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Abstract

Discourse relation parsing plays a crucial role
in uncovering the logical structure of text,
yet existing corpora focus almost exclusively
on general-domain genres, leaving special-
ized fields like engineering under-resourced.
We introduce ENG-DRB, the first PDTB-style
discourse relation corpus derived from tran-
scripts of hands-on engineering tutorial videos.
ENG-DRB comprises 11 tutorials spanning
civil, mechanical, and electrical/electronics en-
gineering (155 minutes total) with 1,215 anno-
tated relations. Compared to general-domain
benchmarks, this dataset features a high propor-
tion of explicit senses, dense causal and tempo-
ral relations, and frequent overlapping and em-
bedded senses. Our benchmarking experiments
underscore the dataset’s difficulty. A top parser
(HITS) detects segment boundaries well (98.6%
F1), but its relation classification is more than
11 F1 percentages lower than on the standard
PDTB. In addition, state-of-the-art LLMs (Ope-
nAI o4-mini, Claude 3.7, LLaMA-3.1) achieve
at best 41% F1 on explicit relations and less
than 9% F1 on implicit relations, revealing sys-
tematic errors in temporal and causal sense de-
tection. The dataset can be accessed at: https:
//doi.org/10.57967/hf/6895. Code to re-
produce our results is available at: https:
//github.com/chengzhangedu/ENG-DRB

1 Introduction

Discourse relation parsing is a core NLP task for
understanding the logical or rhetorical relations
between textual units. However, state-of-the-art
models trained on general-domain corpora like the
Penn Discourse Treebank (PDTB) (Prasad et al.,
2019) exhibit a significant performance drop when
applied to specialized domains. While domain-
specific corpora exist for biomedicine (e.g., Bio-
DRB (Prasad et al., 2011) and BioDCA (Gopalan
and Lalitha Devi, 2016)), the engineering domain
remains underexplored. Engineering discourse

presents a unique challenge, characterized by a
high density of procedural steps, causal chains, and
nested justifications that are poorly represented in
existing datasets.

To address this gap, we introduce ENG-DRB,
the first PDTB-style discourse relation corpus for
the engineering domain. We source our data from a
uniquely rich and authentic context: transcripts of
hands-on engineering tutorial videos. This captures
the dynamic, verbalized thought processes of in-
structors, providing explicit links between actions,
preconditions, and rationale. The resulting corpus
contains 1,215 annotated discourse relations across
civil, mechanical, and electrical engineering, with
a high proportion of explicit connectives (63.1%)
that ground the procedural and causal phenomena
as demonstrated by the example in Figure 1, at
significantly higher rates than in general-domain
corpora such as the PDTB2.

A key contribution of ENG-DRB is that it pro-
vides a new benchmark for complex, naturally-
occurring discourse. ENG-DRB introduces a chal-
lenging benchmark whose difficulty mainly arises
from two sources. First, as speech transcripts, the
text is more informal and conversational than edited
instructional texts. Second, the engineering content
features frequent overlapping senses (one or more
spans participate in multiple relations) and embed-
ded senses (one relation is hierarchically nested
entirely within the argument of another relation)
that explain procedural steps. Our experiments con-
firm this dual challenge. A top parser (Liu et al.,
2023) detects segment boundaries well (98.6 F1),
but its relation classification drops by 11+ points
compared to its performance on the standard PDTB
3.0 corpus. We also find that even state-of-the-
art Large Language Models (LLMs) struggle with
the domain complexity and long-range dependen-
cies inherent in specialized text (Chen et al., 2024;
Cheng et al., 2025).

Our contributions are:
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• We introduce ENG-DRB, the first PDTB-
style discourse corpus built from hands-on
engineering tutorial video scripts.

• We provide a detailed analysis of the corpus,
highlighting the unique discourse phenomena
present in the engineering domain.

• We benchmark HITS model and modern
LLMs on ENG-DRB, demonstrating their cur-
rent limitations and establishing a new chal-
lenge for domain-specific discourse parsing.

2 Related Work

The Penn Discourse TreeBank (PDTB) provides a
comprehensive inventory of relations for general-
domain text (Prasad et al., 2019). Its framework has
been shown to benefit numerous downstream ap-
plications, including summarization and machine
translation (Cohan et al., 2018). The success of
the PDTB framework has inspired adaptations for
many other languages, including Chinese (Zhou
and Xue, 2012), Arabic (Alsaif et al., 2018), and
Turkish (Zeyrek and Kurfalı, 2018).

In parallel with these cross-lingual news-wire
efforts, the PDTB framework has been extended
to a variety of non-news genres. A pilot PDTB-
style annotation of Twitter conversations showed
that social-media arguments often fall outside full
clauses and that Expansion and Contingency rela-
tions dominate (Scheffler et al., 2019). The TED
Multilingual Discourse Bank (TED-MDB) applied
PDTB-3.0 to prepared public speeches in six lan-
guages of TED Talks (Zeyrek et al., 2020). The
GDTB presented a 16-genre benchmark for PDTB-
style shallow discourse parsing (Liu et al., 2024).
More recently, the DISRPT2023 shared task pro-
duced three multi-genre or conversational PDTB-
style corpora—Italian LUNA (spoken dialogue),
Portuguese CRPC (news, fiction, scientific) and
Turkish TDB—which each adapted the scheme to
dialogue units or mixed-genre texts (Braud et al.,
2023).

