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Abstract

Despite their success, LLMs are too computa-
tionally expensive to replace task- or domain-
specific NLP systems. Yet, the diversity of
corpus formats across domains makes it dif-
ficult to reuse or adapt these specialized sys-
tems. As a result, the NLP field faces a trade-
off between the efficiency of domain-specific
systems and the generality of large language
models, underscoring the need for an interop-
erable NLP landscape. We address this chal-
lenge by pursuing two objectives: standard-
izing corpus formats and enabling massively
parallel corpus processing. We present a uni-
fied conversion framework embedded in a mas-
sively parallel, microservice-based, program-
ming language-independent NLP architecture
designed for modularity and extensibility. It
allows for the integration of external NLP con-
version tools and supports the addition of new
components that meet basic compatibility re-
quirements. To evaluate our dual data- and
process-oriented approach to standardization,
we (1) benchmark its efficiency in terms of pro-
cessing speed and memory usage, (2) demon-
strate the benefits of standardized corpus for-
mats for NLP downstream tasks, and (3) illus-
trate the advantages of incorporating custom
formats into a corpus format ecosystem.

1 Introduction

The use of specialized NLP systems is compli-
cated by the heterogeneity of the corpus formats
with which the systems are trained, the formats
they require as input or generate as output (e.g.
CoNLL (Buchholz and Marsi, 2006), TigerXML
(Konig and Lezius, 2000), UIMA (Ferrucci and
Lally, 2004), ANNIS (Krause and Zeldes, 2014)
and TEI (Consortium, 2025)). This heterogeneity
is a disadvantage when NLP systems must be used
in a pipeline where the output of one system serves
as input for another. The situation is even worse
when there are no suitable libraries for the conver-
sion. Using resource- and cost-intensive LLMs to

replace such specialized NLP systems can be pro-
hibitively expensive (Luccioni et al., 2024; Xiao
et al., 2025; Ling et al., 2024). Thus, we should
maintain access to a variety of specialized NLP
systems that perform specific tasks within partic-
ular disciplines or with specific language data. It
would be pointless to dispense with this heritage,
also because downstream LLMs can use their out-
puts for improvement (Wu et al., 2025; Lewis et al.,
2021). This raises the question of how to solve the
problem of heterogeneous data formats.

This task requires deployable and interopera-
ble NLP systems (Moreno-Schneider et al., 2022).
However, it involves more than just automatically
processing heterogeneous annotations. It also re-
quires designing the underlying schemas and eval-
uating their instances. This may include manually
creating annotations, especially when the objective
is to generate data for training NLP systems on new
tasks. From this perspective, standardization of the
formats used in NLP and related disciplines is cen-
tral. It would allow us to combine the results of
different NLP systems into a format that a third sys-
tem can process without encountering conversion
issues. This would create an interoperable NLP
landscape, eliminating the need for conversion.

This scenario outlines the long-standing dream
of interoperability (Ide and Romary, 2004), which
refers to the standardization of data formats used by
participating systems. Although this concept has
been around for a long time, it has yet to be realized
(Aufrant, 2022). This is especially problematic for
approaches that aim to explicitly annotate corpora
for purposes such as modeling, evaluation, and
intellectual exchange across scientific disciplines.
We aim to fill this research gap in the context of
interoperability and the efficient parallelization of
NLP systems. To this end, we address two interde-
pendent tasks. (1) standardizing corpus annotation
and (2) massively parallelizing corpus processing.
The paper has three major outcomes: (1) It devel-
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ops a new approach to unify the heterogeneous
landscape of annotation formats (Section 4). (2) It
does so by integrating our unified format into an
interoperable, massively parallizable NLP system
that allows the integration of any NLP system that
meets a list of minimal requirements (Section 3.2).
(3) To assess the effectiveness of our dual data- and
process-oriented approach to standardization, we
provide three evaluation scenarios (Section 5).

2 Related Work

Several initiatives have sought to manage the grow-
ing diversity of linguistic formats by converting
them into a standard format. For example, the Pep-
per and Salt framework (Zipser and Romary, 2010)
converts various formats into the Salt Meta-Model;
it represents linguistic data as directed graphs and
supports export to other formats. A second example
is FINTAN (Fith et al., 2020): it employs a graph
representation to transform heterogeneous linguis-
tic resources into RDF graphs, thereby enabling
uniform, graph-based transformations through up-
date scripts in SPARQL. FINTAN was followed by
Spicy Salmon (Fith and Chiarcos, 2022), which
integrated Pepper into the FINTAN workflow, en-
abling the conversion among 50 linguistic formats,
including many CoNLL and RDF standards. A re-
cent addition to the “spicy” ecosystem of Pepper,
Salt, and ANNIS (Krause and Zeldes, 2014) is An-
natto (Krause and Klotz, 2025). Like Pepper and
FINTAN, it has a modular architecture with dedi-
cated importer and exporter components, and uti-
lizes a graph-based internal representation based on
the graphANNIS (Krause et al., 2016) data model.
Beyond format conversion, Annatto includes a suite
of graph manipulation modules supporting tasks
such as filtering, editing, consistency checking, and
debugging. It also provides integrated tools for
graph visualization and corpus search, making it
a powerful resource for both corpus exploration
and linguistic data processing workflows. More
specialized is the Universal Dependencies (Nivre
et al., 2017) project, which standardizes syntactic
annotation by unifying the myriad variations of
CoNLL formats. Similarly, the Natural Language
Interchange Format (NIF) project (Hellmann et al.,
2013) strives to establish a universal, RDF-based
standard for linguistic data and, with its 2.0 up-
date, introduces enhanced capabilities for corpus
conversion. There are numerous third-party con-
verters that provide a range of conversion capabil-

ities as, e.g., openConvert (Bakker, 2015) from
the CLARIN-NL project and the Python-based
CoNLL-U Parser (Stenstrom, 2016), which can
handle various variations of CoNLL-U files. There
are many other tools, each of which caters to spe-
cific linguistic formats and conversion needs.

