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Abstract

Multimodal sarcasm detection is challenging,
especially in low-resource settings where sub-
tle image-text contradictions are hard to learn
due to scarce annotated data, which hinders the
model’s performance. Parameter-efficient fine-
tuning (PEFT) methods like adapters, LoRA,
and prompt tuning reduce overfitting but strug-
gle to reach optimal performance due to lim-
ited supervision from few-shot data. We pro-
pose PEKD, a unified framework that enhances
PEFT methods via distillation from an ex-
pert model trained on large-scale sarcasm data,
which acts as the teacher. To mitigate unreli-
able signals from the teacher, we introduce an
entropy-aware gating mechanism that dynami-
cally adjusts the distillation strength based on
teacher confidence. Experiments on two public
datasets demonstrate that our PEKD framework
enables PEFT methods to outperform both prior
parameter-efficient approaches and large multi-
modal models, achieving strong results in the
few-shot scenario. The framework is modu-
lar and adaptable to a wide range of multi-
modal models and tasks. The code is available
at https://github.com/mr-perplexed/kd_
sarcasm.

1 Introduction
The use of multimodal (image+text) sarcasm has
grown rapidly on social media, as it allows the
users to express their harsh opinions in a veiled
manner. Creation of large sarcasm datasets for
tackling this problem is both costly and challeng-
ing (Davidov et al., 2010; González-Ibáñez et al.,
2011), as sarcasm is often context-dependent, cul-
turally nuanced, and difficult to annotate consis-
tently (Rockwell and Theriot, 2001; Dress et al.,
2008; Oprea and Magdy, 2019).

In light of this, recent works in the mul-
timodal domain have explored techniques like
prompt-learning and adapter-learning with pre-
trained language models (PLMs) for few-shot sar-
casm (Liang et al., 2022b; Jana et al., 2024) and

sentiment analysis (Yu and Zhang, 2022; Yu et al.,
2022; Yang et al., 2022; Wu et al., 2024). These
techniques have shown promise in few-shot set-
tings, allowing the model to adapt effectively by
introducing only a small number of learnable pa-
rameters while keeping the large pretrained back-
bone intact. The core motivation behind adopting
these techniques is to achieve parameter-efficient
learning, as large parameter size tend to overfit
when training data is scarce. However, while these
methods mitigate overfitting, they often underper-
form because they have limited data to learn and
generalize from—a challenge we refer to as su-
pervision scarcity. From Table 4, we observe
that across both datasets, vanilla PEFT methods
(without distillation) fall short of their distillation-
enhanced variants by approximately 1.7–3.5% in
accuracy under the 1% data setting.

To mitigate this supervision scarcity problem,
we take inspiration from the teacher-student frame-
work for knowledge distillation (KD) (Hinton et al.,
2015) and propose PEKD (Parameter-Efficient
Knowledge Distillation), a plug-and-play frame-
work designed for few-shot multimodal sarcasm
detection. This framework allows any model built
with parameter-efficient modules, such as LoRA
(Hu et al., 2021), adapter (Houlsby et al., 2019),
or prompt tuning (Lester et al., 2021), to be easily
plugged in as the student, while an expert model
trained on large-scale sarcasm data serves as the
teacher. This setup enables the student to gener-
alize from limited examples without overfitting,
while learning inductive biases from the teacher
through knowledge distillation. A major chal-
lenge in distillation is unreliable teacher predic-
tions, which can mislead the student. We address
this with an entropy-aware gating mechanism that
weights the distillation loss based on teacher confi-
dence, providing strong guidance when the teacher
is confident and reducing its influence when the
teacher is uncertain. This ensures effective knowl-
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edge transfer while avoiding noisy signals.
Compared to SOTA multimodal baselines, our

framework PEKD helps PEFT methods achieve su-
perior performance in the 1% data regime (∆2.2%
to ∆5.2%). Additionally, when compared against
SOTA LVLMs, PEKD consistently helps PEFT
techniques outperform across 5/10/20 shot settings,
with LoRA even outperforming the best LVLM
LLaMA-3.2-11B using 18× fewer trainable param-
eters. In addition to strong quantitative results, we
conduct qualitative evaluations, including embed-
ding space visualization, student-teacher represen-
tation alignment, and error mitigation analysis to
understand how distillation benefits different PEFT
variants. Our contributions are:

1. We propose PEKD, the first teacher-student
framework combining PEFT with entropy-
aware knowledge distillation for few-shot mul-
timodal sarcasm detection.

2. We systematically evaluate and compare three
PEFT variants—LoRA, Adapters, and Prompt
Tuning, under our KD framework, and show
that distillation consistently enhances their
performance.

3. We conduct a comprehensive empirical anal-
ysis to reveal how KD improves representa-
tion alignment, prediction confidence, and re-
duces mismatched errors between student and
teacher.

