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Abstract
Translating natural language into formal lan-
guage such as First-Order Logic (FOL) is
a foundational challenge in NLP with wide-
ranging applications in automated reasoning,
misinformation tracking, and knowledge val-
idation. In this paper, we introduce Natural
Language to First-Order Logic (NL2FOL), a
framework to autoformalize natural language to
FOL step-by-step using Large Language Mod-
els (LLMs). Our approach addresses key chal-
lenges in this translation process, including the
integration of implicit background knowledge.
By leveraging structured representations gen-
erated by NL2FOL, we use Satisfiability Mod-
ulo Theory (SMT) solvers to reason about the
logical validity of natural language statements.
We present logical fallacy detection as a case
study to evaluate the efficacy of NL2FOL. Be-
ing neurosymbolic, our approach also provides
interpretable insights into the reasoning pro-
cess and demonstrates robustness without re-
quiring model fine-tuning or labeled training
data. Our framework achieves strong perfor-
mance on multiple datasets – on the LOGIC
dataset, NL2FOL achieves an F1-score of 78%,
while generalizing effectively to the LOGIC-
CLIMATE dataset with an F1-score of 80%.1

1 Introduction

In recent years, Large Language Models (LLMs)
have shown impressive advancements in under-
standing and generating natural language (Brown
et al., 2020). Despite this progress, their ability
to tackle complex reasoning tasks remains limited
(Bubeck et al., 2023; Wei et al., 2022). These chal-
lenges are especially prevalent in multistep logical
deductions, abstract reasoning, and knowledge in-
tegration in various domains (Dalvi et al., 2021;
Chen et al., 2024). Addressing these limitations
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and improving the reasoning capabilities of LLMs
has become a critical focus in AI research (Halupt-
zok et al., 2022; Gendron et al., 2024).

In contrast, formal reasoning tools such as Satis-
fiability Modulo Theory (SMT) solvers excel in
reasoning, providing rigorous, provable guarantees
by leveraging symbolic representations and logi-
cal calculus (Barrett et al., 2009; De Moura and
Bjørner, 2008). However, a key limitation of for-
mal solvers is their reliance on structured logical
input, such as First Order Logic (FOL), which must
accurately capture the semantics and context of
natural language statements (Beltagy et al., 2016).
This presents the challenge of translating unstruc-
tured natural language into a structured form re-
quired for formal reasoning while preserving essen-
tial context and meaning.

This also brings a unique opportunity: if we can
reliably translate natural language into structured
logical forms, we can harness the power of formal
solvers to reason systematically over natural lan-
guage statements. However, achieving this transla-
tion is nontrivial, as it involves accurately capturing
natural language semantics (Beltagy et al., 2016).
Moreover, translating to a formal logical form may
cause implicit and external context to be lost, which
must be reintroduced to ensure logical accuracy.

To address these challenges, we present NL2FOL,
a novel framework that bridges the gap be-
tween natural language and formal reasoning sys-
tems. NL2FOL employs a structured, step-by-step
pipeline to translate natural language inputs into
first-order logic (FOL) representations, leveraging
large language models (LLMs) at each step for en-
hanced precision and adaptability. A distinguishing
feature of NL2FOL is its seamless integration of
background knowledge into the generated logical
forms, overcoming a major limitation of traditional
formal logic frameworks - the inability to capture
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Fallacy Name Example Logical Form

Faulty Generalization Sometimes flu vaccines don’t work; therefore
vaccines are useless.

(∃x ∈ FluVaccines(DoesntWork(x)) ∧
(FluVaccines ⊆ Vaccines))⇒
(∀y ∈ Vaccines (DoesntWork(y)))

False Causality Every time I wash my car, it rains. Me washing
my car has a definite effect on the weather.

occuredAfter(washingCar, rain) ⇒
caused(washingCar, rain)

Ad Populum Everyone should like coffee: 95% of teachers do! (like(coffee, 95%Teachers)) ⇒
(like(coffee, everyone))

False Dilemma I don’t want to give up my car, so I don’t think I
can support fighting climate change.

