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Abstract

While recent work has begun to uncover the
internal strategies that Large Language Models
(LLMs) employ for simple arithmetic tasks, a
unified understanding of their underlying mech-
anisms is still lacking. We extend recent find-
ings showing that LLMs represent numbers in
a digit-wise manner and present evidence for
the existence of digit-position-specific circuits
that LLMs use to perform simple arithmetic
tasks, i.e. modular subgroups of MLP neurons
that operate independently on different digit
positions (units, tens, hundreds). Notably, such
circuits exist independently of model size and
of tokenization strategy, i.e. both for models
that encode longer numbers digit-by-digit and
as one token. Using Feature Importance and
Causal Interventions, we identify and validate
the digit-position-specific circuits, revealing a
compositional and interpretable structure un-
derlying the solving of arithmetic problems in
LLMs. Our interventions selectively alter the
model’s prediction at targeted digit positions,
demonstrating the causal role of digit-position
circuits in solving arithmetic tasks.

1 Introduction

The emergence of mathematical abilities in large
language models (LLMs) has sparked growing
interest in uncovering the internal mechanisms
that underlie their arithmetic reasoning capabilities
(Stolfo et al., 2023; Nikankin et al., 2024; Zhang
et al., 2024; Lindsey et al., 2025). Understanding
whether LLMs solve arithmetic by applying gen-
eralizable strategies, relying on superficial heuris-
tics, or merely memorizing training examples can
provide crucial insights into the general nature of
reasoning abilities in LLMs.

Despite recent progress, a unified account of how
LLMs perform basic arithmetic has yet to be estab-
lished. Nikankin et al. (2024) argue that LLMs rely
on a bag of heuristics—a sparse set of neurons that
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Figure 1: Main finding: Simple arithmetic tasks are
solved modularly by digit-position-specific circuits dis-
tributed across multiple MLP layers. Distinct sets of
MLP neurons are responsible for generating results dig-
its in parallel and independently for different positions.
The hundreds digit position circuit is illustrated in blue,
the tens in red, and units in yellow.

are sensitive to simple operand or result patterns—
rather than implementing coherent algorithms for
arithmetic. Lindsey et al. (2025) describe a dual-
pathway mechanism for Claude-3.5 Haiku, with
separate pathways for estimating rough result mag-
nitude and the result unit digit. At the same time,
Levy and Geva (2024) and Gould et al. (2023) find
that digit values – but not full numeric values – can
be extracted from the residual stream via probing,
suggesting that LLMs internally represent numbers
in a digit-wise manner. This finding is suprising,
as many LLMs represent numbers up to a certain
value (e.g. 3 digits) as single tokens (e.g., “347”
is one token in Llama 3 8B). Their work however
does not investigate whether these numeric repre-
sentations are also exploited for solving arithmetic
tasks.

In this work, we take the next step in under-
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standing how LLMs solve arithmetic tasks by pre-
senting causal evidence for digit-position-specific
arithmetic circuits, i.e., modular subgroups of MLP
neurons that independently generate results for dif-
ferent digit positions (Figure 1). For instance, to
solve 347 + 231 =, the model generates results for
7+1 (units), 4+3 (tens), and 3+2 (hundreds) using
three distinct circuits, formed by groups of MLP
neurons that are selectively sensitive to individual
digit positions and distributed across mid-to-late
layers.

We identify the digit-position-specific circuits us-
ing Fisher Score-based feature selection (Gu et al.,
2012; Sun et al., 2021) and validate their causal
role via targeted interventions (Vig et al., 2020;
Meng et al., 2023): Altering the activation of the
units-digit circuit for instance selectively changes
only the predicted units digit while leaving tens
and hundreds unchanged (Figure 2). Our findings
offer important novel evidence that LLMs solve
arithmetic tasks not merely through heuristics, but
through structured, compositional arithmetic pro-
cesses.
Our main contributions are:

(1) We identify digit-position-specific arithmetic
circuits by using supervised Fisher Score-based fea-
ture selection to detect MLP neuron groups respon-
sible for solving arithmetic digit-level-subtasks.

(2) We validate these circuits via causal interven-
tions, demonstrating that they selectively control
individual output digits.

(3) We confirm the existence of digit-position-
specific arithmetic circuits across a wide range of
models, tasks, and tokenization schemes.

We release all code and data to support repro-
ducibility1.

2 Method

2.1 Overview of our Approach

We investigate whether LLMs perform arithmetic
in a digit-wise, position-specific manner by a two-
step approach, following recent work in mechanis-
tic interpretability:

1. Identify Digit-Specific Neurons through
Feature Selection: We identify neurons that
are involved in generating digit position spe-
cific subresults. We use a Fisher Score-based
feature selection method to measure neuron

1https://github.com/tbaeumel/
transformer-digit-arithmetic

sensitivity to sub-tasks at different digit posi-
tions.

2. Causal Verification via Interventions: To
verify the causal role of the identified neu-
ron groups, we perform targeted interven-
tions by replacing the activation of a digit-
specific neuron group in a base prompt with
that of a source prompt. This allows us to
test whether the altered activations lead to pre-
dictable changes in the model’s output. Our
results demonstrate that these neuron groups
indeed implement digit-position-specific cir-
cuits: Only the digit corresponding to the inter-
vened circuit changes, while the rest of the out-
put remains unaffected. As illustrated in Fig-
ure 2, intervening on the unit digit circuit of
the base prompt 347 + 231 (expected output
578) with activations from the source prompt
261 + 512 (expected output 773) yields the
output 573. This output combines the hun-
dreds and tens digits from the base result (57)
with the unit digit from the source result (3),
confirming the selective influence of the inter-
vened circuit.

2.2 Data for Neuron Identification
Experiments

We generate a simple addition dataset Dadd and
subtraction dataset Dsub by generating 1000 ad-
dition and 1000 subtraction prompts respectively.
This data is used to identify digit-specific neurons
(Step 1). The prompts are formulated in a one-shot
setting of the form “157 o 431 = 588; A o B =
”, where o ∈ {+,−} and A,B ∈ {100, . . . , 999}.
All addition and subtraction tasks are sampled
such that the result is also a 3-digit integer, i.e.,
∈ {100, . . . , 999}. To isolate digit-wise compu-
tations and prevent interactions between digit po-
sitions, we construct all data such that no carry
occurs in any digit position. We present an investi-
gation of carry bits in Section 4.2.

2.3 Data for Intervention Experiments

For the causal intervention experiments , we con-
struct paired prompts in a one-shot setting consist-
ing of a base (e.g., “157 o 431 = 588; A o B
= ”) and a source (e.g., “157 o 431 = 588; C o
D = ”) where operator o ∈ {+,−} and operands
A,B,C,D ∈ {100, . . . , 999}),.

We construct two addition datasets Dadd,op1 and
Dadd,op2 where operator o = +, such that one
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Intervening ONLY on
MLP neurons in unit
digit-position circuit

BaseSource

Figure 2: Intervening on only the MLP neurons that are members of one of the digit-position specific circuits, results
in targeted changes only on the corresponding digit-position of the generated result. Here, an intervention on the
unit position circuit only affects the unit position of the generated result (3 instead of 8). This is evidence that the
identified digit-position circuits are specific and causally involved in arithmetic result generation.

operand is shared between base and source while
the other varies across all digits (Dadd,op1: B = D,
Adi ̸= Cdi∀ digit positions di; Dadd,op2: A = C,
Bdi ̸= Ddi∀di). In the same way we construct
Dsub,op1 and Dsub,op1 where o = −.

