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Abstract

Retrieval Augmented Generation (RAG) frame-
work mitigates hallucinations in Large Lan-
guage Models (LLMs) by integrating external
knowledge, yet faces two critical challenges:
(1) the distribution gap between user queries
and knowledge bases in a specific domain, and
(2) incomplete coverage of required knowledge
for complex queries. Existing solutions either
require task-specific annotations or neglect in-
herent connections among query, context, and
missing knowledge interactions. We propose
a reasoning-based missing knowledge RAG
framework that synergistically resolves both is-
sues through Chain-of-Thought reasoning. By
leveraging open-source LLMs, our method gen-
erates structured missing knowledge queries in
an end-to-end inference manner while aligning
query knowledge distributions, and integrates
reasoning traces into answer generation. Exper-
iments on open-domain medical and general
question answering (QA) datasets demonstrate
significant improvements in context recall and
answer accuracy. Our approach achieves effec-
tive knowledge supplementation without addi-
tional training, offering enhanced interpretabil-
ity and robustness for real-world QA applica-
tions.

1 Introduction

The rapid advancement of Large Language Mod-
els (LLMs), exemplified by various architectures
(OpenAI et al., 2024; Grattafiori et al., 2024; Qwen
et al., 2025; DeepSeek-AI et al., 2024), demon-
strates remarkable improvements on a wide range
of natural language processing tasks. However,
their reliance on static, parametric knowledge of-
ten leads to hallucinations, factual inaccuracies,
and outdated responses, particularly in dynamic
or domain-specific scenarios. To mitigate these
limitations, the Retrieval Augmented Generation
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Question May I ask if working in a battery factory
during pregnancy has any impact on the fetus?

Wikipedia

During pregnancy, it is important to avoid
radiological examinations ... Pregnant women

should pay attention to every small detail
in daily life and respond with patience...

LLM Response

Working in... may indeed expose you to
various harmful substances. I recommend
consulting a doctor as soon as possible...
reduce exposure to harmful substances...

QA Pairs

Q: There is an electronics company that produces
lithium batteries ... Will this job affect

my pregnancy... A: Medical Analysis: During
the production... generates some powdered airborne
particles, volatile gases, such as NMP ... I recommend
that... not directly exposed ... poses risks
to your own health. Take proper protective measures
or you could change your job .

LLM Response

Hello... may expose you to certain chemical
substances , such as graphite, binders, and

solvents in the anode materials. It is
advisable to enhance personal protective
measures and reduce the amount of time spent
in such an environment ... attend regular
prenatal check-ups ...
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Figure 1: (top) Example of retrieved text chunks and
corresponding responses from Huatuo, where relevant
texts are highlighted in red , LLM responses in blue ,
showing QA pairs are more consistent with user queries
in terms of intents and semantics. (Bottom) Euclidean
distances L2 between queries and their top-1 ranked re-
trieved text chunks across knowledge bases demonstrate
semantic proximity. Each subplot presents paired distri-
butions: query-to-QA pair distances (left) versus query-
to-Wikipedia passage distances (right), with dashed
lines indicating mean values. Lower L2 metrics sig-
nify higher semantic similarity.

(RAG) framework emerges as a promising solu-
tion for knowledge-intensive tasks (Lewis et al.,
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2020), integrating external knowledge bases with
LLMs to enhance answer reliability. While the stan-
dard RAG pipeline retrieves contextually relevant
documents to ground LLM outputs, two critical
challenges persist:

(1) The semantic discrepancies between user
queries and heterogeneous knowledge bases, which
undermine retrieval relevance. As illustrated in the
Figure 1 (top), a significant disparity exists between
colloquial or non-professional user descriptions
and the standardized terminology characteristic of
formal medical literature. Besides, as indicated by
the average distance (L2) between user queries and
the top-1 retrieved text chunks in Figure 1 (below),
the Question Answer (QA) pairs more closely align
with the user’s query in terms of both semantics
and intent, making them valuable resources for
addressing user queries.

Previous approaches primarily focus on training
memory networks to generate task-specific cues
(Qian et al., 2024) or employ adaptive evidence
retrieval (Li et al., 2024) to bridge semantic gaps,
which often require additional annotation efforts.
Alternative solutions involve query rewriting (Ma
et al., 2023) or query decomposition enhanced by
Monte-Carlo Tree Search (MCTS) (Jiang et al.,
2024). Although these methods demonstrate par-
tial success, they overlook the historical QA pair,
which is a naturally aligned knowledge source that
inherently matches user query distributions in the
domain-specific scenario.

(2) Missing knowledge could be attributed to the
limited understanding of such queries and thus re-
quires precise clarification of the actual user intent,
particularly in scenarios where retrieved contexts
fail to fully cover the knowledge required to ad-
dress queries. Existing works lie in two paths. One
line of works propose iterative retrieval directly us-
ing the first round answer (Shao et al., 2023) or the
intrinsic reasoning capabilities of LLMs (i.e., GPT-
3.5) to separately generate missing information and
new queries for subsequent retrieval (Wang et al.,
2025a). The other line of works propose to gener-
ate evidence and criticism with special tokens in
one single pass adaptively (Islam et al., 2024; Asai
et al., 2024).

Although existing approaches achieve promising
results, the rapid progress in the reasoning capabil-
ities of LLMs (DeepSeek-AI et al., 2025) suggests
richer opportunities with reasoning chains. Given
a user query, retrieved contexts, and preliminary
predictions, a reasoning module could analyze the

missing knowledge and follow-up queries step by
step, while analyzing whether inconsistencies exist
in contexts, such as knowledge conflicts and hal-
lucinations simultaneously. Moreover, most prior
works treat the detection of missing knowledge and
the assessment of query relevance as two separate
procedures. This decoupled design disregards the
intrinsic interdependence among the user query,
retrieved contexts, missing knowledge, and the cor-
responding follow-up queries, which might lead
to cumulative error propagation, and ultimately
achieve suboptimal performance.

In this work, we propose a reasoning-enhanced
missing knowledge RAG framework that systemat-
ically addresses both challenges through a unified
pipeline with an end-to-end manner. Unlike prior
methods, our approach explicitly considers the in-
trinsic relationship among the query, retrieved con-
texts, missing knowledge, and follow-up queries
with a reasoner module, utilizing the reasoning con-
tent to verify knowledge conflicts or hallucinations.
Furthermore, the generated reasoning traces are
seamlessly incorporated into the final answer gen-
eration process, ensuring both interpretability and
accuracy.