On the domain-specific front, the Biomedical
Discourse Relation Bank (BioDRB) extends the
PDTB framework into the biomedical domain by
refining its sense hierarchy to include relations
such as Evidence and Hypothesis (Prasad et al.,
2011). This dataset contains 5830 annotated senses.
Other PDTB-style biomedical corpus exist, such
as BioDCA (Gopalan and Lalitha Devi, 2016). Yet
Riccardi (Stepanov and Riccardi, 2014) showed

that even when PDTB-trained discourse parsers are
applied to BioDRB, they still reflect strong domain
specificity: cross-domain transfers demand careful
adaptation. Despite these advances in broadening
both genre and domain coverage, no PDTB-style
corpus has been created for engineering, and the
distinctive discourse of procedural, hands-on in-
structional texts in built-environment engineering
remains completely uncharted.

Significant recent research has focused on eval-
uating the capacity of Large Language Models
(LLMs) in handling discourse reasoning tasks, in-
cluding the identification of discourse relations
and the interpretation of logical connections (Chen
et al., 2024). Evaluations show that even advanced
LLMs struggle with discourse relation extraction
(Wei et al., 2024), their performance diminishes
with increased domain complexity, longer contexts,
and tasks involving intricate logical, deductive, in-
ductive, or abductive reasoning (Cheng et al., 2025;
Lin et al., 2025; Li et al., 2024). The effective-
ness of LLMs in specialized engineering contexts
remains largely unexplored.

3 Data Collection and Pre-processing

3.1 Video Selection

We carefully select engineering tutorial videos
from YouTube to ensure the quality and consis-
tency necessary for effective discourse annotation.
The selected items are hands-on “how-to / trou-
bleshooting / installation” tutorials rather than the-
oretical lectures (e.g., water main break repair,
pouring concrete footings, furnace troubleshoot-
ing). Videos represent three major engineering sub-
domains—civil, mechanical, and electrical engi-
neering—chosen for their distinct problem-solving
and reasoning methods. Specifically, civil engi-
neering tutorials emphasize spatial reasoning, me-
chanical engineering videos illustrate procedural
troubleshooting, and electrical engineering tutori-
als highlight diagnostic reasoning.

We manually identify the videos to annotate to
ensure a high quality of selected videos: they had
to clearly explain engineering concepts or engi-
neering procedures, presented predominantly in
monologue form. Monologue-oriented tutorials
minimize dialogue fragmentation, facilitating clear
identification of discourse relations and logical co-
herence. We also considered audience engagement
metrics, including like-to-dislike ratios higher than
95% and overwhelmingly positive user comments,
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Figure 1: An excerpt of annotated hands-on engineering tutorials. Decimal sub-span labels (e.g.,62.5) mark
additional clause-level splits made whenever annotators detect discourse relations left un-separated in the initial
segmentation. Examples of overlapping and embedded senses are also visualized here. This example highlights the
features of this dataset: richness of temporal/causal relations, overlapping and embedded senses.

to assess each video’s credibility, clarity and educa-
tional value. Additionally, we only included videos
with clear audio, thereby enhancing transcription
reliability. More metadata about selected videos
(e.g., video links) are in Appendix A. Ultimately,
our dataset comprises the scripts of 11 videos, to-
taling roughly 155 minutes of instructional content.

3.2 Data Pre-processing

We converted automatically generated YouTube
transcripts into clause-level spans suitable for
PDTB-style discourse annotation using a three-
stage pipeline: (1) automatic cleanup, (2) LLM-
based candidate segmentation, and (3) human edit-
ing with final verification.

1) Automatic cleanup. We used ChatGPT1 to
insert punctuation and remove timestamps and boil-
erplate (e.g., “Thank you for watching, please sub-
scribe!”), while preserving technical content. This
pass improved readability but was not sufficient for

1ChatGPT o1-mini and then O4-mini were used because
data collection and preprocessing spanned more than six
months, during which GPT discontinued o1-mini.

complete accuracy.
2) Candidate EDU segmentation. Guided by a

detailed prompt, ChatGPT1 split sentences into ele-
mentary discourse units (EDUs) aligned with the
PDTB-3 sense inventory. The prompt instructed the
model to (i) isolate clauses linked by potential ex-
plicit or implicit relations (temporal, contingency,
comparison, expansion), (ii) use connectives and
punctuation as likely boundaries, and (iii) avoid
over-segmentation of closely related elaborations.
Multiple examples and edge cases were included
to calibrate granularity.

3) Human editing and ID scheme. Annotators
treated LLM output as editable scaffolding: they
freely split or relocated boundaries. Each span
received a unique integer ID; when additional re-
lations were identified within a span, annotators
created decimal sub-spans (e.g., 62.1, 62.2). We
did not encode an explicit hierarchy and “embed-
ded” structures arise when one relation’s arguments
subsume another pair.

Bias mitigation and consistency. Because
boundaries were under annotator control, the ma-
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chine proposals did not constrain the final segmen-
tation. To assess systematicity and guard against
LLM artifacts, we applied a top non-LLM seg-
menter (HITS) to the finalized corpus and observed
near-perfect boundary/connective detection (98.6
F1, §6), indicating that the corpus reflects consis-
tent segmentation rather than overfitting to LLM
outputs.

Final verification and corpus. The authors
manually reviewed transcripts against the original
videos, correcting residual errors, validating techni-
cal content, and removing non-essential segments
(e.g., greetings/closings). The resulting dataset con-
tains 2,259 annotated spans drawn from 11 videos.

4 Annotation Scheme and Process

4.1 Annotation Scheme

Our annotation scheme adapts the Penn Discourse
TreeBank 3.0 (PDTB-3) (Prasad et al., 2018) to the
characteristics of engineering discourse while re-
ducing annotation ambiguity. Concretely, we omit
the SpeechAct attribute layer and drop or modify a
small set of senses in the Expansion category with
limited utility for procedural texts; we retain all
other PDTB-3 sense definitions and guidelines.

SpeechAct. We do not distinguish SpeechAct
senses. These encode meta-communicative inten-
tions (e.g., advice, question) that are peripheral
to modeling logical and procedural relations in in-
structional scripts and add complexity without ana-
lytic gain.