2 Related Work

Image-Text Sarcasm Detection
The rise of visual content on social media has
spurred interest in multimodal sarcasm detection.
Early efforts by Schifanella et al. (2016) used
hand-crafted image-text features, followed by hi-
erarchical and contrastive fusion approaches (Cai
et al., 2019; Xu et al., 2020; Pan et al., 2020)
that model intra-modal and inter-modal incongruity.
Graph-based techniques (Liang et al., 2021, 2022a)
model token-level and global-level incongruity
while knowledge-enriched (Liu et al., 2022) mod-
els enhanced cross-modal reasoning. More recent
advances include dynamic routing on modalities
for capturing dominant modalitiy of sarcasm. (Tian
et al., 2023), Qin et al. (2023) improved MMSD
dataset, and proposed CLIP-based modeling.Tang
et al. (2024) used retrieval-augmented instruction
tuning while Xie et al. (2024) introduced parameter-
efficient learning using mixture of adapters. Jana

et al. (2024) proposed the first dedicated few-shot
multimodal sarcasm detection model using prompt-
tuning approach on BERT.

In this study, we address the problem of few-
shot multimodal saracsm detection with PEFT and
distillation techniques.
Multimodal Few-Shot Detection
Early efforts for few-shot sentiment analysis used
prompting and prompt tuning in PLM (Yu and
Zhang, 2022). Yu et al. (2022) used a pre-training
task to align image prompts before downstream
sentiment analysis task. Yang et al. (2022) fused
discrete prompts through bayesian fusion for im-
proving sentiment detection. For object detection
(Zhou et al., 2021) inserted prompts within CLIP
text encoders while (Zhou et al., 2022) used image-
conditioned prompts. Gao et al. (2021) introduced
adapters in CLIP for object detection. Jana et al.
(2024) used prompt tuning with attentive prompts
for few-shot multimodal sarcasm detection.

Our approach differs orthogonally by leveraging
knowledge distillation with PEFT methods under
a teacher-student setup for robust few-shot multi-
modal sarcasm detection.

3 Task Definition
The few-shot multimodal sarcasm detection task
is a binary classification problem: given an im-
age–text pair X = (I, T ), the goal is to pre-
dict y ∈ 0, 1, where 1 denotes sarcasm. In
the few-shot setting, we have a small support set
S = {(Xi, yi)}Ni=1 with N equally split between
sarcastic and non-sarcastic classes.

4 Proposed Approach
We choose CLIP (Radford et al., 2021) as the back-
bone for both student and teacher due to its strong
multimodal grounding and proven effectiveness on
sarcasm detection tasks (Qin et al., 2023; Xie et al.,
2024), however, it can be extended to other vision-
language models as well.

4.1 CLIP Preliminaries
Vision Encoder: The input image I is divided into
patches and passed through L transformer blocks:

[zi, Ei] = E i
v([z

i−1, Ei−1]), i = 1, . . . , L (1)

where E i
v is the visual transformer at layer i, Ei ∈

Rm×dv denotes the patch embeddings from the ith

layer, and zi ∈ R1×dv is the embedding of the
learnable class token. The final visual representa-
tion himg is obtained by projecting the output class
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Figure 1: Architecture of PEKD framework.

token from the last layer L:

himg = ProjEv(z
L), i ∈ Rd (2)

Text Encoder: A given input text sequence l
is tokenized, embedded and passed through the L
text transformer blocks Et:

W i = E i
t (W

i−1), i = 1, . . . , L (3)

where W i ∈ Rn×dt represents the text embeddings
from layer T i. To derive the final textual repre-
sentation, the embedding of the last token in the
final layer L is projected into the shared embedding
space:

htxt = ProjEt(W
L[−1]), t ∈ Rd (4)

4.2 Methodology
We propose PEKD, a parameter-efficient frame-
work for few-shot multimodal sarcasm detection,
illustrated in Fig. 1. It consists of two components:
(a) A teacher model fully fine-tuned (updating all
its parameters) on a large-scale sarcasm dataset,
(b) a student augmented with PEFT modules for
efficient adaptation. During training, both teacher
and student process the same input, and their out-
puts are used to compute the KD loss along with
the task loss. An entropy-aware gating mechanism
combines these losses to regulate the teacher’s in-
fluence based on confidence, and only the student’s
PEFT modules are updated. We elaborate on the de-
tails of the teacher, the student, and the fine-tuning
of the student in the subsections below.

4.3 Teacher Model
Let T denotes the teacher, a pretrained CLIP model
fine-tuned on a large sarcasm dataset. Due to its
extensive parameterization and access to abundant

training data, T captures intricate, cross-modal pat-
terns of sarcasm. In few-shot settings, where direct
fine-tuning of a large model can lead to overfitting,
the teacher provides strong supervision and guides
a parameter-efficient student, facilitating the trans-
fer of its rich, sarcasm-sensitive knowledge. The
teacher predicts the sarcasm label as:

yT = Softmax(WT · (himg ⊕ htxt)) (5)

where himg and htxt are the image and text
embeddings obtained from the respective CLIP en-
coders, WT is the projection layer, ⊕ is the con-
catenation operator and yT is the soft logits from
the teacher.