All these efforts aim at overcoming the hetero-
geneity of annotation formats by mapping them to
a unified format. This includes aggregating annota-
tions of the same resource to make them available
as a whole for further processing (vertically) or
to facilitate automatic annotation by making them
available to each other (horizontally), especially
in scenarios of data scarcity due to data acquisi-
tion problems. However, these approaches lack an
integrative perspective that aims at a unified for-
mat within a procedurally unified system that en-
ables massive parallelization of NLP systems and
enables new NLP pipelines based on unified data
to meet the requirements of text-based disciplines.
Thus, unlike our work, these approaches are not
primarily oriented toward dual, data-, and process-
based standardization. With DUUR we address
this research gap: we propose a unified framework
that harmonizes heterogeneous formats and allows
extensions to be added independently of any pro-
gramming language. Our framework adheres to a
unified interface and integrates format conversion
into a reproducible, modular pipeline architecture.
This provides three extensions to existing research:

1. We map the dual nature of NLP workflows
in terms of data and process orientation by
integrating our corpus conversion framework
into an NLP pipeline infrastructure.

2. We provide a standard for conversion modules
that uses a containerized, microservice-based
architecture. This allows new modules to be
developed independently of programming lan-
guages and requires only minimal knowledge
of the underlying system. As a result, it be-
comes feasible for third parties to extend the
framework with their own components.

3. We support the integration of conversion tools
into a common architecture that enables their
combined use, promoting interoperability and
reuse across annotation formats.

3 Preliminaries

To explain our standardization framework DUUR
for orchestrating containerized, microservice-based
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READER-COMPONENTS, we first introduce the cor-
pus format used as a base representation, and then
present the NLP platform into which it is inte-
grated, namely the Docker Unified UIMA Interface
(DUUI) (Leonhardt et al., 2023).

3.1 UIMA

The Unstructured Information Management Archi-
tecture (UIMA) is a framework originally devel-
oped by IBM to support large-scale analysis of
unstructured data (Ferrucci and Lally, 2004). The
UIMA format defines how data and annotations are
represented and exchanged within this framework.
Its core data model, the Common Analysis Struc-
ture (CAS), stores the original unstructured content
together with structured annotations. Through its
offset-based annotation model, multi-view architec-
ture, and extensible type system, the UIMA format
can represent virtually any kind of annotation. This
standardized representation ensures interoperabil-
ity among NLP components and enables seamless
integration of tools from diverse sources into a uni-
fied processing pipeline, preserving all annotation
information.

3.2 The DUUI Platform

DUUI standardizes the integration, not the formats,
of corpora and NLP systems across implementa-
tions through platform-independent interfaces. It
addresses five areas: (1) horizontal and vertical
scaling, (2) heterogeneous annotation and imple-
mentation landscapes, (3) managing reproducible
and reusable annotations, (4) monitoring and error
reporting, and (5) usability. DUUTI uses a UIMA-
based type system for text processing. It encap-
sulates NLP systems using containerized services
such as Docker (Merkel, 2014) or Kubernetes, en-
suring cross-environment compatibility while re-
solving dependency conflicts (Abrami et al., 2025).
To facilitate scalable, flexible, and error-tolerant
processing of corpora, DUUI employs DRIVERS
to control NLP processes across different runtime
environments. DRIVERs are orchestrated by a
top-level COMPOSER, which manages their exe-
cution. Communication between the COMPOSER
and COMPONENTS is implemented via RESTful
web services. Through the ensemble of COMPO-
SER, DRIVERs, and COMPONENTS, DUUI models
NLP pipelines. These pipelines process UIMA doc-
uments sequentially, with the computation taking
place within the COMPONENTS, ensuring a modu-
lar, reusable workflow.

£ Java-Application

. define
READERS instantiateJ
> Asynch. uses Bi Process through
5l Collection- COMPOSER
READER
- W File-READER DRIVERS COMPONENTSs o~
i = DOCKERDRIVER ~ =)
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: READER orchestrate / manage process scaling &
i.| @DuUL
READER

Reader Unification

Figure 1: Integrating READERs into DUUIL

DUUI bridges the gap between NLP systems
that run on different platforms or are implemented
in different programming languages and harmo-
nizes annotation schemes through its type sys-
tem. However, it is still challenged by the ever-
increasing diversity of data formats. Annotations
must be converted into UIMA documents used by
DUUT’s internal corpus representation. DUUT is
implemented in Java, which is the most efficient
way to use UIMA. Therefore, format-specific read-
ers for DUUI (see Figure 1) must also be imple-
mented in Java, which requires expert knowledge
of DUUTI itself. This makes it difficult to develop
READERSs for custom corpus formats. Thus, we
are faced with a situation in which DUUI makes
it easier to use more and more NLP systems while
simultaneously making it difficult to adapt or gen-
erate READERSs for ever-new formats: DUUI is
procedurally standardized, but not with regard to
the formats made accessible by this process-related
standardization. We need a dual, data- and process-
oriented standardization. This is exactly what we
develop in terms of DUUR based on DUUIL.