• We propose a reasoning enhanced end-to-end
RAG framework that generates queries for
missing knowledge retrieval and leverages
the reasoning content to verify knowledge,
thereby improving generation accuracy.

• We comprehensively explore methods with
heterogeneous knowledge bases to bridge the
gap between colloquial user queries and for-
mal passages without additional training.

• We conduct extensive experiments on two
open-domain question answering datasets,
evaluating on both general and domain-
specific scenarios.

2 Method

In the following section, we will first define the
problem, followed by a comprehensive analysis of
the encountered challenges, and finally propose our
RAG framework augmented with missing knowl-
edge integration.

2.1 Problem Statement
Given a user query Q, the task of RAG system
is to first retrieve contexts C = {c1, c2, ...} which

1362



Query:
Who carried the us

flag in the 2014
olympics?

LLM Reader

Standard
RAG

Query

Final Answer:
Todd Lodwick

Retriver

History
QA Pairs

Wikipedia

Merged
Knowledge Base

First Round Answer:
Todd Lodwick

<answer>
{
    "thought": "The answer partially...",
    "judge": "True",
    "missing_knowledge": ['Flag bearer for the
        2014 Summer Olympics opening and       
        closing ceremony']
    "query": ['Who carried the US flag in the
         2014 Summer Olympics opening
         ceremony?', ...
}
</answer>

Retriver

Reasoning
Content Judgement

<think>
Okay, Let's break it down step by step to
determine if critical knowledge is
missing...From my existing knowledge... The
US flag bearer during opening ceremony was
Todd Lodwick and Julie Chu for closing
ceremony. Wait, let me double-check,
however, some retrieved contexts are from
2018, which might irrelevant and lead to
confusion... 
</think>

Missing Knowledge
Query

LLM Reader

Step 1. Retrieve from different KBs Step 2. Missing knowledge judgement

Query Contexts Prediction

Final Answer:
Todd Lodwick,

Julie Chu

CoT Prompting

Step 3. CoT Prompting and output final answer

Judgement

Reasoning
Content

LLM Reasoner Output

LLM Reader
Query

Contexts

Reasoning
Content

Thought

Offline Faiss Indexing

 Corpus

      Wikipedia

     QA Pairs

History
QA Pairs

Wikipedia

Merged
Knowledge Base

Construct different Knowledge Bases

RAG with missing knowledge retrieval

CoT Prompting

    LLM Reasoner

Figure 2: Illustration of our Missing Knowledge RAG framework. Our pipeline first retrieves from knowledge bases
and prompts open-sourced LLMs to give a draft answer. Second, LLM needs to decide whether any knowledge
is missing. Different from the standard RAG pipeline, the LLM needs to generate missing knowledge and query
with JSON format in a single turn. Finally, after a second-time retrieval with a generated query, we prompt all the
retrieved contexts with explicit reasoning content to generate the final answer.

are closely related to user query, and then generate
a final answer Y based on query and grounded
knowledge. The final goal of a RAG system is
to ensure the comprehensive and precise retrieval
of contexts needed to address the query, thereby
generating the response aligned with ground truth
A.

2.2 Reasoning Enhanced RAG with Missing
Knowledge Framework

In our proposed framework, we initially retrieve
top-K grounded knowledge text chunks C, sourced
from the offline indexing process, to formulate a
preliminary answer Y1. Then, we employ a rea-
soner LLM to judge if there exists any missing
knowledge in the reasoning process R. If deficien-
cies in knowledge are identified, iterative retrieval
is performed with the generated queries correspond-
ing to missing knowledge. Finally, we prompt the
reader LLM to produce the final response Yfinal.

Retrieve from Different Knowledge Bases To
mitigate the distribution gap between queries and
knowledge bases shown in Figure 1, previous stud-
ies propose to utilize query rewriting (Ma et al.,
2023), which requires efforts in data annotation.
We propose to retrieve from historical QA Pairs,
which contain more colloquial descriptions and ex-

hibit closer semantic and intent alignment with user
queries, especially in domain-specific scenarios.
And we further investigate retrieval from various
knowledge sources (i.e., Wikipedia, historical QA
pairs, or the merged knowledge base).

As presented in Figure 2, we first employ a dense
retriever to obtain top-K text chunks using the en-
coded query embedding. Subsequently, this ap-
proach enables us to acquire contextual information
characterized by diverse semantic structures.

qE = Encoder(Q),

dE = {Encoder(Di), i = 1, ..., |D|},

V = {

√√√√
d∑

j=1

(qEj − dEij)2|i = 1, ..., |D|},

C = {D[i]|i ∈ arg top-K(V)},

(1)

where D represents the retrieved knowledge base
with text chunks, V and C refer to encoded vector
set processed through offline indexing and top-K
selected contexts according to L2 metric, respec-
tively.

Then we could get the first round answer with
the LLM reader:

Y1 = LLMθ(xi|Q, C, x<i, i = 1, ..., t), (2)

where xi denotes the i-th token during generation.
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Reasoning Enhanced Missing Knowledge Judg-
ment However, the retrieved contexts may not
necessarily contain all the knowledge required to
answer the query, and they also contain knowl-
edge conflicts or hallucinations. Previous works
(Wang et al., 2025a) therefore propose a pipeline
approach separately performing missing informa-
tion retrieval and knowledge entailment classifica-
tion, which might cause error propagation or mis-
alignment within different modules. Qian et al.
(2024) proposes to train a specific generative mod-
ule, which incurs substantial manual efforts.

To mitigate these limitations, we introduce a
single-pass reasoning framework that simultane-
ously generates missing knowledge and formulates
the requisite follow-up queries. The judging pro-
cess comprises two principal components:

• Reasoning Content This exploits the model’s
reasoning capacity to verify information
within given contexts, thereby guiding the sub-
sequent retrieval of any missing knowledge.

