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Abstract

Large language models (LLMs) have demon-
strated strong capabilities in translating natural
language questions about relational databases
into SQL queries. In particular, test-time scal-
ing techniques such as Self-Consistency and
Self-Correction can enhance SQL generation
accuracy by increasing computational effort
during inference. However, these methods have
notable limitations: Self-Consistency may se-
lect suboptimal outputs despite majority votes,
while Self-Correction typically addresses only
syntactic errors. To leverage the strengths
of both approaches, we propose CSC-SQL, a
novel method that integrates Self-Consistency
and Self-Correction. CSC-SQL selects the two
most frequently occurring outputs from paral-
lel sampling and feeds them into a merge re-
vision model for correction. Additionally, we
employ the Group Relative Policy Optimization
(GRPO) algorithm to fine-tune both the SQL
generation and revision models via reinforce-
ment learning, significantly enhancing output
quality. Experimental results confirm the ef-
fectiveness and generalizability of CSC-SQL.
On the BIRD private test set, our 7B model
achieves 71.72% execution accuracy, while the
32B model achieves 73.67%, outperforming
other known methods using open source mod-
els. The code has been open sourced at https:
//github.com/CycloneBoy/csc_sql.

1 Introduction

The Text-to-SQL task involves translating nat-
ural language questions into SQL queries for
database access (Katsogiannis-Meimarakis and
Koutrika, 2023; Shi et al., 2024). Current main-
stream approaches rely on large language mod-
els (LLMs) to generate SQL (Liu et al., 2024).
Recently, test-time scaling (TTS) (Zhang et al.,
2025a) techniques have gained popularity, the most
prevalent TTS strategies are Self-Consistency (SC)

!Corresponding author: xuanfeng1992@whut.edu.cn

Shuai-Shuai Xu
University of Science and
Technology of China, China
sa517432@mail.ustc.edu.cn

Qwen?2.5-Coder-7B-Instruct temperature=0.8

T —*— self_consistency@k r
4 correct_self_consistency@k
> - pass@k @
3 0.80 i .
o 4+ major_top2_pass@k
g
o L
5 0.75 1 i A
3 @
Y
g A
= 0.70
3 m
g ) A [
'§ 0.65 "
S 0.65
5 1 + * +
5 A s
0.601 ~
w
T

22 2‘3 2‘4 2‘5 2‘5
Number of candidates (k, log2 scale)

Figure 1: On the BIRD development set, the trend chart
of different metrics under different sampling numbers
using the Qwen2.5-Coder-7B-Instruct model at a tem-
perature of 0.8. Among them, major_top2_pass @k de-
notes selecting the two groups with the most votes to
calculate the pass@k metric, and self_consistency @k
and correct_self_consistency @k represent the results of
using the SC method and our CSC method respectively.

(Wang et al., 2023; Dong et al., 2023; Gao et al.,
2023; Xie et al., 2025) and Self-Correction (Cao
et al., 2024; Gao et al., 2024).

A primary limitation of SC is that the most fre-
quently selected output is not always the correct
final result. As illustrated in Figure 1, the gap be-
tween self_consistency @k and pass@k widens as
the number of candidates increases. To address this
issue, some methods (Pourreza and Rafiei, 2023;
Pourreza et al., 2024, 2025) combine SC with a
second-stage corrector to refine SC outputs, while
others (Gao et al., 2024; Gorti et al., 2025) utilize
a fine-tuned selection model to determine the fi-
nal output. However, the former approach only
revises the top one voting group SQL identified
by SC, relying heavily on the correction capability
of the base LLM, whereas the latter necessitates
comparison among multiple similar SQL candi-
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Figure 2: Overview of the proposed CSC-SQL framework

dates (typically more than three), which requires
high-quality datasets to be effective. To further in-
vestigate the behavior of SC, we propose a new met-
ric, major_top2_pass @k, which calculates pass @k
based only on the top two voting groups, deter-
mined by SQL execution results. As shown in
Figure 1, major_top2_pass@k mitigates the gap
between self_consistency @k and pass@k by lever-
aging only the top two candidate groups.

Based on these analyses, we propose the Cor-
rective Self-Consistency (CSC) framework CSC-
SQL. First, the SQL generation model produces
N candidate SQLs via parallel sampling. The ex-
ecution results of these candidates are then used
to identify the top two groups based on majority
voting. These top two SQL queries, along with
the merged schema and their execution outcomes,
are used to construct a Merge-Revision template
(Sheng et al., 2025). This template is then passed
to a revision model, which generates M new can-
didate SQL queries. Finally, the SC method is
applied to select the final output. During the post-
training of LLMs (Tie et al., 2025), reinforcement
learning (RL) has been shown to significantly en-
hance reasoning capabilities (Besta et al., 2025).
Following the approach of (Pourreza et al., 2025;
Ma et al., 2025), we post-train both the SQL genera-
tion model and the revision model using the Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024) algorithm.

We conducted experiments on the BIRD (Li
et al., 2024c) development set using models of
varying sizes. The results demonstrate that our pro-
posed CSC method consistently improves EX by
0.72%-5.54% compared to the Self-Consistency
baseline. Specifically, the 7B model achieved
69.19% EX and the 32B model achieved 71.33%
EX. On the BIRD private test set, our 7B model

achieves 71.72% EX, and the 32B model achieves
73.67%, surpassing other known methods using
open-source models. We also tested the model
trained on the BIRD dataset directly on the Spider
(Yu et al., 2019) dataset. The experimental results
show that our CSC-SQL method has strong general-
ization ability and also brings certain performance
improvements.

2 Methodology

Our CSC-SQL framework, illustrated in Figure
2, consists of three main components: Sampling
Responses, SQL Merge Revision and Reinforce-
ment Training.

CSC-SQL framework: First, the SQL genera-
tion model produces N candidate SQLs through par-
allel sampling. These candidates are then grouped
and ranked based on their execution results, and
the top two groups are selected. If the candidate
SQL queries are consistent, they are directly used
as the final output. Otherwise, the top two selected
SQL queries, along with their execution results, are
used to construct a template following the method
of (Sheng et al., 2025). This template is input into
the merge-revision model to generate M revised
candidate SQL queries. Finally, the SC method is
applied to these M candidates to select the final
SQL output.

Reinforcement Training: We apply the GRPO
(Shao et al., 2024) algorithm to perform reinforce-
ment training on both the SQL generation model
and the merge-revision model, aiming to enhance
their generation capabilities. The reward function
comprises two components: execution accuracy
reward (Rgx) and format reward (Rgormat). For
detailed reward design, please refer to Appendix B.

SQL Merge Revision Dataset: We utilized the
Qwen2.5-Coder-7B-Instruct model and its GRPO-
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trained variant to generate eight candidate SQL
queries in parallel on the BIRD training set. These
candidates were grouped and voted upon based on
their execution results. The two groups receiving
the highest number of votes were selected to con-
struct the merged revision dataset.

3 Experiments

3.1 Experiments Setting

We use the BIRD and Spider dataset as the evalu-
ation datasets. Execution accuracy (EX) is adopted
as the evaluation metric. Results are reported as
the average performance over three runs for each
experimental setting. Additional implementation
details are provided in Appendix C.