Expansion.Conjunction / Disjunction.
We omit Expansion.Conjunction and Expan-
sion.Disjunction. As noted in PDTB-3, these
senses often mark arguments that stand in parallel
to an external situation rather than directly to
each other. In engineering tutorials, such patterns
typically surface as inventories or enumerations
(e.g., options, pros/cons, multiple reasons) and con-
tribute little to causal or procedural interpretation.
For example, in “Span 1: we will do process A for
two reasons. Span 2: the first reason is . . . Span
3: the second reason is . . . ,” PDTB-3 would tag
Spans 2 and 3 as Expansion.Conjunction. Instead,
we capture the underlying reasoning as a single
causal relation with a multi-span argument: Arg1
= Span 1; Arg2 = {Span 2, Span 3}; Sense =
Contingency.Cause.Reason. This represents the
reasons as jointly supporting Span 1, avoiding a
parallelism tag that adds little procedural/causal
signal in this domain.

Expansion.Manner. PDTB-3 notes frequent
overlap between Expansion.Manner and Contin-
gency.Purpose. In our corpus, “manner/means” ex-
pressions in procedural language almost always
paraphrase a teleological goal (e.g., “Do X to
achieve Y”), which led to annotator confusion
with limited payoff. We therefore collapse Expan-
sion.Manner into Contingency.Purpose.

Expansion.Equivalence. We found Expan-
sion.Equivalence difficult to operationalize because
it often coincides with differences in technical
specificity. Rather than retain it as a distinct la-
bel, we annotate such cases as Expansion.Level-
of-detail to foreground specificity contrasts (e.g.,
“Arg1: but it’s just laziness.” vs. “Arg2: Some-
body didn’t want to actually cut pieces of wire and
do it right.” → Expansion.Level-of-detail.Arg2-as-
detail).

These targeted modifications keep our scheme
faithful to PDTB-3 while aligning labels with the
reasoning structures prevalent in engineering tuto-
rial videos.

4.2 Annotation process

The annotation process consisted of three main
phases: annotator training, independent annotation
with span adjustment, and consensus-based adjudi-
cation.

4.2.1 Annotator Training
Both annotators received comprehensive training
on the three-level PDTB-3 taxonomy, covering
the top-level sense categories and the two subse-
quent levels of fine-grained types and subtypes.
The annotators will carefully read the examples
to ensure solid understanding of the PDTB-3 tax-
onomy. Training combined conceptual instruction
with practical exercises in annotation tasks on sep-
arate tutorial video scripts, that are not included
in the final dataset. Following PDTB guidelines,
annotators are trained to mark only the minimal
and sufficient spans to interpret the relations. Spe-
cial emphasis was placed on selecting minimal
spans—segments sufficient to unambiguously con-
vey a discourse sense within its context.

4.2.2 Span Refinement and Sense Annotation
Following training, annotators independently re-
viewed candidate spans. Annotators were encour-
aged to adjust segment boundaries and further sub-
divide spans as needed to accurately capture dis-
course structures. For example, when a span con-
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tained both a general statement and a causal expla-
nation, annotators split it at the explicit connective
(“because”) to ensure each span corresponded to a
single, coherent discourse relation. New sub-spans
were assigned decimal-based IDs to maintain trace-
ability (e.g., span no. 62 and 62.5 in Figure 1).

After finalizing span boundaries, annotators as-
signed sense labels drawn from the modified PDTB-
3 sense taxonomy. A minor modification to our
annotation task, compared to PDTB-3, is the re-
moval of the constraint restricting implicit senses
to adjacent sentences. This adjustment is necessary
because the original video transcripts lack punc-
tuation, making sentence boundaries ambiguous
and thus unreliable for identifying adjacency. Con-
sequently, we permit annotation of implicit rela-
tions whose arguments are non-adjacent (i.e., sepa-
rated by at least one intervening span). Such non-
adjacent implicit relations frequently occur in en-
gineering documentation, especially when detailed
explanations or rationales interrupt sequences of
actions, resulting in temporal connections span-
ning multiple sentences. Neglecting these relations
would limit a comprehensive analysis of logical
and sequential structures in engineering processes.
About 11% of implicit relations in our dataset in-
volve arguments spanning non-adjacent segments.

4.2.3 Annotation Adjudication

To reduce superficial consensus and ensure quality,
we introduce a two-round adjudication protocol.
In Round 1, Annotator 1 (A1) shares their anno-
tations with Annotator 2 (A2). A2 reviews each
instance and records either “agree” (no substantive
difference; e.g., typos or initial misunderstandings)
or “disagree” (a genuine interpretive difference),
providing a brief rationale for every “disagree.” A1
then reviews these cases and, for any remaining
interpretive disagreements, adds a response and
rationale. Most cases are resolved at this stage.
In Round 2, unresolved items are discussed syn-
chronously to reach final consensus.

4.3 Inter-Annotator Agreement Metrics

We evaluated inter-annotator agreement at the sense
level using both strict and partial criteria. For strict
agreement, we treated each annotated span pair as
a discrete instance and computed precision, recall
and F1 (Brants, 2000), omitting Cohen’s Kappa
since the vast number of true negatives in span-

Prec. Recall F1

Strict 0.74 0.70 0.72
Partial 0.78 0.74 0.76

Table 1: Inter-annotator agreement scores between two
annotators.

selection renders it uninformative.2 We evaluate
inter-annotator agreement using two metrics: strict
and partial matching.
Strict Match: A true positive is defined as a case
where both annotators identify the identical char-
acter spans for both Argument 1 and Argument 2,
and assign the same Level-3 sense label.
Partial Match: To capture agreement where an-
notators agree on the substance of an argument
but differ slightly on its boundaries, we employ
a partial-matching criterion. We quantify the de-
gree of span overlap using a score, P, which is a
micro-averaged Jaccard index over the argument
spans:

P =
|AArg1

1 ∩ AArg1
2 |+ |AArg2

1 ∩ AArg2
2 |

|AArg1
1 ∪ AArg1

2 ∪ AArg2
1 ∪ AArg2

2 |
For an annotation pair to be considered a true pos-
itive under this scheme, it must have an identi-
cal Level-3 sense label and an overlap score of
P ≥ 0.5.