4 DUUR

DUUR is a reader framework operating similarly
to DUUT’s pipeline framework. It features con-
tainerized, microservices-based reader components
for custom formats and conversion tools.

4.1 Software Design

DUUR consist of a COMPOSER that manages
multiple DRIVERs each controlling specialized
READER-COMPONENTS that extend the standard
DUUI component and inherit its functionality. A
READER-COMPONENT retains all of the standard
COMPONENT’s RESTful API calls to facilitate
communication between the COMPOSER and in-
dividual COMPONENTSs. The most critical request
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in this interaction is the process request. Within
DUUI, this POST request transfers a UIMA docu-
ment, serialized using a particular LUA context,
from the COMPOSER to a COMPONENT. The
COMPONENT processes the serialized UIMA doc-
ument, applies its operations, and returns the modi-
fied document. Upon receipt, the COMPOSER de-
serializes the document back into its UIMA format
before passing it on to the next COMPONENT in
the pipeline. In the DUUR framework, we extend
the use of the POST request process, with the dif-
ference that an empty UIMA document is sent to
the READER-COMPONENT, which then populates
the document based on the specified corpus that it
parses and converts. This process requires two con-
ditions to be met: the READER-COMPONENT must
have access to the target corpus, and the COMPO-
SER must know the total number of documents that
can be extracted from it. This ensures that the CoM-
POSER can generate and send the appropriate num-
ber of empty documents to the READER-COMPO-
NENT before exhausting the available content. To
implement this, we introduce an additional REST-
ful API call to the READER-COMPONENT, called
init. This init POST request allows the COMPOSER
to send a compressed directory (e.g. a ZIP archive)
containing one or more corpora to the READER-
COMPONENT. Upon receiving the archive, the
READER-COMPONENT extracts the relevant data
based on its format conversion capabilities. Once
the extraction is complete, the COMPONENT deter-
mines the total number of documents that can be
derived from the provided corpus and returns it to
the COMPOSER. With this information, the COM-
POSER proceeds to send the appropriate number
of empty UIMA documents to the READER-COM-
PONENT, which populates them with the extracted
content.

4.2 Features

A READER-COMPONENT can be specialized to
parse and convert a specific format, or act as a
wrapper for an existing or custom converter that
can handle multiple formats. This design allows
for integrating tools such as Pepper and Annatto
into our workflow, enabling reuse and reducing im-
plementation overhead. In its current state, DUUR
supports the conversion of 47 corpus formats (see
Table 1) (not counting format variants). A list of
all supported formats can be found in Appendix A.

DUUI-READER

COMPOSER w
DRIVER 1 m STANDARD
. — COMPONENT
— ] A
inherits : "
next

. DUUI-READER

DRIVER n COMPONENT

Figure 2: DUUI-READER architecture, illustrating the
communication flow between the COMPOSER and COM-
PONENTS, with special emphasis on the modified inter-
action for the READER-COMPONENT.

4.2.1 Pepper Component

The Java-based conversion tool Pepper facili-
tates interoperability between widely used formats
such as TigerXML (Lezius, 2002), EXMARaLDA
(Schmidt and Worner, 2014), and PAULA (Zeldes
et al., 2013). It uses Salt, a graph-based model, as
a mapping layer: first, input formats are mapped
to Salt, before they are converted to the desired
output format. To integrate Pepper into DUUI, we
encapsulate it in a Docker container along with a
RESTful API that adheres to our READER-COM-
PONENT guidelines. This approach allows use of
Pepper’s full conversion capabilities.

4.2.2 ANNIS Component

ANNIS (Krause and Zeldes, 2014) is a web-based
search and visualization tool for linguistically anno-
tated corpora, developed within the Pepper & Salt
ecosystem. It uses a proprietary format that sup-
ports multi-layer annotation and querying, provides
corpus visualization features and a number of richly
annotated resources, such as reference corpora for
the historical phases of German (Klein et al., 2016;
Zeige et al., 2025; Wegera et al., 2021). For a long
time, there was no standardized way to convert
data from ANNIS to other formats, even within the
Pepper & Salt framework. Recently, the Annatto
project (Krause and Klotz, 2025), which continues
the legacy of the defunct Pepper project, introduced
initial conversion capabilities for the rel ANNIS 3.3
format. However, converting ANNIS data poses
challenges due to fundamental conceptual differ-
ences: while ANNIS relies on virtual tokens as
its primary unit of analysis, the UIMA framework
is based on the Sofa (Subject of Analysis) model.
These differences make direct annotation mapping
difficult. To address this, we develop an ANNIS
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READER-COMPONENT that allows mapping be-
tween these different representations. This allows
ANNIS corpora to be incorporated into NLP work-
flows while preserving and enabling the extraction
of annotations in the ANNIS format.

4.2.3 Annatto

Annatto (Krause and Klotz, 2025) is a corpus con-
version and exploration tool that continues the line
of Salt, Pepper and ANNIS. Conceptually, it can
be seen as a modernized successor to Pepper, of-
fering extended functionality, especially in the area
of corpus exploration. Unlike Pepper, which is
based on the Salt metamodel, Annatto is built on
the graphANNIS (Krause et al., 2016) infrastruc-
ture and its data model. Annatto provides a rich
set of importers, exporters, and graph operations
modules that facilitate corpus conversion, manipu-
lation, exploration, and visualization. To leverage
Annatto’s conversion capabilities within DUUI,
we encapsulate it in a READER-COMPONENT that
adheres to our standardized interface.