4.4 Parameter-Efficient Student Model
We design the student S as a parameter-efficient
model that can be adapted to few-shot settings us-
ing a range of PEFT techniques. In this work, we
focus on three such techniques, namely, adapters,
prompt-tuning, and LoRA and apply them to CLIP.
Our framework is flexible, allowing any PEFT
method to be plugged in as the student model. Each
technique adds only a small number of learnable
parameters, keeping the rest of the CLIP backbone
frozen, which reduces overfitting in few-shot set-
tings. The trainable parameter sizes are specified
in Table 1. We outline the adaptations of these
techniques in CLIP in the following subsections.

4.4.1 Adapter-CLIP
In this setup, we insert adapters into every layer
of CLIP’s text and visual encoders. These
adapters are lightweight bottleneck layers, consist-
ing of a down-projection, a non-linearity, and an
up-projection layer. Adapter Ad is realized as:
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Ad(h) = Mup · θ(Mdown · h) (6)

where Mup and Mdown are upsample and down-
sample projection layers respectively and θ is
ReLU non-linearity. The visual and text encoders
in equations (1) and (3) can be modified as:

[zi, Ei] = E i
v([z

i−1, Ei−1])

+ AdiEv([z
i−1, Ei−1])

i = 1, .., L (7)

[W i] = E i
t ([W

i−1]) +AdiEt([W
i−1])

i = 1, .., L (8)

where AdiEv and AdiEt are the adapter layers in
the ith transformer block of the visual and text
encoders, respectively.

The insertion of adapters reduces the model’s
trainable parameter size to around 3 ∼ 4% of the
original CLIP model. During fine-tuning, only the
adapters get trained while the CLIP backbone is
frozen.

4.4.2 Prompt-CLIP
In this configuration, we introduce a small set
of learnable embeddings, called prompts, that are
added to the input of the text and visual encoders
at every layer. After applying prompts, the visual
and text encoders in equations (1) and (3) can be
reformulated as:

[zi, Ei, P i
Ev ] = E i

v([z
i−1, Ei−1, P i−1

Ev ])

i = 1, .., L (9)

[P i
Et ,W

i] = E i
t ([P

i−1
Et ,W i−1])

i = 1, .., L (10)

where P i−1
Ev and P i−1

Et are learnable prompt em-
beddings added to the input of the visual and text
encoders i. This approach reduces the number of
trainable parameters to roughly 0.02 ∼ 0.03% of
the original CLIP model. During fine-tuning, only
the prompts are trained, while the CLIP backbone
remains frozen.

4.4.3 LoRA-CLIP
LoRA (Low-Rank Adaptation) updates a pre-
trained weight matrix W ∈ Rd1×d2 using a low-
rank decomposition ∆W = BA, where A ∈
Rr×d2 , B ∈ Rd1×r, and r ≪ min(d1, d2). For
input X , the adapted projection becomes:

h = WX + γ(BA)X, (11)

Model Trainable Parameters

CLIP ViT-B/16 (Teacher) 149 M
LoRA-CLIP (Student) 2.9 M
Prompt-CLIP (Student) 0.03 M
Adapter-CLIP (Student) 4.1 M

Table 1: Trainable parameter sizes of teacher and stu-
dent models.

Model Train Valid Test

MMSD
Teacher (99%) 8543 / 11075 / 19618 860 / 1351 / 2211 959 / 1450 / 2409
Student (1%) 99 / 99 / 198 99 / 99 / 198 959 / 1450 / 2409

MMSD2.0
Teacher (99%) 9477 / 10141 / 19618 943 / 1269 / 2212 1037 / 1072 / 2409
Student (1%) 99 / 99 / 198 99 / 99 / 198 1037 / 1072 / 2409

Table 2: Train, valid, and test splits (Pos/Neg/Total)
for teacher and student. Student sees only 1% of the
training data, while the teacher sees the remaining 99%.

with γ as a scaling factor. We apply LoRA to the
query, key, and value matrices of each attention
layer in both text and vision encoders:

QLo = XWq + γ(BqAq)X (12)

KLo = XWk + γ(BkAk)X (13)

VLo = XWv + γ(BvAv)X (14)

The attention operation now becomes:

Attn = Softmax

(
QLoK

T
Lo√

dk

)
VLo (15)

LoRA reduces trainable parameters by around 1.9%
of the original CLIP. Only the low-rank matrices A
and B are optimized during training.

4.5 Fine-tuning the Student Model
To fine-tune the student, we use knowledge distil-
lation (KD) in addition to the task-specific loss to
enable the student to learn from both ground truth
labels and the teacher’s rich output distribution.
This allows the student to mimick the teacher’s
rich sarcasm-specific cross-modal representations,
which is difficult for the student to generalize from
limited training examples.

We follow the same operations as the teacher
(similar to equation 5) to get the final soft logits yS
from the student. We fine-tune S on the few-shot
data split, updating only the PEFT modules and the
projection layer WS . The combined objective for
fine-tuning the student is:

L = gLCE + (1− g)LKD (16)
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where, LCE is the task-specific cross-entropy loss
while LKD is the knowledge-distillation loss from
the teacher to the student.