As summarized in Table 1, the strict F1 of 0.72
indicates moderate agreement given the technical
and subjective nature of span boundaries, while the
higher partial F1 of 0.76 shows that a small pro-
portion discrepancies arise from minor boundary
shifts rather than substantive sense differences.

5 Statistics of the ENG-DRB Dataset

Our dataset is constructed from 11 engineering
tutorial videos covering domains including civil,
mechanical, and electrical/electronics engineering.
Each video’s script was thoroughly annotated for
a range of discourse features, including implicit
and explicit relations, non-adjacent spans, long-
distance relations, and alternative lexicalizations
(AltLex).

5.1 Overview
The ENG-DRB dataset contains 11 engineering tu-
torials, totaling 155 minutes of instructional video,

2For a document of length N , the number of ordered
pairs of non-overlapping contiguous segments is T (N) =
N(N+1)(N+2)(N−1)

12
, e.g., T (100) = 8, 499, 150
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Domain No. Duration Tokens Spans
C 4 57:10 9021 864
E/E 3 53:07 8218 763
M 4 45:15 6362 632
Total 11 155:32 23601 2259

Table 2: Per-domain summary of number of videos
(No.), duration, token count and spans. C, M, E/E refers
to Civil, Mechanical, and Electrical/Electronics, respec-
tively

from which we annotated 2,259 discourse spans
and 1,215 senses. The corpus is organized into
three domains—Civil (C), Electrical/Electronics
(E/E), and Mechanical (M)—with a detailed break-
down provided in Table 2.

Despite differences in topic and length, the data
reveals remarkable structural consistency across
the engineering domains. This is evident in two
key metrics. First, the density of discourse annota-
tion is stable, ranging from 14.0 to 15.1 spans per
minute. Second, the proportion of spans that form
a discourse relation is also highly consistent, with
52% to 56% of spans having an annotated sense
across the three domains (calculated from Tables 2
and 3). This consistency in both span density and
relational structure strengthens the dataset’s utility
for building generalizable models of instructional
discourse.

The distribution of discourse relation types is
shown in Table 3. Explicit relations are predom-
inant, constituting 767 instances (63.1%) of the
total. Implicit relations account for 393 instances
(32.3%), while AltLex relations3 are the least fre-
quent, with 55 occurrences (4.5%). This strong
preference for explicit markers suggests that tech-
nical instructional discourse in engineering priori-
tizes the unambiguous signaling of procedures and
causal dependencies.

5.2 Distribution of Senses at the First and
Second Levels of the PDTB-3 Hierarchy

Table 4 presents the distribution of annotated dis-
course relations. Of the annotated discourse senses,
Contingency relations are the most frequent, con-
stituting 50.2% of the total. Following are Tem-
poral (21.5%), Expansion (18%), and Compar-
ison (10%) relations. This skew underscores the
prominence of causal explanation and stepwise se-

3AltLex refers to cases where an implicit discourse relation
is already lexicalized by alternative expressions, making any
added connective redundant.

Domain Exp. Imp. AltLex Total

C 299 130 21 450
E/E 267 141 19 427
M 201 122 15 338

Total 767 393 55 1215

Table 3: Distribution of discourse relations in the ENG-
DRB dataset by domain. Exp., Imp., C, M, and E/E
refer to Explicit, Implicit, Civil, Mechanical, and Elec-
trical/Electronics, respectively

2nd-level Senses No. %
Temporal.Asynchronous 232 19.09%
Temporal.Synchronous 29 2.39%

Contingency.Cause 395 32.51%
Contingency.Purpose 48 3.95%
Contingency.Condition 158 13%
Contingency.Negative-condi 9 0.74%

Comparison.Concession 109 8.97%
Comparison.Contrast 10 0.82%
Comparison.Similarity 2 0.16%

Expansion.Exception 0 0%
Expansion.Instantiation 6 0.49%
Expansion.Level-of-detail 204 16.79%
Expansion.Substitution 13 1.07%

Table 4: Distribution of Senses in Discourse Relations

quencing characteristic of the corpus’s instructional
content. In contrast, news corpora such as PDTB-3
exhibit a more balanced distribution with a greater
emphasis on Expansion relations for event and
entity elaboration.

At the second level, the Cause relation, a sub-
type of Contingency, is the most prominent, ac-
counting for 32.5% of all annotated senses. Other
significant senses include Asynchronous (19.1%)
and Level-of-detail (16.8%). Relations like Con-
dition (13.0%), Concession (9.0%), and Purpose
(4.0%) are also noteworthy. Conversely, senses
such as Negative-condition, Contrast, Similarity,
Instantiation, and Substitution appear infrequently.
These findings suggest that engineering tutorials
rely heavily on causal, temporal, and elaborative
discourse strategies.
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5.3 Overlapped and Embedded Senses in
ENG-DRB: Compared with the PDTB-2
Dataset

In addition to the basic discourse structure, ENG-
DRB includes annotations for two complex phe-
nomena: overlapping and embedded senses. Over-
lapping senses occur when two or more discourse
relations share one or more common text spans,
while embedded senses refer to hierarchical struc-
tures where one discourse relation (child) is entirely
contained within a single argument of another (par-
ent).