All datasets contain 200 pairs of unique arith-
metic problems. To isolate digit-wise computations
and prevent interactions between digit positions,
we construct all data such that no carry occurs in
any digit position.

2.4 Models
We evaluate four decoder-only transformer mod-
els: LLaMA3-8B, LLaMA3-70B (Grattafiori et al.,
2024), OLMo 2 7B (OLMo et al., 2024), and
Gemma 2 9B (Team, 2024) all of which achieve
high performance on simple addition and subtrac-
tion tasks (>95%, Table 1).

Numeric Model Accuracy Accuracy
Tokenization Addition Subtraction

Multi-digit
LLaMA 3 8B 100.00% 100.00%
LLaMA 3 70B 100.00% 100.00%
Olmo 2 7B 99.00% 99.50%

Single-digit Gemma 2 9B 98.50% 99.50%

Table 1: Accuracy of models on Dadd and Dsub.

We focus our main analyses on models that em-
ploy multi-digit numeric tokenization strategies,
i.e., their vocabularies contain multi-digit tokens
like “147”, i.e., LLaMA3-8B, Olmo 2 7B and
LLaMA3-70B2. Any observed digit-wise process-

2All operands and correct results from all datasets appear
as unique vocabulary tokens in all multi-digit tokenization
models.

ing must be a property of the model’s internal struc-
ture rather than a simple consequence of tokeniza-
tion for such models, making it a more surpris-
ing and informative phenomenon. To demonstrate
the generalizability of our findings, we also in-
clude results from a single-digit tokenization model
(Gemma 2 9B) in Appendix B, which similarly ex-
hibits digit-position-specific processing pathways.

To study the mechanisms that emerge from
standard language model pretraining, we evalu-
ate base models without any instruction tuning or
arithmetic-specific fine-tuning.

3 Circuit Localization

We now describe the circuits localization steps in
detail along with the results. We focus our analyses
on LLaMA3-8B in the main text and report detailed
analyses showing similar results for Olmo 2 7B and
LLaMA3-70B in Appendices E and F.

3.1 Step 1: Identifying Digit-Specific Neurons

Intuition. To identify MLP neurons that are sen-
sitive to digit-level arithmetic subtasks, we perform
supervised feature selection. Intuitively, we iden-
tify hich neurons are most discriminative for differ-
ent arithmetic subtasks in individual digit positions.

We employ Fisher Score (Duda and Stork,
2001; Venkatesh and Anuradha, 2019) as our fea-
ture selection method, which is an established
information-theoretic method for assessing individ-
ual feature importance in high-dimensional spaces.
Fisher Score measures how well a feature (in our
case, a neuron’s activation) separates data points
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belonging to different classes (in our case, digit-
level arithmetic tasks). A high Fisher score Fi,d of
neuron i at digit position d indicates that the acti-
vation of neuron i reliably discriminates between
subtasks targeting that digit position. We interpret
such neurons as likely members of digit-position-
specific arithmetic subcircuits. For instance, if a
neuron is similarly activated for the addition tasks
“157 + 431 = ”, “237 + 361 = ”, and “767
+ 211 = ”, chances are that it is involved in the
generation of the unit result digit, as all examples
have the same subtask 7 + 1 in the unit position.

We collect MLP activations across layers, for
all prompts in Dadd and Dsub and compute Fisher
Scores for each neuron and digit position. We then
rank neurons according to their Fisher Score, re-
flecting how strongly their activations vary with
changes to specific digit positions in the input
operands. By thresholding the scores (as a hyper-
parameter), we obtain candidate circuits composed
of neurons sensitive to each digit position.

Following Stolfo et al. (2023), we focus on MLP
layers that could plausibly contribute to producing
arithmetic output. We identify the earliest layer at
which operand information has been propagated
to the residual stream at the final token, as earlier
layers lack relevant input context and are unlikely
to contribute to the result generation. We therefore
restrict our search for arithmetic circuits to layers
at which operand information has been propagated.
Appendix C provides the identified “operand injec-
tion” layers for all models and tasks, alongside a
more detailed rationale.

Neuron Selection for Digit-Position Circuits.
Appendix D presents a detailed formalization of
how Fisher Score Fi,d is calculated for each neuron.

For each MLP layer l in model m and o ∈
add, sub in each digit position d:

1. Compute average Fi,d for all neurons i in l
over the dataset Do.

2. Select the neurons with Fi,d above a threshold
t as candidates for the digit-specific arithmetic
circuit Cm,o,d,t.

For all models, we explore circuits
Cm,o,d,t based on different thresholds
t ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Fisher
Scores are a relative metric, therefore choosing
a reasonable threshold for circuit membership
is a hyperparameter tuning problem. Generally
speaking, Fisher scores close to 0 indicate a lack

of discriminative power, scores between 0.1 and
1.0 weak to moderate discriminability, and values
above 1.0 strong discriminability.

Statistics on Selected Circuits. We provide de-
tailed statistics for all identified circuits Cm,o,d,t

across all models, operators, and digit positions in
Appendix E and provide a brief summary of the
findings here.

We find that digit-position-specific circuits con-
sist of a significant portion available MLP neurons,
for instance for CLlama3 8B,+,d,t the average number
of MLP neurons per layer responsible for one of the
digit-position specific circuits is 60.3% of all MLP
neurons. Further, the sets of digit-position-specific
MLP neurons are highly sufficient for represent-
ing digit-specific arithmetic subtasks, indicated by
strong classificiation performance using only the
digit circuit neurons. Importantly, we also find
that neuron sets in different digit-position circuits
are largely distinct (Figure 18), providing a first
indication of digit-positional modularity in LLM
arithmetic.

3.2 Step 2: Causal Verification via
Interventions

We perform targeted interchange interventions (Vig
et al., 2020; Meng et al., 2023) on candidate digit-
position circuits Cm,o,d,t replacing MLP activa-
tions of digit-position-specific neurons in a base
prompt with those from a source prompt at selected
layers.

Circuit Depth. Based on the observations in
Section 3.1 and Appendix C, we choose the
MLP layer set considered for digit-position spe-
cific arithmetic circuits to be LLlama38B,add,op2 =
{15, ..., 24} for Dadd,op2 and LLlama38B,add,op1 =
{16, ..., 24} for Dadd,op1. Ablation experiments
(Appendix H) show that choosing deeper cir-
cuits LLlama38B,add,op2 = {15, ..., 28} and
LLlama38B,add,op2 = {16, ..., 28} does not make
a significant difference. This supports our conclu-
sion that late MLP layers are less responsible for
generating digit-position specific arithmetic results.