• Missing Knowledge Judgment This module
accurately identifies knowledge gaps and con-
structs the necessary follow-up queries step
by step, considering the intrinsic interconnec-
tions among the initial query, retrieved con-
texts, and the missing knowledge,

Specifically, for example, given query Q: Who
carried the US flag in the 2014 Olympics?,
retrieved contexts C and first round prediction Y1,
we prompt the reasoner model to generate a judg-
ment about the missing knowledge and reasoning
content Creason, which contains step-by-step ver-
ification of factual information. The JSON for-
matted answer includes reflective thought about
the first round answer, judgment, missing knowl-
edge cues, and the corresponding queries “who
carried... opening ceremony?” and “who
carried... closing ceremony?” aligned with
retrieval contexts. The detailed prompts for miss-
ing knowledge query and answer generation are
presented in the Appendix 4.

Finally, we utilize the aligned missing knowl-
edge query to retrieve missing information from the
specified knowledge base, subsequently appending
it to C. Following this, we apply a straightforward
deduplication function using MD5 hashing to re-
move redundant text chunks. Then, we consolidate
them with part of the reasoning information into a
structured prompt the reader to generate the final

answer:

Yfinal = LLMθ(xi|Q, C, Creason, x<i), (3)

including query Q, contexts with missing knowl-
edge C, the reasoning content Creason and reflective
thought about first round answer.

3 Experiment

3.1 Experimental Setup
We fairly evaluated our framework under a one-shot
setting on two open-domain question answering
datasets: Natural Questions (NQ) (Kwiatkowski
et al., 2019) for general knowledge question an-
swering, which consists of real-world user queries
from search engines. And we further experiment
on medical domain, Huatuo-26M (Li et al., 2023),
which is a large-scale chinese medical QA dataset
curated from online healthcare QA websites. These
datasets are ideal benchmarks to evaluate the ro-
bustness of out proposed method, which contain a
large volume of high-quality colloquial QA pairs,
reflecting the natural distribution of user interac-
tions across various real-world QA systems.

We utilize the open-sourced Llama3.3-70B
(Grattafiori et al., 2024) and Qwen2.5-70B-Instruct
(Qwen et al., 2025) as our reader LLM in the
framework for English and Chinese benchmark,
respectively, owing to their success on the LM-
Sys leaderboard under specific categories1. We
use DeepSeek-R1 (DeepSeek-AI et al., 2025) as a
reasoner LLM owing to its powerful reasoning abil-
ity. We employ bge-en-large (Xiao et al., 2023)
and bge-large-zh-v1.5 to encode QA Pairs and
Wikipedia chunks, following instructions on the
website.2 For the purpose of similarity search-
ing, we implement the Faiss index (Johnson et al.,
2019), specifically the IndexFlat with L2 distance
metrics.

For NQ evaluation, we use all the documents
provided in the NQ dataset directly without any
HTML tags to construct a Wikipedia knowledge
base. To accommodate the maximum length con-
straints of the encoder model, each document is
segmented into text chunks containing fewer than
300 words, resulting in 4.8M text chunks, followed
by a deduplication process with MD5 hash, shown
in Table 2. To provide a fair comparison, we also
leverage all the QA pairs in the training set of NQ

1Chatbot Arena LLM Leaderboard: https://lmarena.ai/
2Instructions for using BGE series models on Hugging

Face: https://huggingface.co/BAAI/bge-large-en
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Methods Natural Questions Huatuo-26M

EM F1 Precision Recall ROUGE_1 ROUGE_2 ROUGE_L BLEU_1 BLEU_2 BLEU_3 BLEU_4

DirectGen 22.27 17.11 18.86 20.59 13.91 1.46 9.73 9.38 2.80 0.99 0.30
CoT 24.22 15.99 19.77 17.48 13.9 1.81 8.57 11.13 3.6 1.44 0.53
MIGRES 30.00 17.20 18.57 19.78 17.19 1.77 12.72 14.70 4.67 1.69 0.48
STD-RAG Wiki 26.17 20.19 20.12 27.19 15.06 1.84 10.15 12.01 3.77 1.38 0.48

-top-K=4 26.69 21.71 21.63 29.13 16.70 2.25 10.57 14.35 4.73 1.91 0.77
STD-RAG with QA Pairs 30.08 24.43 25.43 31.45 15.20 1.78 10.11 12.81 3.86 1.53 0.56

-top-K=4 31.25 24.56 25.64 31.26 16.75 2.22 10.90 14.49 4.74 1.83 0.74
STD-RAG with 2-way retrieval 31.64 23.87 26.77 25.48 17.54 2.12 11.40 17.24 5.23 2.04 0.71
STD-RAG with Merged KB 35.55 26.75 28.13 30.63 18.06 2.33 12.18 19.03 6.07 2.30 0.74
Misknow-RAG with Wiki 32.03 21.31 23.76 23.56 18.32 2.05 11.62 18.28 5.47 1.86 0.54
Misknow-RAG with QA Pairs 33.20 25.22 28.22 27.16 18.78 2.43 12.18 18.88 6.02 2.19 0.82
Misknow-RAG with Wiki+QA Pairs 33.20 24.45 27.03 27.22 18.06 2.38 11.54 18.22 5.92 2.15 0.79
Misknow-RAG with QA Pairs+Wiki 35.94 27.27 29.55 30.02 18.44 2.45 11.70 18.51 6.12 2.48 0.90
Misknow-RAG with Merged KB 41.41 26.80 28.83 27.78 18.84 2.52 12.64 19.61 6.43 2.82 1.30

Table 1: A comparison of results from different baselines on the NQ and Huatuo test set. Our framework retrieves
from different knowledge bases (i.e., Wikipedia(Wiki), history QA pairs(QA Pairs), or a merged knowledge base
(Merged KB)). The symbol "-" indicates that the result is not available. We bold the best performance.

and prompt the LLM to summarize documents into
pseudo QA pairs in the test set. This process yields
128K QA pairs, which undergo a deduplication
procedure using MD5 hashing. Furthermore, we
merge all the document chunks with history QA
pairs to get a merged knowledge base with 7.3M
text chunks, followed by a similar deduplication
process.

For Huatuo-26M evaluation, we use all the pro-
vided encyclopedia articles, segmenting them into
text chunks of 400 tokens to construct the medical
Wikipedia knowledge base, while using all the con-
sultant records to construct QA pairs. Furthermore,
we merged all the encyclopedias with consultant
records, getting 9M text chunks for the merged
knowledge base.