4.24 OpenConvert Component

OpenConvert (Bakker, 2015) is a Java-based con-
version tool that supports various text formats such
as TEI, DOC, and DOCX. To integrate it into
DUUR, we take the same approach as with Pepper:
encapsulate it in a Docker container and provide
it with a RESTful API that follows our READER-
COMPONENT guidelines. This ensures compati-
bility with DUUI while leveraging OpenConvert’s
conversion capabilities.

4.2.5 SketchEngine Component

Sketch Engine (Kilgarriff and Computing, 2003—
2023) is a corpus management and text analysis
system used by lexicographers and linguists to an-
alyze large text corpora through queries. Named
for its core feature, word sketches, it generates
concise summaries of a word’s grammatical and
collocational behavior. With support for over 90
languages and a suite of tools including concor-
dance searching, thesaurus generation, and term
extraction, it is a resource for research, dictionary
building, and language teaching. To improve inter-
operability between Sketch Engine and the broader
UIMA ecosystem, which includes advanced corpus
visualization and annotation tools such as DUUI,
the Unified Corpus Explorer (UCE) (Bonisch et al.,
2025), and the TEXTANNOTATOR (TA) (Abrami
et al., 2020), we generate a Sketch Engine compo-
nent within DUUR. This allows linguists working

with Sketch Engine to use the range of tools avail-
able in the UIMA ecosystem.

4.2.6 Leipzig Glossing Component

We provide a module for reading linguistic re-
sources encoded in the Leipzig Glossing Rules
(LGR) (Max Planck Institute, 2008), especially in
the TEX and TXT formats, since existing tools like
lingglosses (Moroz, 2021) and pyigt (List et al.,
2021) already support parsing of the CSV and
XML variants. A significant number of linguistic
datasets, especially for underrepresented languages,
are available in this format. Our goal is to make
these resources available to the research commu-
nity, while allowing linguists already working with
LGR to take advantage of the full range of NLP.

4.277 Negation Components

The landscape of language resources related to
negation, especially those annotating negation cues,
scopes, events, and foci, is heterogeneous. Such
resources are limited in number and use propri-
etary formats. In a low-resource domain such as
negation detection, it is even more important to
unify datasets into a common format. We consider
the available corpora in this area, with a focus on
the compilation of English negation corpora pro-
posed in (Jiménez-Zafra et al., 2020). We selected
a subset of the publicly available corpora because
some of those listed as accessible in (Jiménez-
Zafra et al., 2020) are no longer available (namely
Biolnfer (Pyysalo et al., 2007), NEG-DrugDDI
(Bokharaeian et al., 2013), NegDDI-DrugBank
(Bokharaeian et al., 2014), and Product Review
(Councill et al., 2010) datasets). We provide a
reader component for each supported corpus format
to standardize and unify data representation .

5 [Evaluation

Our approach optimizes workflows for processing
heterogeneous formats. Its modular architecture
supports integrating existing converters and devel-
oping custom components. This allows corpora
to be incorporated into UIMA, making numerous
NLP systems accessible for linguistic data process-
ing. However, this diversity also makes evaluating
our approach challenging. We pursue an efficiency-
and a machine learning-related evaluation:

''See Table 3 for a list of all corpora and their annotation
types, the number of sentences in each corpus and how anno-
tations are distributed across categories.
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Type Component #Formats

Wrapped Converter

Pepper 25

Annatto 15

openConv 6
Standalone

ANNIS

Sketch Engine

SocCcC

SFU

Conan Doyle

PB-FOC

Bioscope

DT-NEG

LGR

Total 47
“In total, there are 47 corpus formats that we can convert.
Since some of the pre-existing converters built into our frame-

work have overlapping conversion capabilities, these dupli-
cates have been subtracted from the total.

g S S S S Y

Table 1: Overview of READER-COMPONENTS: Three
of the components are pre-existing converters integrated
into DUUR, while the rest are dedicated to specific cor-
pus formats. Variants of the formats are excluded from
the count. See the Appendix for a list of all the specific
corpus formats that each component can convert.

1. Time and memory: With relANNIS-3.3 as
a case study, we demonstrate that our frame-
work outperforms format-specific importers in
terms of processing speed, while also produc-
ing more storage-efficient UIMA documents.

2. Machine learning: We refer to the task of
negation detection, i.e. of the key components
of negation as described in (Jiménez-Zafra
et al., 2020): the cue, the scope, the focus, and
the negated event. For each publicly available
negation detection corpus, we develop and
publish a separate reader component that inte-
grates them into a unified format. We then use
the resulting cue detection dataset to illustrate
the performance gains that can be achieved
by using this larger, more diverse dataset. All
training is conducted within the DUUI frame-
work, highlighting the benefits of linking ex-
isting resources within a broad, interoperable
NLP infrastructure.

3. Method extension: Third, we briefly discuss
the availability of NLP systems within the
UIMA ecosystem as made possible by the
format conversion provided by DUUR.

5.1 Time and Memory Efficiency

Using a case study with relANNIS-3.3, we eval-
uate the time and memory efficiency of DUUR

N O IO

15 UIMA h

| —=—relANNIS-3.3 |

g 107 |

s | ]

Q L i
N

> I ]

5 - |

07 ] A ]

ABCDEFGHI JKLMNOPQRSTUVWXY

Dataset ID

A complete mapping of dataset IDs to their dataset names
can be found in the appendix B. All datasets originate from
the reference corpus of Old High German (Zeige et al., 2025).

