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Abstract

The rise of generative AI has led to chal-
lenges in distinguishing AI-generated text from
human-written content, raising concerns about
misinformation and content authenticity. De-
tecting AI-generated text remains challeng-
ing, especially under various stylistic domains
and paraphrased inputs. We introduce SGG-
ATD, a novel detection framework that mod-
els structural and contextual relationships be-
tween LLM-predicted and original-input text.
By masking parts of the input and reconstruct-
ing them using a language model, we capture
implicit coherence patterns. These are encoded
in a graph where cosine and contextual links
between keywords guide classification via a
Graph Convolutional Network (GCN). SGG-
ATD achieves strong performance across di-
verse datasets and shows resilience to adver-
sarial rephrasing and out-of-distribution inputs,
outperforming competitive baselines.

1 Introduction

In an era where machines write as fluently as
humans, we are entering a new chapter in how
information is produced, consumed, and trusted.
Large Language Models (LLMs) such as GPT-4
(Achiam et al., 2023), Claude (Anthropic, 2023),
and LLaMA (Touvron et al., 2023) have made it
nearly effortless to generate essays, news articles,
reviews, and even research papers with human-like
fluency. What was once an imaginative leap, a ma-
chine composing coherent and contextually accu-
rate paragraphs, is now commonplace. The bound-
ary between synthetic and authentic language is
becoming indistinguishable to the naked eye.

As this generative capability becomes more ac-
cessible and widespread through models like GPT
(Brown et al., 2020), BERT (Devlin et al., 2019),
and T5 (Raffel et al., 2020), its applications have ex-
panded rapidly to include content creation, conver-
sational agents, and real-time translation (Vaswani

et al., 2017; Open, 2023). However, this growing
realism brings profound challenges: from misinfor-
mation and fake news propagation to academic dis-
honesty and erosion of digital trust (Bender et al.,
2021; Weidinger et al., 2021; Zellers et al., 2019;
Gupta et al., 2025). With AI-generated content be-
coming nearly indistinguishable from human writ-
ing, questions around authorship, authenticity, and
accountability are now more urgent than ever.

As these models seamlessly blend into commu-
nication workflows, a new and urgent challenge
emerges. Educators, journalists, policymakers,
and even AI developers are increasingly grappling
with a pressing question: How do we determine
who—or what—authored a piece of text? From
student assignments generated at the push of a but-
ton to fabricated news articles and automated spam
campaigns, the misuse of LLMs has already begun
to erode trust in written communication. Existing
detection methods are increasingly ineffective. Tra-
ditional approaches (Gehrmann et al., 2019; Afroz
et al., 2012) rely on shallow linguistic features or
supervised classifiers trained on known model out-
puts. While effective on benchmarks, they often
fail to generalize across domains or resist adver-
sarial rewriting and stylistic obfuscation (Mitchell
et al., 2023; Verma et al., 2023). As a result, AI-
generated text can be easily manipulated to appear
human, highlighting the need for deeper, structure-
aware detection frameworks.

At the heart of this dilemma lies a deeper
question—not just whether a piece of text is AI-
generated, but whether its structure and predictabil-
ity reveal traces of its origin. Human language,
while flexible and expressive, carries with it natu-
ral irregularities and subtleties rooted in reasoning,
creativity, and intent. AI-generated text, by con-
trast, is often more formulaic, exhibiting higher
token-level predictability and stylistic consistency.
Capturing this difference requires methods that can
perceive and represent the interplay between mean-
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ing, context, and linguistic structure.
However, most existing detection methods fail

to operationalize this structural perspective. De-
spite recent advances, two major limitations per-
sist. (1) Lack of structural reasoning: While prior
work recognizes that AI-generated text tends to ex-
hibit higher predictability, many existing methods
rely only on surface-level cues such as per-token
probabilities (Solaiman et al., 2019; Ippolito et al.,
2019) or shallow statistical features (Gehrmann
et al., 2019; Jawahar et al., 2020), failing to model
the deeper contextual and compositional structures
that give rise to these patterns. (2) Limited gener-
alization across varied domains: Existing detec-
tors such as Mitchell et al. (2023) and Verma et al.
(2023) often underperform when applied to unseen
domains or writing styles.

