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Abstract
Large language models (LLMs) have demon-
strated strong performance in translating natu-
ral language questions into SQL queries (Text-
to-SQL). In contrast, small language mod-
els (SLMs) ranging from 0.5B to 1.5B pa-
rameters currently underperform on Text-to-
SQL tasks due to their limited logical rea-
soning capabilities. However, SLMs offer
inherent advantages in inference speed and
suitability for edge deployment. To explore
their potential in Text-to-SQL applications,
we leverage recent advancements in post-
training techniques. Specifically, we used
the open-source SynSQL-2.5M dataset to con-
struct two derived datasets: SynSQL-Think-
916K for SQL generation and SynSQL-Merge-
Think-310K for SQL merge revision. We
then applied supervised fine-tuning and rein-
forcement learning-based post-training to the
SLM, followed by inference using a correc-
tive self-consistency approach. Experimen-
tal results validate the effectiveness our SLM-
SQL method. On the BIRD development set,
the five evaluated models achieved an aver-
age improvement of 31.4 points. Notably,
the 0.5B model reached 56.87% execution ac-
curacy (EX), while the 1.5B model achieved
67.08% EX. On the BIRD private test set, our
0.5B model achieves 61.82% EX, while the
1.5B model achieves 70.49%. We will release
our dataset, model, and code to github: https:
//github.com/CycloneBoy/slm_sql.

1 Introduction

Converting natural language into SQL for
database querying (Text-to-SQL) holds signifi-
cant application potential and has garnered in-
creasing attention in recent years (Katsogiannis-
Meimarakis and Koutrika, 2023; Shi et al., 2024;
Liu et al., 2024). Large language models (LLMs)
exhibit strong capabilities in language understand-
ing and logical reasoning (Zhao et al., 2025).
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Figure 1: The execution accuracy of different mod-
els on the BIRD development set. The model repre-
sented by deepseek-coder-1.3b is deepseek-coder-1.3b-
instruct.

As a result, most state-of-the-art Text-to-SQL ap-
proaches are based on LLMs.

Currently, most open-source LLM-based Text-
to-SQL methods utilize models ranging from 3B
to 32B parameters, which can be effectively post-
trained to enhance their understanding and rea-
soning capabilities (Tie et al., 2025). Some ap-
proaches adopt multi-step pipeline frameworks
(Pourreza and Rafiei, 2024; Gorti et al., 2025;
Sheng et al., 2025) , with models primarily fine-
tuned using the LoRA method (Hu et al., 2021).
Others leverage pre-training on carefully curated
SQL-centric corpora to improve SQL generation
capabilities (Li et al., 2024a, 2025b). Recently,
following the success of models such as Ope-
nAI’s o1 (OpenAI et al., 2024) and DeepSeek-R1
(DeepSeek-AI et al., 2025), an increasing number
of methods (Pourreza et al., 2025; Ma et al., 2025;
Papicchio et al., 2025; Sheng and Xu, 2025; Yao
et al., 2025) have adopted reinforcement learning
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(RL) techniques to further enhance the reasoning
abilities of language models.

Recent studies have demonstrated that small lan-
guage models (SLMs) (Nguyen et al., 2024; Lu
et al., 2025) can also achieve competitive reason-
ing performance (Srivastava et al., 2025). How-
ever, the application of SLMs to Text-to-SQL
tasks remains underexplored. This paper inves-
tigates the capabilities of SLMs with 0.5B to
1.5B parameters in Text-to-SQL scenarios. The
two-stage generation approach proposed by CSC-
SQL (Sheng and Xu, 2025) is relatively simple
yet effective; its 3B model achieved 65.28% ex-
ecution accuracy (EX) on the BIRD (Li et al.,
2024b) development set. Building on this, we pro-
pose SLM-SQL, an improved method tailored for
smaller models. First, the open-source SynSQL-
2.5M dataset (Li et al., 2025b) was processed us-
ing heuristic rules to create the SynSQL-Think-
916K dataset. Then, inspired by the Corrective
Self-Consistency (CSC) technique introduced in
CSC-SQL, SynSQL-Think-916K was used to syn-
thesize the SynSQL-Merge-Think-310K dataset.
Subsequently, the SQL generation model and SQL
merge revision model were trained using super-
vised fine-tuning (SFT) and reinforcement learn-
ing (RL), respectively. Finally, the two-stage in-
ference procedure from CSC-SQL was employed
to generate the final SQL outputs.

To evaluate the effectiveness of the SLM-SQL
method, we selected five open-source models rang-
ing from 0.5B to 1.5B parameters and conducted
experiments on the BIRD and Spider datasets
(Yu et al., 2019). The experimental results are
presented in Figure 1. On the BIRD develop-
ment set, the five models achieved an average im-
provement of 31.4 points, with the 0.5B model
reaching 56.87% execution accuracy (EX) and the
1.5B model achieving 67.08% EX, demonstrating
the effectiveness of SLM-SQL. We then directly
tested the models on the Spider dataset, where
all five models also exhibited significant perfor-
mance gains. The 0.5B model achieved 73.50%
EX, while the 1.5B model reached 79.06% EX.