During evaluation, we use normalized exact
match (EM) and word-level F1-score to compare
the final prediction with the ground truth. For the
medical open-domain QA task, we use ROUGE
and BLEU scores to evaluate. As the ground-truth
QA pairs are not available across most datasets,
we apply the LLM-as-a-Judge paradigm (Gu et al.,
2025) to comprehensively evaluate if the retrieved
contexts contains all the necessary information
to answer user query. Specifically, we develop
the context recall metric with DeepSeek-V33 (i.e.
DeepSeek (DeepSeek-AI et al., 2024)4). First, we
prompt DeepSeek-V3 with Q and A to get labeled
ground truth contexts GTC , which contain all the
necessary knowledge responding to the user query.

3It is worth noting that we choose DeepSeek-V3 as it
is much cheaper and classified outputs are relatively small
compared with DeepSeek-R1

4Limited by our budget, we randomly sample 256 data
from NQ validation set and 128 consultation data from Huatuo-
26M for evaluation.

Then, we further prompt it to independently judge
if the retrieved context could be attributed to the
GTC . Specifically, the output is a list containing at-
tribution judgement of contexts with reason, which
is like “{‘context’: string, ‘attributed’:
boolean, ‘reason’: string}”. Finally, we
could calculate the context recall score with the
following formula:

context_recall =

∑|C|
i=1 1attributed[i](Ci)

|GTC |
, (4)

where C represent the retrieved contexts.

Dataset Knowledge Base # Text Chunks

Natural Questions
Wikipedia 4,760,729
History QA Pairs 2,500,931
Merged KB 7,261,660

Huatuo-26M
Wikipedia 231,528
History QA Pairs 8,802,233
Merged KB 9,033,761

Table 2: Text chunk statistics about the knowledge bases
across different datasets.

3.2 Baselines

Since our primary focus is on exploring the distri-
bution gap between queries and different knowl-
edge bases, alleviating missing knowledge issues,
thereby improving the accuracy of open-domain
question answering and the completeness of re-
trieved contexts. We primarily consider the follow-
ing category of baselines: (1) DirectGen, whose
answer is directly generated by prompting the
reader LLM. (2) CoT (Wei et al., 2022) which
generate responses in a chain-of-thought paradigm
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following “Let’s think step by step". (3) MIGRES,
Wang et al. (2025a) introduce a state-of-the-art
pipeline-based framework for determining miss-
ing information and its entailment. To ensure a
fair comparison, we employ the identical backbone
LLM. (4) STD-RAG, which is the standard RAG
framework using various knowledge bases (i.e.,
Wikipedia, QA pairs, or the merged KB), which
might affect retrieval and generation performance
due to the distribution gap. This includes different
retrieval combinations: (i) Simply retrieve from
Wikipedia, history QA pairs, or the merged knowl-
edge base with top-K contexts. (ii) 2-way retrieval,
denotes separately retrieve top−K

2 text chunks from
Wikipedia and QA pairs. (5) Misknow-RAG ex-
tends RAG by explicitly identifying missing knowl-
edge and checking knowledge conflicts simultane-
ously with a reasoner LLM during retrieval and
generation, considering the interconnection among
query, contexts, missing knowledge, and its corre-
sponding query.

3.3 Main Results
As shown in Table 1, we observe that our approach,
which leverages explicit reasoning based on miss-
ing knowledge retrieval, achieves gains of 11.41%
in EM and 1.65% in ROUGE-1 on both general
and medical QA benchmarks, outperforming the
current state-of-the-art.

Furthermore, compared with the standard RAG
pipeline, our reasoning-based missing knowl-
edge retrieval method yields a 5.34% EM and
1.62% ROUGE-1 improvement when sourcing
from Wikipedia, and a 1.95% EM and 2.03%
ROUGE-1 improvement when sourcing from QA
pairs, under the same retrieval budget. As presented
in the Appendix A, this might be attributed to the
effective missing knowledge retrieval while veri-
fying information during reasoning (Dhuliawala
et al., 2024).

Moreover, replacing Wikipedia with QA pair re-
trieval delivers additional gains of 3.91% EM and
4.24% F1 on the NQ dataset, and 0.14% ROUGE-1
and 0.80% BLEU-1 on Huatuo. This improve-
ment could be attributed to the reduced semantic
gap between the query and knowledge bases, as
QA pairs tend to be more colloquial and therefore
more closely aligned with user intents. As shown
in Table 7, compared with the medical passages
retrieved from Wikipedia, QA pairs more directly
address the user’s query concerning “Ejiao syrup”
and “improving my condition” and provide

more detailed therapeutic recommendations, such
as “do more exercise” or “take Astragalus
granules”. Interestingly, we also observe that our
approach improves at most 4.3% EM and 0.9%
ROUGE-1 score compared with the naive 2-way
retrieval methods, which implies the effectiveness
of our missing knowledge retrieval in supplement-
ing critical information and thus enhancing overall
accuracy.

Finally, by leveraging a merged knowledge base
comprising both Wikipedia passages and QA pairs,
our framework attains an EM score of 41.41% and a
ROUGE-1 score of 18.84%. This performance gain
could be attributed to the enhanced richness of the
knowledge base, which facilitates more effective
retrieval of relevant passages.

Dataset Method QA Pairs Recall Wiki Recall

Natural Questions
2-way retrieval 48.31 57.83
Mis Wiki+QA pairs 56.4 57.12
Mis QA Pairs+Wiki 48.51 59.76

Huatuo-26M
2-way retrieval 32.87 27.31
Mis Wiki+QA pairs 35.28 27.23
Mis QA Pairs+Wiki 33.05 29.01

Table 3: Results of context recall for QA pairs and
Wikipedia chunks across different methods on NQ and
Huatuo. Notably, the number of retrieved text chunks is
identical for evaluation.

3.4 Benefits with Missing Knowledge
Retrieval

In this subsection, we explore the role of missing
knowledge retrieval with context recall described in
Eq.4 under two settings: 2-way retrieval, where we
calculate metrics for QA pairs and Wiki chunks sep-
arately, and retrieval from the same source, where
we compare naive context recall metrics.