Building on this intuition, we propose a new ap-
proach to AI-generated text detection that leverages
masked language modeling to uncover patterns of
semantic coherence and contextual regularity. We
first extract content-rich keywords from the input
text and mask a fixed subset. A pretrained language
model predicts the masked keywords, and both the
extracted and predicted keywords are used to con-
struct a contextual graph. In this graph, nodes repre-
sent keywords, and edges encode lexical semantics
and contextual similarity. This structure allows our
framework to reason over meaning-based patterns
and generative signals, enabling more accurate and
robust classification.

Our method, SGG-ATD, a graph-based frame-
work for AI-generated text detection, addresses the
limitations outlined earlier by combining masked
language modeling with graph-based reasoning:

• We construct a graph connecting original key-
words and LLM-predicted keywords, enabling
the model to capture how words relate in both
meaning and context. This moves beyond iso-
lated word-level analysis and captures struc-
tural flows, key areas where AI-generated text
often diverges from human writing.

• We leverage masked keyword prediction to
help the model learn contextual predictabil-
ity across varied text types, including news,
essays, technical descriptions, and creative
writing. This facilitates robust detection of
generative patterns that generalize across do-
mains and styles.

• We conduct comprehensive empirical evalua-

tion across four datasets, demonstrating strong
generalization to out-of-distribution domains,
robustness to adversarial paraphrasing, and
effectiveness through ablation studies. Our
framework consistently outperforms strong
baselines in F1 score and robustness, validat-
ing the practical impact of our design.

By combining semantic meaning and LLM pre-
diction behavior within a graph structure, SGG-
ATD offers a unified framework for modeling con-
textual and structural signals, enabling more reli-
able detection of AI-generated content, even under
prompt variation or domain shifts.

2 Related Work

Large language models (LLMs) have significantly
improved machine-generated text, reducing the gap
with human writing. Early models like GPT-2 and
GPT-3 showcased few and zero-shot learning (Rad-
ford et al., 2019; Brown et al., 2020), with later
scaled versions (Chowdhery et al., 2023; Zhang
et al., 2022) enhancing tasks like instruction fol-
lowing and QA. Despite progress, studies (Jawahar
et al., 2020; Dou et al., 2021) noted linguistic gaps,
including lower factuality and coherence in early
outputs.

To detect AI-generated text, prior work lever-
aged surface features, probabilities, or neural cues.
Gehrmann et al. (2019) used token likelihoods,
Mitchell et al. (2023) analyzed log-probability cur-
vature, and Verma et al. (2023) scored tokens via
weaker models. Others like Chen et al. (2023) com-
bined DeBERTa with classifiers for strong results.
However, many methods depend on access to scor-
ing APIs or logits, limiting use with closed-source
LLMs.

Recent work moved beyond token-level cues by
incorporating structure and semantics. For exam-
ple, Mao et al. (2024) used rewriting-based detec-
tion, measuring changes after text rewriting, while
Valdez and Gómez-Adorno (2025) applied GNNs
to capture word co-occurrence patterns. These
methods aimed to overcome the limitations of
shallow-feature detectors.

Domain generalization emerged a key challenge
in detecting text from unseen models like GPT-4.
Bhattacharjee et al. (2024) used domain-adversarial
and contrastive learning to generalize without re-
training, while Bhattacharjee et al. (2023) framed
detection as domain adaptation, enabling transfer
from older to newer LLMs without labels. Both
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aim to future-proof detectors against rapid ad-
vances in generation technologies. Siddiq et al.
(2022), though effective, still relied on feature
alignment rather than deeper semantic grounding

In parallel, Watermarking-based detection also
saw renewed interest. Kirchenbauer et al. (2023)
introduced a soft watermark by biasing token dis-
tributions, while Zhao et al. (2023) proposed a
statistically robust version resilient to paraphras-
ing. Sadasivan et al. (2023) depended on stylistic
patterns or frequency-based features that can be
evaded through prompt rephrasing or synonym sub-
stitution. A survey by Kamaruddin et al. (2018)
reviewed earlier methods and noted challenges like
multilinguality and adversarial robustness. These
techniques offer post-hoc verifiability but rely on
model-side cooperation.