Our contributions are as follows:
(1) Based on the SynSQL-2.5M dataset, we con-

structed two datasets: SynSQL-Think-916K for
SQL generation and SynSQL-Merge-Think-310K
for SQL merge revision.

(2) We applied supervised fine-tuning and re-
inforcement learning to enhance the SQL genera-
tion capabilities of SLMs and trained five different

models to evaluate the effectiveness and general-
ization of the proposed SLM-SQL method.

(3) Our method achieved 56.87% EX for the
0.5B model and 67.08% EX for the 1.5B model on
the BIRD development set, while the 1.5B model
achieves 70.49% EX on the BIRD private test set,
demonstrating competitive performance.

2 Related Work

Text-to-SQL methods have evolved from early
rule-based approaches and fine-tuned pre-trained
language models (Wang et al., 2020; Guo et al.,
2019) to large language model (LLM)-based ap-
proaches (Liu et al., 2024; Hong et al., 2024).
These approaches can be categorized into three
groups: (1) in-context learning (ICL)-based meth-
ods (Dong et al., 2023; Pourreza and Rafiei, 2023;
Gao et al., 2023; Lee et al., 2024), (2) methods
based on fine-tuning open-source LLMs (Pourreza
and Rafiei, 2024; Li et al., 2024a; Sheng et al.,
2025; Li et al., 2025b), and (3) hybrid approaches
combining ICL and supervised fine-tuning (SFT)
(Talaei et al., 2024; Pourreza et al., 2024; Gao
et al., 2024). With the emergence of Test-Time
Scaling techniques (Zhang et al., 2025), several
works have incorporated strategies such as self-
consistency (SC) (Gao et al., 2023; Xie et al.,
2025; Sheng and Xu, 2025), self-correction (Pour-
reza et al., 2024; Gao et al., 2024), and Monte
Carlo Tree Search (MCTS) (Yuan et al., 2025; Lyu
et al., 2025; Li et al., 2025a) to enhance generation
performance. Recently, reinforcement learning
(RL) for post-training has proven effective in im-
proving the reasoning capabilities of LLMs (Ope-
nAI et al., 2024; DeepSeek-AI et al., 2025; Yang
et al., 2025), and an increasing number of methods
(Pourreza et al., 2025; Sheng and Xu, 2025) have
adopted this technique. Notably, (Ma et al., 2025;
Papicchio et al., 2025; Yao et al., 2025) first lever-
age synthetic datasets for SFT, followed by RL-
based post-training, which significantly enhances
SQL generation performance.

Small language models (SLMs) have gained
increasing attention due to their efficiency and
strong performance (Nguyen et al., 2024; Kim
et al., 2025; Allal et al., 2025; Wang et al., 2025).
(Srivastava et al., 2025; Subramanian et al., 2025)
conducted a comprehensive analysis of the reason-
ing capabilities of various SLMs, while (Anjum,
2025) evaluated the performance of the distilled
reasoning model DeepSeek-R1-1.5B on the Text-
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to-SQL task. In addition, CSC-SQL (Sheng and
Xu, 2025) introduced a merge revision module and
ultimately employed a 3B model to achieve an ex-
ecution accuracy (EX) of 65.28% on the BIRD de-
velopment set.

3 Methodology

SynSQL-2.5M

BIRD Train

Spider Train SynSQL-
Think-916k

SynSQL-Merge-
Think-310k

BIRD Merge Train (7k)

Heuristic
Rules Filter

SQL Generate 
SFT Model

SQL Generate 
RL Model

SQL Merge 
Revision Process 

SQL Generate 
SFT + RL Model

Base 
 Model

SQL Merge 
SFT Model

SQL Merge 
SFT +RL Model

SQL Merge 
RL Model

SQL Merge  Revision Process 

(1) Datasets Construction

(2) Model Training

SQL Generate 
SFT + RL Model

SQL Merge 
SFT +RL Model

(3) Inference

Figure 2: Overview of the proposed SLM-SQL frame-
work.

Our SLM-SQL framework is illustrated in Fig-
ure 2 and comprises three main components:
dataset construction, model training, and infer-
ence.

