72]	0.30 [0.64]	0.68 [0.84]	0.68 [0.84]	17.0
GPT	AmbigQA	0.56 [0.79]	0.25 [0.62]	0.94 [0.97]	0.90 [0.95]	0.85 [0.93]	0.97 [0.98]	0.96 [0.98]	7.0
	HotpotQA	0.60 [0.79]	0.30 [0.62]	0.95 [0.98]	0.97 [0.99]	0.93 [0.97]	0.99 [0.99]	0.98 [0.99]	5.7
	NQ-Open	0.45 [0.70]	0.22 [0.61]	0.88 [0.94]	0.82 [0.91]	0.83 [0.91]	0.96 [0.98]	0.95 [0.98]	13.0
	TriviaQA	0.34 [0.65]	0.36 [0.68]	0.65 [0.82]	0.40 [0.70]	0.47 [0.73]	0.81 [0.90]	0.77 [0.89]	15.7
Mixtral	AmbigQA	0.55 [0.76]	0.34 [0.67]	0.90 [0.95]	0.78 [0.89]	0.89 [0.94]	0.98 [0.99]	0.95 [0.98]	9.0
	HotpotQA	0.55 [0.76]	0.35 [0.66]	0.94 [0.97]	0.93 [0.97]	0.94 [0.97]	0.97 [0.99]	0.97 [0.99]	4.7
	NQ-Open	0.37 [0.65]	0.30 [0.65]	0.88 [0.94]	0.73 [0.86]	0.82 [0.91]	0.97 [0.98]	0.91 [0.96]	13.0
	TriviaQA	0.32 [0.63]	0.39 [0.70]	0.63 [0.81]	0.61 [0.80]	0.44 [0.72]	0.90 [0.95]	0.76 [0.88]	17.0
Mistral	AmbigQA	0.60 [0.79]	0.25 [0.62]	0.89 [0.95]	0.89 [0.95]	0.86 [0.93]	0.95 [0.98]	0.95 [0.98]	11.7
	HotpotQA	0.61 [0.80]	0.38 [0.67]	0.94 [0.97]	0.90 [0.95]	0.94 [0.97]	0.96 [0.98]	0.95 [0.98]	6.0
	NQ-Open	0.48 [0.73]	0.29 [0.64]	0.85 [0.93]	0.84 [0.92]	0.84 [0.92]	0.95 [0.98]	0.95 [0.98]	14.7
	TriviaQA	0.47 [0.72]	0.24 [0.61]	0.76 [0.88]	0.73 [0.86]	0.47 [0.74]	0.87 [0.94]	0.85 [0.93]	20.3

Table 1: Cohen’s Kappa and [Macro-F1] scores showing the agreement of individual evaluators, Majority Vote (MV), and CLEV with human majority across models and tasks. **Disagr. (%)** indicates the percentage of disagreements in the majority voting (Llama+GPT+Mistral), i.e., when the third judge is called in CLEV.

Tasks	Third judge calls (of 1,500)	Rate (%)
AmbigQA	190	12.7
FreshQA	543	36.2
HotpotQA	120	8.0
NQ-Open	212	14.1
TriviaQA	253	16.9
Total	1,318 / 7,500	17.6

Table 2: Aggregated third-judge usage under CLEV across tasks. Each task has 1,500 evaluation instances per candidate model (300 examples \times 5 candidate LLMs), and the reported counts sum over all five models¹. Lower values indicate fewer disagreement-triggered escalations.

quired a third judge. This reduction is substantial when compared to the fixed three-judge majority voting setup, which always incurs 100% of third-judge calls. In other words, CLEV reduces evaluation overhead by approximately 80–95% while preserving agreement levels that match majority vote outcomes (see Table 1). Tasks with stable factual grounding (e.g., HotpotQA) trigger few escalations, whereas more temporally dynamic datasets like FreshQA show higher disagreement rates due to shifts in real-world facts.

4.2 Error analysis

We randomly sampled 100 error cases (50 false positives and 50 false negatives) from each evaluator to study their behavior. Given EM had 11 false

¹We also included DeepSeek as our fifth model in the Appendix. See Table 8.

positives, we included all of them in our analysis.

LLMs are prone to hallucination in justification where they fabricate reasoning to support their evaluations, and produce detailed but incorrect explanations. In LLM judges, false positives and negatives often result from overlooking critical distinctions between candidate LLM outputs and failing to account for the specificity required by the reference answer. This pattern is particularly noticeable in Mistral 7B, where the model disregards the ground truth and provides evaluations influenced by unknown factors. For example, when evaluating candidate GPT-3.5’s response “*The foreign minister of Germany who signed the Treaty of Versailles was Hermann Müller.*” which is correct according to the reference answer “*Hermann Müller*” and human evaluation, Mistral 7B as-a-judge incorrectly marked this response as false and fabricated reasoning in support of its decision.

Specificity bias occur in some judges. This approach shifts the evaluation towards false negatives by missing semantically similar but structurally different answers. We found many cases when such evaluators failed to account for valid variations in phrasing or granularity, focusing instead on rigid adherence to the reference answer. Compounding these issues are reasoning errors within the evaluators’ own explanations, which often contain overconfident assertions.

Temporal limitations in LLM-based evaluators. Despite using mostly older datasets with up-to-date

Candid.	Evaluators				
	Llama	GPT	Mistral	CLEV	Disagr. (%)
Llama	0.835	0.737	0.730	0.917	31.3
GPT	0.695	0.824	0.746	0.891	44.3
Mixtral	0.708	0.779	0.703	0.936	37.3
Mistral	0.665	0.802	0.723	0.880	39.7

Table 3: Macro-F1 of judges on FreshQA and corresponding disagreement rates. Higher disagreement indicates a more frequent need for a resolving judge (CLEV).

models, we observed failures on recent events or evolving contexts. The FreshQA dataset (Vu et al., 2023), being recent, highlights these temporal limitations. As shown in Table 3, LLM judges deviate more from human judgment on FreshQA compared to older datasets like HotpotQA. In dynamic or time-sensitive contexts, they often hallucinate by marking incorrect responses as True. For instance, when asked: “*On what date did the Patriots last play the Miami Dolphins?*”, the evaluator accepted an outdated answer, “*January 1, 2023*,” as correct, ignoring the reference “*November 24, 2024*,” and justifying its mistake. Because multiple judges rely on this same outdated parametric knowledge, FreshQA exhibits substantially higher disagreement between judges, who often converge on answers that were once correct but no longer reflect the current ground-truth.

5 Related work

Recent advances in LLMs have unlocked new opportunities for automatic and context-aware evaluation (Li et al., 2024; Chiang and Lee, 2023; Zheng et al., 2024). Early work primarily focused on subjective evaluation tasks, such as pairwise comparison for ranking model outputs or single-response scoring for open-ended generation (Chan et al., 2024; Zheng et al., 2024; Chen et al., 2024). These approaches leverage LLMs’ strong language understanding and reasoning capabilities to assess qualities like coherence, fluency, and helpfulness. However, such subjective criteria and continuous scoring schemes are less suitable for evaluating objective QA (Badshah et al., 2025), where free-form answers are expected to be factually correct with respect to a reference answer (Krumdick et al., 2025; Shi et al., 2024).

To address this gap, recent work has explored reference-grounded LLM-as-judge approaches that instruct LLMs to directly verify candidate answers against gold references and output binary True/

False verdicts (Kamaloo et al., 2023; Wang et al., 2023a). However, this line of work also highlights key challenges: individual LLM judges can be inconsistent across questions, may over-rely on parametric knowledge when references are incomplete, and often require additional judges or majority voting to stabilize decisions (Khan et al., 2024). Furthermore, single judges often lack robustness to adversarial inputs and may hallucinate justifications that appear plausible but are factually incorrect (Hu et al., 2024b).