Despite progress, many detectors remain vul-
nerable to simple evasion tactics like rephrasing,
synonym swaps, or style shifts, which degrade per-
formance even in strong models (Mitchell et al.,
2023; Chen et al., 2023). Prompt-only attacks that
preserve meaning also fooled multiple detectors
(Zou et al., 2023; Zhang et al., 2024), raising con-
cerns about long-term robustness.

Prompt engineering has also played a dual
role—both in instructing models for tasks and in
enabling or defeating detection. Chain-of-thought
prompting, prefix tuning, and zero-shot reasoning
enhanced reasoning fluency in LLMs (Wei et al.,
2022; Li and Liang, 2021; Kojima et al., 2022).
However, these same mechanisms can be exploited
to disguise AI-generated text or control its stylistic
fingerprint as in Zhou et al. (2022).

Finally, questions of fairness and bias in detec-
tion remain largely underexplored. Liang et al.
(2023) found detectors often mislabel non-native
English as AI-generated, raising equity concerns.
Guo et al. (2023) showed AI text differs in tone and
formality, influencing its acceptability across tasks.

Together, this body of work underscores that de-
spite significant progress, AI-generated text detec-
tion remains challenging, particularly under adver-
sarial, cross-domain, and stylistically diverse sce-
narios. In response, our framework shifts focus to
the underlying structure and contextual predictabil-
ity of the text by modeling relationships between
original and LLM-predicted keywords. This alter-
native perspective aims to offer robustness in detec-
tion without relying on model-specific signatures.
A preliminary version of this work is included in
the author’s thesis Gupta (2025).

3 Method

In this section, we present our AI Text Detection
Framework, SGG-ATD (Figure 1), which combines
masked language modeling with graph-based rea-
soning to detect AI-generated text. It captures se-
mantic associations and contextual predictability
through a context-enriched graph. Figure 2 illus-
trates the full pipeline with an example input. The
framework consists of four key components.

1. Masking and Keyword Extraction: In our
framework, we begin by randomly masking
30% of the input text keywords, to simulate
partial context and expose underlying struc-
tural cues. Parallelly, we extract syntactically
meaningful keywords (nouns and verbs) from
the original input text using Part-of-Speech
(POS) tagging (Church, 1989).

2. Masked Keyword Prediction: The masked
input text is then passed through a pretrained
ALBERT-base-v2 model (Lan et al., 2019),
which predicts the missing keywords based on
surrounding context. These predictions pro-
vide insight into keyword-level predictability,
revealing structural regularities often present
in AI-generated content.

3. Graph Construction with Dual Similarity
Encoding: A graph is constructed where
nodes represent original and LLM-predicted
keywords. Edges are weighted using cosine
similarity and contextual similarity, which are
combined into a unified adjacency matrix for
graph-based reasoning.

4. Graph-Based Classification via GCN: The
constructed graph is processed using a two-
layer GCN (Kipf and Welling, 2016), which
propagates and aggregates information across
keyword nodes. A global graph representation
is then derived and passed to a classifier to de-
termine whether the input text is AI-generated
or human-written.

We highlight the novelty and contributions of
this framework as follows. (1) Predictive Masking
for Structural Signal: Unlike prior works, our ap-
proach probes contextual predictability by masking
semantic keywords and reconstructing them using
a pretrained language model, capturing generative
patterns often indicative of AI-written text. (2)
Dual Similarity Graph Encoding: The integration
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Figure 1: SGG-ATD detects AI-generated text by constructing a graph per input, where nodes are original and
predicted keywords. Edges encode lexical semantics (cosine) and contextual (prediction-based) similarity. A GCN
processes the graph for final classification.

of lexical semantics and contextual similarity into
a single graph structure enables more expressive
relational modeling. (3) Graph-Based Reasoning
over Prediction-Informed Graphs: We leverage
a Graph Convolutional Network (GCN) over the
constructed similarity graph to model higher-order
dependencies, supporting robust detection beyond
surface-level textual patterns.