The KD loss is computed as the KL divergence
between teacher and student predictions:

LKD = T 2
C∑

i=1

yT (i) log
yT (i)
yS(i)

, (17)

where C is the number of classes and T 2 com-
pensates for the temperature scaling effect. There
might be cases when the teacher’s predictions are
less confident. In such scenarios, we want the stu-
dent to rely on learning from the data rather than
rely on the teacher. To achieve this, we introduce
an entropy-aware gating parameter g based on nor-
malized entropy of the teacher:

g =
−∑C

i=1 yT (i) log yT (i)
logC

, (18)

where logC is the maximum possible entropy, en-
suring g ∈ [0, 1].

Lemma. Weighting LKD by (1− g) ensures it
approaches zero as teacher uncertainty increases
(g → 1) and remains intact when the teacher is
confident (g → 0). (Proof in Appendix A.4.)

Alternative Variant. We also experimented with
a variant that sets the KD loss to zero when the
teacher’s prediction is incorrect; however, this ap-
proach underperformed compared to entropy-based
gating. Detailed discussion is provided in Ap-
pendix A.5.

5 Experiments

5.1 Datasets
We assess our approach, PEKD, on the few-shot
splits of MMSD (Cai et al., 2019) and MMSD2.0
(Qin et al., 2023), proposed in the study (Jana et al.,
2024). They extract two 1% few-shot splits for
each dataset, with an equal number of samples per
class. The size of the test set remains unchanged
from the original dataset. We utilize the 1% split
to train the student while the remaining 99% to
train the teacher. Detailed statistics are provided
in Table 2.

5.2 Experimental Settings
We employ ViT-B/16 CLIP backbone for both the
teacher and student. Few-shot training can exhibit
significant performance variability. To capture this,
we train the student 6 times (3 trials × 2 splits) for

each dataset and report the average Accuracy (Acc),
average Macro-F1 (F1), and the standard deviation
across all six runs. Additional hyperparameter de-
tails for training the teacher and the student are
reported in Appendix A.1.

5.3 Baselines
We evaluate our approach against two groups of
baselines: PEFT and non-PEFT-based. For the non-
PEFT based multimodal baselines, we consider
the following SOTA models for sarcasm detection;
HFM (Cai et al., 2019), Att-BERT (Pan et al.,
2020), HKE (Liu et al., 2022), DIP (Wen et al.,
2023), MV-CLIP (Qin et al., 2023), DynRT (Tian
et al., 2023) and RAG-LLaVA (Tang et al., 2024).
For the PEFT-based multimodal group, we consider
PVLM (Yu and Zhang, 2022), UP-MPF (Yu et al.,
2022), and CAMP (Jana et al., 2024) which are
based on prompt-tuning in PLMs. CoOp (Zhou
et al., 2021) and CoCoOp (Zhou et al., 2022) are
prompt-tuning adaptations for CLIP. MoBA (Xie
et al., 2024) is an adapter-based adaptation of CLIP.
The details of these baselines are provided in the
Appendix A.2. We evaluate all baselines on the
few-shot data splits and report the performances.

6 Main Results

Following Jana et al. (2024), we report the few-shot
performance of the models in Table 3. Our obser-
vations are: (1) PEFT methods often outperform
or match their non-PEFT counterparts by leverag-
ing task-specific parameters while keeping the pre-
trained backbone frozen, thus reducing overfitting.
(2) When we train the teacher, Teacher (CLIP)
(row 8 in Non-PEFT), on 1% few-shot split, we ob-
serve that it overfits and performs poorly due to its
large parameter size. In contrast, the student mod-
els (LoRA-CLIP (w/ KD), Adapter-CLIP (w/ KD),
and Prompt-CLIP (w/ KD)) benefit from KD by
acquiring inductive biases from the teacher (trained
on the remaining 99% split). As a result, they out-
perform the best baseline on MMSD, MoBA by gains
ranging from ∆2.2% to ∆4.6% in Acc and CoOp
on MMSD2.0 by ∆2.2% to ∆5.2%. (3) Among
the students, LoRA-CLIP (w KD) demonstrates su-
perior performance in the KD setup due to LoRA’s
ability to directly modify the attention mechanism
of the pretrained model. By injecting low-rank
updates into the Q,K, V matrices of the attention
layers, LoRA enables the student to more precisely
align its internal attention patterns with those of the
teacher, unlike prompts (which affect only inputs)
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MMSD MMSD2.0

Method Acc F1 Acc F1

Multimodal (Non PEFT)

HFM 0.612 (1.3) 0.598 (1.1) 0.561 (0.2) 0.361 (0.3)

Att-BERT 0.707 (1.7) 0.696 (1.3) 0.659 (1.6) 0.683 (1.8)

HKE 0.503 (2.3) 0.667 (2.8) 0.408 (1.5) 0.579 (1.3)

DIP 0.704 (2.7) 0.698 (2.3) 0.685 (2.8) 0.658 (2.6)

DynRT 0.583 (0.1) 0.487 (0.6) 0.518 (2.9) 0.513 (3.2)

MV-CLIP 0.780 (0.2) 0.770 (0.2) 0.742 (0.4) 0.740 (0.3)

RAG-LLaVA 0.483 (9.1) 0.406 (4.6) 0.569 (0.1) 0.446 (8.3)