To mitigate the reliability issues of single-judge systems, multi-judge setups have been explored (Badshah and Sajjad, 2025; Verga et al., 2024). These approaches employ multiple diverse LLM judges and aggregate their decisions, typically through majority voting, to improve reliability and alignment with human evaluation. Badshah and Sajjad (2025) demonstrated that using multiple models reduces individual model biases and improves agreement with human judgments. However, these approaches typically rely on fixed ensembles, where all judges are invoked for every instance, regardless of whether the initial judges already agree. This design leads to substantial and unnecessary computational overhead, especially when disagreements are rare. Our work builds on these foundations that invoke a third judge only when needed, achieving the reliability benefits of multi-judge voting while saving compute.

6 Conclusion

We studied the challenge of evaluating free-form QA, where traditional metrics fail to capture semantic correctness and single LLM judges may be inconsistent. To address this, we introduced CLEV, a lightweight multi-judge framework that preserves the reliability of majority voting while avoiding its computational cost. By invoking a third judge only when necessary, CLEV achieves substantial to near-perfect agreement with human evaluation while reducing redundant evaluation calls by 80–95% across tasks. This makes LLM-based evaluation more scalable for large-scale benchmarking. While our study focuses on binary correctness, future work can extend CLEV to capture dimensions such as partial correctness. Looking forward, an important direction is reference-free evaluation, where judges are supported by external verifiers (e.g., retrieval) to assess correctness in settings where explicit references are lacking.

7 Limitations

We acknowledge certain limitations in our study: 1) The accuracy of evaluations depends on the quality and clarity of reference answers, which serve as the basis for determining correctness. Incorrect or ambiguous references could affect evaluation outcomes. 2) While we conducted an error analysis of LLM judges and automatic metrics, there may be error cases that were not identified during our manual review, leaving gaps in understanding the full spectrum of evaluation inaccuracies. 3) We acknowledge that our current study is limited to English QA datasets. Extending CLEV to multilingual settings is a promising and important future direction. 4) Since the evaluation is binary, which is standard for free-form QA, signals around partial correctness, fluency, reasoning, and justification are not captured. To tackle this, we also collected detailed rationales that justify each verdict. In our analysis, we leveraged these rationales to capture various insights. We acknowledge the limitation of binary verdicts in representing partial correctness, but we emphasize that this design choice reduces the subjectivity inherent in continuous scoring and promotes clearer agreement between judges. 5) CLEV assumes that primary judges maintain a minimum reliability threshold (based on κ and Macro-F1) established during calibration. These thresholds require recalibration when adopting new judge models, domains, or languages. Thus, applying CLEV to new settings may involve additional upfront calibration cost.

Acknowledgment

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), and Research Nova Scotia. Advanced computing resources are provided by ACENET, the regional partner in Atlantic Canada, and the Digital Research Alliance of Canada.

References

Vaibhav Adlakha, Parishad BehnamGhader, Xing Han Lu, Nicholas Meade, and Siva Reddy. 2024. [Evaluating correctness and faithfulness of instruction-following models for question answering](#). *Transactions of the Association for Computational Linguistics*, 12:681–699.

Sher Badshah, Ali Emami, and Hassan Sajjad. 2025. [TALE: A tool-augmented framework for reference-free evaluation of large language models](#). ArXiv:2504.07385.

Sher Badshah and Hassan Sajjad. 2024. [Quantifying the capabilities of LLMs across scale and precision](#). ArXiv:2405.03146.

Sher Badshah and Hassan Sajjad. 2025. [Reference-guided verdict: LLMs-as-judges in automatic evaluation of free-form QA](#). In *Proceedings of the 9th Widening NLP Workshop*, pages 251–267, Suzhou, China. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. [Language models are few-shot learners](#). In *Advances in Neural Information Processing Systems*, volume 33, pages 1877–1901. Curran Associates, Inc.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu. 2024. [Chateval: Towards better LLM-based evaluators through multi-agent debate](#). In *The Twelfth International Conference on Learning Representations*.

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. 2024. [Humans or llms as the judge? a study on judgement biases](#).

Cheng-Han Chiang and Hung-yi Lee. 2023. [Can large language models be an alternative to human evaluations?](#) In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 15607–15631, Toronto, Canada. Association for Computational Linguistics.

Domenic V Cicchetti and Alvan R Feinstein. 1990. High agreement but low kappa: II. resolving the paradoxes. *Journal of clinical epidemiology*, 43(6):551–558.

Ehsan Doostmohammadi, Oskar Holmström, and Marco Kuhlmann. 2024. How reliable are automatic evaluation methods for instruction-tuned llms? *arXiv preprint arXiv:2402.10770*.

Shangbin Feng, Wenxuan Ding, Alisa Liu, Zifeng Wang, Weijia Shi, Yike Wang, Zejiang Shen, Xiaochuang Han, Hunter Lang, Chen-Yu Lee, Tomas Pfister, Yejin Choi, and Yulia Tsvetkov. 2025. [When one llm drools, multi-llm collaboration rules](#).

Joseph L Fleiss and Jacob Cohen. 1973. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. *Educational and psychological measurement*, 33(3):613–619.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. 2024. [Critic: Large language models can self-correct with tool-interactive critiquing](#).

Rishav Hada, Varun Gumma, Adrian de Wynter, Harshita Diddee, Mohamed Ahmed, Monojit Choudhury, Kalika Bali, and Sunayana Sitaram. 2024. [Are large language model-based evaluators the solution to scaling up multilingual evaluation?](#)

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2021. [Deberta: Decoding-enhanced bert with disentangled attention](#). In *International Conference on Learning Representations*.

Xinyu Hu, Mingqi Gao, Sen Hu, Yang Zhang, Yicheng Chen, Teng Xu, and Xiaojun Wan. 2024a. [Are llm-based evaluators confusing nlg quality criteria?](#)

Xinyu Hu, Mingqi Gao, Sen Hu, Yang Zhang, Yicheng Chen, Teng Xu, and Xiaojun Wan. 2024b. [Are llm-based evaluators confusing nlg quality criteria?](#)

Gautier Izacard and Edouard Grave. 2021. [Leveraging passage retrieval with generative models for open domain question answering](#). In *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume*, pages 874–880, Online. Association for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2023. [Mistral 7b](#).

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2024. [Mistral of experts](#).

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. 2017. [Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension](#).

Jaehun Jung, Faeze Brahman, and Yejin Choi. 2024. [Trust or escalate: Llm judges with provable guarantees for human agreement](#).

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and Davood Rafiei. 2023. [Evaluating open-domain question answering in the era of large language models](#). In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 5591–5606, Toronto, Canada. Association for Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. [Scaling laws for neural language models](#).

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Edward Grefenstette, Samuel R. Bowman, Tim Rocktäschel, and Ethan Perez. 2024. [Debating with more persuasive llms leads to more truthful answers](#).

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and Xiaohang Dong. 2024. [Better zero-shot reasoning with role-play prompting](#).

Michael Krumdick, Charles Lovering, Varshini Reddy, Seth Ebner, and Chris Tanner. 2025. [No free labels: Limitations of llm-as-a-judge without human grounding](#). *arXiv preprint arXiv:2503.05061*.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. [Natural questions: A benchmark for question answering research](#). *Transactions of the Association for Computational Linguistics*, 7:452–466.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Kütter, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. [Retrieval-augmented generation for knowledge-intensive nlp tasks](#). In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA. Curran Associates Inc.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. 2024. [Llms-as-judges: A comprehensive survey on llm-based evaluation methods](#).