3.1 Masking and Keyword Extraction
Given an input text, we randomly select a subset
of keywords M to be masked, where M ⊂ T and
T is the full sequence. Specifically, we mask 30%
of the keywords by replacing them with <mask>
tokens:

|M| = ⌊α|T |⌋, where α = 0.3 (1)

This produces a masked version of the input text
Tm, which is later used to probe contextual pre-
dictability through a language model. In parallel,
we extract a set of syntactically meaningful key-
words K = {k1, k2, . . . , kn} from the original text
using part-of-speech (POS) tagging, focusing on
nouns and verbs for their semantic importance.

3.2 Masked Keyword Prediction
To expose latent structural differences between AI-
generated and human-written texts, we employ a
prediction step inspired by masked language mod-
eling (MLM). The masked input text is passed to
a pretrained ALBERT-base-v2 model (Lan et al.,
2019), which predicts the missing keywords based
on surrounding context.

Our hypothesis is that language models demon-
strate higher confidence and accuracy in recon-
structing masked keywords in AI-generated text,
due to its syntactic regularity and high dependency

on keyword-level patterns. In contrast, human-
written content—being more varied and context-
rich—leads to greater prediction uncertainty.

As illustrated in Figure 3, this behavioral differ-
ence becomes evident when comparing prediction
results across both text types. The figure shows
that AI-generated texts result in more accurate pre-
dictions, while human-written texts often produce
more incorrect keywords (incorrect predictions are
highlighted in blue), supporting our hypothesis.

The predicted keywords are treated as contex-
tual reconstructions and are later used to construct
a graph alongside the original keywords. Formally,
given a masked input text Tm, the predicted key-
words M̂ are obtained as:

M̂ = ALBERT(Tm) (2)

To ensure high-quality predictions, we filter out
punctuation and malformed outputs (e.g., incom-
plete tokens, symbols).

3.3 Graph Construction with Dual Similarity
Encoding

A graph representation of the text is constructed,
where nodes represent both original and LLM-
predicted keywords. We construct a similarity
graph where each node is connected to every other
node, and edges are weighted using two key simi-
larity measures: (1) Lexical Semantic Adjacency
Matrix (A): Captures semantic similarity between
words on subword-level lexical features using Fast-
Text embeddings (Bojanowski et al., 2017) via co-
sine similarity. (2) Contextual Similarity Matrix
(S): Encodes contextual alignment between origi-
nal and predicted keywords based on dot-product
similarity. These two similarity measures are com-
puted independently and reflect distinct aspects of
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Figure 2: An example illustrating the process of SGG-ATD.

textual structure: lexical semantics and contextual
predictability.

The lexical semantic adjacency matrix A and
contextual similarity matrix S are computed as:

Aij =
wi ·wj

∥wi∥∥wj∥
(3)

Sij = wi ·wj (4)

where wi and wj are FastText embeddings of
words i and j.

To form the final graph structure, we integrate
both signals by summing the two matrices:

A′ = A+ S (5)

The combined adjacency matrix A′ is then used as
input to the GCN for graph-based reasoning.

3.4 Graph-Based Classification via GCN

The constructed similarity graph is processed us-
ing a Graph Convolutional Network (GCN), which
operates on the enhanced adjacency matrix A′ that
encodes both lexical semantics and contextual sim-
ilarity. The GCN propagates information across
nodes to refine their embeddings and model higher-
order relationships relevant for classification.

Node embeddings are updated layer-wise as fol-
lows:

Z(i+1) = σ
(
D−1/2(A′ + I)D−1/2Z(i)W

)
(6)

where Z(i) is the node embedding at layer i, A′

is the modified adjacency matrix, D is the degree
matrix, W is a trainable weight matrix, and σ is
a non-linear activation function (e.g., ReLU). The
initial input Z(0) = X corresponds to the feature
matrix composed of FastText embeddings of the
original and predicted keywords.