Experiment. Given a source (123 + 562 = 685)
and base prompt (123 + 456 = 579), we intervene
on the neurons in Cm,o,d,t. We then measure the
model’s output distribution over all 8 possible digit-
wise combinations of the base and source results
(e.g., bbb, sbb, bsb, etc., where e.g. sbb indicates
the the hundreths digits correspond to the source
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m o d t∗ bbb bbs bsb sbb bss sbs ssb sss
Absolute change in prediction probability ∆p in percentage points (after - before).

Llama 3 8B

+
unit 0.6 -78.89% +30.93% +0.87% +0.87% +10.59% +2.57% +0.49% +2.76%
tens 0.5 -57.29% +0.47% +22.76% +1.51% +1.34% +0.17% +4.57% +0.37%

hun.s 0.9 -77.01% +0.06% +0.50 +45.56% +0.10% +0.50% +5.04% +0.47%

−
unit 0.6 -75.62% +28.50% +0.59% +1.16% +12.40% +2.90% +0.25% +3.41%
tens 0.5 -55.97% +0.90% +14.40% +2.07% +2.04% +0.22% +6.06% +1.27%

hun.s 0.9 -62.20% +0.14% +0.58% +36.27% +0.12% +0.28% +1.88% +0.16%

Llama 3 70B

+
unit 0.5 -36.93% +23.16% +0.72% +0.82% +3.67% +0.54% +0.15% +0.53%
tens 0.5 -28.67% +0.37% +17.71% +0.57% +0.46% +0.08% +1.73% +0.15%

hun.s 0.6 -41.40% +0.17% +0.51% +29.68% +0.12% +0.23% +1.14% +0.18%

−
unit 0.5 -34.17% +20.76% +0.44% +0.32% +7.43% +0.23% +0.13% +1.08%
tens 0.5 -14.84% +0.07% +11.32% +0.19% +0.08% +0.03% +1.02% +0.06%

hun.s 0.6 -18.62% +0.05% +0.19% +15.91% +0.03% +0.06% +0.31% +0.04%

Olmo 2 7B

+
unit 0.4 -86.16% +27.81% +0.33% +11.27% +1.51% +5.89% +0.95% +3.75%
tens 0.8 -83.21% +0.11% +42.57% +3.50% -0.02% +0.02% +7.20% +0.34%

hun.s 0.8 -77.76% +0.47% +0.16% +37.37% +0.35% +2.20% +2.77% +0.33%

−
unit 0.5 -89.44% +50.26% +0.10% +5.93% +0.83% +5.37% +0.20% +1.77%
tens 0.9 -84.64% -0.00% +44.70% +1.23% +0.28% +0.07% +5.29% +0.13%

hun.s 0.9 -86.63% +1.07% -0.40% +45.28% +0.19% +3.29% +3.49% +0.37%

Table 2: Main Results: for all detected circuits (across models, operators, digit positions) we report the change in
prediction probabilities in percentage points (effect size) for result variants after interventions on digit-position-
specific arithmetic circuits (with optimal t∗ as t in each circuit), on datasets Dadd,op2 and Dsub,op2, with the increase
in prediction probability for the targeted result variant shown in bold. Highly similar results for datasets Dadd,op1

and Dsub,op1 are provided in Table 6 below.

result and the other two digits to the base result).
If our independent digit-wise circuit hypothesis
is correct, a position-specific circuit should shift
probability mass only toward the expected variant
(e.g., sbb for a hundreds-digit intervention), with
minimal effects on other positions.

We assess position-specificity of the intervention
by checking whether the probability of the expected
result variant increases selectively (e.g. for an inter-
vention on hundreds digits sbb). If other variants
like ssb or sbs were to also increase, this would
indicate that the intervention affects multiple digit
positions. The specificity of the probability shift
provides key evidence for digit-position-specific
circuits in the MLP layers.

Results. Table 2 contains results for the interven-
tion on the best candidate digit-position circuits
Cm,o,d,t∗, where t∗ is the best value for threshold
t. For all 4 datasets Do,op (o ∈ {add, sub}; op ∈
{op1, op2}) and all models, we observe a consis-
tent and substantial increase of the probability of
the expected result variant – bbs for unit, bsb for
tens, and sbb for hundreds – demonstrating that the
interventions on the hypothesized digit-position cir-
cuits indeed only affect the desired digit position.
This is evidence for the digit-position-specific na-
ture of the identified circuits, and thus the causal
role of digit-position specific processing in solv-

m o d t∗ Flip Rate

Llama 3 8B

+
unit 0.6 51%
tens 0.5 33%

hun.s 0.9 68.5%

−
unit 0.6 49%
tens 0.5 19.5%

hun.s 0.9 51%

Llama 3 70B

+
unit 0.5 24%
tens 0.5 15%

hun.s 0.6 33.5%

−
unit 0.5 20.5%
tens 0.5 7.5%

hun.s 0.6 10.5%

Olmo 2 7B

+
unit 0.4 44%
tens 0.8 54%

hun.s 0.8 51.5%

−
unit 0.5 64%
tens 0.9 53%

hun.s 0.9 54.5%

Table 3: Flip rate from bbb result to the intended digit-
specific result variant (Unit: bbs, Tens: bsb, Hun-
dreds: sbb) at the best threshold t∗ for each circuit,
on datasets Dadd,op2 and Dsub,op2. Highly similar re-
sults for datasets Dadd,op1 and Dsub,op1 in Table 7.

ing arithmetic tasks. For instance, an interven-
tion on CLlama 3 8B,add,hundreds,0.9 on Dadd,op2 yields
a 45.56% probability point increase on the sbb re-
sult variant (correct hundreds digit from the source,
with tens and unit digits from the base), from 0.23%
before intervention to 45.79% after intervention.
Specificity of the digit-position circuits is further
supported by the low probability changes in result
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(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 3: Effect size of digit-circuit interventions on Dadd,op2 with different thresholds for neuron circuit member-
ship.

variants that contain multiple source digits (bss,
sbs, ssb, and sss).

Additionally, Table 2 shows an expected reduc-
tion in the probability of the base result (bbb), indi-
cating effective suppression of the default behavior.
Importantly, non-target digits remain largely unaf-
fected, as indicated by minimal changes observed
in other result variants, confirming the specificity
of the identified digit-position circuits.

We show detailed results on CLlama 3 8B,add,d,t in
Figure 3 to show the effect of the chosen threshold t.
Additionally, Table 3 shows that the intervention is
often successful in flipping the model’s prediction
from the bbb result to the intended digit-specific
result variant.

The results support our hypothesis: Interven-
ing on the hypothesized circuits for the unit, tens,
and hundreds digits leads to targeted and isolated
changes in the corresponding digit of the model’s
output. This is strong evidence that distinct circuits
underlie the generation of arithmetic results in indi-
vidual digits, and that the identified digit-position
addition circuits are causally involved in generating
digit-position specific sub-results.

4 Supplementary Experiments

To further strengthen our findings we present re-
sults from a series of supplementary experiments
conducted on Llama 3 8B.

4.1 Addition and Subtraction Circuits are
Largely Distinct

We are interested in whether subtraction and ad-
dition circuits are similar in their functionality or
rather very distinct. To assess the similarity be-
tween addition and subtraction circuits, we investi-
gate the overlap of selected MLP neurons for each
digit position in each layer. Table 8 shows a low
average overlap (Overlap in the top 100 MLP neu-

rons: unit 19%, tens 9.2%, hundreds 19.8%) in
selected neurons, indicating that addition and sub-
traction circuits rely on mostly distinct subsets of
neurons.