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and Zhaopeng Tu. 2024. [Encouraging divergent thinking in large language models through multi-agent debate](#). In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 17889–17904, Miami, Florida, USA. Association for Computational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. 2023. [G-eval: NLG evaluation using gpt-4 with better human alignment](#). In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 2511–2522, Singapore. Association for Computational Linguistics.

Mary L McHugh. 2012. Interrater reliability: the kappa statistic. *Biochemia medica*, 22(3):276–282.

Meta AI. 2024. *Introducing meta llama 3: The most capable openly available llm to date*. Meta AI Blog. Accessed: 2024-07-25, 12:14:31 p.m.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. 2020. *AmbigQA: Answering ambiguous open-domain questions*. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 5783–5797, Online. Association for Computational Linguistics.

Lin Shi, Weicheng Ma, and Soroush Vosoughi. 2024. *Judging the judges: A systematic investigation of position bias in pairwise comparative assessments by llms*.

Guangzhi Sun, Anmol Kagrecha, Potsawee Manakul, Phil Woodland, and Mark Gales. 2024. Skillaggregation: Reference-free llm-dependent aggregation. *arXiv preprint arXiv:2410.10215*.

DeepSeek-AI Team. 2025. *Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning*.

OpenAI Team. 2024. *Gpt-4 technical report*.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. 2024. *Replacing judges with juries: Evaluating llm generations with a panel of diverse models*.

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny Zhou, Quoc Le, and Thang Luong. 2023. *Freshllms: Refreshing large language models with search engine augmentation*.

Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung. 2024. *Foundational autoraters: Taming large language models for better automatic evaluation*.

Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao Yue, Bowen Ding, Zhikun Xu, Yidong Wang, Xiangkun Hu, Zheng Zhang, and Yue Zhang. 2023a. *Evaluating open-qa evaluation*. In *Advances in Neural Information Processing Systems*, volume 36, pages 77013–77042. Curran Associates, Inc.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui. 2023b. *Large language models are not fair evaluators*.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. 2018. *Hotpotqa: A dataset for diverse, explainable multi-hop question answering*.

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer, Chao Huang, Pin-Yu Chen, Nitesh V Chawla, and Xiangliang Zhang. 2024. *Justice or prejudice? quantifying biases in llm-as-a-judge*.

Xuemin Yu, Fahim Dalvi, Nadir Durrani, Marzia Nouri, and Hassan Sajjad. 2024. *Latent concept-based explanation of NLP models*. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 12435–12459, Miami, Florida, USA. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2020. *Bertscore: Evaluating text generation with BERT*. In *8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. 2024. *Judging llm-as-a-judge with mt-bench and chatbot arena*. In *Proceedings of the 37th International Conference on Neural Information Processing Systems, NIPS '23, Red Hook, NY, USA*. Curran Associates Inc.

A Free-form Question-Answering

In our experiments, we include AmbigQA (Min et al., 2020), FreshQA (Vu et al., 2023), HotpotQA (Yang et al., 2018), Natural Questions (Kwiatkowski et al., 2019), and TriviaQA (Joshi et al., 2017).

- **AmbigQA:** Focuses on 14K ambiguous questions derived from NQ, requiring systems to identify multiple valid interpretations and generate disambiguated questions alongside corresponding answers.
- **FreshQA:** A QA benchmark containing 600 questions that consist of a diverse range of types, including those requiring fast-changing world knowledge and questions with false premises that need debunking. It is regularly updated to reflect current information and is designed to evaluate the factual accuracy of LLMs in handling up-to-date and evolving knowledge.
- **HotpotQA:** Contains 113K questions based on Wikipedia. It is designed to test multi-hop reasoning, requiring connections across multiple paragraphs, and includes annotated supporting facts for evaluation.

- **Natural Questions (NQ):** Consists of real user queries from Google Search, paired with Wikipedia articles. The dataset includes 307K training examples annotated with both long (paragraph) and short (entity-level) answers.
- **TriviaQA:** Features approximately 650K trivia questions, with evidence sourced from Wikipedia and web searches. These questions often require reasoning across multiple documents for complex answer synthesis.

We utilize the validation splits across multiple datasets: the standard validation split for AmbigQA and Natural Questions, the “distractor” subset’s validation split for HotpotQA, and the “unfiltered.nocontext” subset’s validation split for TriviaQA. We randomly sampled 300 examples from each dataset using Seed 42.

B Baselines

Exact Match (EM): For our selected datasets and also free-form QA tasks, EM serves as a standard lexical matching metric to evaluate candidate LLM performance (Izacard and Grave, 2021; Lewis et al., 2020; Gou et al., 2024). Due to the verbose nature of LLM-generated responses, we adapt EM to classify an answer as correct if any golden answer $r_i \in R$ appears within the generated response \bar{y} (i.e., $r_i \subseteq \bar{y}$), rather than requiring complete strict string equality (i.e., $\bar{y} = r_i$).

BERTScore: We use BERTScore (Zhang et al., 2020) which measures similarity by comparing contextualized word embeddings derived from a pre-trained BERT model. This enables the evaluation to focus on semantic correctness rather than exact lexical matches. As BERTScore is based on continuous values between -1 and 1, we set a threshold of $\tau = 0.5$ to convert continuous similarity scores into binary 0 and 1. The purpose of this conversion is to allow direct comparison with other evaluation methods. For our implementation, we use the microsoft/deberta-xlarge-mnli² model (He et al., 2021).

Majority voting This uses three fixed LLM judges to independently evaluate each instance. The final decision is determined by a simple majority across the three verdicts. Unlike CLEV, which selectively invokes the third judge only in cases of

²<https://huggingface.co/microsoft/deberta-xlarge-mnli>

disagreement, this method uniformly engages all judges, leading to a higher computational cost.

C Human evaluation

This section provides detailed guidelines for human annotators responsible for evaluating the outputs of candidate LLMs. The goal is to ensure consistency and objectivity across all evaluations (Yu et al., 2024). These guidelines provide clear instructions for assessing each model’s response based on its alignment with the reference answer and contextual relevance.

C.1 Guidelines

Dear Evaluator,

Thank you for your valuable contribution to this evaluation process. These guidelines outline the process for evaluating Large Language Model (LLM) outputs for the given tasks. As annotators, you will receive three components for each evaluation instance: the input question, reference answer(s), and the model’s response. Your task is to evaluate the responses independently and score them on a binary scale: ‘1’ for ‘True’ (correct) and ‘0’ for ‘False’ (incorrect).

A response warrants a score of ‘1’ when it demonstrates semantic equivalence with the reference answer, even if expressed through alternative phrasing or structure. This includes acceptable variations such as synonym usage and structural variations. Additional contextual information is acceptable as long as it doesn’t introduce errors.

Responses receive a score of ‘0’ when they contain factual errors, miss crucial elements from the reference answer, or demonstrate contextual misalignment. Partial answers that omit essential information should be marked incorrect, regardless of the accuracy of included content. When multiple reference answers are provided, a response is correct if it fully aligns with at least one reference.

You are encouraged to use internet resources when needed to verify specific facts, terminology, or potential synonyms that may affect your evaluation decision. However, the reference answer should remain the primary basis for evaluation. Focus on whether the model’s response conveys the same core information as the reference answer. To maintain reliability, document any challenging

LLMs	AmbigQA	FreshQA	HotpotQA	NQ-Open	TriviaQA
DeepSeek	0.975	0.949	0.986	0.889	0.456 (κ paradox)
Llama	0.945	0.962	0.973	0.985	0.935
GPT	0.989	0.973	0.982	0.990	0.948
Mixtral	0.981	0.945	0.996	0.977	0.936
Mistral	0.978	0.932	0.981	0.978	0.975

Table 4: Fleiss’ Kappa scores of human annotators across models and tasks.