After the final layer, the node representations are
aggregated using mean pooling to form a global
graph representation, and passed to a classifier:

ŷ = softmax(Classifier(MeanPool(Z))) (7)

Here, ŷ is the predicted label indicating whether
the input text is AI-generated or human-written.

3.5 Training and Evaluation
The GCN-based classifier is trained using a binary
cross-entropy loss function:

L = −
∑

i

yi log ŷi + (1− yi) log(1− ŷi) (8)

where yi ∈ {0, 1} is the true label (1 for AI-
generated, 0 for human-written), and ŷi is the pre-
dicted probability output from the model.

4 Evaluations

4.1 Datasets
To evaluate our approach, we use four diverse text
datasets spanning different writing domains and
linguistic styles:

• News Dataset (News) – Journalistic content
with a formal tone and fact-based reporting,
sourced from Verma et al. (2023).

• Creative Writing (CW) – Fictional and
narrative-driven samples featuring diverse vo-
cabulary and stylistic variation, also from
Verma et al. (2023).

• Student Essay (SE) – Academic-style writ-
ing with structured reasoning and moderate
complexity, derived from Verma et al. (2023).

• Vulnerability Dataset (Vuln) – Technical de-
scriptions of software vulnerabilities. We
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Figure 3: This illustration shows the rationale behind our masking strategy using examples from the vulnerability
dataset. 30% of keywords are masked in both AI and human examples. The language model predicts the masked
keywords, and differences in accuracy reveal predictability patterns across text types. Incorrect predictions (blue
keywords) occur more often in human-written text, indicating lower contextual predictability.

constructed this dataset ourselves: human-
written samples were taken from the NVD
(National Institute of Standards and Technol-
ogy), and AI-generated samples were created
using ChatGPT (Open, 2023) to match the
NVD style.

Table 1 summarizes dataset statistics across do-
mains chosen to evaluate robustness across diverse
writing styles, ranging from news and academic
essays to creative narratives and technical vulnera-
bility reports. This diversity exposes the model to
varied linguistic patterns, domain-specific vocabu-
lary, and stylistic complexity, making it effective
for detecting AI-generated content in both general
and specialized contexts. Each dataset is randomly
split into 80% training and 20% testing.

Table 1: Dataset Statistics Across Domains

News CW SE Vuln
# Dataset Size 479 728 13629 946
# Median Length 45 38 82 30
# Min Length 3 2 2 4
# Max Length 208 354 291 429

4.2 Implementation Details

We implemented our model in PyTorch (Hu et al.,
2021; Paszke et al., 2017), leveraging the Hugging-
Face Transformers library and pretrained ALBERT-
Base v2 (Lan et al., 2019) for masked language
modeling. Keyword extraction was performed us-
ing NLTK (Bird et al., 2009), and FastText embed-
dings were used to represent nodes in the graph.
Each input sample was converted into a graph struc-
ture informed by lexical semantics and contextual
similarity. A two-layer Graph Convolutional Net-
work (GCN) processed the graph, and its output
was passed through a fully connected layer for bi-
nary classification. The model was trained using
binary cross-entropy loss with the Adam optimizer
(Kingma and Ba, 2017), a learning rate of 0.01, and
100 epochs on an NVIDIA GPU.

4.3 Baselines

We compare our method against several state-of-
the-art AI-generated text detection approaches that
employ diverse strategies:

• GPTZero (Tian, 2023): A commercial tool
that uses mathematical features like perplexity
to assess whether text is human- or AI-written.
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• DetectGPT (Mitchell et al., 2023): A zero-
shot method that detects AI-generated text by
analyzing the curvature of the log-probability
landscape from a language model.

• Ghostbuster (Verma et al., 2023): Con-
structs feature representations from aggre-
gated predictions of small language models to
capture statistical patterns in AI content.

• RAIDAR (Mao et al., 2024): A rewriting-
based method that uses the degree of change
from language model rewrites, measured via
edit distance, as a detection signal.