Specifically, under the standard 2-way retrieval
setting, two passages are drawn from Wikipedia
and two from QA pairs. In contrast, in the missing
knowledge retrieval setting (i.e., Mis Wiki + QA
pairs in Table 3), we first retrieve two passages
from Wikipedia and then utilize missing knowl-
edge retrieval to extract the remaining two from
the QA pairs. Table 3 shows that compared with
the 2-way retrieval method, we could obtain 8.09%
and 1.93% context recall improvement with miss-
ing knowledge retrieval from QA pairs and Wiki
chunks for the NQ dataset, respectively. And we
also obtain 2.41% and 1.7% context recall improve-
ment retrieved from QA pairs and Wiki chunks for
the Huatuo dataset, which directly improves the rel-
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evancy of retrieved passages within the reasoning
process. More generally, Table 4 also presents an
overall performance gain in recall.

More generally, Table 4 also presents an overall
performance gain in recall while retrieving from the
same source. To be specific, we evaluate the recall
of retrieved contexts between the original query
and the missing knowledge query with the same
number of retrieved text chunks. Our approach
improves 2.69% and 0.82% recall while utilizing
Wiki and QA pairs on NQ, respectively, and 0.45%
and 2.17% on Huatuo.

Methods Natural Questions Huatuo-26M

OrigQ MisQ OrigQ MisQ

Wiki 54.79 57.48 34.91 35.36
QA Pairs 36.29 37.11 39.07 41.24

Table 4: Evaluation on the retrieved contexts utilizing
original query and the missing knowledge queries with
recall scores across different datasets.

3.5 Impact of the Reasoning Enhanced
Method

In this subsection, we conduct ablation studies
to demonstrate the effectiveness of of reasoning
framework. As shown in Table 5, the experimental
results indicate that leveraging reasoner models to
generate chain-of-thought reasoning content sig-
nificantly improves the response accuracies across
all retrieval settings. This improvement can be
attributed to the generated reasoning chain might
incorporate factual knowledge, validating the cor-
rectness of the retrieved passages or the explicit
analysis of the missing knowledge, which yields
more precise queries.

Table 6 presents an example that illustrates
the above analysis in detail. Considering the
question “Who has the most all-star mvp
awards?”, the reasoner model generates “the
provided contexts don’t explicitly list
the number of awards each player has”
and “players like Kobe Bryant or LeBron
James could have more”. By incorporating
such external knowledge, the LLM reader iden-
tifies missing knowledge such as “Confirmation
of the current record for All-Star MVP
awards” and generates a more accurate response
“Bob Pettit, Kobe Bryant, LeBron James
compared with the first-round answer.

Table 6 furnishes a detailed example that elu-
cidates the foregoing analysis. Taking the ques-
tion “Who has the most All-Star MVP awards?” as
an illustrative case, the reasoner model’s missing-
knowledge analysis observes that “the provided
contexts do not explicitly list the number of awards
each player has” and further conjectures that “play-
ers like Kobe Bryant or LeBron James could have
more.” By incorporating such external knowledge,
the model successfully identifies the precise infor-
mation gap—namely, confirmation of the current
record for All-Star MVP awards.

Methods Natural Questions Huatuo-26M

EM F1 ROUGE_1 BLEU_1

Wiki 32.03 21.31 18.32 18.28
w/o reasoning 30.47 21.29 18.05 17.87

QA Pairs 33.20 25.22 18.78 18.78
w/o reasoning 32.81 24.65 18.12 17.89

Wiki+QA Pairs 33.20 24.45 18.06 18.22
w/o reasoning 32.42 23.85 17.94 17.91

QA Pairs+Wiki 35.94 27.27 17.92 18.18
w/o reasoning 35.16 27.20 17.66 18.03

Merged KB 41.41 26.80 18.84 19.61
w/o reasoning 37.11 25.74 18.63 19.13

Table 5: Ablation results on reasoning content of miss-
ing knowledge RAG framework.

3.6 Comparative Analysis of Missing
Knowledge and Standard top-K Retrieval

In this subsection, we offer a fair comparison be-
tween standard RAG and our proposed method to
demonstrate the improved coverage of retrieved
text chunks, which leads to more accurate final
responses.

Specifically, we perform domain-specific exper-
iments on Huatuo-26M with missing knowledge
RAG and standard RAG, and then evaluate how
comprehensively the retrieved passages encompass
the pertinent knowledge to answer questions, as
well as the accuracy of the generated responses,
using context recall in Eq.4 and ROUGE-1 scores.
As shown in Figure 3, we find that RAG with miss-
ing knowledge queries achieves better results in
recall and ROUGE, especially for retrieving from
QA pairs, which could be explained by Wikipedia
passages offering extensive knowledge compared
with QA pairs, which are short but more targeted to
the queries. And as top-K becomes larger, the gap
in performance between missing knowledge RAG
and standard RAG becomes smaller. This could be
rationalized by the sufficient context to answer the
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Figure 3: Comparison results of missing knowledge and
standard RAG on context recall and ROUGE-1 scores
across different top-K.

4 Related Work

Iterative RAG with missing knowledge To en-
hance reasoning ability within the RAG pipeline,
there are primarily two approaches: One relies
on teaching the model how to think utilizing in-
ternal parameter knowledge. Qian et al. (2024)
proposes to use a parameteric memory module to
generate context cues before retrieval, to bridge
the gap between query and knowledge base. Is-
lam et al. (2024) proposes to use hybrid adaptive
retrieval to effectively determine relevant and sup-
ported contexts. Another line lies in optimizing
reasoning through an external process with a pow-
erful LLM such as GPT-3.5 to generate follow-up
thinking steps (Press et al., 2023; Yao et al.). Kim
et al. (2024) proposes a RAG system with query
decomposation and expansion. Jiang et al. (2024)
and Wang et al. (2024) utilize Monte-Carlo Tree
Search to find optimal chunk combinations, and
Feng et al. (2025) aims at enhancing the model’s
self-consistency at test time.

These methods primarily focus on refining the
reasoning space, addressing complex problems in

the RAG system, which might ignore distribution
gaps between queries and knowledge bases. Wang
et al. (2025a) proposes to extract missing informa-
tion and generate queries within separate modules,
whereas Trivedi et al. (2023) performs iterative
retrieval through multi-step reasoning. Inspired
by their works, to solve the missing knowledge
problem and explore distribution gaps in a special
domain, we build a single-pass way to generate
formatted missing knowledge queries from differ-
ent knowledge sources. Our approach could not
only avoid error propagation between modules but
also leverage the interconnections among queries,
contexts, and the missing knowledge. Furthermore,
we utilize the reasoning content produced by the
missing knowledge analysis phase, which encom-
passes verification signals about retrieved contexts
to further enhance overall accuracy.