3.2 Main Results

Method Model ‘ Size ng,v%) E)T(e(i;>
(Cplzf:‘rffz:g]:l] 2024) Gemini-1.5-pro UNK | 7301 | 73.0
zg:;“:nsg‘zom GPT-4o UNK | 7334 | 75.63
:25;235 2004) GPT-40 UNK | 6721 | 68.70
(Cpliﬁffmsgil 2024 Mistral Large 123B | 7033
:?:jﬁziz[;g:%zom Qwen2.5-Coder-14B-Instruct | 14B | 7229 | 72.78
2"}’::‘;??;0253) Qwen2.5-Coder-32B-Instruct | 32B | 69.70 | 70.26
?S‘::f;e?ii 2025) Qwen2.5-Coder-32B-Instruct 32B 67.47
z((;i?rgsa?,Lzozzt) XlYanssozégrleanOdﬂ 328 | 6701 | 69.03
g;{:‘;ﬁ:?ﬁ 2025b) Qwen2.5-Coder-7B-Instruct 7B 68.90
::':‘::’r‘:z';gjg%mzs) Qwen2.5-Coder-7B-Instruct | 7B | 68.05
élip::i;?_?;)z_sﬂ) Qwen2.5-Coder-7B-Instruct 7B 66.80
(Sl\(/%:-e}tzzld,, 2025) Qwen?2.5-Coder-7B-Instruct 7B 66.60
((I)j;/[er\t”zf,%](ﬂ)%b) Qwen2.5-Coder-7B-Instruct 7B 66.10 67.97
CSC-SQL Meta-Llama-3.1-70B 70B | 71.69
CSC-SQL XivanSQUQwenCoder | 328 | 7133 | 7367
CSC-SQL Qwen2.5-Coder-32B-Instruct | 32B 70.69
CSC-SQL Qwen2.5-Coder-14B-Instruct 14B 69.60
CSC-SQL OmniSQL-7B 7B | 69.62
CSC-SQL XiY“"S_%_'%z;"C"d” 7B | 69.21
CSC-SQL Qwen2.5-Coder-7B-Instruct | 7B | 69.19 | 71.72
CSC-SQL XiY"‘"S_%_’SSz;"C"d“ 3B | 6528
CSC-SQL Qwen2.5-Coder-3B-Instruct 3B 63.34

Table 1: Performance Comparison of different Text-to-

SQL methods on BIRD dev and private test dataset.

The result on the BIRD dataset are shown in
Table 1. They demonstrate that our CSC-SQL ap-
proach performs competitively compared to pre-
vious Text-to-SQL methods. On the private test
set, our 32B model achieved an EX of 73.67%, sur-
passing all other approaches based on open-source
models and improving by 4.64 points over the origi-

nal base model XiYanSQL-QwenCoder-32B-2412.
It even outperforms CHASE-SQL, which employs
a complex pipeline using a closed-source LLM
and fine-tuned open-source models (e.g., combin-
ing self-consistency with a second-stage corrector
and training SQL selectors to filter final results).
Our 7B model reached 69.19% EX on the develop-
ment set and 71.72% on the test set, outperforming
all methods that use the same base model (e.g.,
Reward-SQL, Reasoning-SQL, and SQL-R1, all
trained with the GRPO algorithm) and demonstrat-
ing strong competitiveness. Notably, the CSC-SQL
method can also be integrated into other frame-
works as a replacement for the self-consistency
component.

We evaluate the generality of the proposed CSC-
SQL by evaluating it on the Spider dataset, directly
using the model trained on the BIRD dataset with-
out retraining a new model. Table 2 presents the
experimental results of the 3B model, demonstrat-
ing that the CSC method consistently outperforms
the SC method. This highlights the strong general-
ization ability of the merge revision model.

3.3 Ablation Study

Table 3 presents the results of our ablation study.
Removing any module results in a notable perfor-
mance decline. Specifically, eliminating the merge
revision model leads to a 2.72-point drop in the per-
formance of CSC-SQL, and a 3.51-point drop when
the merge revision model is not post-trained with
GRPO. These findings indicate that the merge re-
vision model demonstrates strong error correction
capabilities only after GRPO training; otherwise, it
may introduce negative effects.

Furthermore, when the merge revision model
does not incorporate self-consistency (SC) and gen-
erates only a single output, performance decreases
by just 0.7 points, suggesting that SC plays a rel-
atively minor role during the merge revision gen-
eration stage. In another variant, where the merge
revision model selects only the top-1 group (similar
to the combined SC and second-stage error correc-
tion strategy used in CHASE-SQL and DIN-SQL)
performance drops by 2.92 points, which is even
lower than when the merge revision model is en-
tirely omitted. This result suggests that such an
approach is ineffective for small LLM:s.
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o o Train Post EX(%)
Dataset SQL Generateion Model |y 10 ‘ Method [ =4 =8 [ =16 =32 [ =64
sc 64.41 68.09 7021 70.70 70.79
Qwen2.5-Coder- i CSC | 64.60(+0.19) | 68.76(+0.67) | 70.70(+049) | 7128(+0.58) | 72.15(+136)
3B-Instruct GRPO SC 7118 7331 731 T5 A4 76.02
Spider Dev CSC | 7137(+0.19) | 73.98(+0.67) | 73.50(+039) | 75.92(+0.48) | 76.69(+0.67)
N6 .14 292 TS A7 76.98 7785
XiYanSQL-QwenCoder- - CSC | 7137(+2.23) | 74.18(+126) | 7679(+135) | 77.95+097) | 78.72(+0.87)
3B-2502 GRPO SC TE3T 7601 TS24 7592 76T
CSC | 7447+0.1) | 7621(+02) | 75.44(+02) | 76.40 (+0.48) | 76.11(-:0.1)
sc 69.12 72.57 73.82 74.80 75.59
Qwen2.5-Coder- - CSC | 69.77(+0.65) | 73.50(+0.93) | 75.55(+1.73) | 7639(+1.59) | 76.99(+1.40)
3B-Instruct GRPO SC 7430 7578 76.99 7643 7750
— CSC | 7457(+037) | 76.53(+0.75) | 77.60(+0.61) | 77.50+1.02) | 78.16(+0.66)
: N 7339 76.15 T6.67 7T 7806
XiYanSQL-QwenCoder- - CSC | 73.22(+0.93) | 76.94(+0.79) | 78.06(+139) | 78.76(+1.49) | 79.37(+131)
3B-2502 GRPO N 7545 7643 76.99 TT04 T7.69
CSC | 76.06(+0.61) | 77.08(+0.65 | 77.92(+093) | 7820(+1.16) | 78.57(+0.88)

Table 2: The table shows the EX comparison results of different SQL generation models with different post-
processing methods of SC and CSC under different sampling numbers on the Spider development and test set.
SC represents the direct use of Self-Consistency, and CSC represents the Corrective Self-Consistency method we
proposed. The N represents the number of candidate results generated by the SQL generation model. The number
of candidate results of the SQL merge revision model is fixed at 8. The 3B SQL generation model uses the 3B SQL

merge revision model.