Teacher (CLIP) 0.777 (0.5) 0.768 (0.6) 0.740 (1.2) 0.739 (1.1)

Multimodal (PEFT)

PVLM 0.712 (0.6) 0.699 (0.2) 0.665 (2.2) 0.658 (2.1)

UP-MPF 0.707 (2.4) 0.701 (2.6) 0.669 (0.4) 0.663 (0.1)

CAMP 0.729 (0.9) 0.717 (1.0) 0.692 (2.8) 0.681 (2.3)

CoOp 0.772 (1.6) 0.769 (1.5) 0.759 (0.9) 0.759 (0.8)

CoCoOp 0.782 (1.0) 0.779 (1.0) 0.746 (1.6) 0.745 (1.6)

MoBA 0.799 (1.2) 0.790 (1.1) 0.758 (0.7) 0.753 (0.9)

PEKD (Ours)

Adapter-CLIP (w/ KD) 0.824 (0.2) 0.819 (0.3) 0.799 (0.1) 0.792 (0.3)

Prompt-CLIP (w/ KD) 0.821 (0.3) 0.811 (0.4) 0.781 (0.5) 0.798 (0.4)

LoRA-CLIP (w/ KD) 0.845 (0.3) 0.843 (0.1) 0.811 (0.2) 0.811 (0.2)

Table 3: Performance comparison of multimodal meth-
ods across few-shot MMSD and MMSD2.0 datasets.
Our PEKD variants achieves SOTA performance. Num-
bers in brackets indicate standard deviation. The

best , second-best , and third-best results are
highlighted respectively. Our method outperforms base-
lines significantly with p < 0.05.

or adapters (which act more peripherally).

7 Comparison with LVLMs
We compare our PEKD-based models with SOTA
LVLMs, LLaVA-1.6-7B (Liu et al., 2023), LLaMA-
3.2-11B (et al., 2024), and Qwen-2.5-VL-7B (Bai
et al., 2025) across extremely low-resource settings:
5/10/20-shots, as well as 1% supervision, as shown
in Fig 4 for MMSD2.0 dataset. For fine-tuning of
these LVLMs, we resort to LoRA with rank 8, due
to resource constraints. Despite having drastically
fewer trainable parameters (e.g., Prompt-CLIP:
0.03M, Adapter-CLIP: 4.1M, LoRA-CLIP: 2.9M
vs. 40–52M for LVLMs), our models consistently
outperform LVLMs in the 5/10/20-shot settings.
Even at 1% supervision, PEKD-based methods
reach near-comparable accuracy to LVLMs while
LoRA-CLIP outperforms the LVLMs in this setting.

8 Ablation
8.1 KD Boosts PEFT Performance
Table 4 compares each PEFT variant with and with-
out KD. Across all methods, KD consistently im-

Model MMSD MMSD2.0

Acc F1 ∆ Acc F1 ∆

Prompt-CLIP (w/o KD) 0.802 0.799 +1.9% 0.762 0.762 +1.9%
Prompt-CLIP (w/ KD) 0.821 0.811 0.781 0.798

Adapter-CLIP (w/o KD) 0.807 0.803 +1.7% 0.771 0.778 +2.8%
Adapter-CLIP (w/ KD) 0.824 0.819 0.799 0.792

LoRA-CLIP (w/o KD) 0.810 0.803 +3.5% 0.783 0.782 +2.8%
LoRA-CLIP (w/ KD) 0.845 0.843 0.811 0.811

Table 4: Ablation on KD. ∆ shows % improvement in
Acc with KD. Green highlights indicate positive gains.

Student Embeddings (w/o KD)
Class 0
Class 1

Student Embeddings (w/ KD)
Class 0
Class 1

Figure 2: Comparison of student embeddings with and
without KD.

proves the performance of the student in the 1%
few-shot setting. In contrast, LoRA-CLIP (w/o
KD), Adapter-CLIP (w/o KD), and Prompt-CLIP
(w/o KD), without KD, underperform due to insuf-
ficient supervision. The students trained with KD
outperforms as we mitigate the supervision scarcity
problem by inducting knowledge from the teacher.

8.2 Effect of Entropy-Aware Gating
To assess entropy-aware gating, we analyze its ef-
fect on the weighting of KD loss during training.
Figure 5 shows that higher teacher confidence cor-
responds to lower entropy (g), resulting in larger
weights (1 − g) for KD loss, thus amplifying re-
liable teacher signals. When confidence is low, g
increases, reducing KD influence. Table 5 confirms
that entropy-based gating consistently improves
performance across all student variants.

9 Analysis

9.1 Impact of KD on Student
We study the impact of distilling knowledge from
the teacher to the student from two perspectives: (a)
Effect of KD on the student’s embedding space:We
visualize the logit representations of the student
model trained with and without KD in Fig 2. The
KD-trained student exhibits better class-wise sepa-
ration and structured embeddings, suggesting im-
proved discriminative capacity and alignment with
the teacher’s feature space. (b) Improved predic-
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Figure 4: Comparison of PEKD-based models with
LVLMs in 5/10/20 shots and 1% data setting for
MMSD2.0 dataset. TP denotes trainable parameters.

tion confidence of the student: As shown in Fig 3,
the student model trained with KD exhibits con-
sistently higher prediction confidence compared to
its non-KD counterpart, across both class labels.
This is evident from the upward shift in the median
values and a tighter interquartile range.