4.2 Additions with Carry Bits Employ the
Same Mechanisms

All previous experiments explicitly avoided carry
operations. However, carries are a key reason why
fully modular digit-wise processing does not al-
ways suffice in arithmetic: the result at one digit
position can influence another. For example, 9 + 5
in the units position yields a carry of 1 to the tens
position.

To examine how our digit-wise arithmetic cir-
cuits interact with carry propagation, we test
whether targeted interventions remain effective
when they introduce a carry. Specifically, we ask:
Does a digit-specific circuit encode carry informa-
tion, or is it handled elsewhere in the network?

We consider two scenarios involving carry-
induced interventions (200 samples each):

(1) Carry from Units to Tens. We intervene on
the units-digit circuit of a base prompt with no
carry, such as 347 + 231 = 578, using activations
from a source prompt that induces a carry from
the unit to the tens position, such as 347 + 415 =
762. After intervention on the units-digit circuit,
we evaluate whether the output reflects (a) the base
tens and hundreds digits with the source units digit
(i.e., 572 = bbs), or (b) if in addition to this a carry
is propagated into the tens digit (i.e., 582 = bb+1s).

(2) Carry from Tens to Hundreds. We intervene
on the tens-digit circuit of a no-carry base prompt
(347+231 = 578) with a source prompt that causes
a carry from tens to hundreds (347 + 482 = 829).
We compare whether the model outputs (a) the base
hundreds and units digits with the source tens digit
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Figure 4: Effect of intervening on the unit circuit with a
carry originating from unit digit position.

(i.e., 528 = bsb), or (b) if the hundreds digit is
carry-adjusted (i.e., 628 = b+1sb).

These interventions help determine whether
carry information is localized within digit-specific
circuits or handled separately by the model.

Figure 5: Effect of intervening on the tens circuit with a
carry originating from tens digit position.

Results. Figures 4 and 5 show that the bbs vari-
ant and the bsb variant, for the unit and tens carry
interventions, respectively, exhibit the strongest in-
crease in probability. At the same time, the effect
on the result variants bb+1s and b+1sb is signifi-
cantly smaller. This provides further evidence that
digit-position-specific arithmetic circuits operate
largely independently of one another and suggests
that carry information is likely determined and pro-
cessed by separate mechanisms, rather than being
embedded in the digit-position circuits.

4.3 MLP Similarity Reflects Task Overlap

We investigate how similar digit-specific MLP acti-
vations are for prompts sharing the same digit-level
arithmetic task at a given position (e.g., 154 + 635
and 137 + 611 share the same hundreds digit ad-
dition: 1 + 6). Specifically, we compute pairwise
cosine similarity between activations of MLP neu-
rons in the digit-position circuit d, for samples with
the same subcomputation at digit position d. As
a baseline, we compute cosine similarity in these

neurons across 5000 random sample pairs.

Layer Unit (t = 0.6) Tens (t = 0.5) Hundreds (t = 0.9)
Sim Random Sim Random Sim Random

(mean ± sd) (mean ± sd) (mean ± sd)
15 0.84 0.72 ± 0.08 0.83 0.73 ± 0.08 0.87 0.70 ± 0.11
16 0.81 0.68 ± 0.07 0.78 0.66 ± 0.07 0.82 0.62 ± 0.11
17 0.76 0.59 ± 0.08 0.73 0.59 ± 0.09 0.76 0.51 ± 0.14
18 0.73 0.54 ± 0.11 0.72 0.58 ± 0.11 0.77 0.52 ± 0.15
19 0.77 0.60 ± 0.10 0.75 0.61 ± 0.10 0.79 0.54 ± 0.16
20 0.78 0.64 ± 0.09 0.77 0.63 ± 0.10 0.79 0.54 ± 0.15
21 0.72 0.52 ± 0.12 0.70 0.50 ± 0.15 0.74 0.46 ± 0.18
22 0.68 0.49 ± 0.14 0.68 0.46 ± 0.16 0.73 0.41 ± 0.21
23 0.68 0.48 ± 0.12 0.67 0.47 ± 0.13 0.72 0.43 ± 0.20
24 0.58 0.34 ± 0.15 0.53 0.34 ± 0.15 0.52 0.31 ± 0.27

Table 4: Pairwise cosine similarity of digit-position-
specific MLP sub-updates on the same digit subtask.
Includes a random-pair baseline for comparison.

As expected, Table 4 shows consistently high
within-label similarity across digit positions. For
example, in layer 15, pairs sharing the same unit-
digit computation have an average similarity of
0.84 in unit-digit MLP neurons. This provides
additional evidence for digit position-specific pro-
cessing in mid-late MLP neurons.

5 Structured Arithmetic Processing or a
Bag of Heuristics?

We are interested in how digit-position specific
arithmetic processing fits in with previous findings
that mathematical processing is solved by a sparse
set of “heuristic” neurons that respond to specific
operand or result patterns (Nikankin et al., 2024).
These heuristics include, for example, results in a
specific numerical range (e.g., results between 200
and 290), or results that share arithmetic properties
(e.g., results congruent to 4 mod 5).

We hypothesize that such heuristics may in part
be fragments of digit-wise circuits, e.g., a neuron
responding to results ≡ 4 mod 5 may reflect unit-
digit sensitivity, while neurons responding to result
ranges (e.g., 200–290) may reflect sensitivity to
higher digit positions.

To qualitatively test this idea, we perform a
small-scale exploratory analysis. In the spirit of
Nikankin et al. (2024) we examine digit-specific
activation patterns (instead of analyzing neurons
across full operand values) to look for heuristic pat-
terns in individual MLP neurons. We analyze the
20 highest Fisher Score MLP neurons per digit cir-
cuit (units, tens, hundreds) per layer across layers
15–24 in LLaMA 3 8B. We then generate digit-wise
heatmaps for each neuron, plotting the mean acti-
vation as a function of the digit values in operand 1
and operand 2, for each digit position.
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Figure 6: Neuron N19,136 (in unit circuit) implements
parity heuristic, i.e., result is 0 mod 2.

Figure 7: Neuron N23,2705 (in hundreds circuit) imple-
ments a result range heuristic (result in range 900 - 999),
i.e., hundred digit in result is 9.

Our small qualitative study shows that many
high-Fisher-score neurons exhibit highly structured
and interpretable patterns, which mirror the kinds
of heuristics described by Nikankin et al. (2024):
Certain neurons (Figures 37 and 36) respond to spe-
cific operand digit values, while others are sensitive
to certain result ranges (Figure 7), result digits (Fig-
ure 38), or result parity (Figure 6)3.

Importantly, the type of heuristic implemented
by a neuron is typically aligned with the digit cir-
cuit that neuron belongs to, such that a range 900-
999 result heuristic is implemented by a neuron
within the hundreds-digit circuit, and the 0 mod 2
result heuristic neuron is located within the unit-
digit circuit.