∀(a)(giveUpCar(a) ∨
dontSupportFightingClimateChange(a))

Table 1: Sample logical fallacies from Jin et al. (2022) along with examples and their logical forms. For each type
of fallacy, we show one possible logical form.

implicit information embedded in natural language.

In this paper, we demonstrate the effectiveness of
NL2FOL through a case study on logical fallacy
detection, showcasing its ability to identify and
explain faulty reasoning in natural language argu-
ments. Detecting logical fallacies is particularly
challenging as they often rely on reasoning pat-
terns that appear plausible yet are fundamentally
flawed (Jin et al., 2022). To address this, NL2FOL
translates logical fallacies from natural language
into FOL representations, enabling formal solvers
to verify logical validity. These solvers generate
counterexamples and explanations, which are in-
terpreted back into natural language to enhance
human comprehensibility. By incorporating inter-
mediate natural language outputs, our pipeline im-
proves interpretability, transparency, and debugga-
bility (?).

We show that our framework achieves strong perfor-
mance on the logical fallacy detection benchmarks
LOGIC and LOGICCLIMATE (Jin et al., 2022), with
F1 scores of 78% and 80%, respectively - out-
performing existing models by 22% on the chal-
lenge set, LOGICCLIMATE. These results high-
light NL2FOL as a generalizable and interpretable
tool for reasoning tasks that demand the precision
of formal reasoning systems. By analyzing the
strengths and weaknesses of LLMs at each step of
the NL2FOL pipeline, we further identify opportu-
nities for improving logical reasoning capabilities.
Even though LLMs prove to be effective in pars-
ing and generating logical representations for struc-
tured inputs, they often struggle with ambiguities in
natural language and incorporating nuanced contex-
tual knowledge. The ability to integrate symbolic
solvers with language models positions NL2FOL
as a powerful neurosymbolic approach, bridging
the gap between formal reasoning and natural lan-

guage understanding.

2 Related Work

Logical fallacy detection. Existing work on clas-
sifying logical fallacies includes argument suffi-
ciency classification (Stab and Gurevych, 2017),
ad hominem fallacies from Reddit posts (Haber-
nal et al., 2018b) and dialogues (Habernal et al.,
2018a), rule parsers (Nakpih and Santini, 2020),
structure-aware Transformers (Jin et al., 2022),
multitask instruction based prompting (Alhindi
et al., 2022), and instance-based reasoning (Sourati
et al., 2022). To our knowledge, our work is the
first on few-shot classification of logical fallacies
in a step-by-step, explainable manner. By ensuring
that the reasoning process is transparent, we allow
users to understand and verify the system decision.

Natural language to formal logic. While early
work on mapping text to formal logic relied heav-
ily on grammar-based approaches (Purdy, 1991;
Angeli and Manning, 2014; MacCartney and Man-
ning, 2014), recent advances in deep learning and
foundation models have enabled new data-driven
techniques for translating natural language to lin-
ear temporal logic (Cosler et al., 2023; Fuggitti and
Chakraborti, 2023; Liu et al., 2022) and first-order
logic (Singh et al., 2020; Yang et al., 2024; Hahn
et al., 2022). Neural models for parsing natural lan-
guage to first-order logic (Singh et al., 2020; Yang
et al., 2024) and neuro-symbolic approach combin-
ing language models with first-order logic provers
(Olausson et al., 2023) have since been explored.
However, these approaches still face challenges in
accurately capturing implicit information or trans-
forming complex ambiguous sentences into logical
form, mainly attributed to linguistic ambiguity.