Query generation in RAG To capture user in-
tent accurately with informal spoken expressions
in queries, query rewriting seems to be a promising
solution. Many efforts focus on training a query
rewriting module to better align with user’s intent
(Ma et al., 2023; Wang et al., 2025b). This might
improve the recall of retrieved contexts, further
enhancing the overall accuracy of the reader’s re-
sponse. Li et al. (2024) proposes to train a uni-
fied model to simultaneously generate fine-grained
clues and evidence.

Motivated by these approaches, we explore meth-
ods with different knowledge bases for generating
appropriate missing knowledge queries while mit-
igating the gap between informal spoken expres-
sions and professional documentation.

5 Conclusion

We comprehensively explore the distribution gap
between query and text chunks with in knowledge
bases by leveraging multi-source knowledge bases
in a real-world question answering system. Fur-
thermore, to mitigate the missing knowledge prob-
lem, we propose a reasoning-based missing knowl-
edge RAG framework, which introduces single-
pass missing knowledge query generation. By ex-
plicitly modeling the interconnections among the
query, retrieved contexts, missing knowledge, and
its corresponding query, our approach enhances
the relevance and completeness of retrieved knowl-
edge, considering the above distribution gap as well
without additional training.
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Limitation

Our work primarily focuses on addressing the dis-
tribution gap between queries and knowledge bases
by exploring different knowledge sources, rather
than optimizing the retrieval mechanism itself. To
ensure a fair comparison, we employ a widely used
dense retriever, leaving the exploration of advanced
retrieval techniques for future work.

Ethical Statement

This study complies with ethical standards by using
open-sourced data and avoiding sensitive personal
information. Our research improves accuracy and
reliability for the widely used QA system, ensuring
no harm to individuals or communities.
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A Case Study of Reasoning Based
Missing Knowledge Retrieval

In this section, we present case studies derived
from the NQ and Huatuo datasets, encompassing
both general and medical open-domain QA scenar-
ios. For each original query and its corresponding
missing knowledge query, we retrieve top−K

2 text
passages from Wikipedia or QA pairs.

The examples provided in Table 6 and Table 7
demonstrate that QA pairs are more closely aligned
with the query intent, particularly in colloquial
contexts such as the query “the most all star
mvp awards”. Furthermore, within our proposed
framework, the reasoning process involved in an-
alyzing missing knowledge proves beneficial to
the final response. This is because the accuracy
of the retrieved knowledge is verified during the
reasoning process, and any missing knowledge is
subsequently retrieved through additional queries.
Specifically, in Table 7, the final responses in-
clude more detailed treatment recommendations,
such as “examination, Astragalus and goji
berries”.

B Prompt Used for Missing Knowledge
and Response Generation

In this section, we describe the prompts used for
generating missing knowledge queries and the final
responses.

B.1 Prompt for Missing Knowledge and
Query Generation

Figure 4 illustrates the prompt we employ to gen-
erate missing knowledge and the corresponding
queries step by step. When provided with the user’s
query and the retrieved contexts as input, the model
returns a JSON-formatted answer.

B.2 Prompt for Response Generation

Figure 5 presents the prompt used for answer gen-
eration. It integrates two key components: (1) the
missing knowledge represented by the “thought”
output from the missing knowledge generation
phase shown in Figure 4, which provides a de-
tailed analysis of the contexts, and (2) the reasoning
content, which supplies verified information about
specific contextual details. The prompt takes the
user’s query together with the above components
as inputs and returns the final prediction.

C Prompt Used for Evaluating Context
Recall

Figure 6 illustrates prompts utilized for generating
ground truth contexts, which are then used to obtain
the classification results and compute the recall
defined in Eq. 4. A detailed example is listed in
Figure 7, where “attributed” denotes whether an
individual ground-truth context is presented among
the retrieved contexts.
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Query Retrieval Context Response

Question:
Who has the
most all star
mvp awards?
Gold Answer:
Bob Pettit,
Kobe Bryant

Wiki: Document[1]: Westbrook (
2015 , 2016 ) are the only players
to win consecutive awards... Jordan,
Pettit and O’Neal did this multiple
times... Document[2]: ... Kareem
Abdul - Jabbar has the distinction of
playing in the most All - Star Games
( 18 ) Document[3]: Pettit ( 1956 )
, Bob Cousy ( 1957 ) , Wilt Cham-
berlain ( 1960 ) , Bill Russell ( 1963
)... all won the All - Star Game MVP
and the NBA Most Valuable Player
Award... Document[4]: NBA All -
Star game records - wikipedia NBA
All - Star game records Jump to :
navigation... Bob Pettit was named
MVP of the NBA All - Star Game
four times...

First Round Answer: Bob Pettit holds the record
with 4 All-Star MVP awards. Reasoning Content:
Okay, let’s tackle this step by step. The question is
asking who has the most All-Star MVP awards. The
retrieval contexts provided mention several players...
The first-round answer states that Bob Pettit holds
the record with 4 All-Star MVPs based on general
knowledge. However, the provided contexts don’t ex-
plicitly list the number of awards each player has ...
Therefore, the answer relies on external knowledge
not present in the context, indicating missing infor-
mation. Missing Knowledge: Additional knowledge
about the total count of All-Star MVP awards for
each player, Clear identification of the player(s) with
the most All-Star MVP awards Final Response: Bob
Pettit

QA Pairs: Q1: Who won the mvp

at the all-star game ? A1: LeBron
James... 1955 Bill Sharman... 1956
Bob Pettit... 1957 Bob Cousy... 1958
Bob Pettit... 1959 Elgin Baylor...
1960 Wilt Chamberlain... 1961 Oscar
Robertson... 1962 Bob Pettit... Q2:
Who has the most mvp awards in bas-
ketball? A2: ... Both Bill Russell and
Michael Jordan won the award five
times , while Wilt Chamberlain and
LeBron James won the award four
times... Q3: Who has won the most
mvp awards in the nba? A3: ... Ka-
reem Abdul - Jabbar won the award
a record six times... while Bob Pettit
, Karl Malone , Tim Duncan , Steve
Nash and Stephen Curry have each
won it twice... Q4: Who has won
the most mvp awards in basketball?
A4: ... Only two rookies have won
the award : Wilt Chamberlain in the
1959 – 60 season and Wes Unseld in
the 1968 – 69 season . Hakeem Ola-
juwon of Nigeria , Tim Duncan of
the U.S. Virgin Islands , Steve Nash
of Canada and Dirk Nowitzki of Ger-
many are the only MVP winners con-
sidered “ international players ” by
the NBA .