Method | DevEX (%) | AEX (%)
CSC-SQL 68.30 -
with SQL generation model samples is 8 66.96 -1.34
with merge revision model samples is 1 67.60 -0.70
with merge top k group size is 1 65.38 -2.92
w/0 merge revision model 65.58 -2.72
w/o GRPO training for merge revision model 64.79 -3.51
w/o GRPO training for SQL generate model 66.41 -1.89

Table 3: Ablation study of CSC-SQL on the BIRD
development set. Its basic model is Qwen2.5-Coder7B-
Instruct, and the number of SQL generated is 16.

SQL Train G SC R Merge CSC EX(%)
Generation Method Size EX Size top k group With GRPO
Model (n) (%) (m) size 3B 7B

1 6232 | 6258

8 61.86 8 2 63.86 | 63.93

3 63.16 | 63.03

B I 62777 | 62.84

Qwen2.5- 16 63.65 8 2 66.47 | 66.78

Coder- 3 6342 | 63.95

7B- I 6473 | 64.73

Instruct 8 65.02 8 2 66.88 | 66.91

3 65.12 | 65.05

GRPO 1 65.44 | 65.38

16 65.17 8 2 67.88 | 67.93

3 65.90 | 65.97

Table 4: The table shows EX of the SQL merge revision
model under different merge revision top K group sizes
using the 3B and 7B Qwen2.5-Coder-Instruct models
on the BIRD development set. G size(n) and R size(m)
represent the number of parallel samples of the SQL
generation model and the merge revision model, respec-
tively.

3.4 Analysis

3.4.1 Different merge revision top k group
sizes

To analyze the impact of different top k group
sizes on merge revision model, we evaluated 7B
model on the BIRD development set. We fixed the
number of merge revision candidates to 8 and tested
group sizes of 1, 2, and 3. The experimental results
are presented in Table 4. Among the configurations,
a group size of 2 yields the best performance and
is used as our default setting. A group size of 1
corresponds to standard revision mode, where each
example is corrected individually; however, this
results in limited improvement and, in some cases,
performance degradation. When the group size is
increased to 3, performance improves slightly but
not significantly.

3.4.2 Different merge revision model sizes

To evaluate the impact of CSC across different
merge revision model sizes and parallel sampling
size, we conducted a detailed experimental, pre-
sented in Table 5. A comparison between the merge
revision model with and without GRPO training
reveals that the model without GRPO often results
in degraded performance, indicating its limited er-
ror correction capability. In contrast, GRPO train-
ing enhances the model’s ability to correct errors.
When the SQL generation model and the number
of its samples remain fixed, and the merge revision
model samples only once (i.e., no second-round
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SQL Generation G SC R CSC EX(%)
Model | Traimine | Size | EX | Size [ Withour GRPO | _With GRPO
o AME 1 () (%) | (m) 3B 7B 3B 7B
T | 5645 | 59.65 | 63.04 | 63.62
4 | 5886 | 6153 | 63.91 | 64.04
8 16186 ¢ 15971 | 6173 | 6386 | 63.93
16 | 60.23 | 6245 | 63.84 | 64.04
T | 5391 | 58.86 | 64.66 | 65.64
16 | e3gs | 4 | 5782 | 6225 | 6630 | 6667
Qwen2.5- i 8 | 5977 | 6225 | 66.47 | 66.78
Coder- 16 | 60.30 | 62.77 | 66551 | 66.73
7B- T | 5847 | 6290 | 66.16 | 66.68
Instruct 4 | 6284 | 6395 | 66.84 | 67.01
8 165021 g 16179 | 6414 | 66.88 | 66.91
16 | 63.16 | 6362 | 67.08 | 67.06
GRPO T 3801 [ 63.10 | 6694 | 67.60
4 | 6147 | 6486 | 67.95 | 67.86
16 16517 | g | 6290 | 64.79 | 6788 | 67.93
16 | 62.71 | 6525 | 67.88 | 67.95

Table 5: The table shows the corresponding EX of the
SQL merge revision model under different configura-
tion parameters using the 3B and 7B Qwen2.5-Coder-
Instruct models on the BIRD development set without
GRPO training and after GRPO training. G size(n)
and R size(m) represent the number of parallel samples
of the SQL generation model and the merge revision
model, respectively.

SC voting is performed), the GRPO-trained merge
revision model still demonstrates strong error cor-
rection capabilities.

Further performance gains can be achieved by
increasing the number of samples in the merge re-
vision model and applying a second SC voting step.
However, once the number of merge revision sam-
ples increases to 4-16, the size of the merge revision
model and the number of its parallel samples have
minimal impact on the final execution accuracy
(EX). In contrast, increasing the number of sam-
ples generated by the SQL generation model has a
more substantial effect on EX. This suggests that
the primary factor influencing CSC performance
is the number of samples generated by the SQL
generation model. A higher number of samples
results in a larger value of major_top2_pass @k (as
shown in Figure 1), thereby increasing the likeli-
hood that the top two SQL candidates selected for
merge revision are accurate. Consequently, this
leads to improved performance of the SQL merge
revision model. These findings also support the
trend observed in Figure 1: for most models, as the
number of SQL generation samples n increases, the
performance gains of CSC over SC also increase.

For more other detailed analysis, please refer to
Appendix D.

4 Conclusion

In this paper, we address the limitations of the
SC method in the Text-to-SQL task, specifically
that the result with the most votes is not always the

optimal one. We propose a novel RL-based frame-
work, CSC-SQL, which improves upon SC by feed-
ing the top two voted SQL candidates into a merge
revision model for SQL regeneration. This frame-
work is further enhanced through post-training us-
ing the GRPO algorithm, resulting in significant
performance gains over the standard SC approach.
We conduct extensive experiments on the BIRD
and Spider datasets, demonstrating the effective-
ness and generalizability of CSC-SQL. Notably,
small models trained with CSC-SQL can outper-
form larger models of the same architecture using
SC. In future work, we plan to integrate strategies
such as Adaptive Self-Consistency and Soft Self-
Consistency to improve the efficiency of parallel
sampling.