Dataset Construction:: We use the SynSQL-
2.5M dataset (Li et al., 2025b) as the primary data
source. This large-scale, high-quality, and diverse
synthetic dataset was specifically developed for
the Text-to-SQL task. It also includes the Spider
and BIRD training sets, for which the OmniSQL
method (Li et al., 2025b) has generated Chain-of-
Thought (CoT) annotations. To reduce the learn-
ing difficulty and dataset size, we apply heuristic
preprocessing rules. First, we filter out samples
that (i) do not contain the SELECT keyword, (ii)
the SQL statement appeared multiple times in the
CoT, or (iii) include the ’–’ comment in the SQL
statement. Next, we clean the CoT by removing
content after the SQL statement (typically expla-
nations or reflections) and place the preceding por-
tion between <think> and </think> tags. We also
remove markdown-specific SQL tags and enclose
the SQL statements between <answer> and </an-
swer> tags. Finally, we discard samples with input
prompt lengths is higher than 7,000 tokens, result-
ing in the SynSQL-Think-916K dataset.

We employed the CSC-SQL method to con-
struct a new merge revision dataset, SynSQL-

Merge-Think-310K. First, we used the Qwen2.5-
Coder-7B-Instruct model to generate eight can-
didate outputs in parallel on the SynSQL-Think-
916K dataset. We then performed group voting
based on SQL execution results and selected the
two groups with the highest vote counts to create
the merge revision dataset.

Model Training: In the CSC-SQL method,
both the SQL generation and SQL merge revision
models are directly post-trained using RL. In con-
trast, our SLM-SQL method draws on SQL-R1
(Ma et al., 2025) and Think2SQL (Papicchio et al.,
2025), applying SFT on synthetic data before RL-
based post-training to enhance the SQL generation
capabilities of SLMs.

First, we select a SLM with 0.5B to 1.5B pa-
rameters and perform SFT on the SQL generation
dataset SynSQL-Think-916K. The training objec-
tive is to minimize the cross-entropy loss between
the predicted CoT and the synthesized CoT, en-
abling the model to first generate the reasoning
process and then generate SQL. Next, we per-
form RL-based post-training on the BIRD training
set using the Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) algorithm, further im-
proving the SQL generation performance. The re-
ward function consists of two components: exe-
cution accuracy reward (REX ) and format reward
(RFormat). See Appendix B for details.

For the merge revision model, we first apply
SFT on the SynSQL-Merge-Think-310K dataset
using the SFT-trained SQL generation model. We
then conduct GRPO-based post-training on the
BIRD-Merge-Train dataset, which is synthesized
using the CSC-SQL method.

Inference: The inference procedure of our
SLM-SQL method follows the same approach as
the CSC-SQL method. First, the SQL generation
model performs parallel sampling. Then, the gen-
erated SQL statements are grouped based on their
execution results through a voting mechanism. If
the voting results are inconsistent, the SQL is re-
generated using the SQL merge revision model;
otherwise, the SQL with consistent votes is se-
lected as the final output.

4 Experiments

4.1 Experiments Setting

We conduct experiments on the BIRD and Spi-
der datasets, using the widely adopted execution
accuracy (EX) metric to evaluate the performance
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Dataset Train Model Train
Method Size

SynSQL-2.5M (Li et al., 2025b) SQL Generate
Model

SFT 2,190,988
SynsQL-Think-916k SFT 916,156
BIRD Train (Li et al., 2024c) RL 9428

SynsQL-Merge-Think-310k SQL Merge
Revision Model

SFT 310,764
BIRD Merge Train (Sheng and Xu, 2025) RL 7159

Table 1: Statistics of different datasets.

of our framework. The statistics of all experimen-
tal datasets are presented in Table 1. Five SLMs
ranging in size from 0.5B to 1.5B were selected as
base models for the experiments. Additional im-
plementation details can be found in Appendix A.

Method Model Size Dev
EX(%)

Test
EX(%)

AskData
(Shkapenyuk et al., 2025) GPT-4o UNK 75.36 77.14

CHASE-SQL
(Pourreza et al., 2024) Gemini-1.5-pro UNK 73.01 73.0

RSL-SQL
(Cao et al., 2024) GPT-4o UNK 67.21 68.70

MCS-SQL
(Lee et al., 2024) GPT-4 UNK 63.36 65.45

Reasoning-SQL
(Pourreza et al., 2025) Qwen2.5-Coder-14B-Instruct 14B 72.29 72.78

OMNI-SQL
(Li et al., 2025b) Qwen2.5-Coder-32B-Instruct 32B 69.23 72.05

Alpha-SQL
(Li et al., 2025a) Qwen2.5-Coder-32B-Instruct 32B 69.70 70.26

XiYan-SQL
(Gao et al., 2024)

XiYanSQL-QwenCoder
-32B-2412 32B 67.01 69.03

Arctic-Text2SQL-R1
(Yao et al., 2025) OmniSQL-7B 7B 68.90 68.47

SQL-R1
(Ma et al., 2025) Qwen2.5-Coder-7B-Instruct 7B 66.60 -

OMNI-SQL
(Li et al., 2025b) Qwen2.5-Coder-7B-Instruct 7B 66.10 67.97

CSC-SQL
(Sheng and Xu, 2025)