9.2 Strength of LoRA-CLIP

To evaluate the strength of LoRA-CLIP over
Adapter-CLIP and Prompt-CLIP, we compute the
the mean Canonical Correlation (CCA) between
the hidden states of the teacher model and each
student model across corresponding transformer
layers, for both the text and vision branches. This
metric quantifies how closely the student preserves
the internal representational structure of the teacher.
As shown in Fig 6, LoRA-CLIP consistently ex-
hibits the highest CCA scores across all layers.
This suggests that LoRA is more effective at pre-
serving and transferring internal structural repre-
sentations from the teacher model. Notably, the
alignment gap between LoRA and other methods
widens in deeper layers, indicating LoRA’s supe-
rior ability to absorb hierarchical knowledge during
distillation.

Model MMSD MMSD2.0

w/o Gating w/ Gating ∆ w/o Gating w/ Gating ∆

Prompt-CLIP 0.812 0.821 +0.9% 0.771 0.781 +1.0%
Adapter-CLIP 0.811 0.824 +1.3% 0.777 0.799 +2.2%
LoRA-CLIP 0.835 0.845 +1.0% 0.803 0.811 +0.8%

Table 5: Ablation on Entropy-Aware Gating: Accuracy
improvements when applying entropy-based gating for
KD. ∆ shows percentage gain.
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Figure 5: Effect of teacher confidence on KD gating:
Lower confidence (higher uncertainty) results in reduced
KD weight (1-g), demonstrating the adaptive behavior
of entropy-aware gating.

9.3 Influence of KD on Student Errors
We study the impact of KD on student performance
from two perspectives: (a) Absolute reduction in
student errors: Fig 7 shows a class-wise compari-
son of the number of misclassified samples by the
student with and without KD. Across both labels 0
& 1, KD consistently reduces the total number of
prediction errors, demonstrating its effectiveness in
improving student generalization. (b) Mitigation
of errors where the teacher was correct: To assess
whether the student learns from the teacher’s cor-
rect predictions, we isolate those samples where
the teacher was correct but the student was not.
Fig 8 presents these student-teacher mismatches,
which effectively represent cases where distillation
has the potential to guide the student. After KD,
the number of such mismatches drops substantially
across both classes, showing that the student better
aligns with the teacher’s correct decisions.

9.4 Cross-Dataset Generalization
To evaluate the generalizability of our proposed
framework, we conduct cross-dataset experiments
by training all models on just 1% of the MMSD2.0
dataset and testing them on two unseen datasets:
MCMD (Maity et al., 2022) and RedEval (Tang
et al., 2024). The details of these datasets are
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Figure 6: Layer-wise CCA similarity between teacher
and student models across text and visual transformers.
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Figure 7: Class-wise error comparison of the student
with and without KD.

provided in Appendix A.3. As shown in Ta-
ble 6, PEKD-based models consistently outper-
form both PEFT and non-PEFT baselines, and even
LVLMs across both datasets. Notably, the best-
performing PEKD variant (LoRA-CLIP) achieves a
substantial improvement over the strongest baseline
(Qwen2.5-VL-7B). These results prove the general-
izability of PEKD framework.

10 Error Analysis

To better understand the failure cases of our PEKD
framework, we qualitatively analyze prediction er-
rors and identify two broad patterns, shown in Ta-
ble 7. First, both teacher and student models fail
on (i) OCR-heavy cases, where sarcasm cues are
embedded as image text (e.g., memes, screenshots),
and (ii) context-dependent cases, where interpre-
tation relies on external knowledge such as political
or cultural context, inaccessible to the models (row
1). Second, we observe student-specific failures
where the teacher predicts correctly but the student
does not—often due to limited data exposure or
weaker multimodal reasoning capacity (row 2).

Method MCMD RedEval
Acc F1 Acc F1

Multimodal (Non-PEFT)
Att-BERT 0.477 (0.3) 0.474 (0.1) 0.461 (1.1) 0.457 (0.8)
DIP 0.545 (1.2) 0.545 (0.8) 0.532 (0.2) 0.513 (0.7)
DynRT 0.519 (1.6) 0.518 (1.4) 0.541 (0.6) 0.537 (0.9)
MV-CLIP 0.653 (0.2) 0.641 (0.2) 0.623 (1.1) 0.620 (1.3)
RAG-LLaVA 0.624 (1.7) 0.623 (1.5) 0.617 (1.9) 0.611 (1.4)

Multimodal (PEFT)
PVLM 0.564 (1.8) 0.541 (1.3) 0.553 (1.2) 0.552 (1.1)
UP-MPF 0.582 (2.1) 0.577 (1.9) 0.569 (0.1) 0.561 (0.3)
CoOp 0.663 (0.4) 0.662 (0.2) 0.629 (0.9) 0.618 (0.7)
CoCoOp 0.658 (1.0) 0.649 (0.5) 0.637 (1.2) 0.631 (1.1)
CAMP 0.601 (1.3) 0.591 (1.6) 0.631 (0.7) 0.628 (1.2)