Figure 3: A comparison of dataset sizes in UIMA and
rel ANNIS-3.3 formats, ordered by relANNIS-3.3 size
(ascending). Both datasets were compressed using the
same compression algorithm, namely BZ2.

and show that it offers advantages in both areas.
We compare its import and conversion speed with
that of two systems designed for importing and
converting the relANNIS-3.3 format: the official
ANNIS corpus tool (Krause and Zeldes, 2014) and
the Annatto tool (Krause and Klotz, 2025). The
rel ANNIS-3.3 format serves as a benchmark, since
several importers are available and the format is
well established. Our evaluation was carried out
using the Reference Corpus of Old High German
(Zeige et al., 2025), a collection consisting of sev-
eral subcorpora of different sizes (see Table 5).

Our evaluation shows that DUUR outperforms
both Annatto and the official ANNIS tool in almost
all cases, achieving significantly faster processing
times. On average, our method required 3.8 sec-
onds per corpus, compared to 17 seconds for An-
natto and 7.4 seconds for ANNIS (see Figure 4).
Moreover, the resulting corpora, when stored as
UIMA documents, require less disk space than their
counterparts in relANNIS-3.3 format. After com-
pressing each corpus using the BZ2 algorithm, we
observed an average size of 1.8 MB for the UIMA
representations, as opposed to 3.6 MB for those in
rel ANNIS-3.3 format, representing a 50% reduc-
tion in storage requirements (see Figure 3).

5.2 Utility through Use Case Integration

Creating larger, more balanced datasets by unifying
corpora across diverse domains is crucial for im-
proving the performance of downstream NLP tasks,
especially in settings with limited resources. These
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Train \Test SOCC BIOSCOPE CONAN PB-FOC SFU DT-NEG | Avg.

SOCC 0.9423 0.7585 0.7422 09115 0.7484  0.8293 | 0.8220
BIOSCOPE 0.2119 0.8702 0.3006 0.8139  0.3782  0.5134 | 0.5147
CONAN 0.8569 0.6952 0.8511 0.8616  0.7011  0.8277 | 0.7989
PB-FOC 0.5230 0.7500 0.5985 09721  0.6199  0.8065 | 0.7116
SFU 0.7219 0.7956 0.6888 09173  0.8037 0.8620 | 0.7982
DT-NEG 0.1617 0.7801 0.4074 0.8774  0.3398  0.9363 | 0.5838
ALL (except Test) 0.5729 0.7986 0.7149 09199 0.7570  0.8876 | 0.7751
ALL 0.9516 0.8473 0.7745 09184 0.7868  0.9354 | 0.8690
Few-Shot Qwen3-0.6B | 0.5743 0.4983 0.5753 0.6514  0.5218  0.6997 | 0.5868
ICL GPT-5 0.6416 0.5751 0.7945 X 0.5478  0.5401 | 0.6198

Table 2: Cross-dataset binary F1 scores of cue detection models. Each cell shows the F1 score of a model trained
on the dataset in the row and evaluated on the dataset in the column. In-domain results are highlighted in gray.
For each test dataset, the highest and second-highest out-of-domain scores are highlighted in green and light
green, respectively. Models trained on ALL use the combined data from all datasets, representing joint in-domain
performance across datasets, whereas ALL (except Test) refers to models trained on all datasets except the test
dataset, indicating joint out-of-domain generalization. We additionally include a few-shot baseline using a small
LLM (Qwen3-0.6B) and an pure ICL example with GPT-5 to illustrate the gap between large pretrained models and

task-specific fine-tuning for cue detection.

80 F T T

—— ANNIS tool
| —m— ANNATTO
60 |- READER N

70

40 -
30 -

Importing Time (s)

20 -
10 -

Corpus Size (MB)

Figure 4: Comparison of import times for ANNIS, AN-
NATTO and READER over different corpus sizes in
terms of uncompressed versions in the relANNIS-3.3
format. Tested corpora are part of the Reference Cor-
pus for Old High German (Zeige et al., 2025). The
performance differences visible on the y-axis show that
READER has consistently lower import times.

unified corpora enable the training of generalized
models that can effectively handle linguistic phe-
nomena. For negation detection, which primarily
involves identifying negation cues and their scopes,
(Truong et al., 2022) and (Khandelwal and Sawant,
2020) demonstrate that models trained on a sin-
gle corpus often generalize poorly to other corpora.
This underscores the need for more generalized and
diverse datasets in negation detection, given that
linguistic variation significantly impacts the identi-
fication of cues, scopes, events, and foci. We pro-
pose this as a use case to evaluate DUUR. There are

few existing resources for detecting negation, usu-
ally in incompatible, isolated formats. To address
this issue, we collect publicly available negation
corpora and implement a READER-COMPONENT
for each (see Section 4.2.7). Finally, we convert
all annotations into a unified UIMA format, result-
ing in components and datasets for the following
corpora:

1. The SOCC dataset (Kolhatkar et al., 2019) is
a corpus of user comments on online news arti-
cles, primarily from opinion pieces, annotated
for negation cues and their scopes.

2. The BioScope corpus (Vincze et al., 2008)
consists of biomedical texts, including scien-
tific abstracts and clinical reports, annotated
for negation and uncertainty.

3. The PropBank Focus corpus (Blanco and
Moldovan, 2011) contains sentences from the
Wall Street Journal section of the Penn Tree-
bank, annotated with verbal negations.

4. ConanDoyle-neg (Morante and Daelemans,
2012) contains stories by Arthur Conan Doyle
annotated with negation cues, their scope, and
the events or properties being negated.