While these are preliminary results, they suggest
that heuristic neurons may reflect digit-specific pro-
cessing embedded within broader modular arith-
metic circuits. In this view, heuristic neurons may
be a manifestation of modular arithmetic circuits,
rather than an alternative to them: they may be
single-neuron approximations of low-level arith-
metic subroutines tied to individual digit positions.
While our analysis is qualitative and limited in
scope, it highlights that compositional mechanisms
and heuristic rules need not be mutually exclusive.

3All plots in https://github.com/tbaeumel/
transformer-digit-arithmetic/tree/main/
Digit-Heuristics_Top_Digit-Circuit_Neurons

6 Related Work

Mechanistic Interpretability. Mechanistic inter-
pretability (MI) aims to reverse-engineer the inter-
nal mechanisms of language models by analyzing
weights and components. In transformer LLMs,
a circuit refers to a small set of interconnected
components (e.g., MLPs or attention heads) that
collectively perform a specific computation (Olah
et al., 2020; Elhage et al., 2021). Causal mediation
techniques such as activation patching (Vig et al.,
2020; Meng et al., 2023) enable demonstrating the
causal role of these circuits during generation. In
this work, we identify digit-position-specific arith-
metic circuits and verify their causal contribution
through targeted interventions.

Arithmetic Reasoning Interpretability. Recent
studies have begun to uncover how LLMs tackle
arithmetic tasks (Stolfo et al., 2023; Nikankin et al.,
2024; Zhang et al., 2024; Lindsey et al., 2025;
Baeumel et al., 2025; Quirke and Barez, 2023;
Zhou et al., 2024b,a). For example, Lindsey et al.
(2025) describe a dual-pathway mechanism in a
model, where one pathway estimates the rough
magnitude of results and the other generates the
precise unit digit. Nikankin et al. (2024) argue
that LLMs rely on a “bag of heuristics” rather than
a single coherent algorithm, with individual neu-
rons implementing simple heuristics like “result %
5 = 0.” Stolfo et al. (2023) and others have used
circuit analysis to reveal internal processing dur-
ing arithmetic, while Deng et al. (2024) suggest
LLMs mainly perform symbolic pattern recogni-
tion, not true numerical computation. Kantamneni
and Tegmark (2025) recently proposed that LLMs
represent numbers as generalized helices and per-
form addition using a “Clock” algorithm (Nanda
et al., 2023). Despite this progress, a unified under-
standing of how LLMs perform basic arithmetic
remains open.

Number Representation. Understanding how
LLMs represent numbers internally has attracted
considerable attention. Levy and Geva (2024) show
that probes on LLM hidden states fail to recover
exact numeric values directly, but succeed in re-
covering each digit in base 10, indicating digt-wise
representation in of numbers in LLMs. This ex-
tends findings by Gould et al. (2023), who showed
LLMs encode numeric values modulo 10. Related
work (Zhu et al., 2025; Marjieh et al., 2025) sug-
gests number representations can blend string-like
and numerical forms or be encoded linearly. Our
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work is inspired by these representation-focused
studies and shows that numbers are not only rep-
resented digit digit but also processed this way in
simple arithmetic tasks.

7 Conclusion

We identify and validate digit-position-specific
arithmetic circuits in LLMs. Through targeted inter-
ventions, we demonstrate that these circuits are not
only highly specific and modular but also causally
involved in generating individual digit outputs.

Our results suggest LLMs perform simple arith-
metic digit by digit, with distinct circuits operating
independently at the units, tens, and hundreds po-
sitions. This modular arithmetic structure is com-
patible with prior findings that LLMs use heuristic
pathways and distributed neuron groups for arith-
metic (Nikankin et al., 2024), however our results
show LLMs solve arithmetic tasks in a far more
organized way than previously thought.

Limitations

While our results provide strong evidence for digit-
position-specific arithmetic circuits in LLMs, our
analysis is limited to addition and subtraction.
More complex operations, such as multiplication
and division, are not addressed in this work. Ex-
tending our framework to these tasks is an impor-
tant direction for future work. We also leave the
analysis of circuits responsible for composing digit-
level results into final outputs to future work.

Our analysis focuses on MLP layers, which con-
tain the neurons that directly control digit outputs.
This captures the core computation but does not
account for the role of attention heads or other
residual stream components.

Finally, we use Fisher Score to identify neu-
rons involved in arithmetic, as it is simple and
effective across model scales. However, other
methods—such as gradient-based attribution—may
yield more precise circuits. Despite this, our iden-
tified circuits are causal, interpretable, and robust,
demonstrating a strong proof of concept for neuron-
level circuit discovery in language models.
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A Implementation Details

For our intervention experiments, we use the
pyvene library (Wu et al., 2024) to perform in-
terchange interventions, where we intervene at a
specific layer on a specific module at the last token
position of a base prompt, with the correspond-
ing activation from a source prompt (Interchange
Intervention).

B Results on Single Digit Tokenization
Models

We present results from Gemma 2 9B, a single-
digit tokenization model, to investigate whether
it also exhibits digit-position-specific processing
pathways.

Intuition: Single- vs Multi-digit Numeric Tok-
enization. Before presenting results on Gemma
2 9B, we clarify why arithmetic processing may
differ in models that tokenize numbers into single
digits (e.g., “3”, “4”, “7”) versus a single multi-
digit token (e.g., “347”).

The key distinction lies in the model’s output,
not its input. A multi-digit tokenization model,
such as those in the Llama 3 family, tokenizes an
input like “347 + 231 = ” as [347, +, 231, =], and
it is trained to generate a full multi-digit output
token, such as “578”. In contrast, a single-digit
tokenization model, such as from the Gemma 2
family, tokenizes the same input as [3, 4, 7, +, 2,
3, 1, =] and can only generate single-digit output
tokens. It will therefore output “5”, not “578”.

As a result, the two models learn to solve fun-
damentally different arithmetic tasks. Multi-digit
models must solve the entire arithmetic expression
in a single forward pass, as they need the full an-
swer immediately. Single-digit models, on the
other hand, only need to generate the next digit,
deferring the rest of the arithmetic task to future
forward passes.

Therefore, when we expect single-digit tokeniza-
tion models to contain different processing paths
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compared to multi-digit tokenization models, it is
because these models have to learn completely dif-
ferent tasks during pretraining to become sufficient
at solving arithmetics.

Localizing Digit-Specific Neurons. After the in-
jection of operand information (Layer 28; Figures
17 and 16 in Appendix C) we observe the following
pattern for both addition and subtraction (Figures
8 and 9):

The hundreds circuit is large in size (spanning
70-90% of all MLP neurons per layer on average)
and present all the way to the final layer. The tens
circuit is available and large in size in layers 28 to
31, but then drastically diminishes in size. A unit
circuit is non-existent, as evident by the absence of
any neurons in the circuit, meaning that no neuron
is sensitive to the subtask in the unit position.

Based on the intuition given above and previous
work that finds LLMs internally generate one result
digit more than needed for their current genera-
tion to account for carry bits, but no further digits
(Baeumel et al., 2025), we conclude the following:
Single-digit tokenization models also have digit-
position-specific arithmetic circuits, which consist
of one dominant circuit responsible for predicting
the digit needed for the output generation, and one
smaller and shorter circuit which may be responsi-
ble for determining whether a carry-bit influences
the generation.