Large Vision-Language Models (LVLMs)
LLaMA3.2-11B 0.693 (0.4) 0.682 (0.3) 0.641 (0.1) 0.653 (0.4)
LLaVA1.6-7B 0.674 (0.5) 0.669 (0.3) 0.642 (0.4) 0.641 (0.6)
Qwen2.5-VL-7B 0.691 (0.3) 0.685 (0.6) 0.656 (0.7) 0.659 (0.5)

PEKD (Ours)
Prompt-CLIP (w/ KD) 0.713 (0.1) 0.698 (0.2) 0.686 (0.4) 0.683 (0.1)
Adapter-CLIP (w/ KD) 0.724 (0.2) 0.719 (0.3) 0.698 (0.2) 0.691 (0.4)
LoRA-CLIP (w/ KD) 0.742 (0.1) 0.739 (0.2) 0.704 (0.2) 0.698 (0.4)

Table 6: Cross-dataset evaluation. All models are
trained on 1% of MMSD2.0 and tested on two unseen
datasets: MCMD and RedEval. PEKD consistently
boosts all PEFT variants. Numbers in brackets denote
standard deviation. Best results are in bold.
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Figure 8: Unique prediction errors made by the student
(i.e., errors made by the student but not by the teacher)
across KD and non-KD settings.

11 Conclusion

In this work, we introduce PEKD, a framework for
few-shot multimodal sarcasm detection that com-
bines parameter-efficient tuning with knowledge
distillation from a strong CLIP-based teacher. By
guiding lightweight CLIP student variants through
KD and incorporating an entropy-aware gating
mechanism to prioritize reliable teacher signals,
PEKD enhances robustness and performance in
few-shot settings. Experiments on two benchmarks
show consistent gains over parameter-efficient and
large multimodal baselines, highlighting its poten-
tial for scalable vision-language understanding un-
der data scarcity.
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(a) what i plan on saying to
anyone that rings my doorbell

GT / T / S: 1 / 0 / 0

(b) authentic chinese desserts
GT / T / S: 1 / 0 / 0

(c) capacity room at basic
income consultation in

kingston
GT / T / S: 0 / 0 / 1

(d) major pullback ! ! 5pts
GT / T / S: 1 / 1 / 0

Table 7: Qualitative error examples with image, caption,
and prediction (GT: ground truth, T: teacher, S: student).
Refer to appendix A.6 for an explanation of the errors.

12 Limitations
While PEKD delivers notable improvements in few-
shot multimodal sarcasm detection, it has some
limitations. Both teacher and student primarily
leverage visual-textual content and can struggle in
OCR-heavy scenarios or cases requiring external
context. Lastly, the entropy-based weighting of the
KD signal is a simple confidence proxy and may
not fully capture nuanced uncertainties of sarcasm.
Future work could explore richer reliability esti-
mation and integration of external knowledge to
improve robustness and reasoning.
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A Appendix

A.1 Hyperparameter Details
The teacher was fine-tuned till the best val accuracy
was reached, with learning rates of 1e-5 for the
backbone and 1e-4 for the head and a batch size of
32. The student was fine-tuned with a learning rate
of 1e-4, batch size of 32, with a LoRA rank of 32.
The best model on the validation set was used for
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testing. The value of temperature T for the KD loss
was set to 2. All experiments were conducted on an
Nvidia RTX A5000 GPU with 24GB of memory.

A.2 Baseline Details
To establish a comprehensive comparison, we eval-
uate our method against two categories of multi-
modal sarcasm detection baselines: (i) Non-PEFT-
based methods, which primarily focus on model-
ing image-text interactions through hierarchical fu-
sion, graph networks, co-attention, or dynamic rout-
ing, and (ii) PEFT-based methods, which leverage
prompts and adapters to address few-shot multi-
modal sentiment, sarcasm and image recognition
tasks.

Non-PEFT Baselines:

• HFM (Cai et al., 2019): Introduces hierarchi-
cal early and late fusion to integrate image,
text, and image attributes.

• D&R Net (Xu et al., 2020): Uses decompo-
sition and relational reasoning to capture se-
mantic associations.

• Att-BERT (Pan et al., 2020): Employs co-
attention to detect intra- and inter-modal in-
congruity.

• HKE (Liu et al., 2022): Leverages a hierarchi-
cal network to model coarse- and fine-grained
incongruities.

• MV-CLIP (Qin et al., 2023): Extends CLIP
with an interaction layer for enhanced image-
text incongruity modeling.

• DIP (Wen et al., 2023): Captures sarcasm via
semantic reweighting, uncertainty modeling,
and contrastive learning at factual and affec-
tive levels.

• DynRT (Tian et al., 2023): Employs dynamic
routing to identify sarcasm-relevant tokens in
multimodal data.

• RAG-LLaVA (Tang et al., 2024): Incorpo-
rates retrieval-based demonstrations to assist
LLaVA for sarcasm detection.