XiYanSQL-QwenCoder
-3B-2502 3B 65.28 -

CodeS
(Li et al., 2024a) StarCoder 15B 58.47 60.37

DTS-SQL
(Pourreza and Rafiei, 2024) DeepSeek 7B 7B 55.80 60.31

Prem-1B-SQL
(Anindyadeep, 2024) deepseek-coder-1.3b-instruct 1.3B 46.0 51.54

Qwen2.5-Coder
(Hui et al., 2024) Qwen2.5-Coder-1.5B-Instruct 1.5B 28.40 -

SLM-SQL (Our)

Qwen2.5-Coder-0.5B-Instruct 0.5B 56.87 61.82
Qwen3-0.6B 0.6B 59.52 -

Llama-3.2-1B-Instruct 1B 54.78 -
deepseek-coder-1.3b-instruct 1.3B 62.19 -
Qwen2.5-Coder-1.5B-Instruct 1.5B 67.08 70.49

Table 2: Performance Comparison of different Text-to-
SQL methods on BIRD dev and private test dataset.

4.2 Main Results

BIRD Results: Table 2 presents the evalu-
ation results of SLM-SQL and baseline meth-
ods on the BIRD dataset. On the BIRD de-
velopment set, SLM-SQL achieved competitive
performance across model sizes ranging from
0.5B to 1.5B. Notably, the 0.6B model attained
59.52% EX, outperforming the 7B DTS-SQL
(Pourreza and Rafiei, 2024) and the 15B CodeS
(Li et al., 2024a) models. The 1.5B vari-
ant of SLM-SQL achieved 67.08% EX, surpass-

Model Train
Method

Dev EX(%) Test EX(%)
SC CSC SC CSC

Qwen2.5-Coder
-0.5B-Instruct

- 42.13 44.07 42.23 44.31
SFT 65.31 68.28 67.26 70.72

SFT + RL 70.60 72.08 70.42 73.50

Qwen3-0.6B
- 63.19 65.15 64.20 66.03

SFT 68.02 70.05 71.48 73.90
SFT + RL 72.05 72.99 73.89 75.81

Llama-3.2
-1B-Instruct

- 30.79 32.72 32.71 34.73
SFT 63.77 66.18 69.06 70.86

SFT + RL 67.63 69.12 73.05 74.29

deepseek-coder
-1.3b-instruct

- 48.23 49.94 49.09 51.19
SFT 72.86 74.31 75.13 77.19

SFT + RL 75.47 76.11 77.05 78.08

Qwen2.5-Coder
-1.5B-Instruct

- 63.54 65.99 67.61 69.34
SFT 74.53 76.66 77.35 79.13

SFT + RL 75.15 76.72 78.42 79.06

Table 3: The table shows the EX comparison results
of different models on the Spider dataset. SC stands
for direct use of Self-Consistency, and CSC stands for
Corrective Self-Consistency. The number of SQL gen-
eration model samples is 16, and the number of SQL
merge revision model samples is 8. The merge revision
model of the CSC method uniformly uses the Qwen2.5-
Coder-0.5B-Instruct model trained after SFT and RL.

ing several significantly larger models, includ-
ing Qwen2.5-Coder-7B-Instruct and XiYanSQL-
QwenCoder-32B. It also outperformed closed-
source LLM-based methods such as RSL-SQL
(Cao et al., 2024) and MCS-SQL (Lee et al., 2024),
which rely on GPT-4 and GPT-4o, respectively.
Compared to CSC-SQL (3B), SLM-SQL-1.5B im-
proves performance by 1.8 points. Additionally,
compared to Prem-1B-SQL (Anindyadeep, 2024)
which is based on the same DeepSeek-Coder-1.3B-
Instruct model SLM-SQL-1.3B shows an improve-
ment of 16.19 points, further demonstrating the
effectiveness of our approach. On the BIRD pri-
vate test set, our SLM-SQL also performed excep-
tionally well, achieving 70.49% EX with a 1.5B
model, surpassing many methods that use much
larger models (e.g., Arctic-Text2SQL-R1, Alpha-
SQL, RSL-SQL, etc.).

Spider Results: We also tested it on the Spi-
der dataset, and the experimental results are pre-
sented in Table 3. Five SLM-SQL models of vary-
ing sizes achieved competitive performance on the
Spider dataset, including an average improvement
of 23.83 percentage points on the development set
and 24.98 percentage points on the test set. Specif-
ically, SLM-SQL-0.5B achieved 72.08% EX on
the development set and 73.5% EX on the test set,
while SLM-SQL-1.5B achieved 76.72% EX and
79.06% EX, respectively. Notably, despite not un-
dergoing RL post-training on the Spider dataset,
SLM-SQL still achieved strong performance.
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4.3 Ablation Study

Method Dev EX(%)
0.5B ∆EX 1.5B ∆EX

SLM-SQL 56.87 - 67.08 -
with SQL generation
model samples is 16 53.22 -3.64 64.84 -2.24

w/o Corrective Self-Consistency 50.96 -5.91 61.95 -5.13
w/o RL 51.52 -5.35 62.91 -4.17
w/o SFT 34.94 -21.93 58.19 -8.89
w/o SFT and RL 22.14 -34.73 52.26 -14.82

Table 4: Ablation study of SLM-SQL on BIRD devel-
opment set. 0.5B and 1.5B represent the basic mod-
els used, namely Qwen2.5-Coder-0.5B-Instruct and
Qwen2.5-Coder-1.5B-Instruct.