Analysis reveals that ENG-DRB exhibits signifi-
cantly higher complexity compared to the PDTB-2
dataset in both phenomena. Specifically, ENG-
DRB annotations have, on average, 2.05 overlap-
ping senses per annotated sense, compared to 1.36
in PDTB-2. At the 95th percentile, ENG-DRB an-
notations include up to five overlapping senses per
relation, substantially exceeding the maximum of
three overlaps per relation observed in PDTB-2.

Similarly, embedded senses are also notably
more frequent and complex in ENG-DRB. On aver-
age, each sense in ENG-DRB participates in 0.65
parent-child relations, with 31% of senses function-
ing as children and 43% as parents. By contrast,
PDTB-2 shows fewer embedded structures, averag-
ing only 0.29 parent-child relationships per sense,
with only 22% of senses functioning as either par-
ents or children.

These findings highlight the distinctive complex-
ity of ENG-DRB. The high density of overlapping
and embedded annotations enables the dataset to ex-
plicitly represent hierarchical discourse structures,
traditionally a characteristic feature of the Rhetori-
cal Structure Theory (RST) framework rather than
PDTB. This augmentation allows PDTB-based an-
notations in ENG-DRB to capture richer structural
information, thus bridging the gap between shal-
low discourse annotation frameworks like PDTB
and deeper, hierarchical frameworks exemplified
by RST.

6 Benchmarking the HITS model on
ENG-DRB

We benchmark a strong, open-source baseline
by replicating the HITS system from the DIS-
RPT 2023 shared task for discourse segmentation,
connective detection, and relation classification
(Liu et al., 2023). Following DISRPT, we evaluate
(i) Discourse Segmentation + Connective Detection

(Tasks 1&2; F1), and (ii) Discourse Relation Clas-
sification (Task 3; accuracy). We use our standard
split into 8/1/3 documents for train/dev/test, respec-
tively, with 1,487, 116, and 707 labeled instances.
For Tasks 1&2, HITS employs a BiLSTM+CRF
sequence tagger on top of a RoBERTa encoder. For
Task 3, it uses a RoBERTa-based classifier that
predicts the discourse relation between adjacent
units.

All runs use a single NVIDIA H100 (80 GB)
with 64 GB RAM and seed 106524. Tasks 1&2:
roberta-base, max sequence length 512,
train/eval batch sizes 16/32, learning rate 3×10−5,
dropout 0.1, 10 epochs, warmup ratio 0.06,
weight decay 0.1, max gradient norm 2.0. Task 3:
roberta-base, max sequence length 512, batch
sizes 16/32, learning rate 2×10−5, dropout 0.1, 5
epochs, warmup ratio 0.06, weight decay 0.1.

HITS reaches near-ceiling performance on seg-
mentation and connective detection (98.62 F1 on
the test set), indicating that identifying discourse
unit boundaries and connectives is not the bot-
tleneck in ENG-DRB. In contrast, relation clas-
sification is markedly harder: despite a strong
80.70% development accuracy, the corresponding
test accuracy is 63.73%, a∼17-point generalization
gap. Relative to the system’s reported accuracy on
the standard eng.pdtb.pdtb benchmark (74.75%),
ENG-DRB yields an∼11-point drop, underscoring
the domain’s difficulty.

7 Benchmarking LLMs on ENG-DRB
dataset

7.1 Experimental Setup

For benchmarking the LLMs on the ENG-DRB
dataset, we chose three LLMs: (1) OpenAI o4-
mini-2025-04-16 (OpenAI et al., 2024), (2) Claude-
3-7-sonnet-20250219 anthropic2024claude3, and
(3)LLAMA-3.1-8B (Grattafiori et al., 2024) 4. We
separated the implicit and explicit senses in the
golden dataset and conduct separate experiments.

We evaluate LLM annotation by sliding a fixed-
size window of 20 spans over each document’s
annotated spans, moving it forward by 10 spans at
each step (so that consecutive windows overlap by
10 spans). Because 97% of all arguments in our
dataset are 10 spans or shorter, this overlap ensures
that at least one window will fully contain every

4Llama’s prompt was shortened because it failed to follow
the longer instructions used for other models and returned
unstructured outputs.
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such span. Consequently, 97% of arguments are
guaranteed to be captured in their entirety by at
least one window.

For each window, we constructed an LLM
prompt consisting of the relevant spans (format-
ted as a JSON string) and a system instruction,
prompted the model and recorded its output. This
approach ensures each span receives rich contex-
tual information.

Algorithm 1 Sliding Window Prompting

1: for each document d in the dataset do
2: Retrieve the list of annotated spans S =

[s1, . . . , sn]
3: for window start i = 1 to n− w + 1 step

s do
4: W ← [si, . . . , si+w−1]
5: Assign unique window identifier ID
6: Format W as a JSON string
7: Construct LLM request with system

instruction, W , and model parameters
8: Submit request to LLM
9: Record response with ID

10: Write result (response or error) to the
output file (JSONL)

11: end for
12: end for
13: Summarize results: report window-level statis-

tics (success/failure)

The prompts used in this study closely follow
human expert annotation protocols. We employ
separate prompts for explicit and implicit sense
detection, each tailored to our modified PDTB-3
guidelines. For explicit sense annotation, the model
is instructed to label only those relations signaled
by an explicit connective, always assigning the
span containing the connective as Argument 2. For
implicit sense annotation, the model is directed to
identify only relations where no explicit connective
is present. In both cases, the LLM selects mini-
mal, contiguous spans for each argument, assigns
an appropriate PDTB-3 sense label, and outputs a
confidence score (0–1) based on topic familiarity,
logical clarity, and potential sense ambiguity. To
facilitate few-shot learning, each prompt includes a
40-span annotation example—covering two consec-
utive sliding windows—as an illustrative demon-
stration of the annotation process. Confidence
scores are used to resolve disagreements when the
same argument pair receives different sense labels
across overlapping windows. All prompts provide

clear sense definitions, stepwise annotation instruc-
tions, and enforce a structured JSON output format,
ensuring transparent and reproducible evaluation
against human expert annotations.