4.4 Main Results
Table 2 presents the core results of our model and
baseline comparisons across all four datasets using
F1 score as the evaluation metric, consistent with
prior works (Verma et al., 2023; Mao et al., 2024)
where it was the sole reported metric. Among ex-
isting models, RAIDAR and Ghostbuster demon-
strate strong performance in structured and techni-
cal domains like Student Essay and Vulnerability
dataset, reaching up to 0.69 and 0.75 respectively.
However, our model, which integrates contextual
graph modeling with masked keyword reconstruc-
tion, achieves the highest F1 scores across all do-
mains, attaining 0.96 on the Vulnerability dataset
and 0.88 on Student Essay using a masking ratio of
0.3.

Table 2: Performance comparison across all datasets

Methods News CW SE Vuln
GPTZero 0.43 0.61 0.48 0.66
DetectGPT 0.41 0.63 0.52 0.72
GhostBuster 0.59 0.57 0.64 0.75
RAIDAR 0.63 0.65 0.69 0.84
SGG-ATD (Ours) 0.79 0.72 0.88 0.96

Furthermore, our method significantly outper-
forms all baselines in challenging domains such as
Creative Writing and News, where other detectors
like GPTZero and DetectGPT struggle due to re-
liance on shallow statistical cues. The consistent
performance of our model across diverse writing
styles demonstrates the robustness of our graph-
augmented detection framework.

4.5 Analysis
4.5.1 Effect of LLM Backbone
As shown in Table 3 (F1 Scores), we assess our
framework using various backbone language mod-

els at a fixed 0.3 masking ratio. ALBERT-Base v2
offers the best overall trade-off, excelling in News
and Creative Writing while maintaining strong
performance in other domains. DeBERTa-Base
(He et al., 2020) and RoBERTa (Liu et al., 2019)
also perform well, especially on the Vulnerability
dataset, and BERT-Base-Uncased (Devlin et al.,
2019) shows strong results for Student Essay and
Vulnerability dataset. These findings highlight the
modularity and model-agnostic nature of our graph-
based framework.

Table 3: Effect of LLM Choice on Performance

LLM News CW SE Vuln
BERT-Base-Uncased 0.75 0.66 0.88 0.97
ALBERT-Base v2 0.79 0.72 0.88 0.96
DeBERTa-Base 0.75 0.72 0.85 0.97
Roberta 0.73 0.70 0.86 0.96

4.5.2 Out-of-Distribution Generalization
Table 4 shows out-of-distribution results (F1
scores) using a leave-one-domain-out setup, where
the model is trained on three domains and tested
on the unseen fourth. These unseen domains dif-
fer notably in tone, structure, and syntax, making
OOD a strong test of generalization. Our model
consistently outperforms baselines, with notable
gains in News (0.67 vs. 0.49, 0.58) and Vulner-
ability (0.75 vs. 0.62, 0.66), and leads in more
stylistically diverse domains like Creative Writing
and Student Essay. GPTZero and DetectGPT, be-
ing unsupervised, show identical in-domain and
OOD performance, underscoring the advantage of
our supervised, graph-based approach. Overall,
SGG-ATD demonstrates stronger robustness to dis-
tributional shifts across domains.

Table 4: Out-of-Distribution (OOD) Evaluation

Methods News CW SE Vuln
GPTZero 0.43 0.61 0.48 0.66
DetectGPT 0.41 0.63 0.52 0.72
GhostBuster 0.49 0.52 0.50 0.62
RAIDAR 0.58 0.59 0.53 0.66
SGG-ATD (Ours) 0.67 0.65 0.61 0.75

4.5.3 Effect of Masking Ratio
Figure 4 shows how masking ratio impacts model
performance (F1 scores) across domains. Vul-
nerability and Student Essay datasets remain sta-
ble, with Vulnerability consistently above 0.97 and
peaking at 0.99. Creative Writing is more sensitive,
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with F1 dropping from 0.77 to 0.71 at higher ratios.
News improves up to 0.79 at 0.3 before leveling off.
Based on this, we adopt 0.3 as the default ratio, it
yields the best News score and competitive results
elsewhere. This setting balances under-masking
and over-masking, supporting both generalization
and reconstruction learning.