Table 4 presents the results of our ablation study.
Removing any module results in a significant per-
formance degradation. In particular, excluding
the SFT module causes the performance of SLM-
SQL-0.5B to drop by 21.93 points and that of
SLM-SQL-1.5B by 8.89 points, highlighting the
importance of synthetic data for SFT. Removing
the Corrective Self-Consistency module leads to
an approximate 5-point drop in performance, sug-
gesting that the merge revision model trained on
SLMs remains effective in error correction. Ad-
ditionally, reducing the number of SQL samples
from 64 to 16 results in a performance drop of
3.64 points for SLM-SQL-0.5B and 2.24 points
for SLM-SQL-1.5B, demonstrating the benefit of
increased computational budgets during inference.

5 Conclusion

In this study, we investigate the performance
of several 0.5B-1.5B SLMs on Text-to-SQL tasks.
To address the limited understanding and reason-
ing capabilities of small language models, we re-
organize the SynSQL-Think-916k dataset for SQL
generation and the SynSQL-Merge-Think-310k
dataset for SQL merge revision. We then enhance
the reasoning ability of SLM-SQL through a com-
bination of supervised fine-tuning and reinforce-
ment learning. Experimental results demonstrate
that SLMs in the 0.5B-1.5B range hold significant
promise for solving Text-to-SQL tasks.

6 Limitations

In this paper, we focus exclusively on evaluat-
ing the performance of SLMs in the Text-to-SQL
task using Self-Consistency and Corrective Self-
Consistency methods, without exploring other
more advanced approaches such as schema link-
ing, agent-based frameworks, or pipeline-based

methods. We plan to investigate these areas in
future work. The model’s generalization perfor-
mance still needs further testing and verification.
In the future, we plan to test more other Text-to-
SQL datasets. Moreover, our current study is lim-
ited to the Text-to-SQL domain, and extending this
research to broader code generation tasks repre-
sents an important future direction.

7 Ethical considerations

All datasets and models used in this study are
publicly available. We will release the processed
datasets, trained models, and source code after
the review process to promote transparency and
reproducibility. Additionally, our work focuses
solely on Text-to-SQL generation, which does not
involve the production of harmful or biased con-
tent. The synthetic dataset was generated using
a large language model without human annota-
tion, thereby ensuring that no forced labor was in-
volved.
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A Implementation details

We employed five models as the foundation for
our experiments: Qwen2.5-Coder-0.5B-Instruct,
Qwen3-0.6B (Yang et al., 2025), Llama-3.2-
1B-Instruct (Grattafiori et al., 2024), DeepSeek-
Coder-1.3B-Instruct (Daya Guo, 2024), and
Qwen2.5-Coder-1.5B-Instruct. Based on these
models, we trained corresponding SQL generation
models. Additionally, we trained two merge revi-
sion models using Qwen2.5-Coder-0.5B-Instruct
and Qwen2.5-Coder-1.5B-Instruct.

For supervised fine-tuning (SFT) of SLM-SQL,
the training configuration included a learning rate
of 2.0e-5 with linear scheduling, a warm-up rate of
0.1, an effective batch size of 1024, and training
over 2 epochs. For reinforcement learning (RL),
we adopted the GRPO algorithm with a learning
rate of 3e-6, a cosine learning rate scheduler, a
warm-up rate of 0.1, and 1 training epoch. GRPO
rollouts were set to 6, with clip ratios of 0.2 and
0.28. All experiments were conducted on a ma-
chine equipped with four NVIDIA GPUs, each
with 80 GB of VRAM. For additional implementa-
tion details, please refer to the open-source code.

Unless otherwise specified, each SQL genera-
tion experiment produces 64 samples, while the
merge revision process generates 8 samples. We
report the average performance over three inde-
pendent runs for each experimental setting. Dur-
ing inference, SLM-SQL employs a 0.5B-sized
merge revision model for all three base mod-
els: Qwen3-0.6B, Llama-3.2-1B-Instruct, and
DeepSeek-Coder-1.3B-Instruct.

B Reward Design

During GRPO post-training for the Text-to-SQL
task, we adopt a simple reward function composed
of two components: execution accuracy reward
(REX) and format reward (RFormat).