5. The SFU Review Corpus (Konstantinova
et al., 2012) consists of reviews from various
fields, annotated for negation and speculation.

6. The DeepTutor Negation corpus (Banjade
and Rus, 2016) consists of student-tutor dia-
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logues, annotated for the presence, scope and
communicative function of negation.

To assess the impact of domain variation, we repli-
cate the NEG-BERT cue detection architecture
proposed by (Truong et al., 2022), using BERT
tiny as the backbone, a compact model with 4.4
million parameters (Turc et al., 2019; Bhargava
et al., 2021). We train one model on each individ-
ual dataset we collected. For each target dataset,
we also train a model on the combination of all
other datasets, excluding the target, to simulate out-
of-domain performance. This setup yields a full
cross-dataset evaluation matrix (see Table 2): each
model is trained on one dataset and tested on all
datasets, along with an additional row where mod-
els are trained on the combination of all datasets
except the test set. We further train one model on
the combination of all datasets to assess whether
incorporating additional out-of-domain data can
enhance in-domain performance. All models are
trained on a single NVIDIA GeForce RTX 4060
Ti using identical hyperparameters: a learning rate
of 2e-5, a batch size of 16, and the AdamW op-
timizer (weight decay = 0.01). Training runs for
up to 20 epochs with early stopping (patience =
3). Across all experiments, we report the binary F1
score as the primary evaluation metric. Consistent
with (Truong et al., 2022), we observe that models
trained on individual corpora perform significantly
worse when evaluated out-of-domain. This high-
lights the challenges of generalization in negation
cue detection across domains. In contrast, the com-
bined training approach achieves the highest out-of-
domain F1 scores on four (BIOSCOPE, PB-FOC,
SFU, and DT-NEG) of the six datasets and the
second best on CONAN, demonstrating the most
robust performance across domains (see Table 2).
The only exception is the SOCC corpus, where
the combined training approach performs worse.
The likely reason is that SOCC contains the most
diverse and extensive range of annotated cues, in-
cluding auxiliaries, modals, conjunctions, negation
words, negative pronouns, prepositions and deter-
miners, comparatives, adjectives, adverbs, negative
predicates, and adjuncts. This variety spans syntac-
tic, lexical, and morphological domains. It is only
partially shared by CONAN, which also includes
annotations for negative predicates and adverbs or
adjectives with affixal negation. This feature com-
bination is not present in the other datasets. As a
result, a pattern emerges between SOCC and CO-

NAN: models trained on one consistently achieve
the best performance when evaluated on the other.
The in-domain performance for SOCC ranks sec-
ond among all in-domain scenarios, while the out-
of-domain performance for this corpus varies the
most among all six out-of-domain scenarios: the
standard deviation of the out-of-domain perfor-
mance on SOCC is 0.3, the highest among all evalu-
ated corpora (followed by CONAN with 0.196). In
comparison, the average standard deviation across
all corpora is 0.154, which is approximately 50%
lower than that of SOCC. These features point to a
peculiarity of SOCC that distinguishes it from the
other corpora. Notably, the SFU Review corpus
serves as a strong single-corpus baseline, deliver-
ing the second-best out-of-domain performance on
four datasets: The likely reason is that this corpus
is the largest among all the corpora considered and
is explicitly designed to provide a balanced repre-
sentation of multiple domains. Although it con-
tains only the second-highest number of sentences
with cue annotations, with PB-Foc having the most,
it primarily features syntactic negation cues. Re-
markably, ‘not’ and ‘no’ account for over 50% of
all negation cue annotations across all datasets. As
a result, strong performance in detecting syntac-
tic cues contributes significantly to overall perfor-
mance, which the SFU Review corpus appears to
support particularly well. For the in-domain ex-
periment, where we trained a single model on all
datasets to examine whether incorporating addi-
tional data could improve in-domain performance,
we observed gains only for the SOCC dataset. For
all other datasets, the jointly trained model did not
surpass the performance of models specialized on
their respective in-domain data. Nevertheless, the
model trained on all datasets achieved the highest
overall average performance across all test datasets,
with an average F1 score of 0.8690, representing
an absolute improvement of 4.7 percentage points
over the strongest single-dataset model (SOCC,
with an average of 0.8220). To further support
our claim that current LLMs cannot yet fully re-
place highly specialized NLP pipelines for spe-
cific tasks, we also evaluated a small-scale LLM
(Qwen3-0.6B (Yang et al., 2025)) in a few-shot
setting and GPT-5 in a pure in-context learning
(ICL) setup®. Both models performed substan-
tially worse on the cue detection task, reaching

>The prompts for both scenarios are provided in Ap-
pendix C.
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Corpus Sentence S.w/ S.w/  S.w/  S.w/

Sentence Cue  Scope Focus Event
SFU 17263 2853 2715 0 0
PB-Foc 10641 4830 0 3547 3547
Bioscope 14 462 2094 2094 0 0
SOCC 1043 644 633 633 0
DT-NEG 1180 590 346 336 0
Conan-Doyle 5520 1227 1135 0 805
TOTAL 50109 12238 6923 4516 4352

Table 3: NEG-English corpus statistics. The ‘S. w/ {Cue
|Scope|Focus|Event}” column indicates the number of
sentences containing at least one of the resp. annotation.

average binary F1 scores of 0.5868 (Qwen3-0.6B)
and 0.6198 (GPT-5)3, respectively. Additionally,
these models incur substantially higher computa-
tional costs and runtimes. While training the all-
datasets model for 20 epochs (plus evaluation) took
only 321 seconds for training and 10 seconds for
evaluation on the test sets, we measured an evalua-
tion runtime of 451,660 seconds per test set with
Qwen3-0.6B, both experiments were conducted on
the same NVIDIA H200 NVL GPU. We provide
the combined dataset, used for this evaluation, as
NEG-English* (see Table 3); it contains 12 238 sen-
tences with cue, 6 923 with scope, 4 516 with focus
and 4 676 with event annotation.