5 Limitations

The CSC-SQL method requires more computa-
tional resources than the standard Self-Consistency
approach. After parallel sampling, it performs
result merging and correction, which increases
computational overhead. To mitigate this, meth-
ods such as Adaptive Self-Consistency (Aggarwal
et al., 2023) and Soft Self-Consistency (Wang et al.,
2024) can be incorporated to enhance sampling ef-
ficiency. This enhancement is already part of our
future work plan. Additionally, CSC-SQL relies
on sufficient diversity among sampled results; if
the model generates mostly consistent outputs, the
CSC-SQL method may not yield significant perfor-
mance improvements.
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A Related Work

Early Text-to-SQL method was mostly based on
rules and fine-tuned small language models (Wang
et al., 2020; Guo et al., 2019). With the revolution-
ary progress of LLMs, the mainstream method now
uses the powerful in-context learning capabilities of
LLM to generate SQL (Dong et al., 2023; Pourreza
and Rafiei, 2023; Gao et al., 2023; Lee et al., 2024).
The pipeline method is adopted to integrate multi-
ple sub-steps such as schema linking, SQL genera-
tion, and Self-Correction to improve the accuracy
of generation (Talaei et al., 2024; Pourreza et al.,
2024; Gao et al., 2024; Xie et al., 2025). (Pourreza
and Rafiei, 2024; Li et al., 2024b; Gorti et al., 2025;
Sheng et al., 2025) considering issues such as data
privacy and execution efficiency, the method of
fine-tuning open source models is adopted. With
the rise of test time compute (Zhang et al., 2025a)
methods, it can significantly improve LLMs per-
formance by adding additional computation during
inference. (Gao et al., 2023; Li et al., 2024a; Xie
et al., 2025) directly use Self-Consistency to select
the final SQL from many candidate SQLs, while
(Pourreza et al., 2024; Gao et al., 2024) train a
selection model to chose the final SQL, thereby
improving the consistency of model generation.
(Yuan et al., 2025; Lyu et al., 2025; Li et al., 2025a)
use Monte Carlo Tree Search (MCTS) to dynami-
cally expand the reasoning steps to generate SQL.
(He et al., 2025; Li et al., 2025b) uses high-quality
rationales to perform supervised fine-tune (SFT)
on the model, so that the model can first generate
an effective reasoning process and then generate
the final SQL. Recent reasoning language models
(Besta et al., 2025; OpenAl et al., 2024; DeepSeek-
Al et al., 2025) use RL-based post-training meth-
ods to promote the reasoning and reflection process
inside the model, so that the model shows strong
performance in complex reasoning tasks. (Pourreza
et al., 2025; Ma et al., 2025; Papicchio et al., 2025)
uses the GRPO (Shao et al., 2024) algorithm to
post-train the model to improve the model’s ability
to generate SQL.

B Reward Function Design

The execution accuracy reward (Rgx ) evaluates
the correctness of the generated SQL queries by
comparing their execution results with those of the
gold-standard SQL on the target database. The
format reward (RFpormqt) €ncourages the model
to structure its output by including the reasoning

process within <think>...</think> tags and the final
answer within <answer>...</answer> tags.

1, if execution results is correct.
Rpx = . (H
0, otherwise

1, if output format is match.
Rrormat = { ()

0, otherwise

The final reward is a weighted sum of the execu-
tion accuracy reward and the format reward:

R= REX + 0.1 % RFormat (3)

C Experiments Setting

To evaluate the effectiveness of our CSC-SQL
framework and the CSC method, we conducted
experiments on 11 open-source LLMs. These mod-
els encompass diverse architectures and training
strategies, enabling a comprehensive assessment of
the adaptability of our approach. We employed the
GRPO algorithm to fine-tune four different SQL
generation models and two merge revision models
of varying sizes (Qwen2.5-Coder-3B-Instruct and
Qwen?2.5-Coder-7B-Instruct, respectively).

We use the TRL (von Werra et al., 2020) library
for GRPO training, employing a cosine learning
rate scheduler with a warmup ratio of 0.1 and a
small learning rate of 3e-6. Each model is trained
for one epoch with an effective batch size of 12. For
each input prompt, we generate six completions
to satisfy the group size requirement for GRPO
training. The maximum input template length is
set to 8192 tokens, and the maximum generated
output length is 1024 tokens. The execution accu-
racy reward function is assigned a weight of 1.0,
while the format reward function is weighted at
0.1. All experiments are conducted on a machine
equipped with four NVIDIA GPUs (each with 80
GB VRAM), and the vLLM (Kwon et al., 2023)
framework is used to accelerate inference during
testing. Unless otherwise specified, all experiments
use default sampling parameters, with a tempera-
ture of 0.8 and a merged revision sample size of
8.

The method used to represent database table
schemas follows a similar approach to previous
work (Li et al., 2024b; Talaei et al., 2024). Specifi-
cally, we adopt the representation based on CRE-
ATE TABLE statements as proposed by OmniSQL
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SQL Generation Post | Dev EX(%)
Model [ Training | Method | n=4 n=8 [ n=16 [ n=32 [ n=64
) e 4470 49.87 53.19 55.58 56.15
Qwen2.5-Coder- e 45.96(+1.26) | 5143(+1.56) | 5591(+2.72) | 58.84(+3.26) | 60.39(+4.24)
3B-Instruct GRPO SC 372 56.95 59.06 59.93 60.60
csc 54.65(+0.93) | 58.41(+1.46) | 6136(+2.30) | 62.13(+2.20) | 63.34(+2.74)
) e 49.22 54.56 56.82 58.19 58.87
XiYanSQL-QwenCoder- e S1.06(+1.85) | 57.74(+3.17) | 61.10(+4.28) | 63.23(+5.04) | 64.41(+5.54)
3B-2502 GRPO SC 56.76 59.95 60.78 61.23 61.30
csc S815(+1.39) | 62.17(+2.22) | 63.49(+2.71) | 64.91(+3.68) | 65.28(+3.98)
) e 58.34 62.18 63.35 63.80 64.45
Qwen2.5-Coder- [&e 59.63(+1.28) | 64.28(+2.10) | 66.41(+3.06) | 67.54(+3.73) | 68.70(+4.25)
7B-Instruct GRPO SC 63.73 64.95 65.58 65.88 66.15
csc 64.91(+1.17) | 66.96(+2.01) | 6830(+42.72) | 68.61(+2.73) | 69.19(+3.04)
) e 59.26 62.58 63.67 64.84 66.19
XiYanSQL-QwenCoder- e 61.13(+1.87) | 6534(+2.76) | 66.93(+3.26) | 68.08(+3.24) | 69.21(+3.02)
7B-2502 GRPO SC 61.41 63.71 64.65 65.69 65.95
csc 63.04(+1.63) | 66.08(+237) | 67.71(+3.06) | 68.86(+3.17) | 69.04(+3.09)
OmuSOL-7B e 65.86 67.26 67.23 67.42 67.54
e 66.82(+0.96) | 68.32(+1.06) | 69.21(+1.99) | 69.23(+1.81) | 69.62(+2.08)
Meta-Llama-3.1- N6l 47.74 52.35 55.74 56.89 58.11
8B-Instruct csc 49.15(+1.41) | 54.65(+2.30) | 58.80(+3.06) | 61.45(+4.56) | 62.84(+4.74)
a3 12hit sc 57.69 59.34 60.50 61.15 60.89
gemma-o-1.26- ) csc 58.80(+1.20) | 61.26(+1.91) | 63.10(+2.61) | 63.73(+2.59) | 63.95(+3.06)
Qwen2.5-Coder- e 65.49 66.36 67.24 67.17 67.19
14B-Instruct . csc 66.51(+1.02) | 68.02(+1.66) | 69.28(+2.04) | 69.49(+2.33) | 69.60(+2.41)
Qwen2.5-Coder- sc 66.97 67.56 68.54 68.58 68.67
32B-Instruct csc 68.02(+1.06) | 69.12(+1.56) | 69.95(+1.41) | 70.32(+1.74) | 70.69(+2.02)
XiYanSQL-QwenCoder- e 66.11 67.50 68.45 68.75 68.95
32B-2412 csc 67.26(+1.15) | 69.37(+1.88) | 70.57(+2.12) | 70.87(+2.13) | 71.33(+2.39)
e 65.58 67.43 69.23 69.56 69.82
Meta-Llama-3.1-708 ‘ ‘ csc ‘ 66.30(+0.72) | 68.86(+1.43) | 70.75(+1.52) | 71.45(+1.89) ‘ 71.69(+1.87)

Table 6: The table shows the EX comparison results of different SQL generation models with different post-
processing methods of SC and CSC under different sampling numbers on the BIRD development set. The 3B SQL
generation model uses the 3B SQL merge revision model, and the models of other sizes all use the 7B SQL merge

revision model.