REX =

{
1, if execution results is correct.
0, otherwise

(1)

RFormat =

{
1, if output format is match.
0, otherwise

(2)

The final reward is calculated as the weighted
sum of REX and RFormat :

R = REX + 0.1 ∗RFormat (3)
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Model Model Size Train
Method SC Size SC Use

time (Hour)
CSC Use

Time (Hour)

The proportion
of time that

CSC increases (%)

Total Use
Time (Hour)

Total
Cost ($)

Average Cost
Per Question ($)

Bird
Dev EX (%)

SLM-SQL-1.5B 1.5B SFT + RL + CSC 16 0.63 0.2 32 0.83 0.22 0.00014 64.84
64 2.43 0.25 10 2.68 0.7 0.00046 67.08

Table 5: The table shows the cost and performance of SQL generation on the BIRD development set using our
SLM-SQL-1.5B. The inference cost analysis uses an NVIDIA 4090D with 24GB of memory (rented at $0.26 per
hour) as an example.
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Figure 3: Trend chart of various metrics of SLM-SQL-
1.5B under different sampling numbers on the BIRD
development set. self_consistency@k and slm_sql@k
represent the results of using the self-consistency
method and SLM-SQL method respectively.

We further analyzed the impact of varying the
number of samples on the performance of SLM-
SQL. Experiments were conducted on the BIRD
development set with sample sizes ranging from
4 to 64, as illustrated in Figure 3. The results in-
dicate that increasing the number of samples im-
proves the EX of SLM-SQL-1.5B. While the per-
formance gains from the self-consistency method
plateau beyond 16 samples, the SLM-SQL method
continues to show significant improvement, sug-
gesting its superior effectiveness. The pass@k
metric also increases notably with larger sample
sizes, reaching up to 0.8264 for pass@64. These
findings demonstrate the strong potential of SLMs
in solving the Text-to-SQL task.

Furthermore, increasing the number of gener-
ated samples leads to higher inference time and
computational cost. Table 5 presents the infer-
ence time and cost of SLM-SQL-1.5B. Using an
NVIDIA 4090D GPU (rental cost approximately
$0.26 per hour), increasing the number of gen-

erated samples from 16 to 64 raises the total in-
ference time on the BIRD development set from
0.83 to 2.68 hours, and the average cost per ques-
tion from $0.00014 to $0.00046. This results in
roughly a threefold increase in both time and cost,
while the EX improves from 64.84% to 67.08%.
In practical applications, setting the number of
samples to 16 offers a balanced trade-off between
performance and efficiency.

C.2 Difficulty Analysis
Table 6 presents the performance of SLM-SQL-

0.5B and SLM-SQL-1.5B across varying diffi-
culty levels using different training methods on the
BIRD development set. The results demonstrate
that each training method (SFT, RL, and CSC)
yields notable performance improvements depend-
ing on the difficulty level.
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Model Train
Method

Dev EX(%)
Simple Moderate Challenge All

SLM-SQL-0.5B

- 25.41 7.11 4.14 17.86
SFT 53.30 30.60 17.93 43.09

SFT + RL 60.54 38.36 26.21 50.59
SFT+ RL+ CSC 65.51 46.77 31.72 56.65

SLM-SQL-1.5B

- 56.43 33.41 28.28 46.81
SFT 61.73 43.97 38.62 54.17

SFT + RL 69.19 52.37 45.52 50.59
SFT+ RL+ CSC 73.30 59.91 51.03 67.14

Table 6: The performance of SLM-SQL at different difficulty levels on the BIRD development set.
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D Output Example

In this section, we show examples of the output results of the Qwen2.5-Coder-1.5B-Instruct model
using different training methods.

Qwen2.5-Coder-1.5B-Instruct original model output results for question 12

<think>
To solve this question, we need to follow these steps:

1. **Identify the relevant tables**: We need to access data from the ‘frpm‘ table for the SAT
scores and the ‘satscores‘ table for the eligibility rates.

2. **Determine the join condition**: Since the ‘frpm‘ table and the ‘satscores‘ table share the
common column ‘cds‘, we will join these two tables on this column.

3. **Filter the data for schools with an SAT excellence rate over 0.3**: We will use a WHERE
clause to filter the rows where the ‘Excellence rate‘ is greater than 0.3.

4. **Calculate the eligible free rate for students aged 5-17**: We will use the formula ‘Eligible
free rate = ‘Free Meal Count (Ages 5-17)‘ / ‘Enrollment (Ages 5-17)‘. We will create a subquery
to calculate this for each school and then join this subquery with the main ‘frpm‘ table to get the
corresponding district name.

5. **Order the results by the eligible free rate in descending order**: To get the highest eligible
free rate, we will order the results by the ‘Eligible free rate‘ column in descending order.

6. **Limit the results to the top school**: Since we are only interested in the highest eligible
free rate, we will limit the results to the top 1 row.

7. **Select the required columns**: We will select the ‘School‘, ‘District Name‘, ‘Eligible free
rate‘, and ‘Excellence rate‘ columns from the result set.