PEFT baselines:

• PVLM (Yu and Zhang, 2022): Adopts
prompt-based fine-tuning with integrated im-
age tokens for few-shot multimodal sentiment
analysis.

Dataset Sarcastic Non-Sarcastic Total

MCMD 183 123 306
RedEval 395 609 1004

Table 8: Statistics of datasets used for cross-dataset
evaluation.

• UP-MPF (Yu et al., 2022): Pretrains on image
tasks to bridge the gap between textual and
visual prompts before applying to few-shot
sentiment tasks.

• CoOp (Zhou et al., 2021): Learns continuous
text prompts for CLIP for image recognition.

• CoCoOp (Zhou et al., 2022): Introduces
image-conditioned text prompts for improved
adaptation for CLIP for image recognition.

• CAMP (Jana et al., 2024): Proposes continu-
ous attentive prompt tokens in BERT for few-
shot multimodal sarcasm detection.

• MoBA (Xie et al., 2024): Proposed mixture
of adapters-based technique to combine vi-
sual and textual information for multimodal
sarcasm detection, achieving parameter effi-
ciency.

A.3 Cross-Dataset Details
To evaluate the generalization ability of multimodal
sarcasm detection models, we introduce two out-
of-distribution datasets: MCMD and RedEval.

• MCMD (Multi-modal Code-Mixed Memes
Dataset) (Maity et al., 2022): This dataset
consists of code-mixed memes originally
meant for hateful meme detection but also
has annotations for sarcasm. We remove sam-
ples that are code-mixed in nature or has no
sarcasm annotations.

• RedEval (Tang et al., 2024): Constructed to
assess domain shift, RedEval includes image-
text pairs from Reddit, since existing MMSD
datasets are Twitter-centric. Sarcastic exam-
ples are sourced from the sarcasm subreddit,
while non-sarcastic examples come from sub-
reddits like aww, funny, and pics.

The detailed statistics for both these datasets
are in Table 8
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Model MMSD2.0 MMSD

Hard-Gate Entropy ∆ Hard-Gate Entropy ∆

Prompt-CLIP 0.775 0.781 +0.6% 0.815 0.821 +0.6%
Adapter-CLIP 0.791 0.799 +0.8% 0.817 0.824 +0.7%
LoRA-CLIP 0.803 0.811 +0.8% 0.834 0.845 +1.1%

Table 9: Comparison of KD Variants. Entropy-gated KD
outperforms Hard-Gate KD across models and datasets.
∆ shows accuracy gain.

A.4 Proof for Lemma 1
Proof. The entropy-aware gating factor is defined
as:

g =
H(yT )
logC

, H(yT ) = −
C∑

i=1

yT (i) log yT (i),

(19)

where logC is the maximum possible entropy for
C classes, normalizing g ∈ [0, 1]. The gated KD
loss:

Lgated
KD = (1− g)LKD. (20)

Case 1: Teacher is highly uncertain. If
yT (i) ≈ 1

C for all i, then:

H(yT ) = −
C∑

i=1

1
C log 1

C = logC, (21)

g = logC
logC = 1, Lgated

KD = 0. (22)

Case 2: Teacher is highly confident. If teacher
predicts one class with high probability:

H(yT ) ≈ 0, g = 0, Lgated
KD = LKD. (23)

Conclusion: Weighting by (1 − g) makes KD
vanish when g → 1 (uncertain teacher) and fully
retain it when g → 0 (confident teacher). This
prevents noisy guidance while exploiting strong
teacher signals.

A.5 Effect of Hard-Gate on KD Loss
We experimented with an alternative KD strat-
egy, Hard-Gate KD, which discards the KD loss
whenever the teacher prediction is incorrect. Ta-
ble 9 compares this approach against our Entropy-
Gated KD. The entropy-based approach consis-
tently outperforms the hard-zero variant by 0.6–
1.1% in accuracy across both datasets and all
PEFT configurations. Reason: Hard-Gate KD elim-
inates valuable soft-label information even in cases

where the teacher prediction is slightly off but pro-
vides useful class-probability distribution. Entropy
gating, on the other hand, dynamically reduces KD
influence without discarding it entirely, leading to
better knowledge transfer.

A.6 Detailed Error Analysis

(a) OCR-heavy
Caption: “what i plan on saying to

anyone that rings my doorbell”
GT/T/S: 1 / 0 / 0

Reason: Sarcasm cue appears in text
embedded in image; both models fail.

(b) Context-dependent
Caption: “authentic chinese desserts”

GT/T/S: 1 / 0 / 0
Reason: Requires cultural knowledge

as this dessert is not Chinese; both
models fail.

(c) Student-only
Caption: “capacity room at basic

income consultation”
GT/T/S: 0 / 0 / 1

Reason: Student overfits sarcastic
patterns, might think that sparse room

contradicts caption.

(d) Student-only
Caption: “major pullback!! 5pts”

GT/T/S: 1 / 1 / 0
Reason: Sarcasm via exaggeration;
student misses numeric reasoning.

Figure 9: Qualitative Error Analysis: Failure cases
with GT (Ground Truth), T (Teacher), and S (Student)
predictions.
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