(Li et al., 2025b), which incorporates column
descriptions, representative values, and question-
relevant values in the comment field.

D Additional Analysis

D.1 Analysis of different model with CSC
method

To analyze the performance of the SC and CSC
methods across models of varying sizes and dif-
ferent numbers of generated SQL queries, we con-
ducted extensive experiments on the BIRD develop-
ment set. The results, presented in Table 6, demon-
strate that:

For the same model and samples size n,
the CSC method consistently outperforms SC
method. Specifically, CSC achieves a steady im-
provement in EX ranging from 0.72% to 5.54%
compared to SC. For instance, when the sample
size is 64, the EX of XiYanSQL-QwenCoder-3B-
2502 without GRPO post-training increases from
58.87% to 64.41%, while Meta-Llama-3.1-8B-
Instruct improves from 58.11% to 62.84%. In most
models, as the number of samples n increases, the
performance gain of CSC over SC also increases.

For the same model, GRPO training generally
improves EX under both SC and CSC methods.
For example, with a sample size of 8, Qwen2.5-
Coder-3B-Instruct shows an EX improvement of
7.08% under SC and 6.98% under CSC, while
Qwen?2.5-Coder-7B-Instruct improves by 2.77%
under SC and 2.68% under CSC. However, as the
sample size n increases, the benefits of GRPO train-
ing diminish. At a sample size of 64, Qwen2.5-
Coder-7B-Instruct achieves only a 1.70% improve-
ment under SC and 0.49% under CSC.

For a fixed sampling number n, models within
the same family consistently achieve higher EX
under the CSC method compared to the SC
method, especially as model size increases. For
instance, when using the Qwen2.5-Coder model
family with a sampling number of 32, EX improves
from 58.84% for the 3B model to 70.32% for the
32B model. Moreover, CSC enables smaller lan-
guage models to outperform larger counterparts
within the same family. For example, with a sam-
pling number of 64, Qwen2.5-Coder-7B-Instruct
using CSC surpasses both Qwen2.5-Coder-14B-
Instruct and Qwen2.5-Coder-32B-Instruct using
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Model Train Post Dev EX(%)
Method | Method | Simple | Moderate | Challenge | All

SC 64.11 4591 38.62 56.19

Qwen2.5-Coder- ) CSC 67.89 50.43 42.76 60.23
3B-Instruct GRPO SC 68.65 49.14 4552 60.56
CSc 71.46 52.80 46.90 63.49

SC 71.14 56.47 48.28 64.54

Qwen2.5-Coder- ) CSC 74.38 63.36 51.72 68.90
7B-Instruct GRPO SC 71.03 61.21 52.41 66.30
CSC 73.95 64.01 55.86 69.23

Table 7: The table shows the performance of different models at different difficulty levels on the BIRD development
set when the sampling temperature is 0.8 and the SQL generation model samples 64 candidate results in parallel.

SC. These results highlight the efficiency benefits
of CSC, as it allows smaller models to substitute
for larger ones while maintaining or improving per-
formance.

D.2 Difficulty Analysis

Table 7 presents the performance of the SC and
our proposed CSC methods across different diffi-
culty levels on the BIRD development set. The
results indicate that the CSC method consistently
outperforms the SC method at all difficulty levels.

D.3 Detailed Cost Analysis

When using LL.M-based algorithms, computa-
tional time and cost are critical considerations. The
proposed CSC-SQL method is built on open-source
models that require GPU servers for deployment
in real-world applications. As an example of in-
ference cost, we consider an H800 GPU server
equipped with a single NVIDIA 80GB GPU (hard-
ware configuration: 20-core Xeon Platinum 8458P
CPU, 100GB RAM, 500GB SSD, with a rental
price of approximately $2.0 per hour). We eval-
uated the inference time and cost of 7B and 32B
models on the BIRD development set (containing
1,534 questions), and the results are presented in
Table 8. Since the merge revision model is 7B and
generates 8 correction candidates, the total infer-
ence time increases gradually with the number of
candidates generated by the SC method, while the
proportion of time spent on the merge revision step
decreases. For example, when the SQL genera-
tion model is 32B and generates 16 candidates, the
additional inference time from the merge revision
model increases by only about 7%, resulting in an
average cost of $0.0014 per question. This demon-
strates an effective balance between performance
and cost. For performance-focused applications,
the number of SQL generation candidates can be

increased to 64. Overall, CSC-SQL offers flexible
trade-offs between computational efficiency and
model performance.

D.4 Analysis at different sampling
temperatures

The self-consistency method determines the fi-
nal result by voting among multiple sampled candi-
dates. However, when the diversity of these candi-
dates is limited, the effectiveness of voting dimin-
ishes. Similar to the self-consistency approach, our
proposed CSC method also relies on the diversity
of sampled results. To investigate this, we tested
four sampling temperatures ranging from 0.2 to 1.0.
As shown in Figure 3, regardless of the sampling
temperature, all evaluation metrics improve as the
number of samples increases. At lower tempera-
tures, limited diversity leads to lower metric scores.
When the temperature is set to 0.8 or 1.0, the perfor-
mance difference is minimal. Therefore, we adopt
a temperature of 0.8 in subsequent experiments.

E Output Example Analysis

In this section, we present example output results
from the SQL generation model using the Qwen2.5-
Coder-7B model trained with GRPO, along with
the 7B merge revision model, to illustrate the
model’s step-by-step reasoning process on BIRD
development set.

E.1 Some successful merge revision cases

The examples include outputs from the top-1
group (where the SQL generation is incorrect) and
the top-2 group (where the SQL generation is cor-
rect) after SC voting, as well as the final top-1
output produced by CSC, which demonstrates that
CSC can effectively correct errors made by the SC
method. The red part of the CSC output shows its
correction process.
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. The proportion .