Setting Precision Recall F1

GPT-o4-mini
Explicit/Partial 0.3491 0.5022 0.4119
Explicit/Strict 0.2712 0.3914 0.3204
Implicit/Partial 0.0544 0.2180 0.0871
Implicit/Strict 0.0408 0.1639 0.0653

Claude-3.7
Explicit/Partial 0.2694 0.3964 0.3208
Explicit/Strict 0.1939 0.2862 0.2312
Implicit/Partial 0.0480 0.1956 0.0771
Implicit/Strict 0.0258 0.1056 0.0415

Llama-3.1-8B
Explicit/Partial 0.0360 0.0391 0.0375
Explicit/Strict 0.0078 0.0084 0.0081
Implicit/Partial 0.0457 0.1244 0.0668
Implicit/Strict 0.0134 0.0366 0.0196

Table 5: Benchmarking LLM Annotation Performance
on ENG-DRB.

7.2 Results

Table 5 reports the performance of GPT o4mini
and Claude 3.7 on the ENG-DRB dataset, evalu-
ated under both exact match and partial agreement
criteria for explicit and implicit discourse relation
sense annotation. Overall, both models demon-
strate substantially higher performance on explicit
relations compared to implicit relations, mirroring
trends observed in prior work on PDTB-style cor-
pora. Under the partial agreement setting, GPT
o4mini achieves an F1 score of 0.41 for explicit
senses, outperforming Claude 3.7 (F1 = 0.32), with
a similar advantage observed for exact match (0.22
vs. 0.18 F1). For implicit senses, both models ex-
hibit marked performance degradation, with GPT
o4mini attaining F1 scores of 0.09 (partial) and 0.07
(strict), while Claude 3.7 trails slightly (0.08 partial,
0.04 strict). Precision remains low across implicit
sense detection, reflecting the intrinsic challenge of
reliably inferring discourse relations in engineering
instructional text absent explicit connectives.

7.2.1 Explicit Senses Extraction
Our error analysis on the ENG-DRB dataset uncov-
ered three dominant patterns in discourse relation
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extraction, each pointing toward specific avenues
for model refinement.

First, the model shows an overly permissive
bias toward temporal connectives: it predicts 208
false positives for Temporal.Asynchronous rela-
tions while correctly identifying every genuine in-
stance. In practice, clause-initial “when” or “after”
often serve as descriptive or sequential markers
rather than explicit Asynchronous links, yet the
model treats them uniformly.

Second, for Expansion.Level-of-Detail, preci-
sion and recall trade off markedly (83 false posi-
tives vs. 56 false negatives). Common coordinate
conjunctions such as “and” spuriously trigger ex-
pansion labels, whereas explicit cues (“This can
be done by. . . ”) are occasionally overlooked. This
suggests that simple keyword heuristics are insuf-
ficient to distinguish narrative continuation from
true Expansion.Level-of-Detail sense.

Third, Contingency.Cause exhibits balanced but
still substantial confusion (20 false positives vs.
25 false negatives). Weak causal markers such as
“so” are over-trusted as 46.71% of “So” in this
dataset are not associated with any sense. Prototyp-
ical causal sequences (“X then Y”) are sometimes
missed.

7.2.2 Implicit Senses Extraction
All models struggle profoundly with implicit sense
extraction, with F1 scores remaining below 0.09
when considering partial agreement (Table 5). Per-
formance is crippled by extremely low precision
(under 0.055), indicating that the models gener-
ate a high volume of false positives. This failure
suggests that without explicit connectives, current
LLMs lack the contextual reasoning necessary to
reliably infer nuanced discourse relations in spe-
cialized engineering text.

8 Conclusion

This study introduced ENG-DRB, the first PDTB-
style discourse relation corpus for engineering tu-
torial transcripts, addressing a gap in specialized-
domain discourse resources. The corpus includes
1,215 annotated relations across civil, mechanical,
and electrical/electronics tutorials, highlighting a
high proportion of explicit senses, dense causal
and temporal relations, and frequent overlapping
senses. Benchmarking three state-of-the-art LLMs
revealed significant challenges in accurately pars-
ing specialized discourse. Future work should fo-
cus on developing models better suited for the com-

plex discourse structures and domain-specific nu-
ances found in engineering contexts.

Limitations

While ENG-DRB fills an important gap in engi-
neering discourse resources, several factors con-
strain its scope and utility. First, the corpus com-
prises only 11 tutorial videos (155 minutes; 1,215
relations). Although its scale is comparable to
other domain-specific resources such as BioDRB
(5,830 senses), it remains modest compared to
large, general-domain discourse banks and may
limit large-scale model training. Second, anno-
tations were produced by two annotators with a
two-round adjudication; our strict F1 (0.72) indi-
cates reasonable but not perfect consistency, re-
flecting inherent subjectivity in span boundary and
sense decisions. Third, current LLMs exhibit sub-
stantial performance degradation on long-context
inputs (e.g., full-length engineering transcripts),
which constrains the reliability of our discourse
parsing evaluation over extended instructional texts.
Future work should scale up ENG-DRB with more
topically diverse tutorial videos, involve a larger
annotator pool with enhanced adjudication pro-
tocols to boost consistency, and explore models
and prompting techniques specifically designed for
long-context understanding.
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A Video metadata

We show the metadata of the videos we used in
Table 6.