Intervention. Although somewhat trivial, we in-
tervene on the hundreds digit circuit to observe the
probability of the hundreds base digit b and hun-
dreds source digit s. Table 5 shows that the inter-
vention is highly effective in changing the model’s
prediction, which is expected given that the hun-
dreds digit circuit spans the majority of MLP neu-
rons, making the intervention highly invasive.

o t∗ b s
∆p (after - before).

+

0.6 -92.61% +91.55%
0.7 -92.28% +91.26%
0.8 -91.93% +90.93%
0.9 -91.54% +90.55%
1.0 -91.25% +90.34%

−

0.6 -92.6% +91.84%
0.7 -92.32% +91.54%
0.8 -91.76% +90.95%
0.9 -90.52% +89.63%
1.0 -88.05% +86.92%

Table 5: Intervention on the hundreds digit circuit in
Gemma 2 9B on Dadd,op2 and Dsub,op2. We report the
change in prediction probabilities in percentage points
(effect size) for result variants after intervention.
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(a) Unit and Tens (b) Unit and Hundreds (c) Tens and Hundreds

(d) Circuit Overlap: Overlap in neurons (%) between digit-position circuits.

(e) Unit (f) Tens (g) Hundreds

(h) Circuit Size: Number of neurons per layer in digit-position circuits (Hidden size = 3584)

Figure 8: Gemma 2 9B, Dadd: Circuit statistics across digit positions and thresholds.

(a) Unit and Tens (b) Unit and Hundreds (c) Tens and Hundreds

(d) Circuit Overlap: Overlap in neurons (%) between digit-position circuits.

(e) Unit (f) Tens (g) Hundreds

(h) Circuit Size: Number of neurons per layer in digit-position circuits (Hidden size = 3584).

Figure 9: Gemma 2 9B, Dsub: Circuit statistics across digit positions and thresholds.
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C Layers Involved in Arithmetic

Following Stolfo et al. (2023), we focus our search
for digit-position-specific arithmetic circuits on
MLP layers that could plausibly contribute to pro-
ducing arithmetic output. We identify the earliest
layer at which operand information has been prop-
agated to the residual stream at the final token, as
earlier layers lack relevant input context and are
unlikely to contribute to the result generation. We
therefore restrict our search for arithmetic circuits
to layers at which operand information has been
propagated.

We perform causal interventions on the output
of individual modules - particularly each decoder,
attention, and MLP block. We intervene during the
forward pass on a base prompt (e.g., ’347 + 231
= ’ ) by replacing the activations of a specific
module with the activations of the same module
during the forward pass on a source prompt (e.g.,
’261 + 512 = ’). We measure the change in
output probabilities for the correct result of the
base query (bbb, here, ’578’) and the result of the
source query (sss, here, ’773’).

Figures 10 to 17, reveal that intervention on spe-
cific attention modules dramatically increases the
probability of sss in all models. This suggests that
these attention modules are responsible for inject-
ing operand information into the residual stream at
the final token position, which is consistent with
prior work (Stolfo et al., 2023).

We thus look for digit-wise addition neurons in
the MLP layers following the operand injection into
the residual stream. For Llama 3 8B for instance,
this happens at layer 16 for Dadd,op1 and layer 15
for Dadd,op2 respectively (Figure 10).
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(a) Block Output - Dadd,op1 (b) Attention Output - Dadd,op1 (c) MLP Output - Dadd,op1

(d) Block Output - Dadd,op2 (e) Attention Output - Dadd,op2 (f) MLP Output - Dadd,op2

Figure 10: LLaMA3-8B: Probability of result variants after intervention at individual modules of individual layers
on Addition Datasets. We see the Operand Injection into the residual stream in Layer 16 for Dadd,op1, and in Layer
15 for Dadd,op2.

(a) Dsub,op1: Operand Injection into the
residual stream in Layer 16

(b) Dsub,op2: Operand Injection into the
residual stream in Layer 15

Figure 11: LLaMA3-8B: Probability of result variants after intervention at attention modules of individual layers
on Subtraction Datasets.

(a) Dadd,op1: Operand Injection into the
residual stream starting in Layer 17

(b) Dadd,op2: Operand Injection into the
residual stream starting in Layer 17

Figure 12: Olmo 2 7B: Probability of result variants after intervention at attention modules of individual layers on
Addition Datasets.
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(a) Dsub,op1: Operand Injection into the
residual stream in Layer 19

(b) Dsub,op2: Operand Injection into the
residual stream starting in Layer 17

Figure 13: Olmo 2 7B: Probability of result variants after intervention at attention modules of individual layers on
Subtraction Datasets.

(a) Dadd,op1: Operand Injection into the
residual stream in Layer 39

(b) Dadd,op2: Operand Injection into the
residual stream in Layer 39

Figure 14: LLaMA3-70B: Probability of result variants after intervention at attention modules of individual layers
on Addition Datasets.

(a) Dsub,op1: Operand Injection into the
residual stream in Layer 39

(b) Dsub,op2: Operand Injection into the
residual stream in Layer 39

Figure 15: LLaMA3-70B: Probability of result variants after intervention at attention modules of individual layers
on Subtraction Datasets.

(a) Dadd,op1: Operand Injection into the
residual stream in Layer 28

(b) Dadd,op2: Operand Injection into the
residual stream in Layer 28

Figure 16: Gemma 2 9B: Probability of result variants after intervention at attention modules of individual layers
on Addition Datasets.
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(a) Dsub,op1: Minimal Effect of Operand In-
jection into the residual stream in Layer 28

(b) Dsub,op2: Operand Injection into the
residual stream in Layer 28

Figure 17: Gemma 2 9B: Probability of result variants after intervention at attention modules of individual layers
on Subtraction Datasets.

1395



D Fisher Score for Digit-Sensitivity of
Neurons.

We measure how sensitive individual MLP neurons
are to digit-level structure in arithmetic prompts,
using a Fisher Score that quantifies class discrim-
inability.

Let:

• x ∈ X : an input prompt (e.g., "157 + 431 =
"),

• i: index of a neuron in an MLP layer,

• d ∈ {hundred, ten, unit}: a fixed digit posi-
tion in the operands (e.g., the "tens" digit),

• c ∈ {00, 01, . . . , 99}: class label for the digit
pair at position d, formed by concatenating4

the digit from each operand (e.g., c = 71 for
d = unit and input prompt 347 + 231 =),

• Xc,d ⊆ X : input prompts with digit pair c at
position d (e.g., X71,unit = {347 + 231 =
, 217 + 651 =, ...}),

• ai(x) ∈ R: the activation of neuron i when
processing input x.