. Train . SC Use CSC Use . Total Use Total Average Cost Bird

Model Model Size Method SC Size time (Hour) | Time (Hour) CSSE::CT:&;Z‘?(%) Time (Hour) | Cost ($) | Per Question ($) | Dev EX (%)
Qwen2.5- 4 0.1 0.06 58 0.16 0.32 0.00022 64.91
Coder- 8 0.14 0.07 52 0.21 0.42 0.00028 66.96
7B- 7B GRPO 16 0.25 0.08 33 0.33 0.66 0.00044 68.30
Instruct 32 0.47 0.08 17 0.55 1.1 0.00072 68.61
64 0.97 0.11 11 1.08 2.16 0.0014 69.19
4 0.2 0.07 33 0.27 0.54 0.00035 67.26
XiYanSQL- 8 0.63 0.07 11 0.7 14 0.00091 69.37
QwenCoder- 32B - 16 1.0 0.07 7 1.07 2.14 0.0014 70.57
32B-2412 32 1.74 0.1 6 1.84 3.68 0.0024 70.87
64 3.18 0.1 3 3.28 6.56 0.0043 71.33

Table 8: The table shows the cost and performance of SQL generation on the BIRD development set using our
CSC-SQL method with 7B and 32B sizes. The number of candidate SQLs generated by the merge revision model is
fixed to 8. The inference cost analysis uses an NVIDIA H800 with 80GB of memory (rented at $2.0 per hour) as an
example.
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Figure 3: On the BIRD development set, using the Qwen2.5-Coder-7B-Instruct model, when the sampling tempera-
ture increases from 0.2 to 1.0, the trend charts of different metric under different sampling numbers.

1483



E.1.1 Successful Case 82

The gold sql for question 82

question_id: 82

db_id: california_schools

question: What is the grade span offered in the school with the highest longitude?

evidence: the highest longitude refers to the school with the maximum absolute longitude value.
difficulty: simple

gold sql: SELECT GSoffered FROM schools ORDER BY ABS(longitude) DESC LIMIT 1

The top 1 group results after SC voting for question 82

<think>
To answer this question, we need to find the school with the highest longitude value and retrieve
its grade span offered. Here are the steps to derive the SQL query:

1. **Identify the relevant tables**: We need to access the ‘schools‘ table to get the longitude
values and the grade span offered. The ‘Longitude‘ column is in the ‘schools® table, and the
‘GSoffered‘ column is also in the same table.

2. **Order the schools by longitude in descending order®*: To find the school with the highest
longitude, we need to order the schools by the ‘Longitude‘ column in descending order. This will
put the school with the highest longitude at the top.

3. **Limit the result to the school with the highest longitude**: Since we are only interested in
the school with the highest longitude, we can limit the result to just 1 row.

4. **Select the grade span offered**: Finally, we only need to select the ‘GSoffered‘ column from
the ‘schools* table.

Putting it all together, the SQL query will select the ‘GSoffered‘ column from the ‘schools‘ table,
order the results by ‘Longitude‘ in descending order, and limit the result to 1 row.

</think>

<answer>

SELECT GSoffered FROM schools ORDER BY Longitude DESC LIMIT 1

</answer>
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The top 2 group results after SC voting for question 82

<think>

1. **Identify the relevant tables and columns**: The question asks for the grade span offered in
the school with the highest longitude. The school information, including its longitude, is stored in
the ‘schools‘ table. The grade span offered is stored in the ‘GSoffered‘ column of the same table.

2. #*Determine the order and limit**: To find the school with the highest longitude, we need to
order the ‘schools® table by the ‘Longitude‘ column in descending order and limit the result to the
first row using the ‘LIMIT 1°¢ clause.

3. **Construct the SQL query**: The SQL query will select the ‘GSoffered® column from the
‘schools table, order the results by the ‘Longitude‘ column in descending order, and limit the
output to the first row.

</think>

<answer>

SELECT GSoffered FROM schools ORDER BY ABS(Longitude) DESC LIMIT 1

</answer>
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The top 1 group results after CSC voting for question 82

<think>
To answer the question "What is the grade span offered in the school with the highest longitude?",
we need to follow these steps:

1. **Understand the Data**: The table ‘schools‘ contains information about schools, including
their grade span (‘GSoffered‘) and longitude (‘Longitude®).

2. **Identify the Requirement**: We need to find the school with the highest longitude value and
then retrieve its grade span.

3. **Determine the SQL Operation™**:

- **ORDER BY **: To sort the schools by longitude in descending order.

- **LIMIT**: To get only the top result, which corresponds to the school with the highest
longitude.

- **SELECT**: To specify that we want to retrieve the ‘GSoffered‘ column from the top result.

4. ** distinguish between Absolute Longitude**: The question asks for the "highest" longitude,
which could mean either the maximum or minimum longitude value. In this context, it seems to be
asking for the maximum absolute value of longitude, which could be either positive or negative.
The first draft SQL query uses ‘ABS(Longitude)‘ to achieve this, sorting by the absolute value of
longitude in descending order. However, if the intention is to find the school with the most eastern
longitude (positive value), we should use ‘Longitude® directly.

5. **Construct the SQL Query**:

- **SELECT**: We need to select the ‘GSoffered‘ column.

- **FROM**: We need to specify the ‘schools® table.

- ***ORDER BY**: We sort by ‘Longitude DESC* to get the school with the highest longitude at
the top.

- #*FLIMIT**: We limit the results to 1 to get only the top result.

The draft SQL query provided in the instruction already correctly follows these steps. It uses
‘ABS(Longitude)‘ to find the school with the highest absolute longitude value, which is the
intended meaning of "highest longitude" in this context.

Therefore, the correct SQL query is:

</think>

<answer>

SELECT GSoffered FROM schools ORDER BY ABS(Longitude) DESC LIMIT 1
</answer>
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E.1.2 Successful Case 232

The gold sql for question 232

question_id: 232

db_id: toxicology

question: Please list top three molecules that have single bonds between two atoms and are not
carcinogenic in alphabetical order.

evidence: label = ’-> means molecules are not carcinogenic; single type bond refers to bond_type =
’-*; list top three molecules refers to return molecule_id and order by molecule_id;

difficulty: moderate

gold sql: SELECT DISTINCT T2.molecule_id FROM bond AS T1 INNER JOIN molecule AS T2
ON T1.molecule_id = T2.molecule_id WHERE T1.bond_type =’-> AND T2.label = ’-> ORDER
BY T2.molecule_id LIMIT 3

The top 1 group results after SC voting for question 232

<think>

1. **Identify the key requirements**: The question asks for the top three molecules that have
single bonds between two atoms and are not carcinogenic. We need to find the molecules based on
these conditions and order them alphabetically by ‘molecule_id°.

2. *¥*Determine the relevant tables**:
- ‘molecule‘ table contains the  molecule_id* and ‘label of molecules.
- ‘bond‘ table contains the ‘bond_type* of bonds and is linked to ‘molecule_id°.

3. **Filter conditions**:
- We need to filter for molecules where ‘label =
- We need to filter for bonds where ‘bond_type =

? %

(not carcinogenic).
’->¢ (single bond).

4. **Join the tables**:
- Join ‘molecule‘ and ‘bond° tables on ‘molecule_id°.

5. **QOrder and limit**:

- Order the results by ‘molecule_id* and limit the output to the top three.

6. **Formulate the SQL query**:

- Use an INNER JOIN to combine ‘molecule‘ and ‘bond° tables.

- Apply WHERE clauses to filter for not carcinogenic and single bonds.

- Use ORDER BY to sort by ‘molecule_id°.

- Use LIMIT to restrict the output to 3 rows.