B Hyperparameter Grid Search for HITS
Benchmarking experiments.

We conducted a grid search over key training hy-
perparameters for to identify effective configura-
tions for fine-tuning. Specifically, we varied the
learning rate in {2× 10−5, 3× 10−5, 5× 10−5},
the number of training epochs in {5, 10}, and the
training batch size in {8, 16, 32}, resulting in 18
total configurations. All other parameters were
kept fixed: we used the roberta-base backbone
with a maximum sequence length of 512, evalua-
tion batch size of 32, dropout rate of 0.1, weight
decay of 0.1, warmup ratio of 0.06, and maximum
gradient norm of 2.0. Each run used the same ran-
dom seed (106524) and was trained on a single
NVIDIA H100 (80 GB) GPU. We use the same
grid search settings for Task1&2 and Task 3. The
best-performing model was selected based on the
highest validation score observed during training
as reported in Section 6.

C Hyperparameter for LLM
Benchmarking Experiments

For the experiment using the LLaMA-3.1-8B-
Instruct model, we configured the model to gen-
erate up to 1,024 new tokens per window, with a
maximum input length of 2,048 tokens including
the context. To ensure deterministic and fully re-
producible generation, we set the temperature to
0.0 and top-p to 0.0, with sampling disabled. This
configuration guarantees that the same input con-
sistently yields the same output. All experiments
were conducted on a single NVIDIA H100 GPU.

For the experiment using the OpenAI o4-mini-
2025-04-16, we configured the model to generate
up to 100,000 new tokens per window, with a max-
imum input length of 200,000 tokens including the

context. To ensure deterministic and fully repro-
ducible generation, we set the temperature to 0.0
and top-p to 0.0, with sampling disabled. The ex-
periment consumes 2,178,419 tokens with batch
API and $4.65 (with preliminary trial and error
process).

For the experiment using the Claude-3-7-sonnet-
20250219, we configured the model to generate
up to 3,000 new tokens per window. To ensure
deterministic and fully reproducible generation, we
set the temperature to 0.0, with sampling disabled
and all other parameters using their default values
(top k of 40 maintained). The experiment consumes
2,692,805 tokens as input and 432,053 tokens as
output, and $14.56 (with preliminary trial and error
process).

D A Prompt for separating scripts into
EDUs

# Splitting Sentences into Argument Candidate
Spans in a Tutorial Discourse

# 1. Purpose
The purpose of this stage is to separate the sen-

tences into potential clause-level spans so that the
potential senses (i.e., logical relationships) within
sentences can be later annotated.

# 2. Separating Spans Within a Sentence When
It Contains Logical Relationships (i.e., Senses)

When a sentence contains one of the following
logical relationships (senses), you should separate
the sentence into multiple spans corresponding to
each argument of the sense. The senses are adopted
from the PDTB-3 framework and include temporal
relation, contingency relation, comparison relation,
and expansion relation. This section summarizes
the PDTB-3 sense labels, explaining each type of
discourse relation with simplified definitions and
typical examples. Discourse relations describe how
two parts of text (arguments) are connected logi-
cally.

## 1. Temporal Relations
**Definition**: Temporal relations connect

events in time, indicating when they occur relative
to each other.

### 1.1 Temporal.Synchronous
- **Explanation**: Both events happen at the

same time or overlap. - **Examples**: - "*While*
she reads, he listens to music." - "The crowd
cheered *as* the team scored."

......

1328

https://doi.org/10.1007/s10579-019-09445-9
https://doi.org/10.1007/s10579-019-09445-9
https://aclanthology.org/P12-1008/
https://aclanthology.org/P12-1008/


Video Title Domain Duration Likes Dislikes Tokens Spans Senses Video Link

Water Main Break Repair C 0:14:52 771 13 2570 264 131 https://youtu.be/wGJNFfqP2y8?si=5qhxT46MCacmnx2J
Pouring Concrete Footings C 0:18:24 11000 192 2459 223 105 https://www.youtube.com/watch?v=qo7eL5yp56A
Garage Floor Crack C 0:14:38 22000 765 2453 227 133 https://youtu.be/bXDYgxM-PTc?si=VpPfeZDm_VvyZ2kv
Dig a Basement C 0:09:16 3100 44 1539 150 81 https://www.youtube.com/watch?v=rAmAoxmWkLI
Occupancy Sensor (truncated) E 0:12:29 2100 88 1546 157 91 https://youtu.be/9lZUP-Fe9to?si=hmOCXyLcKisCra__
PLC Output E 0:07:24 3100 19 1228 116 57 https://www.youtube.com/watch?v=U3fj4tHHS8M
Voltage Drop E 0:33:14 15000 573 5444 490 279 https://youtu.be/DfLyh43iihM?si=m30Jz0cPJSN_3BP2
Simple Boiler Maintenance M 0:01:58 676 8 471 52 36 https://youtu.be/xtuzsK6RFO0?si=4pw0CPO_NJRir1iP
RV Plumbing M 0:07:23 1600 55 1037 112 67 https://www.youtube.com/watch?v=MjyU2eClPcA
Furnace Troubleshooting M 0:26:32 17000 503 3392 331 177 https://youtu.be/dJzNrw6L_YU?si=uqZ4IqHurvClHM7G
Welding Techniques Steel Columns M 0:09:22 – – 1462 137 58 https://www.youtube.com/watch?v=-8D_sPGBstI

Total – 2:35:32 – – 23601 2259 1215 –

Table 6: Summary of Technical Videos with Metadata

(brief introduction of all senses used in this
study)

# 3. Step-by-Step Instructions
**Step 1:** Start from the first sentence.
**Step 2:** Read the current sentence carefully.
**Step 3:** Split the spans in the current sen-

tence.
- **3.1 Identify Logical Relationships

(Senses):**
- **Looking for senses (logical relationships) in

the current sentence according to the senses listed
in Section 2**

- **If a sentence contains sections (e.g., clauses,
phrases, or "to + verb" forms) that are connected by
logical relationships (senses) listed above, separate
the sentence into multiple spans corresponding to
each argument of the sense.**

- **Look for conjunctions and connective
phrases** such as "and," "but," "if," "because,"
"so," "when," "after," "before," "while," "al-
though," "for example," " instead of", "rather", "oth-
erwise", etc., which often signal the presence of a
sense.