Define:

• Mean activation for class c at position d:

µi,c,d =
1

|Xc,d|
∑

x∈Xc,d

ai(x)

• Variance of activations for class c at posi-
tion d:

σ2
i,c,d =

1

|Xc,d|
∑

x∈Xc,d

(ai(x)− µi,c,d)
2

• Overall mean activation across all classes
at position d:

µi,d =
1∑

c |Xc,d|
∑

c

|Xc,d|µi,c,d

Then, the Fisher Score for neuron i with respect
to digit position d is:

Fi,d =

∑
c |Xc,d| (µi,c,d − µi,d)

2

∑
c |Xc,d|σ2

i,c,d

4We choose to concatenate digit pairs, as a way to express
the arithmetic digit level subtasks as a class label

Intuition. The Fisher Score quantifies how much
neuron i’s activation varies between digit-pair
classes (numerator), relative to how much it varies
within each class (denominator). A high Fi,d in-
dicates that neuron i’s activation reliably distin-
guishes between different digit values at position
d, while remaining relatively insensitive to other
input variations. This implies that neuron i likely
participates in a digit-position-specific addition sub-
circuit.
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E Statistics on Arithmetic Circuits

Circuit Size. We find that digit-specific circuits
are relatively ’wide’ (Figure 18). For the respec-
tive best thresholds t∗5, the average number of
MLP neurons per layer responsible for one of the
digit-position specific circuits is 60.3% of all MLP
neurons. In other words, almost two-thirds of the
MLP neurons in relevant layers are digit-position
specific, when Llama 3 8B solves addition tasks.

Circuit Overlap. If arithmetic tasks are indeed
solved in a digit-wise manner, then neuron groups
responsible for generating different digit position
results should be distinct. To assess the distinc-
tiveness of different digit-position circuits, we ex-
amine the overlap of member neurons across digit
position circuits. We find that neuron sets for dif-
ferent digit positions are largely distinct (Figure
18). In fact, for higher thresholds (>= 0.7) neu-
ral overlap between circuits is largely negligible
(<2%). The distinctiveness of digit-position spe-
cific arithmetic circuits provides a first indication
of digit-positional modularity in LLM arithmetic.

Circuit Sufficiency. To evaluate whether Fisher-
identified neuron groups are sufficient to represent
digit-specific arithmetic subtasks, we perform a
Linear Discriminant Analysis (LDA)-based classifi-
cation test. For each layer l and digit position d, we
train two LDA classifiers to predict the digit-pair
label c: one using the full MLP activation vector,
and one using a reduced representation containing
only neurons above a Fisher importance threshold.

Figure 18 compares classification accuracy be-
tween the full and reduced settings. We find
that performance remains high in the reduced set-
ting—especially in middle layers (15–24)—indi-
cating that the selected neurons are sufficient to
support digit-position classification.

Sufficiency is strongest for the unit and hundreds
digits, and at lower thresholds, also for the tens
digit. Stable accuracy across thresholds suggests
that unit and hundreds information is more redun-
dantly or compactly encoded, while the tens digit
may require more neurons. A drop in later layers
suggests that digit-specific information becomes
less localized in deeper MLP layers.

5See Section 3.2: 0.5 for unit, 0.6 for tens, 0.9 for hundreds
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(a) Unit and Tens (b) Unit and Hundreds (c) Tens and Hundreds

(d) Circuit Overlap: Overlap in neurons (%) between digit-position circuits.

(e) Unit (f) Tens (g) Hundreds

(h) Circuit Size: Number of neurons per layer in digit-position circuits (Hidden size = 4096).

(i) Unit (j) Tens (k) Hundreds

(l) Circuit Sufficiency: Sufficiency of digit-position circuit vs. full LDA

Figure 18: Llama 3 8B, Dadd: Circuit statistics across digit positions and thresholds.
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(a) Unit and Tens (b) Unit and Hundreds (c) Tens and Hundreds

(d) Circuit Overlap: Overlap in neurons (%) between digit-position circuits.

(e) Unit (f) Tens (g) Hundreds

(h) Circuit Size: Number of neurons per layer in digit-position circuits (Hidden size = 4096).

(i) Unit (j) Tens (k) Hundreds

(l) Circuit Sufficiency: Sufficiency of digit-position circuit vs. full LDA

Figure 19: Llama 3 8B, Dsub: Circuit statistics across digit positions and thresholds.
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(a) Unit and Tens (b) Unit and Hundreds (c) Tens and Hundreds

(d) Circuit Overlap: Overlap in neurons (%) between digit-position circuits.

(e) Unit (f) Tens (g) Hundreds

(h) Circuit Size: Number of neurons per layer in digit-position circuits (Hidden size = 4096).

(i) Unit (j) Tens (k) Hundreds

(l) Circuit Sufficiency: Sufficiency of digit-position circuit vs. full LDA

Figure 20: Olmo 2 7B, Dadd: Circuit statistics across digit positions and thresholds.
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(a) Unit and Tens (b) Unit and Hundreds (c) Tens and Hundreds

(d) Circuit Overlap: Overlap in neurons (%) between digit-position circuits.

(e) Unit (f) Tens (g) Hundreds

(h) Circuit Size: Number of neurons per layer in digit-position circuits (Hidden size = 4096).

(i) Unit (j) Tens (k) Hundreds

(l) Circuit Sufficiency: Sufficiency of digit-position circuit vs. full LDA

Figure 21: Olmo 2 7B, Dsub: Circuit statistics across digit positions and thresholds.
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(a) Unit and Tens (b) Unit and Hundreds (c) Tens and Hundreds

(d) Circuit Overlap: Overlap in neurons (%) between digit-position circuits.

(e) Unit (f) Tens (g) Hundreds

(h) Circuit Size: Number of neurons per layer in digit-position circuits (Hidden size = 8192).

(i) Unit (j) Tens (k) Hundreds

(l) Circuit Sufficiency: Sufficiency of digit-position circuit vs. full LDA

Figure 22: Llama 3 70B, Dadd: Circuit statistics across digit positions and thresholds.
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(a) Unit and Tens (b) Unit and Hundreds (c) Tens and Hundreds

(d) Circuit Overlap: Overlap in neurons (%) between digit-position circuits.

(e) Unit (f) Tens (g) Hundreds

(h) Circuit Size: Number of neurons per layer in digit-position circuits (Hidden size = 8192).

(i) Unit (j) Tens (k) Hundreds

(l) Circuit Sufficiency: Sufficiency of digit-position circuit vs. full LDA

Figure 23: Llama 3 70B, Dsub: Circuit statistics across digit positions and thresholds.
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F Effect of chosen Threshold on Digit-Circuit Intervention

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 24: Llama 3 8B, Dadd,op1: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {16, ..., 24}.

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 25: Llama 3 8B, Dsub,op1: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {16, ..., 28}.

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 26: Llama 3 8B, Dsub,op2: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {15, ..., 28}.

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 27: Llama3-70B, Dadd,op1: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {39, ..., 56}.
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(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 28: Llama3-70B, Dadd,op2: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {39, ..., 56}.

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 29: Llama3-70B, Dsub,op1: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {39, ..., 58}.

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 30: Llama3-70B, Dsub,op2: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {39, ..., 58}.

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 31: Olmo 2 7B, Dadd,op1: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {17, ..., 30}.
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(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 32: Olmo 2 7B, Dadd,op2: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {17, ..., 30}.

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 33: Olmo 2 7B, Dsub,op1: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {19, ..., 27}.