Figure 4: Effect of masking ratio on F1 scores across
four datasets. A 0.3 ratio offers the best balance, peak-
ing in News and performing competitively in other do-
mains, while higher ratios hurt performance in stylisti-
cally varied data like Creative Writing.

4.5.4 Ablation Study
To analyze the role of individual components, we
perform ablation studies summarized in Table 5 (F1
Scores). Using only cosine or contextual similar-
ity edges results in a slight performance drop, with
cosine edges performing slightly better overall, sug-
gesting lexical semantics offers more stable struc-
tural signals. Replacing the GCN with an MLP
(Multi-Layer Perceptron) leads to a clear decline
across all domains, especially in News and Cre-
ative Writing, confirming the value of graph-based
reasoning in capturing higher-order dependencies.

Table 5: Ablation Study Results

Components News CW SE Vuln
Cosine Edges Only 0.76 0.69 0.84 0.93
Contextual Edges Only 0.75 0.67 0.83 0.91
GCN replaced with MLP 0.69 0.63 0.80 0.90

4.5.5 Single Prompt (Rephrasing Evasion)
Table 6 shows the vulnerability of our model to ad-
versarial prompt engineering under a single training
prompt setting. Following the work in Mao et al.
(2024), the detector is trained using standard GPT
prompt (Non-Adaptive) and tested against both the
standard GPT prompt and rephrased versions gen-
erated with prompts designed to evade detection.

For instance, Prompt 1 (“Help me rephrase it in
human style”) and Prompt 2 (“Help me rephrase
it so that another GPT rewriting will cause a lot
of modifications”) significantly reduce detection
performance, especially in Creative Writing and
News domains. F1 scores drop from 0.72 to 0.39
and from 0.79 to 0.44 in Creative and News respec-
tively. These results reveal that even structurally
minor paraphrases can obscure generative signals
learned during training, highlighting the fragility
of detection systems trained on narrow prompt dis-
tributions.

Table 6: Rephrasing Evasion (Single Prompt Training)

Prompt News CW SE Vuln
Non-Adaptive 0.79 0.72 0.88 0.96
Prompt 1 0.53 0.42 0.57 0.77
Prompt 2 0.44 0.39 0.73 0.81

4.5.6 Multi-Prompt Training for Robustness
To mitigate the effects of adversarial rephrasing,
we train our model using two prompts and eval-
uate it on an unseen third prompt. As shown in
Table 7, this multi-prompt strategy yields notable
F1 gains across domains when compared to single-
prompt in Table 6. News improves from 0.44 to
0.71 and Creative Writing from 0.42 to 0.65. These
results indicate the model better generalizes to di-
verse rephrasing styles. While performance on
non-adaptive prompts slightly declines (e.g., News:
0.79 to 0.75, CW: 0.72 to 0.69, Vuln: 0.96 to 0.90,
SE: 0.88 to 0.72), the trade-off is acceptable given
the enhanced resilience to prompt-based evasion.

Table 7: Rephrasing Evasion (Multi-Prompt Training)

Prompt News CW SE Vuln
Non-Adaptive 0.75 0.69 0.72 0.90
Prompt 1 0.67 0.65 0.61 0.86
Prompt 2 0.71 0.68 0.79 0.91

5 Conclusions

We proposed SGG-ATD, a graph-based framework
for AI text detection that combines masked key-
word prediction with contextual reasoning. By
modeling relationships between original and pre-
dicted keywords using a GCN, the approach cap-
tures structural differences between human and AI-
generated text. Experiments across four datasets
showed consistent gains over baselines and strong
generalization to unseen domains.
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Limitations

One limitation of SGG-ATD is its current focus
on textual input alone. Extending the framework
to handle multimodal content, such as combining
text with associated images or metadata, offers a
promising future direction, especially for detecting
AI-generated content in news and social media.
While SGG-ATD performs well against rephrasing,
its robustness against more advanced adversarial
tactics, remains an open challenge and an avenue
for further enhancement.
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