LLMs	AmbigQA	FreshQA	HotpotQA	NQ-Open	TriviaQA
DeepSeek	99.0%	98.0%	99.7%	92.0%	90.0%
Llama	96.3%	98.0%	98.0%	99.0%	99.0%
GPT	99.3%	99.3%	98.7%	99.3%	99.0%
Mixtral	98.7%	98.0%	99.7%	98.3%	98.3%
Mistral	98.3%	97.0%	98.7%	98.3%	99.0%

Table 5: Human annotators percent agreement scores across candidate models and tasks.

cases requiring further discussion with other annotators.

D Evaluation Metrics

We compute **Fleiss’ Kappa** (κ) (Fleiss and Cohen, 1973) and **percent agreement** to assess inter-rater reliability among human annotators. Similarly, we use **Cohen’s kappa** (McHugh, 2012) to find the agreement between each evaluator and the human majority to obtain instance-level comparison. Due to the high-class imbalance in TriviaQA, kappa scores can be misleadingly low despite high raw agreement - a known limitation called the “*kappa paradox*” (Cicchetti and Feinstein, 1990). Therefore, we treat the evaluation as a binary classification task where we consider each evaluator’s predictions against the human majority and report **Macro-F1** scores which give equal weight to both classes regardless of their frequency in the selected random samples.

To quantify the efficiency of our approach, we report the **disagreement rate** between the two primary judges that indicates how often the third model is required, thereby revealing the reduction in third-model usage compared to always employing three judges. Formally,

$$\text{Disagreement rate (\%)} = \left(\frac{1}{N} \sum_{i=1}^N \mathbb{I}[V_{i1} \neq V_{i2}] \right) \times 100$$

where N is the total number of evaluation instances and $\mathbb{I}[\cdot]$ is the indicator function that equals 1 when

the condition is satisfied and 0 otherwise.

D.1 Inter-human annotator agreement

We calculate Fleiss’ Kappa (κ) (Fleiss and Cohen, 1973) and percent agreement to assess inter-rater reliability among human annotators.

Fleiss’ Kappa is defined as:

$$\kappa = \frac{\bar{P} - P_e}{1 - P_e},$$

where \bar{P} is the average observed agreement among annotators, and P_e is the expected agreement by chance.

Percent agreement is calculated as:

$$\text{Percent Agreement} = \left(\frac{\text{Agreements}}{\text{Total Annotations}} \right) \times 100$$

Table 4 and 5 show the inter-annotator agreement across models and tasks. The results demonstrate high reliability, with Fleiss’ Kappa scores consistently above 0.93 for most tasks. The highest agreement is observed in Mixtral evaluations on HotpotQA ($\kappa = 0.996$), and GPT on NQ-Open ($\kappa = 0.990$). In FreshQA, which shows lower Kappa scores, the agreement among annotators remains high including 99.3% in GPT and 98.0% in Mixtral.

The percent agreement scores in Table 5 further confirm strong inter-annotator consistency. Most models achieve over 98% agreement across AmbigQA, HotpotQA, NQ-Open, and TriviaQA. However, DeepSeek exhibits lower agreement on NQ-

LLMs	Tasks	Evaluators						
		EM	BS	Llama	GPT	Mixtral	Mistral	CLEV
Llama	AmbigQA	0.518	0.283	0.888	0.844	0.824	0.858	0.911
	HotpotQA	0.577	0.498	0.877	0.899	0.820	0.832	0.953
	NQ-Open	0.381	0.437	0.833	0.793	0.816	0.738	0.927
	TriviaQA	0.281	0.564	0.547	0.439	0.396	0.299	0.684
GPT	AmbigQA	0.561	0.252	0.944	0.897	0.861	0.853	0.967
	HotpotQA	0.604	0.300	0.953	0.973	0.873	0.933	0.987
	NQ-Open	0.453	0.218	0.884	0.824	0.824	0.829	0.956
	TriviaQA	0.335	0.364	0.650	0.401	0.580	0.467	0.775
Mixtral	AmbigQA	0.546	0.337	0.896	0.781	0.909	0.887	0.951
	HotpotQA	0.546	0.349	0.940	0.933	0.859	0.940	0.973
	NQ-Open	0.371	0.301	0.879	0.728	0.899	0.815	0.913
	TriviaQA	0.317	0.390	0.625	0.605	0.678	0.436	0.764
Mistral	AmbigQA	0.599	0.254	0.893	0.893	0.893	0.860	0.953
	HotpotQA	0.605	0.383	0.937	0.902	0.895	0.937	0.958
	NQ-Open	0.484	0.291	0.851	0.838	0.878	0.840	0.953
	TriviaQA	0.467	0.239	0.758	0.725	0.645	0.470	0.854

Table 6: Cohen’s Kappa scores displaying the agreement levels of individual and multiple (CLEV) evaluators with human judgments across candidate models and tasks.

Open (92.0%) and TriviaQA (90.0%). This indicates a variance in human ratings for these tasks.

E Additional results

This section provides further results and analysis of conventional metrics and LLM-based evaluators.

As evidenced by high Cohen’s kappa and Macro F1 scores in Table 6 and 7, CLEV maintains a strong alignment with human evaluation. This represents a substantial improvement over individual model performance, where individual judges generally showed varying levels of agreement with human evaluation. Overall, LLM-as-a-judge works better with larger models. This is particularly noticeable in Llama and GPT, which achieve greater performance across AmbigQA, HotpotQA, and NQ-Open compared to smaller models. This indicates an important scaling law in evaluation capability (Kaplan et al., 2020; Zheng et al., 2024; Team, 2024). However, we also found that the most advanced models are not always guaranteed to be the best evaluators. We observed slightly comparable performance through the small open-source Mistral7B. For instance, when evaluating candidate Mixtral 8x7B on AmbigQA (see Table 7), Mistral 7B as-a-judge outperformed (0.944) judge GPT-3.5-turbo (0.891). Regardless, we observe relatively lower Macro-F1 scores for all LLM judges in TriviaQA.

Unlike lexical matching and neural-based metrics, each LLM-as-a-judge shows overall performance close to the human majority. The proposed CLEV method consistently achieves comparable or slightly better alignment with the human ma-

LLMs	Tasks	Evaluators						
		EM	BS	Llama	GPT	Mixtral	Mistral	CLEV
Llama	AmbigQA	0.744	0.641	0.944	0.922	0.912	0.929	0.955
	HotpotQA	0.778	0.745	0.939	0.949	0.910	0.916	0.976
	NQ-Open	0.653	0.718	0.916	0.896	0.907	0.869	0.964
	TriviaQA	0.612	0.782	0.772	0.717	0.695	0.640	0.842
GPT	AmbigQA	0.792	0.622	0.972	0.949	0.930	0.927	0.984
	HotpotQA	0.794	0.623	0.977	0.987	0.936	0.966	0.993
	NQ-Open	0.703	0.606	0.942	0.911	0.911	0.914	0.978
	TriviaQA	0.646	0.681	0.824	0.700	0.789	0.730	0.887
Mixtral	AmbigQA	0.760	0.666	0.948	0.891	0.955	0.944	0.975
	HotpotQA	0.761	0.657	0.970	0.966	0.930	0.970	0.987
	NQ-Open	0.650	0.649	0.939	0.863	0.950	0.908	0.956
	TriviaQA	0.625	0.695	0.812	0.803	0.838	0.716	0.882
Mistral	AmbigQA	0.792	0.622	0.947	0.947	0.947	0.930	0.977
	HotpotQA	0.796	0.673	0.969	0.951	0.947	0.969	0.979
	NQ-Open	0.726	0.639	0.925	0.919	0.939	0.920	0.976
	TriviaQA	0.718	0.608	0.879	0.863	0.822	0.735	0.927

Table 7: Macro-F1 scores of individual and multiple (CLEV) evaluators applied to different candidate LLMs and associated tasks.

jority. Conventional metrics such as EM severely underestimate the candidate LLMs’ performance. Contrarily, BERTScore tends to overestimate the performance except in some cases such as when evaluating Llama on AmbigQA and NQ-Open.