</think>

<answer>

SELECT T1.molecule_id FROM molecule AS T1 INNER JOIN bond AS T2 ON T1.molecule_id
= T2.molecule_id WHERE T1.label = ’-> AND T2.bond_type = ’-> ORDER BY T1.molecule_id
LIMIT 3

</answer>
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The top 2 group results after SC voting for question 232

<think>
To answer this question, we need to find the top three molecules that have single bonds be-
tween two atoms and are not carcinogenic. Here’s a step-by-step approach to derive the SQL query:

1. **Identify the relevant tables**: We need to access information from the ‘molecule‘, ‘bond°*, and
‘connected’ tables. The ‘molecule‘ table contains the ‘label‘ information, the ‘bond‘ table contains
the ‘bond_type‘ information, and the ‘connected* table links atoms to bonds and molecules.

2. **Filter molecules not carcinogenic**: We will use the “‘WHERE" clause to filter molecules
with ‘label =’-’* (not carcinogenic).

3. **Filter single type bonds**: We will also use a “WHERE* clause to filter bonds with
‘bond_type =’-’‘ (single bonds).

4. **Group by molecule_id**: Since we want to list the top three molecules, we will use the
‘GROUP BY clause to group the results by ‘molecule_id"*.

5. *¥*Order by molecule_id**: Finally, we will use the ‘ORDER BY ‘ clause to sort the results in
alphabetical order.

Here’s how we can construct the SQL query:

- Start with the ‘SELECT" statement to specify the required columns (‘molecule_id*).

- Use ‘FROM* and ‘INNER JOIN‘ to join the ‘molecule‘, ‘bond‘, and ‘connected‘ tables based on
the ‘molecule_id‘ and ‘bond_id".

- Add the “WHERE’ clauses to filter molecules not carcinogenic and single type bonds.

- Add the ‘GROUP BY clause to group the results by ‘molecule_id"‘.

- Add the ‘ORDER BY " clause to sort the results in alphabetical order.

- Use the ‘LIMIT 3° clause to return only the top three molecules.

</think>

<answer>

SELECT T1.molecule_id FROM molecule AS T1 INNER JOIN bond AS T2 ON T1.molecule_id
= T2.molecule_id WHERE T1.label =’-> AND T2.bond_type =’-> GROUP BY T1.molecule_id
ORDER BY T1.molecule_id ASC LIMIT 3

</answer>
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The top 1 group results after CSC voting for question 232

<think>

The task requires us to find the top three molecules that have single bonds and are not carcinogenic,
ordered alphabetically by molecule_id. The correct SQL query should:

1. Join the ‘molecule‘ and ‘bond‘ tables based on the ‘molecule_id‘ column.

2. Filter the joined data to include only those rows where the ‘label® is ’-’ (indicating the molecule
is not carcinogenic) and the ‘bond_type* is ’-’ (indicating a single bond).

3. Group the results by ‘molecule_id‘ to exclude duplicates in the result set.

4. Order the results by ‘molecule_id* in ascending order.

5. Limit the results to the top 3 rows.

The draft SQL query 1 seems to have an issue; it’s not correctly filtering out duplicates and isn’t
grouping the results, which would explain why it returns duplicate rows. The draft SQL query 2
avoids duplicates by grouping by ‘molecule_id‘ but still isn’t excluding duplicate rows, which
could be due to a syntax error or oversight.

To correct the query, we need to ensure that the ‘GROUP BY* clause correctly groups the results,
but since we’re only interested in the ‘molecule_id‘, we should only select that column in the
‘SELECT" clause. We also need to ensure that the ‘LIMIT* clause correctly restricts the output to
the top 3 rows.

</think>
<answer>

SELECT T1.molecule_id FROM molecule AS T1 INNER JOIN bond AS T2 ON T1.molecule_id
= T2.molecule_id WHERE T1.label =’-> AND T2.bond_type =’- GROUP BY T1.molecule_id
ORDER BY T1.molecule_id ASC LIMIT 3
</answer>

E.2 Some failed merge revision cases

We also found some failure cases where the merged revision model did not output the final result
correctly, which shows that the merge revision model also has certain limitations and does not work in
some situations. In the future, we will further analyze these failure cases to improve the merge revision
model.

E.2.1 Failed Case 15

The gold sql for question 15

question_id: 15

db_id: california_schools

question: Which active district has the highest average score in Reading?

evidence: difficulty: simple

gold sql: SELECT TI1.District FROM schools AS T1 INNER JOIN satscores AS T2 ON
T1.CDSCode = T2.cds WHERE T1.StatusType = *Active’ ORDER BY T2.AvgScrRead DESC
LIMIT 1
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The top 1 group results after SC voting for question 15

<think>
To answer the question, we need to follow these steps:

1. **Identify the relevant tables**: The question involves finding districts with high SAT scores
and determining which one is active. Therefore, we need to look at the ‘satscores‘ table for SAT
scores and the ‘schools table for district information.

2. **Join the tables**: Since the ‘satscores‘ table doesn’t directly contain district details, we
need to join it with the ‘schools‘ table using the ‘CDSCode‘ column, which is the primary key in
‘schools‘ and acts as a foreign key in ‘satscores’.

3. **Filter for active districts**: We need to filter the results to include only active districts, which
can be identified by the ‘StatusType‘ column in the ‘schools table.

4. **Calculate the average reading score**: We need to calculate the average reading score for
each active district.

5. **QOrder by average score**: We need to order the results by the average reading score in
descending order to find the district with the highest average score.

6. **Limit the results**: Since we are only interested in the district with the highest average score,
we can limit the results to 1.

7. **Select the district name**: Finally, we only need to select the district name, which is the
‘District‘ column in the ‘schools table.

Given these steps, the SQL query can be constructed as follows:

</think>

<answer>

SELECT T2.District FROM satscores AS T1 INNER JOIN schools AS T2 ON Tl.cds
= T2.CDSCode WHERE T2.StatusType = ’Active’ GROUP BY T2.District ORDER BY
AVG(T1.AvgScrRead) DESC LIMIT 1

</answer>
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The top 2 group results after SC voting for question 15

<think>
To answer this question, we need to follow these steps:

1. **Identify the relevant tables**: The question involves finding information about districts and
their satscores. Therefore, the relevant tables are ‘schools‘ and ‘satscores®.

2. **Understand the relationships**: The ‘schools‘ table has a foreign key ‘CDSCode* that
references the ‘CDSCode‘ in the ‘satscores‘ table. This means we can join these two tables on the
‘CDSCode* column.

3. **Filter active districts**: The question specifies that we should only consider active districts.
Therefore, we need to add a filter in the “‘WHERE* clause to include only ‘StatusType = ’Active’*
districts.

4. **Sort by average score in Reading**: To find the district with the highest average score in
Reading, we need to sort the results in descending order based on the ‘AvgScrRead‘ column from
the ‘satscores‘ table.

5. **Limit the output**: Since we are interested in the district with the highest average score, we
can limit the output to the first row.

6. **Select the required columns**: The question asks for the district name, so we need to select
the ‘dname‘ column from the ‘satscores‘ table.