By following these steps, we can generate the final SQL query.
</think>
<answer>SELECT T2.School, T2.District Name, CAST(T2.‘Free Meal Count (Ages 5-17)‘ AS
REAL) / T2.‘Enrollment (Ages 5-17)‘ AS Eligible_free_rate, T1.Excellence_rate FROM frpm
AS T1 INNER JOIN satscores AS T2 ON T1.cds = T2.cds WHERE T1.‘Excellence rate‘ > 0.3
ORDER BY Eligible_free_rate DESC LIMIT 1
</answer>
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Qwen2.5-Coder-1.5B-Instruct after SFT output results for question 223

<think>
To translate the natural language question into an executable SQLite query, let’s break it down
step by step:

### Step 1: Understand the Question
The question asks for the **atom IDs** associated with a specific bond, identified by
‘TR000_2_5‘. The bond is described in the ‘bond‘ table, and the atom IDs are stored in the
‘connected‘ table.

### Step 2: Identify Relevant Tables
1. **‘bond‘ Table**:
- This table contains information about bonds, including their ‘bond_id‘.
- We need to find the ‘atom_id1‘ and ‘atom_id2‘ associated with ‘TR000_2_5‘.

2. **‘connected‘ Table**:
- This table links ‘atom_id1‘, ‘atom_id2‘, and ‘bond_id‘.
- We will use this table to find the atom IDs that are part of the bond identified by ‘TR000_2_5‘.

### Step 3: Define the Relationship Between Tables
- The ‘bond‘ table and the ‘connected‘ table are related through the ‘bond_id‘ field.
- Specifically, ‘bond.bond_id‘ is the foreign key in the ‘connected‘ table, linking it to the ‘bond‘
table.

### Step 4: Filter for the Specific Bond
- We need to filter the ‘bond‘ table for the row where ‘bond_id = ’TR000_2_5’‘.

### Step 5: Retrieve Atom IDs
- After filtering the ‘bond‘ table, we need to retrieve the ‘atom_id1‘ and ‘atom_id2‘ associated
with this bond.
- The ‘connected‘ table will help us join the ‘atom_id‘ values to the bond.

### Step 6: Write the SQL Query
We will use a ‘JOIN‘ to combine the ‘bond‘ and ‘connected‘ tables, and then filter for the specific
bond ‘TR000_2_5‘. Finally, we select the ‘atom_id1‘ and ‘atom_id2‘.

Here is the SQL query:
</think>
<answer>
SELECT connected.atom_id1, connected.atom_id2 FROM bond JOIN connected ON
bond.bond_id = connected.bond_id WHERE bond.bond_id = ’TR000_2_5’;
</answer>
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Qwen2.5-Coder-1.5B-Instruct after SFT and RL output results for question 20

<think>
To translate the natural language question into an executable SQLite query, let’s break it down
step by step:

### Step 1: Understand the Question
The question asks: **"How many schools in Amador which the Low Grade is 9 and the High
Grade is 12?"**

- **Key points**:
1. We need to count the number of schools (‘COUNT(*)‘).
2. The criteria for the schools are:
- The ‘County Name‘ should be "Amador".
- The ‘Low Grade‘ should be "9".
- The ‘High Grade‘ should be "12".

### Step 2: Identify the Relevant Table
From the schema, the ‘frpm‘ table contains the columns:
- ‘County Name‘: To filter schools by county.
- ‘Low Grade‘: To filter schools by the low grade.
- ‘High Grade‘: To filter schools by the high grade.

This table is the primary focus of the query because:
- ‘County Name‘ directly corresponds to the county of interest ("Amador").
- ‘Low Grade‘ and ‘High Grade‘ are used to filter by grade levels.

### Step 3: Apply the Filters
The query needs to:
1. Filter rows where ‘County Name = ’Amador’‘.
2. Filter rows where ‘Low Grade = ’9’‘.
3. Filter rows where ‘High Grade = ’12’‘.

These filters ensure that only schools meeting all three conditions are counted.

### Step 4: Count the Schools
Once the rows are filtered, the query should count the number of rows that satisfy the conditions.
The ‘COUNT(*)‘ function is used for this purpose.

### Step 5: Write the SQL Query
Based on the above reasoning, the SQL query is:
</think>
<answer> SELECT COUNT(*) FROM frpm WHERE County Name = ’Amador’ AND ‘Low
Grade‘ = ’9’ AND ‘High Grade‘ = ’12’;
</answer>
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SLM-SQL-1.5B after CSC output results for question 30

<think>
To answer this question, we need to find the cities with the top 5 lowest enrollment numbers for
students in grades 1 through 12. Let’s analyze the given draft SQLs:

1. **First SQL Query**:
“‘sql
SELECT s.City FROM frpm AS f INNER JOIN schools AS s ON f.CDSCode = s.CDSCode
ORDER BY f.‘Enrollment (Ages 5-17)‘ ASC LIMIT 5
“‘
- This query joins the ‘frpm‘ and ‘schools‘ tables based on the ‘CDSCode‘.
- It orders the results by the enrollment number in ascending order (‘ASC‘).
- The ‘LIMIT 5‘ clause restricts the result to the top 5 cities.