EM underestimates performance because it requires a candidate’s response to exactly match one of the reference answers. This rigid, lexical approach fails to account for valid paraphrases, synonyms, or alternative expressions that convey the same meaning. In free-form QA tasks, where there can be multiple correct answers phrased in various ways, EM’s strict criteria often penalize responses that are semantically accurate but differ slightly in wording. As a result, it underestimates the true capabilities of candidate LLMs, leading to an incomplete assessment of their performance.

BERTScore relies on token-level semantic similarity, which rewards shallow lexical overlap rather than actual factual accuracy. For example, in cases where minor differences in wording (e.g., “The Treaty of Versailles was signed in 1919.” versus “The Treaty of Versailles ended in 1919.”) lead to opposing factual claims, BERTScore still scores the response high due to its emphasis on matching tokens (e.g., “signed” versus “ended”). Additionally, verbosity bias and threshold instability further inflate its raw accuracy (see Table 10). However, when comparing raw accuracy with instance-level agreement metrics like Cohen’s kappa, which adjusts for class imbalance and penalizes asymmetric errors, the limitations of BERTScore become apparent.

E.1 Cost analysis

To assess the efficiency of CLEV, we track the number of times the third judge is invoked, which directly corresponds to disagreement between the two primary judges. As shown in Table 8, across 7,500 evaluation instances, the third judge is required only 1,318 times, representing just 17.6% of the total cases. This implies an 82.4% reduction in third-judge usage compared to a full majority-voting setup, where every instance would involve all three models.

Disagreement rates vary across tasks and models. For example, GPT shows only 5.7% disagreement on HotpotQA, while FreshQA exhibits higher disagreement (up to 44.3%) for some judge combinations. This behavior allows CLEV to scale efficiently: it concentrates computational effort only where model uncertainty exists, minimizing redundant inference. In contrast to fixed-cost evaluation schemes, CLEV offers a cost-efficient alternative that maintains high evaluation quality while significantly reducing compute usage.

E.2 DeepSeek as the third judge

To assess the impact of using DeepSeek as the third judge in CLEV, we conducted experiments by replacing GPT-3.5-turbo with DeepSeek-R1 (Team, 2025). We evaluated this setup using candidate GPT-3.5 on TriviaQA, candidate DeepSeek on NQ-Open, and candidate Llama on FreshQA. The primary judges remained Llama and Mistral, and the third judge (i.e., DeepSeek-R1) is invoked only in cases of disagreement. Our findings indicate that DeepSeek, as the third judge, achieves strong performance, with Macro-F1 scores of 91.23 on TriviaQA, 79.11 on NQ-Open, and 0.914 on FreshQA.

E.3 Evaluating with GPT-4o as-a-judge

While a single state-of-the-art evaluator can achieve strong performance in many cases, the dual-LLM framework remains critical for ensuring robustness, particularly in high-stakes or ambiguous scenarios.

To explore the potential of a more powerful single LLM, we evaluated GPT-3.5-turbo on HotpotQA and TriviaQA using GPT-4o as a judge. With this configuration, GPT-4o as the evaluator achieved a Macro-F1 score of 0.946 on HotpotQA, demonstrating its exceptional capability. However, the same GPT-4o judge achieved only 0.784 on TriviaQA, which falls short of CLEV’s performance of 0.887. This shows that even the most

advanced models show inconsistencies when evaluating free-form QA. This is particularly critical in precision-sensitive domains where minor errors can have outsized consequences.

In such settings, CLEV’s ensemble approach acts as a safeguard. When employing CLEV with GPT-3.5-turbo as the third judge, we achieved an even higher Macro-F1 of 0.984 on HotpotQA, surpassing the performance of a single GPT-4o. Interestingly, when we experimented with DeepSeek as the third judge in CLEV, performance remained strong at 0.963 Macro-F1, indicating that CLEV’s benefits are not solely tied to a specific third judge model.

E.4 Majority voting-based evaluation

We conducted additional experiments utilizing a traditional majority voting approach for evaluating candidate LLMs performance. Given n annotators and a binary classification, the majority label is defined as:

$$y_{\text{majority}} = \begin{cases} 1 & \text{if } \sum_{i=1}^n y_i > \frac{n}{2}, \\ 0 & \text{otherwise,} \end{cases}$$

where y_i represents the label assigned by the i th annotator.

In this setup, we employed three LLM judges of equal weight: Llama, GPT-3.5, and Mistral to evaluate candidate models’ generated responses. For every evaluation instance, each judge provided an independent binary verdict (True or False). The final decision is determined through a simple majority vote across these three verdicts.

As presented in Table 9, CLEV matches or closely approaches the Macro F1 and Cohen’s Kappa scores of the three-judge majority across almost all tasks and candidate LLMs. For example, on HotpotQA, evaluating candidate Llama with CLEV achieves a Macro F1 of 97.6% (compared to 97.6% for majority voting) and a Cohen’s Kappa of 0.95, while for GPT-3.5 on AmbigQA, CLEV reaches a Macro F1 of 98.4% (versus 98.3% for majority voting), indicating a negligible performance difference. Even in high-disagreement tasks like TriviaQA, where the primary judges (e.g., Mistral) disagree 20.3% of the time, CLEV retains strong alignment (with a Macro F1 of 92.7 compared to 93.5 for majority voting). Minor deviations, such as the one observed for candidate Mixtral on TriviaQA (CLEV’s Macro F1 = 0.88 vs. 0.95 for majority voting), reflect rare instances where both the

Candidate LLMs	Tasks	Samples	Disagreement Rates (%)	Third Judge Usage
DeepSeek	AmbigQA	300	25.7	77
	FreshQA	300	28.3	85
	HotpotQA	300	10.7	32
	NQ-Open	300	12.0	36
	TriviaQA	300	14.3	43
Llama	AmbigQA	300	10.0	30
	FreshQA	300	31.3	94
	HotpotQA	300	13.0	39
	NQ-Open	300	18.0	54
	TriviaQA	300	17.0	51
GPT	AmbigQA	300	7.0	21
	FreshQA	300	44.3	133
	HotpotQA	300	5.7	17
	NQ-Open	300	13.0	39
	TriviaQA	300	15.7	47
Mixtral	AmbigQA	300	9.0	27
	FreshQA	300	37.3	112
	HotpotQA	300	4.7	14
	NQ-Open	300	13.0	39
	TriviaQA	300	17.0	51
Mistral	AmbigQA	300	11.7	35
	FreshQA	300	39.7	119
	HotpotQA	300	6.0	18
	NQ-Open	300	14.7	44
	TriviaQA	300	20.3	61
Total		7500		1318

Table 8: Cost-efficiency analysis of CLEV: Summary of disagreement rates and third judge usage across candidate models and tasks

primary judges and the third judge make errors, yet these outliers are substantially outweighed by the computational savings offered by the selective third judge.