Based on these steps, the SQL query can be written as follows:

</think>

<answer>

SELECT T2.dname FROM schools AS T1 INNER JOIN satscores AS T2 ON T1.CDSCode =
T2.cds WHERE T1.StatusType = *Active’ ORDER BY T2.AvgScrRead DESC LIMIT 1
</answer>
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The top 1 group results after CSC voting for question 15

<think>
To answer the question "Which active district has the highest average score in Reading?", we need
to follow these steps:

1. **Identify the relevant tables and columns**:
- ‘satscores‘ table: contains the average reading scores.
- ‘schools‘ table: contains the districts and their status.

2. **Join the tables**:
- We need to join the ‘satscores* table with the ‘schools‘ table on the ‘cds‘ column to link each
district with its average reading score.

3. **Filter for active districts**:
- We need to filter the results to include only active districts. This can be done using a WHERE
clause.

4. **Group by district**:
- We need to group the results by district to calculate the average score for each district.

5. **Order by average score in descending order**:
- We need to sort the results by the average score in descending order to get the district with the
highest score at the top.

6. **Limit the results**:
- Since we only want the district with the highest average score, we can limit the results to 1.

According to the draft SQL provided, the steps seem to be followed correctly, but the table aliases
in the query are not consistent. We will correct them to ensure the query works.

The correct SQL query should look like this:

</think>

<answer>

SELECT T2.District FROM satscores AS T1 INNER JOIN schools AS T2 ON Tl.cds
= T2.CDSCode WHERE T2.StatusType = ’Active’ GROUP BY T2.District ORDER BY
AVG(T1.AvgScrRead) DESC LIMIT 1

</answer>

E.2.2 Failed Case 590
The gold sql for question 590

question_id: 590

db_id: codebase_community

question: Which user ID has the lowest view?

evidence: lowest views refers to Min(Views)

difficulty: simple

gold sql: SELECT Id FROM users WHERE Views = ( SELECT MIN(Views) FROM users )
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The top 1 group results after SC voting for question 590

<think>
To answer the question "Which user ID has the lowest view?", we need to follow these steps:

1. **Identify the relevant table**: The question is about users, their views, and their IDs. The
most relevant table for this information is the ‘users* table.

2. **Determine the relevant columns**: The columns of interest are ‘Views‘ and ‘Id‘ (user ID).

3. **QOrder the results by views**: To find the user with the lowest views, we need to order the
results in ascending order based on the ‘Views‘ column.

4. **Limit the results**: Since we are only interested in the user with the lowest views, we can
limit the results to the first row of the ordered list.

5. **Select the correct column**: The question asks for the user ID, so we need to select the ‘Id°
column.

Putting these steps together, we can formulate the SQL query.
</think>

<answer>

SELECT Id FROM users ORDER BY Views ASC LIMIT 1
</answer>

The top 1 group results after CSC voting for question 590

<think> To answer the question "Which user ID has the lowest view?", we need to find the user
with the minimum number of views. Here are the steps to derive the SQL query:

1. Identify the relevant table: The ‘users‘ table contains information about users, including their
views.

2. Determine the column of interest: The ‘Views* column in the ‘users‘ table contains the number
of views each user has.

3. Find the minimum value of views: To find the user with the lowest view, we need to identify the
user with the minimum value in the ‘Views*‘ column.

4. Select the user ID: Once we have the minimum value, we select the user ID from the ‘users*
table that corresponds to this minimum value.

The SQL query will use the ‘MIN* function to find the minimum number of views and then use a
subquery to find the user ID with this minimum value.

</think>

<answer>

SELECT Id FROM users WHERE Views = ( SELECT MIN(Views) FROM users );

</answer>
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The top 1 group results after CSC voting for question 590

<think>
Let’s analyze the question and the database schema. The question asks for the user ID with the low-
est view count. The database schema has a table named ‘users* with two columns: ‘Id‘ and ‘Views*.

1. **Identify the required operation**: The task requires finding the user ID with the minimum
view count.

2. **Determine the appropriate SQL function**: The SQL function ‘MIN‘ can be used to find the
minimum value in the ‘Views‘ column.

3. **Formulate the SQL query**:

- We need to select the ‘Id* from the ‘users* table.

- We use ‘ORDER BY Views ASC* to sort the rows in ascending order based on the view count.
- We use ‘LIMIT 1° to get only the top row, which corresponds to the user with the lowest view
count.

4. **Validate the query**:

- The first draft SQL provided is: ‘SELECT Id FROM users ORDER BY Views ASC LIMIT 1°

- The execution result confirms that this query correctly returns the user ID with the lowest view
count.

Based on these steps, the final SQL query is: ‘SELECT Id FROM users ORDER BY Views ASC
LIMIT 1°

</think>

<answer>

SELECT Id FROM users ORDER BY Views ASC LIMIT 1

</answer>

F Prompt Templates
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F.1 Prompt for SQL Generation

SQL Generation Prompt

You first thinks about the reasoning process in the mind and then provides the user with the answer.

Task Overview:

You are a data science expert. Below, you are provided with a database schema and a natural
language question. Your task is to understand the schema and generate a valid SQL query to
answer the question.

Database Engine:
SQLite

Database Schema:
{DATABASE SCHEMA }

This schema describes the database’s structure, including tables, columns, primary keys,
foreign keys, and any relevant relationships or constraints.

Question:
{EVIDENCE}
{QUESTION}

Instructions:

- Make sure you only output the information that is asked in the question. If the question asks for a
specific column, make sure to only include that column in the SELECT clause, nothing more.

- The generated query should return all of the information asked in the question without any
missing or extra information.

- Before generating the final SQL query, please think through the steps of how to write the query.

Output Format:
Show your work in <think> </think> tags. And return the final SQLite SQL query that
starts with keyword ‘SELECT* in <answer> </answer> tags, for example <answer>SELECT

AVG(rating_score) FROM movies</answer>.

Let me solve this step by step.
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F.2 Prompt for SQL Merge Revision
SQL Merge Revision Prompt

You first thinks about the reasoning process in the mind and then provides the user with the answer.

Task Overview:

You are a data science expert. Below, you are provided with a database schema, a natural language
question, some draft SQL and its corresponding execution result. Your task is to understand the
schema and generate a valid SQL query to answer the question.

Database Engine:
SQLite

Database Schema:
{DATABASE SCHEMA }

This schema describes the database’s structure, including tables, columns, primary keys,
foreign keys, and any relevant relationships or constraints.

Question:
{EVIDENCE}
{QUESTION}

Here are some corresponding draft SQL and execute result:
1. {PREDICT_SQL1}

Execution result

{EXECUTE_RESULT1}

2. {PREDICT_SQL2}
Execution result
{EXECUTE_RESULT?2}

Instructions:

- Make sure you only output the information that is asked in the question. If the question asks for a
specific column, make sure to only include that column in the SELECT clause, nothing more.

- The generated query should return all of the information asked in the question without any
missing or extra information.

- Before generating the final SQL query, please think through the steps of how to write the query.

Output Format:

Show your work in <think> </think> tags. And return the final SQLite SQL query that
starts with keyword ‘SELECT* in <answer> </answer> tags, for example <answer>SELECT
AVG(rating_score) FROM movies</answer>.

Let me solve this step by step.
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