First Round Answer: Bob Pettit with 4 awards.
Reasoning Content: Okay, let’s tackle this question
step by step. The user is asking who has the most
All-Star MVP awards... Notable entries here include
Bob Pettit with 4 awards (1956, 1958, 1959, 1962).

The first-round answer states Bob Pettit with 4
awards. However, I need to verify if there’s any men-
tion of other players with more than 4 awards in the
provided contexts. The second context talks about
regular season MVP awards, not All-Star MVPs...
The NBA’s All-Star Game continued beyond 1964, so
players like Kobe Bryant or LeBron James could

have more , but the retrieval contexts here don’t
provide that information... Wait, the question is
about All-Star Game MVPs, not regular season. The
first context lists All-Star MVPs, and Pettit has 4...
Hence, according to the provided context, the answer
is correct, but there’s missing info needed to answer
the question fully... Missing Knowledge: Additional
knowledge about The name of the person(s) with
the most All-Star MVP awards, Confirmation of
the current record for All-Star MVP awards Final
Response: Bob Pettit, Kobe Bryant , LeBron James

Table 6: A case study on Natural Questions that presents both the reasoning process and the final response. The key
information is annotated in red box .
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Query Retrieval Context Response

Question: I am
30 years old, an
office worker in
a sub-health
state: I always
feel weak and
lack energy.
My family
consulted an
expert, who
said that with
qi and blood
deficiency one
can take
compound
Ejiao syrup. I
would like to
ask the doctor:
can taking
compound
Ejiao syrup
really improve
my condition
Gold Answer:
For those
chronically
weakened by
long-term
illness, it is
indeed possible
to take
compound
Ejiao syrup,
which can
effectively
tonify qi and

blood and
improve bodily
weakness. It is
recommended
to combine it
with a
balanced diet ,

engage in
practical
outdoor
exercise , and

persist over
time in order to
strengthen the
body.

Wiki Document[1]: ... full of qi, blood,
and spirit... when these three energies are
insufficient, the body will exhibit various
"sub-health" symptoms... The simplest
method for tonifying qi and blood is gin-

ger and brown sugar water, or porridge
made of black glutinous rice, longan, and
red dates... Document[2]: How long must
one tonify qi and blood before regaining
health... avoid picky eating, and achieve
nutritional balance ... Document[3]: Cas-

sia seeds... are believed to pacify the
liver and subdue yang, clear the liver, and
brighten the eyes... Document[4]: Fuzi’s
efficacy and functions: Fuzi can enhance
myocardial contractility, accelerate heart
rate, increase cardiac output, and raise my-
ocardial oxygen consumption...

First Round Answer: Compound Ejiao Syrup
is a commonly used TCM formulation with
certain regulatory effects for symptoms such
as fatigue and pale complexion caused by de-
ficiency of both qi and blood... It’s best to
first consult a professional doctor... Addi-
tionally, adjusting lifestyle habits is important,
such as ensuring adequate rest and a balanced
diet... Reasoning Content: ... the retrieved
text lacks specific knowledge regarding Com-
pound Ejiao Syrup, such as its efficacy and
indications... the retrieved text contains gen-
eral information about qi and blood deficiency...
Missing Knowledge: The efficacy of Com-
pound Ejiao Syrup, The usage of Compound
Ejiao Syrup, The safety of Compound Ejiao
Syrup Final Response: Compound Ejiao Syrup
can effectively help improve symptoms caused
by deficiency of both qi and blood , first visit

a hospital... combined with a healthy lifestyle

and a balanced diet ... don’t forget to sched-
ule regular follow-up visits so as to monitor
changes in your condition and the efficacy of
the medication.

QA Pairs: Q1: A 28-year-old office
worker always feeling very fatigued... A
friend recommended I take Compound
Ejiao Syrup to tonify qi and blood and
improve subhealth— is this really tar-
geted? A1: You can take it; the effect
is quite good. You can also take some
Astragalus granules together to tonify...

Be sure to get plenty of rest and avoid
overexertion, and also try to get some
sun and do some exercise ... Q2: ...
I’ve heard that taking Compound Ejiao
Syrup can effectively eliminate these sub-
health symptoms... Is this true? A2:
Compound Ejiao Syrup can effectively
eliminate subhealth symptoms caused by
blood deficiency ... Q3: ... what symp-

toms deficiency of both qi and blood can
lead to? A3: ... seek medical attention
promptly to avoid delaying treatment. Q4:
... I feel so tired that I don’t want to get out
of bed, and have no strength to work. A4:
... If possible, take some blood-nourishing
and spleen-fortifying formulas, such as
Yangxue Guipi Pills or Guipi Pills...

First Round Answer: Compound Ejiao Syrup
does have certain beneficial effects on phys-
ical weakness caused by deficiency of both
qi and blood... adjusting your lifestyle is
also very important, such as ensuring ade-
quate sleep, a balanced diet, and moderate ex-
ercise... Reasoning Content: ... but they re-
quire combination with other medicines such
as Astragalus granules, as well as exercise and
rest... other conditions unsuitable for use ...
Missing Knowledge: Contraindications of
Compound Ejiao Syrup, Specific medical cri-
teria for symptoms suitable for Compound
Ejiao Syrup Final Response: You can try
taking Compound Ejiao Syrup; it helps with
qi and blood deficiency . But it’s best to go to

the hospital for a thorough examination ... un-
der a doctor’s guidance for greater safety. At
the same time, pay attention to a balanced diet ,
more exercise , and ensure adequate sleep ...

you can also combine it with dietary therapy
such as Astragalus and goji berries ...