5.3 Ecosystem Benefits

Corpus work relies on functionalities such as acqui-
sition and management, annotation, search, visual-
ization, and analysis. All of these require flexible
and scalable NLP pipelines that can be leveraged
through DUUIL. DUUR contributes to this by con-
verting corpora from various formats and by ex-
tending the pipelines with customizable converter
components. As part of our dual standardization
approach, DUUI provides an infrastructure that
integrates TA for creating and managing manual
annotations and UCE for searching, visualizing,
and analyzing corpora. Here, DUUR provides stan-
dardized corpora for such services. It enables het-
erogeneous corpora to be embedded in DUUTI’s
method landscape, allowing researchers to bene-
fit from a wide range of NLP methods and work
scenarios without knowing the specifics of the un-
derlying corpora. This approach is particularly
interesting in the context of interoperability: using

3We excluded the PB-FOC dataset from the GPT-5 experi-
ment due to licensing restrictions and limited public availabil-
ity.

“Dataset available at OSF: https://osf.io/cq5ky/
?view_only=b7ff3cdc5fc34e42a09c9aadf45fc7fe

a uniform format opens up a wider range of meth-
ods for downstream NLP operations (e.g., negation
detection), where the results of these methods are
available for mutual improvement.

6 Conclusion

Regarding the heterogeneity of corpus formats in
NLP, we proposed a solution in the form of a con-
version framework. This framework is embedded
in a massively parallel, microservice-based, pro-
gramming language-independent NLP architecture
that is modular and extensible. Our framework sup-
ports the conversion of 47 formats. It integrates
many NLP format conversion tools and introduces
components developed specifically for certain ap-
plication areas and their data formats. It also pro-
vides developers with guidelines for extending the
system with their own modules. NLP systems
based on explicitly annotated corpora will continue
to be relevant in areas such as digital humanities
and related disciplines. It is unlikely that LLMs
will take over this type of work. Therefore, stan-
dardizing formats is a central task, and with DUUR,
we provide an efficient solution. Our evaluation
demonstrates how unifying corpus formats can ben-
efit LLM-based workflows. E.g., fine-tuning on
multiple unified corpora can result in more robust
and generalizable models than training on a single
source. To support this research, we publish our
unified dataset. Our framework supports a variety
of annotation formats and NLP systems. It con-
nects isolated systems, reducing redundancy and
enabling interoperability. Future work will expand
coverage to underrepresented formats. Ultimately,
we envision an interoperable NLP ecosystem in
which specialized tools and large-scale models in-
teract through shared, standardized corpora.

Limitations

Our framework is currently focused on text-based
corpus formats. While its architecture is, in princi-
ple, extensible to multimodal corpora (e.g. audio
or video (Bundan et al., 2025)), no READER-COM-
PONENTS for handling such modalities have been
implemented to date. In addition, although the
framework currently supports 47 distinct corpus
formats, some legacy or highly domain-specific
annotation standards remain outside the implemen-
tation scope. Integration of these formats would
require the development of additional conversion
modules. Furthermore, in certain cases, complete
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fidelity of annotation conversion cannot be guaran-
teed due to structural mismatches between format
assumptions. For example, the ANNIS format al-
lows for virtual tokens as the primary unit of anal-
ysis, whereas UIMA requires a fully interpretable
sofa (Subject of Analysis) string as the base analyt-
ical unit. These fundamental differences can lead
to unavoidable losses or approximations during for-
mat transformation, particularly when converting
between fundamentally divergent representational
models.
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A Conversion Capabilites

Integrated Third-Party Conversion Tools Dedicated READER COMPONENTS

COMPONENT  Module File Format COMPONENT Module File Format
Pepper ANNIS ‘
RSD rsd relANNIS-3.3"  .annis | .version ...
CoraXML xml .
PAULA “eml Sketch Engine -
.Ccsv
Gate xml
TigerXML .xml SOCC
Treetagger Lxt socc -tsv
Spreadsheet’ xls | .xIsx SFU
WebannoTSV tsv SFU xml
GeTa json
Toolbox Xt Conan Doyle
CoNLL' .conll | .txt CD-SCO Xt
TEI tei | .xml PB-FOC
GenericXML xml PB-FOC txt
TCF xml -
RST st Bioscope
Elan eaf BS i
PTB - mrg Deeptutor Neg
EXMARaLDA"  .exb | .exs | .exf DT-Neg Lt
CoNLLCoref .conll Leinzig Glossi
SaltXML .xml elpzig Gl0ssing
LGR .tex
Text Ltxt
MMAX2' .mmax | .xml
GrAF’ xml | .graf
GraphAnno json
UAM' xt | .xml | .uam
Annatto
CoNLL-U .conllu
EXMARaLDA  .exb
GraphML xml
meta .CSV
opus xml
PTB .mrg
relANNIS-3.3"  .annis | .version ...
SaltXML xml
table .csv
textgrid Xt
toolbox Xt
treetagger Axt
whisper json
Spreadsheet xlsx
GenericXml xml
openConv
text txt
TEI' .tei | .xml
alto .alto
doc .doc
docx .docx
HTML .html
“CoNLL dialect

"Some formats span multiple file types; the most relevant are listed.