E.5 Impact of prompt variations

The effectiveness and consistency of LLM-based evaluation are significantly influenced by prompt design. Variations in prompt structure, reasoning order, explanation requirements, and task-specific examples can lead to notable differences in model verdicts. To analyze the robustness of the LLM judges in free-form QA, we conducted ablation studies on different prompt variations using Mistral as the candidate model and GPT as the judge.

E.5.1 Consistency in judgment across multiple trials

LLMs generate random text even at a temperature of 0. To assess whether this affects evaluation consistency, we repeated the same evaluation task five times for 300 Mistral-generated responses for HotpotQA. In this ablation study, we use GPT-3.5 as a judge.

- **Verdict stability:** GPT produced identical True/False verdicts in 98% of cases, with minor variations observed in only 1–2 instances. This suggest that its binary decision-making process remains largely stable even across multiple trials.
- **Explanation variability:** While verdicts remained consistent, the rationales and expla-

Candidate LLM	Task	Majority Voting		Disagreement (%)	CLEV	
		Macro F1	Kappa		Macro F1	Kappa
Llama	AmbigQA	95.5	0.91	10.0	95.5	0.91
	HotpotQA	97.6	0.95	13.0	97.6	0.95
	NQ-Open	96.3	0.93	18.0	96.4	0.92
	TriviaQA	84.1	0.68	17.0	84.2	0.68
GPT	AmbigQA	98.3	0.97	7.0	98.4	0.96
	HotpotQA	99.3	0.99	5.7	99.3	0.98
	NQ-Open	97.8	0.96	13.0	97.8	0.95
	TriviaQA	90.5	0.81	15.7	88.7	0.77
Mixtral	AmbigQA	98.9	0.98	9.0	97.5	0.95
	HotpotQA	98.6	0.97	4.7	98.7	0.97
	NQ-Open	98.3	0.97	13.0	95.6	0.91
	TriviaQA	95.0	0.90	17.0	88.2	0.76
Mistral	AmbigQA	97.6	0.95	11.7	97.7	0.95
	HotpotQA	97.9	0.96	6.0	97.9	0.95
	NQ-Open	97.6	0.95	14.7	97.6	0.95
	TriviaQA	93.5	0.87	20.3	92.7	0.85

Table 9: Comparison between Majority Voting (Llama+GPT-3.5+Mistral) and CLEV (GPT-3.5 as the third judge). For each candidate LLM and task, the table reports Macro F1 and Cohen’s Kappa scores under Majority Voting, the disagreement rate (in %), and the corresponding scores using CLEV. Small differences in performance between the majority voting setup and CLEV are due to randomness (see Section E.5.1).

nations provided by GPT across trials, often cited different supporting facts for the same judgment.

E.5.2 Few-shot vs. zero-shot prompting

We investigated the impact of few-shot prompting where we included three **task-specific examples** in the prompt to guide the judge’s decision-making process. We found that adding few-shot examples resulted in a 2% increase in Macro-F1 scores. However, few-shot prompting introduced rigid decision patterns—the model sometimes over-applied reasoning from the examples rather than adapting flexibly to novel cases. For instance, multi-hop reasoning cases from HotpotQA, the judge model consistently followed the structure of the provided examples, even when the correct reasoning required a different approach.

E.5.3 Explanation requirement: Binary verdict vs. justification-based evaluation

To test whether requiring the model to generate explanations alongside verdicts improves judgment reliability, we compared two settings:

- **Binary verdict-only evaluation:** The model

was instructed to provide only a True/False response without any explanation.

- **Justification-based evaluation:** The model was required to explain its reasoning before delivering the final verdict.

We found that:

- **Higher verdict volatility in verdict-only mode:** When explanations were removed, 13% of verdicts changed between repeated evaluations of the same responses.
- **Reduced alignment with human judgment:** Cohen’s Kappa agreement with human annotators dropped from 0.95 to 0.72, highlighting that rationale-based prompts lead to more stable and accurate decisions.

E.5.4 Reason-first vs. verdict-first prompting

In the verdict-first approach, the model is instructed to provide a True/False answer before justifying its decision, whereas in the reason-first approach, the model is asked to generate reasoning first and then conclude with a verdict. Experimental results showed no significant difference in accuracy or agreement scores between these two formats.

E.6 G-Eval: reference-free evaluation of free-form question-answering

Existing LLM-based evaluators such as G-Eval (Liu et al., 2023) are designed for reference-free, subjective tasks (e.g., summarization, dialogue), where evaluation criteria (e.g., coherence, fluency) are inherently ambiguous and scored on Likert scales. These frameworks prioritize qualitative judgments rather than binary factual correctness. In contrast, CLEV is explicitly tailored for reference-dependent, objective evaluation in free-form QA, where answers are either factually correct or incorrect based on alignment with explicit ground-truth references.

To validate this distinction, we tailored the G-eval (Liu et al., 2023) to investigate the capability of LLM-as-a-judge in reference-free settings. In this setting, we modify the evaluation prompt by excluding the reference answer r and directly prompt the evaluator model as $P = \{x, \bar{y}\}$ along with instructions such as correctness.

The performance of LLM-as-a-judge drastically changes in reference-free settings. Without access to the ground truth references, we observe a stark decline in evaluation capability across all models (see Table 10 and 11 values in blue). This systematic deterioration spans all tasks and model combinations, though its severity varies by context. HotpotQA and NQ-Open, with their demands for complex reasoning, exemplify this challenge most clearly. The substantial gap between reference-based and reference-free evaluation underscores the crucial role of reference answers in reliable assessment.

E.7 CLEV in multi-reference answers

CLEV explicitly accommodates multiple gold reference answers by incorporating all available references into the judge LLM’s prompt during evaluation. For datasets like AmbigQA and TriviaQA, where questions often have multiple valid answers (e.g., synonyms, rephrased answers, or alternative factual representations), CLEV aggregates all reference answers into the judge’s input prompt (e.g., concatenating them as a comma-separated list).

This design ensures that the judge evaluates the candidate’s output against the full spectrum of acceptable answers, mirroring the human evaluation protocol, where annotators are instructed to mark a response as correct if it aligns with any reference answer. However, as presented in our paper, LLM-

based judges encounter challenges with multiple reference answers. This confusion is particularly evident in TriviaQA, where multiple reference answers introduce difficulties for the judges to recognize and evaluate a range of correct responses.

E.8 Analysis of automatic metrics

Figures 3, 4, 5, and 6 illustrate the fundamental trade-offs in automatic metrics. In TriviaQA, where multiple normalized reference answers exist, EM achieves impressive true positives (61.7-74.3%) compared to HotpotQA (23.0-34.3%) which contains single reference answers. EM’s near-zero false positives across tasks (0-0.7%) stem from its strict string matching – it only flags matches when answers are identical to references. Our error analysis found three primary causes of such rare false positives including preprocessing errors, where character normalization removes crucial distinctions, and reference ambiguities, where incomplete or ambiguous references lead to incorrect matches. Additionally, a semantic mismatch occurs when the EM incorrectly labels a prediction as true by matching text without considering its context. For instance, despite their different contextual meanings, EM wrongly marks a match between a model prediction of “1944” (describing the start of a war) and a reference answer containing “1944” (representing the end of the war).