Table 7: A translated case study on Huatuo. We present both the reasoning process and the final response, where the
key information is annotated in red box

.
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<|system|>
You are a knowledge expert proficient in JSON formats.
## Instructions
Given a question, retrieval contexts, and a predicted answer, your task is to determine if the provided
contexts are sufficient to answer the question or if additional knowledge is required. If additional knowledge is needed,
rewrite it as a short query closely related to the main entity in the question.
### Requirements
Proceed step by step as follows:
- First, based on the question and the initial answer, determine if the answer is incomplete or if the retrieval contexts lack
the knowledge required to answer the question.
- Second, if so, list the missing knowledge and generate the corresponding query.
- Third, output your reasoning and a JSON dict containing the fields “thought”, “judge”, “missing_knowledge”,
and “query”, adhering strictly to the JSON format.
- Queries should be short, precise, and closely related to the main entity in the question.
## Output Format
Provide a JSON dict in a markdown code block:
Key-value descriptions:
- thought: Analysis of the correctness and relevance of the retrieved context.
- judge: Whether the knowledge is missing.
- missing_knowledge: List of the missing knowledge points.
- query: List of queries corresponding to the missing knowledge.
## Examples
{few-shot examples}

<|user|>
## Question
{user query}
## Retrieval Context
{retrieved contexts}
## First-round answer

Figure 4: Prompts for missing knowledge query generation.

|<system>|
## Instructions Please carefully read the following context and briefly answer the question with essential keywords or
short phrasesbased on the context.
## Requirements
- Ensure that your answer is highly relevant to the provided contexts and missing knowledge contexts.
- The answer should be short, concise, and as accurate as possible without explanation.
- If it is not mentioned in the context, briefly answer with your own knowledge.
## Examples
{one-shot example}

|<user>|
## Context
{retrieved contexts}
## Missing Knowledge Context
Additional knowledge about {missing knowledge}
keywords from reasoning process: {reasoning content}
{retrieved missing knowledge contexts}
## Question
{user query}
## Answer

Figure 5: Prompts for reasoning enhanced answer generation.
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Generate Ground Truth Contexts:
You are a professional knowledge assistant. Given a question and an answer, analyze the context or evidence knowledge needed
to answer the question. Output json with context. Use the same language as the actual task.
The output should be a well-formatted JSON instance that conforms to the JSON schema below.
As an example, for the schema
{“properties”: {“foo”: {“title”: “Foo”, “description”: “a list of strings”, “type”: “array”,
“items”: {“type”: “string”}}}, “required”: [“foo”]}
the object {“foo”: [“bar”, “baz”]} is a well-formatted instance of the schema.
The object {“properties”: {“foo”: [“bar", “baz”]}} is not well-formatted.
Here is the output JSON schema:
{schema}
Examples:
few-shot examples
Your actual task:
Question:
{user query}
Answer:
{ground truth}
Contexts:

Generate Classification Results:
You are a professional knowledge assistant. Given a question, retrieved contexts and ground truth statements
, analyze each sentence in the statements can be attributed to a given context or not. Use only "Yes" (1) or "No" (0)
as a binary classification. Output json with reason. Use the same language as the actual task.
The output should be a well-formatted JSON instance that conforms to the JSON schema below.
As an example, for the schema
{“properties”: {“foo”: {“title”: “Foo”, “description”: “a list of strings”, “type”: “array”,
“items”: {“type”: “string”}}}, “required”: [“foo”]}
the object {“foo”: [“bar”, “baz”]} is a well-formatted instance of the schema.
The object {“properties”: {“foo”: [“bar", “baz”]}} is not well-formatted.
Here is the output JSON schema:
{schema}
Examples:
few-shot examples
Your actual task:
Question:
{user query}
Contexts:
{retrieved contexts}
Ground Truth:
{ground truth}
Classification:

Figure 6: Prompts for generating ground-truth contexts and performing entailment classification for retrieval
contexts.
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Query:
Who plays hannibal in silence of the lambs?

Retrieved Contexts:
“who played hannibal lecter in silence of the lambs Anthony Hopkins, Anthony Hopkins as Dr. Hannibal Lecter”, “who played hannibal lecter in silence
of the lamb Anthony Hopkins, Anthony Hopkins as Dr. Hannibal Lecter”, “who was the actor in silence of the lambs Frank Theodore "Ted" Levine, Frank
Theodore Ted Levine ( born May 29 , 1957 ) is an American actor . He is known for his roles as Buffalo Bill in The Silence of the Lambs and as Captain
Leland Stottlemeyer in the television series Monk .”, “who starred in the silence of the lambs Jodie Foster, Anthony Hopkins, Scott Glenn, Ted Levine, The Silence
of the Lambs Theatrical release posterDirected by Jonathan Demme Produced by Kenneth Utt Edward Saxon Ron Bozman Screenplay by Ted Tally Based on
The Silence of the Lambs by Thomas Harris Starring Jodie Foster Anthony Hopkins Scott Glenn Ted Levine Music by Howard Shore Cinematography
Tak Fujimoto Edited by Craig McKay Production company Strong Heart / Demme Production Distributed by Orion Pictures Release date January 30,
1991 ( 1991 - 01 - 30 ) ( New York City ) February 14 , 1991 ( 1991 - 02 - 14 ) ( United States ) Running time 118 minutes Country
United States Language English Budget 19 million Box office 272.7 million”

Ground Truth:
{“context”: “Anthony Hopkins is a Welsh actor, director, and producer.”}, {”context”: “Anthony Hopkins portrayed the character Hannibal Lecter in
the 1991 film The Silence of the Lambs.”}, {“context”: “The Silence of the Lambs is a 1991 American horror-thriller film directed by
Jonathan Demme and starring Jodie Foster and Anthony Hopkins.”}

Classification Results:
{
“statement”: “Anthony Hopkins is a Welsh actor, director, and producer.”,
“attributed”: 0,
“reason”: “The context does not mention Anthony Hopkins being a Welsh actor, director, and producer.”
},
{
“statement”: “Anthony Hopkins portrayed the character Hannibal Lecter in the 1991 film The Silence of the Lambs.”,
“attributed”: 1,
“reason”: “The context explicitly states that Anthony Hopkins played Hannibal Lecter in The Silence of the Lambs.”
},
{
“statement”: “The Silence of the Lambs is a 1991 American horror-thriller film directed by Jonathan Demme and starring Jodie Foster and Anthony Hopkins.”,
“attributed”: 1,
“reason”: “The context mentions that ’The Silence of the Lambs’ stars Jodie Foster and Anthony Hopkins, and is directed by Jonathan Demme.”
}

Figure 7: An illustrative example of context classification
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