Table 4: Overview of all the specific corpus formats that each component is capable of converting. On the left side,
a list of integrated third-party conversion tools is shown. Each COMPONENT supports multiple corpus formats, with
some tools offering overlapping functionality. On the right side, a list of dedicated READER COMPONENTS and the
specific file formats they support is displayed. Some COMPONENTSs may share the same file format extension, but
often require distinct internal structures. For instance, the CSV format used by Sketch Engine differs significantly
from that of the Bioscope corpus.
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B Corpus IDs

S

Dataset Name

KXRE<LCHLAOIOZEICNR—=~IQTmIOw»

DDD-AD-Z-Notker_Kleinere-De_Partibus_logice
DDD-AD-Physiologus
DDD-AD-Z-Notker-Psalmen-Glossen
DDD-AD-Z-Notker_Kleinere-De_Musica
DDD-AD-Murbacher_Hymnen
DDD-AD-Murbacher_Hymnen_Latein
DDD-AD-Genesis

DDD-AD-Isidor_Latein

DDD-AD-Isidor
DDD-AD-Z-Notker_Kleinere-Syllogismus
DDD-AD-Z-Notker_Kleinere-Ars_Rhetorica
DDD-AD-Monsee

DDD-AD-Z-Notker_Cantica
DDD-AD-Benediktiner_Regel
DDD-AD-Benediktiner_Regel_Latein
DDD-AD-KIleinere_Altsédchsische_Denkmaler
DDD-AD-Z-Notker_Boethius-De_Interpretatione
DDD-AD-Kleinere_Althochdeutsche_Denkméler
DDD-AD-Z-Notker_Boethius-Categoriae
DDD-AD-Tatian_Latein
DDD-AD-Z-Notker-Martianus_Capella
DDD-AD-Tatian

DDD-AD-Heliand

DDD-AD-Otfrid
DDD-AD-Z-Notker_Boethius-De_Consolatione_philosophiae

Table 5: A mapping of document IDs to dataset names for datasets
contained in the reference corpus of Old High German (Zeige et al.,
2025).
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C Prompts
C.1 Qwen3 Few-Shot Prompt

System Prompt:

**xTask:xx
Identify negation cues in the input sentence.
**xInstructions:**
* Input is a JSON object with ~"sent”™ containing a tokenized sentence (list of strings).
* Output must be a JSON object with ~"cue_mask”, an array of the same length as ~"sent”™.
* Each element in ~"cue_mask”" should be:
* ~1° if the corresponding token is a negation cue
* 70" otherwise.
* A sentence may contain multiple negation cues, or none.
*xNegation cues include (but are not limited to):x*
* xxExplicit negation words:*x *not, n't, never, no, without, nothing, none, nobody, nowhere, neither, norx
* #**Weak/limiting negators:*x xhardly, barely, scarcely*
* **Negative adjectives/adverbs:xx ximproper, inadmissable, impossible, invalid, unacceptable, incorrect*
* xxNegative verbs:*x xdeny, lack, fail, forbid, prohibit, excludex
* *%Other context-dependent words or phrases** that function as negation cues should also be marked.
**Examples:**
Input:
T json
{"sent": ["But”, ",", "in", "the", "second”, "place"”,

, "why”,

oo "did”, "you", "not", "come”, "at”, "once”, "?", "''"1}
Output:

T json

{"cue_mask”: [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]}

Input:

T json

("sent": ["It", "is", "most”, "improper”, "--", "most", "outrageous”, "."1}
Output:

T json

{"cue_mask"”: [0,0,0,1,0,0,0,0]}

Input:

T json

<s "from", "the", "moment”, "of”, "your", "waking”, ".", "''"1}
Output:

T json

{"cue_mask”: [0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]1}

Input:

T json

{"sent”: ["You", "do”, "n't", "mean”, "--", "you", "do”, "n't”, "mean”, "that”, "I", "am”, "suspected”, "?", "''"1}
Output:

T json

{"cue_mask”: [0,0,1,0,0,0,0,1,0,0,0,0,0,0,0]}

Input:

T json

{"sent”: ["**", "Good", ",", "Watson”, ",", "very”, "good”, "--", "but”, "quite”, "inadmissable”, "."1}

Output:

T json

{"cue_mask”: [0,0,0,0,0,0,0,0,0,0,1,0]}

. etc.

User Prompt:

Input:
T json
{"sent": $sent}

OQutput:

{"sent": ["But”, "no", "one", "can”, "glance", "at", "your", "toilet”, "and”, "attire", "without"”, "seeing”, "that”, "your"”, "disturbance”, "dates"”,

Figure 5: Few-shot prompt template used for the Qwen3-0.6B experiment.
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C.2 GPT-5ICL Prompt

Input:

T json

{"sent": $sent_1}

Output:

T json

{"cue_mask": $cue_mask_1}
Input:

TTTjson

{"sent"”: $sent_2}

Output:

T json

{"cue_mask": $cue_mask_2}

Input:
T json
{"sent": $sent_n}

Output:
T json
{"cue_mask": $cue_mask_n}

TTTjson

“*json

“*json

{"sent"”: $sent_1, "test_id": $test_id_1}

{"sent": $sent_2, "test_id": $test_id_2}

{"sent"”: $sent_m, "test_id": $test_id_m}

Given the examples above, please label the following test cases and return the output in a json format with "test_id” as the
< key and the predicted cue_mask as the value:

Figure 6: Pure ICL prompt template used for the GPT-5 experiment.
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