EM string-matching guarantees high precision and makes EM particularly effective when exact wording is crucial, such as mathematical problems. However, its rigid criteria also result in substantial false negatives (17.0-34.7%). These false negatives primarily occur when the candidate LLM generates semantically correct responses that differ from references in format or expression. Common cases include synonym usage and paraphrases, structural variations in phrasing (e.g., “School of Medicine at Harvard” vs. “Harvard Medical School”), granularity discrepancies where answers differ in levels of detail from references (e.g., answering “British writer” instead of “William Shakespeare”), and partial matches that contain valid information but don’t exactly mirror the reference.

Unlike EM, BERTScore offers advantages in capturing semantic similarities. In TriviaQA, it gains high true positive rates (81.3-92.0%) with relatively low false positives (2.0-13.0%). BERTScore’s performance varies significantly across tasks and is influenced by its sensitivity to

Figure 3: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual LLM judges on AmbigQA.

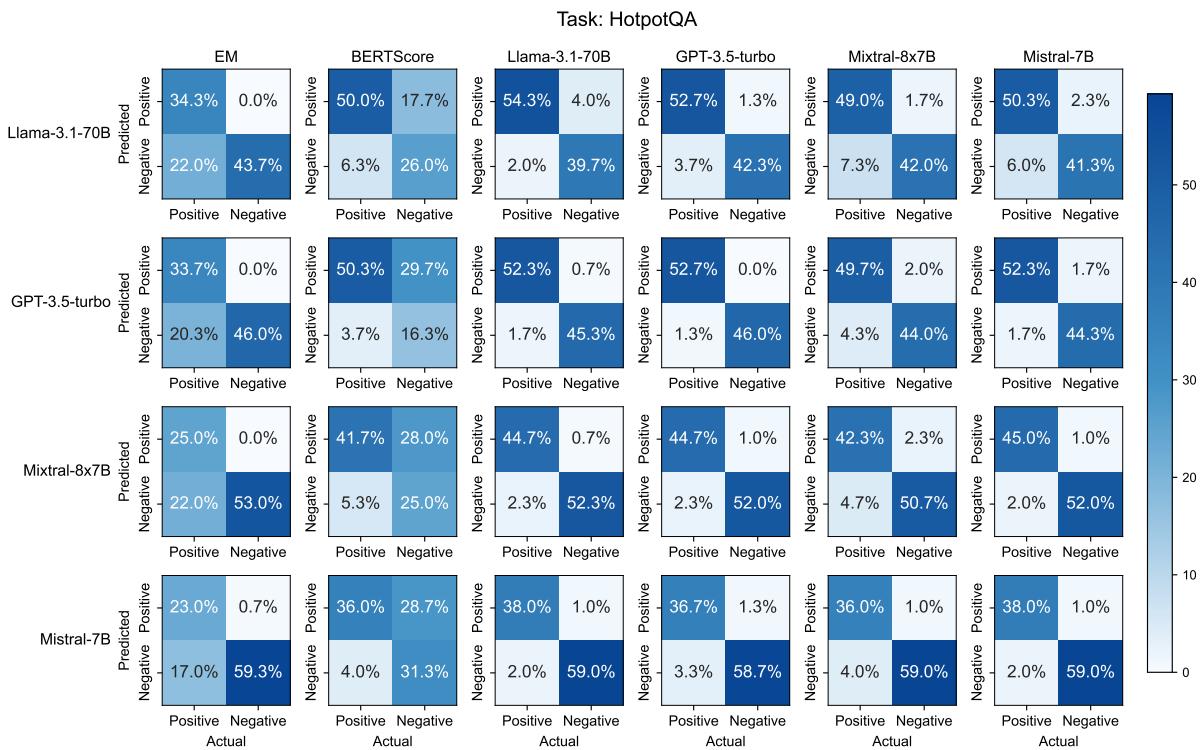


Figure 4: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual LLM judges on HotpotQA.



Figure 5: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual LLM judges on NQ-Open.

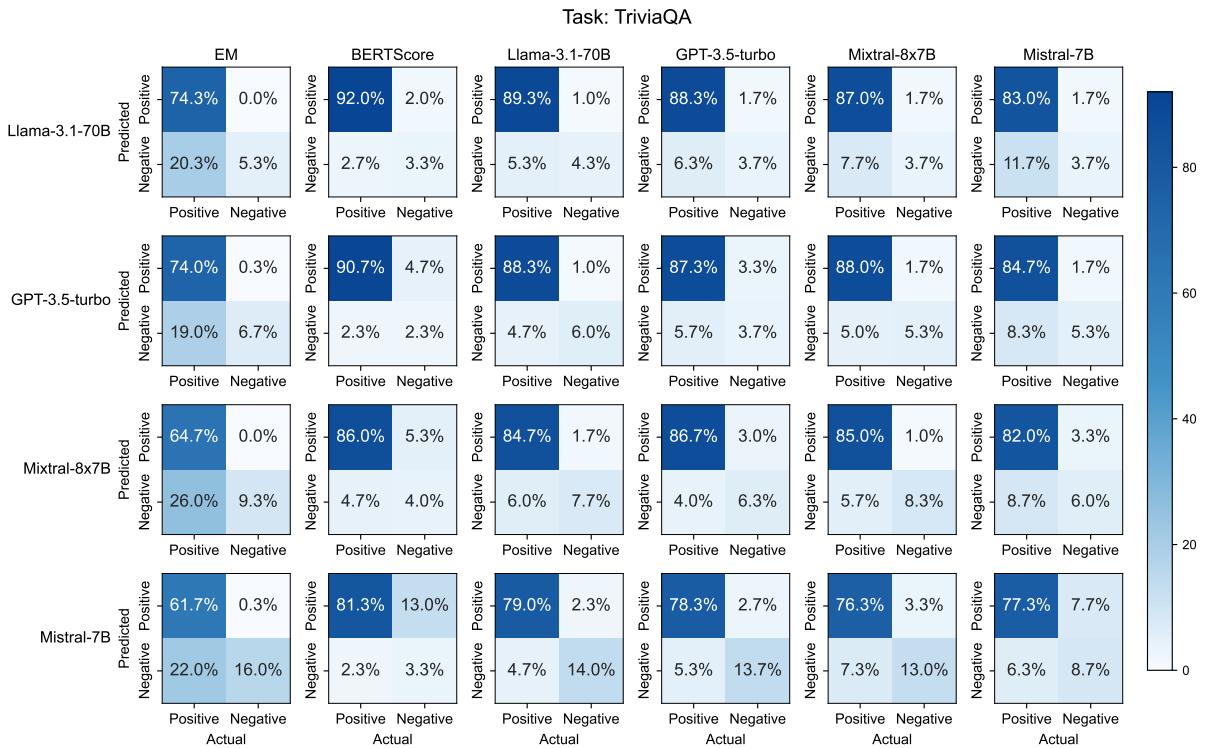


Figure 6: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual LLM judges on TriviaQA.