2. **Second SQL Query**:
“‘sql
SELECT s.City FROM schools s JOIN frpm f ON s.CDSCode = f.CDSCode GROUP BY s.City
ORDER BY MAX(f.‘Enrollment (Ages 5-17)‘) ASC LIMIT 5
“‘
- This query also joins the ‘frpm‘ and ‘schools‘ tables based on the ‘CDSCode‘.
- It groups the results by city.
- It orders the results by the maximum enrollment number for each city in ascending order
(‘ASC‘).
- The ‘LIMIT 5‘ clause restricts the result to the top 5 cities.

Both queries are designed to find the top 5 cities with the lowest enrollment numbers for students.
However, they approach the problem differently:
- The first query is more straightforward and directly orders by enrollment.
- The second query groups by city and then orders by the maximum enrollment, which is less
intuitive for this specific question.

Given that the question asks for the cities with the top 5 lowest enrollment numbers, the first
query is the correct one to use. It directly addresses the requirement by ordering the cities by
their enrollment numbers.

<executionresult>

(′Fremont′, ), (′Oakland′, ), (′Oakland′, ), (′Willows′, ), (′LongBeach′, )

</executionresult>
</think>
<answer>
SELECT s.City FROM frpm AS f INNER JOIN schools AS s ON f.CDSCode = s.CDSCode
ORDER BY f.‘Enrollment (Ages 5-17)‘ ASC LIMIT 5
</answer>

E Prompt Templates
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E.1 Prompt for SQL Generation

The SQL generation prompt adopts the prompt proposed by CSC-SQL(Sheng and Xu, 2025).

SQL Generation Prompt

You first thinks about the reasoning process in the mind and then provides the user with the answer.

Task Overview:
You are a data science expert. Below, you are provided with a database schema and a natural
language question. Your task is to understand the schema and generate a valid SQL query to
answer the question.

Database Engine:
SQLite

Database Schema:
{DATABASE SCHEMA}

This schema describes the database’s structure, including tables, columns, primary keys,
foreign keys, and any relevant relationships or constraints.

Question:
{EVIDENCE}
{QUESTION}

Instructions:
- Make sure you only output the information that is asked in the question. If the question asks for
a specific column, make sure to only include that column in the SELECT clause, nothing more.
- The generated query should return all of the information asked in the question without any
missing or extra information.
- Before generating the final SQL query, please think through the steps of how to write the query.

Output Format:
Show your work in <think> </think> tags. And return the final SQLite SQL query that
starts with keyword ‘SELECT‘ in <answer> </answer> tags, for example <answer>SELECT
AVG(rating_score) FROM movies</answer>.

Let me solve this step by step.

E.2 Prompt for SQL Merge Revision

The SQL merge revision prompt is slightly adjusted based on the CSC-SQL(Sheng and Xu, 2025)
merge revision prompt. As shown in the red part below, we let the model analyze each draft SQL first,
compare their differences, and finally generate the final SQL. At the same time, we emphasize that one
of the two draft SQLs is correct, guiding the model to make the final decision.
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SQL Merge Revision Prompt

You first thinks about the reasoning process in the mind and then provides the user with the answer.

Task Overview:
You are a data science expert. Below, you are provided with a database schema, a natural
language question, some draft SQL and its corresponding execution result. Your task is to
understand the schema and generate a valid SQL query to answer the question.

Database Engine:
SQLite

Database Schema:
{DATABASE SCHEMA}

This schema describes the database’s structure, including tables, columns, primary keys,
foreign keys, and any relevant relationships or constraints.

Question:
{EVIDENCE}
{QUESTION}

Here are some corresponding draft SQL and execute result:
1. {PREDICT_SQL1}
Execution result
{EXECUTE_RESULT1}

2. {PREDICT_SQL2}
Execution result
{EXECUTE_RESULT2}

Instructions:
- You should first carefully analyze each draft SQL, compare their differences, and then conduct
further analysis based on user questions to determine which draft SQL is correct in the end.
- Remember that one of the draft SQLs is correct. You do not need to generate a new SQL
combining their characteristics. Instead, output the draft SQL that you think is correct after
careful analysis.
- Before generating the final SQL query, please think through the steps of how to write the query.

Output Format:
Show your work in <think> </think> tags. And return the final SQLite SQL query that
starts with keyword ‘SELECT‘ in <answer> </answer> tags, for example <answer>SELECT
AVG(rating_score) FROM movies</answer>.

Let me solve this step by step.
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