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 34: Olmo 2 7B, Dsub,op2: Effect size of circuit specific interventions with different thresholds for neuron
circuit membership, on circuit neurons in layers L = {17, ..., 27}.
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G Intervention Results on Dadd,op1 and Dsub,op1

m o d t∗ bbb bbs bsb sbb bss sbs ssb sss
Absolute change in prediction probability ∆p in percentage points (after - before).

Llama 3 8B

+
unit 0.6 -55.74% +30.17% +1.01% +0.41% +3.65% +0.87% +0.30% +0.54%
tens 0.4 -70.44% +1.27% +22.72% +1.71% +4.82% +0.28% +7.52% +2.67%

hun.s 0.8 -72.17% +0.25% +0.87% +38.39% +0.13% +0.71% +5.83% +0.40%

−
unit 0.6 -55.75% +28.87% +0.46% +1.12% +4.57% +1.20% +0.19% +0.63%
tens 0.5 -50.48% +1.12% +14.39% +2.11% +2.76% +0.48% +3.97% +0.69%

hun.s 0.8 -64.48% +0.46% +1.07% +32.28% +1.77% +0.62% +2.26% +0.41%

Llama 3 70B

+
unit 0.5 -28.51% +20.12% +0.48% +0.97% +1.66% +0.45% +0.15% +0.40%
tens 0.4 -35.24% +0.67% +14.60% +1.75% +0.84% +0.12% +6.24% +0.93%

hun.s 0.6 -37.65% +0.08% +0.61% +24.70% +0.12% +0.20% +1.63% +0.18%

−
unit 0.5 -27.45% +19.65% +0.22% +0.49% +3.72% +0.43% +0.07% +0.66%
tens 0.5 -9.52% +0.41% +7.22% +0.21% +0.04% +0.18% +0.76% +0.03%

hun.s 0.5 -21.14% +0.13% +0.40% +15.47% +0.08% +0.09% +1.62% +0.11%

Olmo 2 7B

+
unit 0.4 -85.04% +30.75% +0.83% +7.34% +2.07% +4.39% +0.90% +2.28%
tens 0.8 -84.41% -0.06% +42.13% +2.51% -0.05% +0.04% +4.56% +0.47%

hun.s 0.8 -73.61% +0.55% +0.69% +35.81% +0.30% +1.88% +3.04% +0%

−
unit 0.5 -84.73% +42.33% +0.42% +1.13% +8.14% +4.50% +0.13% +1.30%
tens 0.8 -86.03% +0.14% +42.08% +0.73% +1.58% +0.03% +4.80% +0.30%

hun.s 0.8 -89.26% +1.29% +1.11% +39.53% +0.25% +1.40% +0.49% +1.22%

Table 6: Main Results: For all detected circuits (across models, operators, and digit positions) we report the change
in prediction probabilities for result variants after interventions on digit-position-specific arithmetic circuits for the
best threshold t∗ in each circuit, on datasets Dadd,op1 and Dsub,op1. The increase in prediction probability for the
correct digit-specific result variant is shown in bold.

m o d t∗ Flip Rate

Llama 3 8B

+
unit 0.6 42.5%
tens 0.4 38.5%

hun.s 0.8 58.5%

−
unit 0.6 36.5%
tens 0.5 19%

hun.s 0.8 47.5%

Llama 3 70B

+
unit 0.5 17.5%
tens 0.4 13%

hun.s 0.6 24.5%

−
unit 0.5 16.5%
tens 0.5 3.5%

hun.s 0.5 11%

Olmo 2 7B

+
unit 0.4 50.5%
tens 0.8 53%

hun.s 0.8 45%

−
unit 0.5 56%
tens 0.8 53%

hun.s 0.8 48%

Table 7: Flip rate from bbb result to the intended digit-specific result variant (Unit: bbb → bbs,Tens: bbb → bsb,
Hundreds: bbb→ sbb), results given for the best threshold t∗ for each circuit, on datasets Dadd,op1 and Dsub,op1.

H Ablation: Deeper Circuits

(a) Unit Circuit intervention (b) Tens Circuit intervention (c) Hundreds Circuit Intervention

Figure 35: Effect size of circuit specific interventions on Llama 3 8B and Dadd,op2. We intervene on a deeper circuit
(L = {15, ..., 28}) and find no significant difference to the shallower circuit depth (L = {15, ..., 24}) chosen based
on the statistics on circuit sufficiency and size.
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J Examples of Neuron Heuristics

Figure 36: MLP neuron N15,425 is part of unit circuit -
Heuristic: Operand 2 is 2 in unit digit position.

Figure 37: MLP neuron N17,232 is part of tens circuit -
Heuristic: Operand 1 is 0 in tens digit position.

Figure 38: MLP neuron N21,2862 is part of unit circuit -
Heuristic: Result is 6 in unit digit position.

1408



I Similarity of Addition and Subtraction Circuits
Layer Digit Pos Top-50 Top-100 Top-250 Top-500 Top-1000

15
unit 12.0% 17.0% 12.8% 7.2% 3.6%
tens 4.0% 2.0% 0.8% 0.4% 0.2%

hundreds 10.0% 10.0% 15.6% 18.2% 16.0%

16
unit 16.0% 14.0% 5.6% 2.8% 1.4%
tens 8.0% 4.0% 1.6% 0.8% 0.4%

hundreds 16.0% 15.0% 11.6% 5.8% 2.9%

17
unit 36.0% 32.0% 36.4% 26.0% 13.0%
tens 2.0% 1.0% 0.4% 0.2% 0.1%

hundreds 18.0% 18.0% 20.0% 10.0% 5.0%

18
unit 24.0% 25.0% 28.0% 15.6% 7.8%
tens 6.0% 3.0% 1.2% 0.6% 0.3%

hundreds 40.0% 32.0% 28.4% 31.0% 22.4%

19
unit 16.0% 18.0% 8.0% 4.0% 2.0%
tens 6.0% 3.0% 1.2% 0.6% 0.3%

hundreds 48.0% 44.0% 44.0% 42.8% 44.8%

20
unit 14.0% 7.0% 2.8% 1.4% 0.7%
tens 6.0% 3.0% 1.2% 0.6% 0.3%

hundreds 44.0% 45.0% 42.0% 40.0% 36.8%

21
unit 28.0% 29.0% 29.2% 14.6% 7.3%
tens 26.0% 34.0% 21.6% 10.8% 5.4%

hundreds 28.0% 26.0% 29.2% 25.0% 12.5%

22
unit 4.0% 7.0% 3.6% 1.8% 0.9%
tens 26.0% 26.0% 20.4% 10.2% 5.1%

hundreds 4.0% 3.0% 6.0% 5.6% 5.5%

23
unit 18.0% 17.0% 12.4% 6.2% 3.1%
tens 4.0% 4.0% 5.6% 3.6% 1.8%

hundreds 2.0% 5.0% 2.8% 1.4% 0.7%

24
unit 26.0% 24.0% 24.4% 24.2% 12.1%
tens 12.0% 12.0% 7.6% 3.8% 1.9%

hundreds 0.0% 0.0% 0.0% 0.0% 0.0%

Table 8: Overlap of Top-K Fisher Score neurons between addition and subtraction circuits across layers and digit
positions.
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