Candidate LLMs	Tasks	Evaluators						
		EM	BERTScore	Human Majority	Llama-3.1-70B	GPT-3.5-turbo	Mixtral-8x7B	Mistral-7B
Llama-3.1-70B	AmbigQA	42.3	63.0	67.0	65.3 [83.3]	64.7 [84.7]	63.0 [76.0]	66.0 [80.3]
	HotpotQA	34.3	67.7	56.3	58.3 [81.0]	54.0 [81.0]	50.7 [67.3]	52.7 [69.3]
	NQ-Open	31.7	61.7	66.3	62.7 [89.0]	60.0 [89.3]	59.0 [81.0]	66.7 [81.0]
	TriviaQA	74.3	94.0	94.7	90.3 [90.3]	90.0 [90.3]	88.7 [89.0]	84.7 [84.0]
GPT-3.5	AmbigQA	49.7	78.0	71.7	70.0 [79.0]	68.0 [81.0]	65.7 [79.0]	71.0 [84.3]
	HotpotQA	33.7	80.0	54.0	53.0 [85.3]	52.7 [85.7]	51.7 [82.3]	54.0 [86.3]
	NQ-Open	36.3	74.0	65.3	62.7 [83.7]	59.0 [90.7]	59.0 [87.0]	67.0 [89.7]
	TriviaQA	74.3	95.3	93.0	89.3 [89.0]	90.7 [88.7]	89.7 [90.3]	86.3 [84.3]
Mixtral-8x7B	AmbigQA	37.7	70.3	61.7	57.3 [74.7]	62.0 [82.3]	59.3 [79.7]	61.7 [80.7]
	HotpotQA	25.0	69.7	47.0	45.3 [80.0]	45.7 [84.7]	44.7 [72.0]	46.0 [78.0]
	NQ-Open	23.7	63.7	56.7	52.7 [81.7]	47.7 [90.3]	52.3 [85.7]	59.7 [89.7]
	TriviaQA	64.7	91.3	90.7	86.3 [85.7]	89.7 [89.0]	86.0 [86.7]	85.3 [86.0]
Mistral-7B	AmbigQA	31.0	61.7	49.7	46.3 [61.0]	47.7 [78.7]	46.3 [74.7]	53.3 [85.0]
	HotpotQA	23.7	64.7	40.0	39.0 [64.3]	38.0 [83.3]	37.0 [62.0]	39.0 [77.0]
	NQ-Open	22.7	60.0	46.0	40.0 [72.3]	43.3 [85.7]	41.3 [78.0]	50.0 [92.3]
	TriviaQA	62.0	94.3	83.7	81.3 [80.7]	81.0 [81.0]	79.7 [80.7]	85.0 [84.7]

Table 10: Overall performance (Raw Accuracy) of candidate LLMs across free-form QA tasks. Values [in blue] represent LLM-as-a-judge in the reference-free mood.

Candidate LLMs	Tasks	Evaluators						
		EM	BERTScore	Llama-3.1-70B	GPT-3.5-turbo	Mixtral-8x7B	Mistral-7B	CLEV
Llama-3.1-70B	AmbigQA	0.744	0.641	0.944 [0.629]	0.922 [0.604]	0.912 [0.669]	0.929 [0.631]	0.955 [0.637]
	HotpotQA	0.778	0.745	0.939 [0.628]	0.949 [0.574]	0.910 [0.665]	0.916 [0.640]	0.976 [0.623]
	NQ-Open	0.653	0.718	0.916 [0.606]	0.896 [0.560]	0.907 [0.639]	0.869 [0.622]	0.964 [0.610]
	TriviaQA	0.612	0.782	0.772 [0.772]	0.717 [0.628]	0.695 [0.678]	0.640 [0.633]	0.842 [0.747]
GPT-3.5	AmbigQA	0.792	0.622	0.972 [0.686]	0.949 [0.603]	0.930 [0.596]	0.927 [0.553]	0.984 [0.607]
	HotpotQA	0.794	0.623	0.977 [0.566]	0.987 [0.521]	0.936 [0.543]	0.966 [0.494]	0.993 [0.522]
	NQ-Open	0.703	0.606	0.942 [0.671]	0.911 [0.544]	0.911 [0.601]	0.914 [0.536]	0.978 [0.575]
	TriviaQA	0.646	0.681	0.824 [0.817]	0.700 [0.690]	0.789 [0.760]	0.730 [0.701]	0.887 [0.882]
Mixtral-8x7B	AmbigQA	0.760	0.666	0.948 [0.704]	0.891 [0.636]	0.955 [0.654]	0.944 [0.622]	0.975 [0.650]
	HotpotQA	0.761	0.657	0.970 [0.587]	0.966 [0.470]	0.930 [0.582]	0.970 [0.577]	0.987 [0.536]
	NQ-Open	0.650	0.649	0.939 [0.652]	0.863 [0.517]	0.950 [0.590]	0.908 [0.529]	0.956 [0.563]
	TriviaQA	0.625	0.695	0.812 [0.800]	0.803 [0.754]	0.838 [0.818]	0.716 [0.725]	0.882 [0.858]
Mistral-7B	AmbigQA	0.792	0.622	0.947 [0.730]	0.947 [0.627]	0.947 [0.628]	0.930 [0.523]	0.977 [0.647]
	HotpotQA	0.796	0.673	0.969 [0.649]	0.951 [0.478]	0.947 [0.680]	0.969 [0.578]	0.979 [0.673]
	NQ-Open	0.726	0.639	0.925 [0.652]	0.919 [0.515]	0.939 [0.597]	0.920 [0.433]	0.976 [0.527]
	TriviaQA	0.718	0.608	0.879 [0.881]	0.863 [0.840]	0.822 [0.846]	0.735 [0.744]	0.927 [0.913]

Table 11: Performance (Macro F1) of various evaluators across candidate LLMs and tasks. Values [in blue] represent the reference-free mode.

the threshold setting. In HotpotQA, where answers require multi-hop reasoning, true positives reach 36.0-50.3%, with an increase in false positives (17.7-29.7%). A similar pattern appears in NQ-Open, with true positives of 43.3-53.0% and false positives of 10.7-21.0%. Its tendency toward false positives indicates that relying solely on embedding similarity often accepts answers that are contextually related but factually incorrect. The false positives emerge through semantic drift (where similar embeddings yield false matches), contextual misalignment (where word meanings shift based on context), and threshold instability (where similarity cutoffs fail to distinguish subtle semantic differences). Additionally, false positives emerge due to the verbose responses where additional content artificially increases similarity scores.

F Prompting

In our main experiment, we performed zero-shot prompting in the two stages. First, we prompted candidate LLMs to obtain outputs for the given asks. Then, we instructed LLM judges to perform evaluations.

Candidate Prompt

You are a helpful assistant. Which comic book was also written by the writer of Crossed?

Figure 7: Prompt given to candidate GPT-3.5-turbo to elicit an answer for HotpotQA.

Candidate Response

Crossed was written by Garth Ennis. The Boys is a comic book series also written by Garth Ennis. So the comic book that was also written by the writer of Crossed is The Boys.

Figure 8: Candidate GPT-3.5-turbo response to the prompt shown in Figure 7.

Judge Prompt

You are a helpful assistant acting as an impartial judge. You will be given a Question and a Proposed Answer. Your task is to judge whether the Proposed Answer is correct by comparing it to the Reference Answer. If the Proposed Answer is correct, choose 'True', otherwise, choose 'False'. Provide a brief explanation for your decision.

Question: Which comic book was also written by the writer of Crossed?

Provided Answer: Crossed was written by Garth Ennis. The Boys is a comic book series also written by Garth Ennis. So the comic book that was also written by the writer of Crossed is The Boys.

Reference Answer: the Vertigo series "Preacher"

Evaluation:

Provide your response in the following format:

Decision: [True/False]

Explanation: [Your brief explanation]

Figure 9: Prompting judge Llama-3.1-70B for evaluating the candidate GPT-3.5-turbo answer.

Judge Response

Decision: False

Explanation: The Proposed Answer incorrectly identifies "The Boys" as the comic book written by the writer of Crossed. While it is true that Garth Ennis wrote Crossed, the Proposed Answer fails to consider other works written by Garth Ennis. The Reference Answer, "Preacher", is indeed another comic book series written by Garth Ennis, specifically for the Vertigo imprint.

Figure 10: Llama-3.1-70B-Judge verdict on the candidate GPT-3.5-turbo answer.