- **Identify the arguments** of the sense. Each
argument should be a separate span.

- **Examples:**
- (some brief examples for each category of

senses)
- **3.2 If No Logical Relationships Are

Present:**
- - If the sentence does not contain any of the

specified logical relationships and the entire sen-
tence serves a single function, annotate the sen-
tence as a single span with its function. - **3.3
Handling Irrelevant Content:**

- If a span has no function relevant to the tuto-
rial (e.g., the author made a joke or included other
irrelevant content), label it as N/A.

**Step 4:** Review the previous several spans.
- **Double-check the annotated functions.** If

you have new understanding about the function of
the spans or the logical relationships, update them
accordingly.

**Step 5:** Move to the next sentence and re-
peat Steps 2 to 4 until the entire discourse is sepa-
rated into spans and functions are annotated.

—
# Additional Notes
- **Be Vigilant for Multiple Senses:**
- A sentence may contain multiple senses. In

such cases, ensure that each sense is considered,
and the sentence is split accordingly. - **Hierarchy
of Senses:**

- If multiple senses are present and overlap, pri-
oritize splitting based on the most prominent or
governing sense in the context. - **Use of Connec-
tives:**

- Words like "if," "because," "so," "when," "af-
ter," "before," "although," "for example," etc., are
strong indicators of logical relationships and should
prompt you to consider splitting the sentence. Punc-
tuations (e.g., commas and semicolons) are also po-
tential indicators of logical relationships - **Con-
text Matters:**

- Always consider the context to accurately de-
termine the sense and function of each span. -
**Consistency:**

- Apply these guidelines consistently throughout
the annotation to maintain uniformity.

### When Not to Split Spans
- **Coordinating Conjunctions:**
- The mere presence of coordinating conjunc-

tions (and, but, or) does NOT automatically warrant
splitting spans. On the other hand, regardless of the
conjunction used (and, but, or), if a span contains
coordinated clauses that each serve as an argument
in a logical relationship, split them into separate
spans. - **Examples of when NOT to split:**

1. (some examples) ......
- **Rule of Thumb:** When any span contains
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more than one clause that plays a role in a logical
relationship, split the span so that each clause is iso-
lated as an individual argument of that relationship.
If you are not sure, just split them into separate
spans.

# Examples
### Example 1
#### Input - Original transcript:
All right, here we go. Today we’re going to do

a simple steam boiler maintenance. This is a real
basic one; we’re not going to get into any ignition
or anything like that.

......
#### Output - Annotated spans and functions:
1 All right, here we go. 2 Today we’re going to

do a simple steam boiler maintenance. 3 This is
a real basic one; we’re not going to get into any
ignition or anything like that.

......

E A Prompt for Benchmarking LLMs

Note: This is the version for benchmarking explicit
senses. Implicit version can be modified accord-
ingly

You are an experienced, professional, rigorous
computational linguist. You are now work as the
annotator of the tutorial discourse PDTB sense
dataset. Your task is extract the senses in the
given spans from hands-on engineering tutorial dis-
courses. Specifically, you only identify the senses
where the explicit connective is shown in the argu-
ment. Also, please make sure the argument with
connective is assigned as Argument 2, regardless of
its position. When annotating arguments in PDTB-
3 for a specific sense, the annotated spans for each
argument should be the minimal span(s) sufficient
to unambiguously convey that sense. This minimal
span must preserve the original meaning within its
discourse context. Please annotate the senses based
on the given PDTB sense definition. In addition,
please also indicate a confidence level (0-1) for
each sense you detected in the final output based
on 1) your familiarity with the topic, 2) the logic
clarity of the candidate arguments, 3) possible simi-
lar senses that may cause confusion. The definition
of senses, example input, annotation steps, output
format, example output, and the discourse section
to be annotated is given below:

# Definition of senses: " ## 1.1 PDTB3 Sense
Classification Here we provide definitions of the
PDTB-3 sense labels.

### 1.1.1 Temporal Relations......
### 1.1.2 Contingency Relations......
### 1.1.3 Comparison Relations......
### 1.1.4 Expansion Relations......
"
# Example inputs: " (an exmaple showing the

input format) "
# Annotation Steps
1. **Initial Reading**: Review the provided

discourse to understand the content and context.
2. **Identify Connectives**: Locate explicit

connectives and determine their corresponding
Arg1 and Arg2 spans. Always assign the span
containing the explicit connective as Argument 2.

3. **Determine Sense**: Use the definitions
from the PDTB-3 sense hierarchy to classify the
senses between arguments (e.g., Temporal, Contin-
gency, Comparison, Expansion).

4. **Minimal Span Identification**: Ensure the
chosen spans for each argument are the minimal
portions needed to convey the intended sense cor-
rectly.

5. **Confidence Assessment**: Evaluate your
confidence level (0-1) for each identified sense,
considering familiarity with the topic, clarity of
logic, and potential for similar sense confusion.

6. **Annotate**: Structure annotations clearly,
specifying argument spans, sense, explicit connec-
tive, and confidence score.

# Output Format
Each sense annotation should be in the follow-

ing JSON format: “‘json (an exmaple showing the
input format) "

# The discourse section to be annotated is as
follows:
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