Aly et al. (2023) integrated LLMs with logical in-
ference for fact verification, and while our method
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Figure 1: Overview of the proposed framework used for logical fallacy detection. Module A converts natural
language input to a first-order logic formula merged with contextual relationships, Module B compiles the negation
of a given logical formula to an SMT file with well-defined sorts for variables and predicates, and Module C runs
CVC on the SMT file and if the negation is satisfiable, interprets the counter-model in natural language.

shares the fundamental idea of employing LLMs
to construct proofs and analyze relationships be-
tween textual spans, our task adds a layer of con-
textual reasoning by requiring the incorporation
of background knowledge and maintaining interde-
pendency between proof steps, which is not present
in approaches where each proof step is treated as
an independent, isolated process.

Theory solvers. Recent work by Hahn et al. (2022)
demonstrated the potential of integrating symbolic
solvers with large language models (LLMs), such
as tool-augmented LLMs, to combine neural and
symbolic reasoning. While such approaches are
promising, they often struggle to translate natural
language into symbolic representations and effec-
tively capture background knowledge. Other recent
approaches (Olausson et al., 2023; Pan et al., 2023)
have used theory solvers to logically reason with
natural language, which we build on with several
key advancements. First, we introduce a frame-
work that handles naturalistic, real-world data and
tasks with ambiguous premises and conclusions.
Then, we present a method to incorporate back-
ground knowledge into logical formulas. Finally,
we show that our approach introduces interpretabil-
ity by allowing human verification and modifica-
tion throughout the intermediate reasoning steps.

3 Methodology

Although powerful, LLMs struggle to detect logical
fallacies in language, as it requires proper logical
analysis (Jin et al., 2022). On the other hand, SMT
solvers can reason over logical formulas with the-
oretical guarantees but require the input to be in a
structured, logical form. This approach combines

the strengths of both to classify logical fallacies.

Task formulation. The task input is an argument in
natural language comprising one or more sentences,
which is converted into formal logical form using
a chain of LLMs. Following this, an SMT solver
processes the logical form and returns whether it is
valid. If invalid, the SMT solver provides a coun-
terexample explaining why it is a logical fallacy,
which is then interpreted with an LLM.

First-order logic. In FOL, propositions are rep-
resented using predicates that express properties
or relations over objects in a domain. These predi-
cates can be combined with constants, representing
specific objects and variables that represent unspec-
ified elements in the domain. An Interpretation
assigns meaning to these symbols within a given
context, while a Sort categorizes objects into differ-
ent types, facilitating precise reasoning about their
properties. Logical connectives of FOL, such as im-
plication (⇒), universal quantifiers (∀), existential
quantifiers (∃), and operators for conjunction/and
(∧), disjunction/or (∨), and negation/not (¬), allow
for the construction of intricate statements.

Module A: Natural language to first-order logic.
Our approach for converting given natural lan-
guage sentences into a logical form comprises mul-
tiple steps involving few-shot prompting of LLMs:
(i) decomposing a sentence into multiple smaller
parts that can be represented in first-order logic,
(ii) identifying relationships between different sub-
components to merge them and obtain a resultant
logical formula, and (iii) identifying real-world
relationships between these sub-components (back-
ground knowledge) and augmenting them to ob-
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tain a FOL formula by incorporating background
knowledge in the statement. We demonstrate with
a Logical Fallacy (LF) and a Valid (V) example.

1. LF Example: A Logical Fallacy Input
I met a tall man who loved to eat cheese, now I
believe all tall people like cheese.

2. V Example: A Valid Input
A boy is jumping on a skateboard in the middle of a
red bridge. Thus the boy does a skateboarding trick.

Our pipeline begins with a semantic decomposition
module which decomposes natural language argu-
ments into respective claims and implications. Gen-
erally, a sentence can be split into some claims and
implications based on those claims (see Prompt 2).

1. LF Example: Claim and Implication Parser
Claim: A tall man loved to eat cheese.
Implication: All tall people like cheese.

2. V Example: Claim and Implication Parser
Claim: A boy is jumping on a skateboard in the
middle of a red bridge.
Implication: The boy does a skateboarding trick.

The claims and implications are split into further
sub-components and used to build up the logical
form of the sentence. The next step is to identify
entities in the sentence. In our work, we treat noun
phrases or surrogates for noun phrases as entities
(see Prompt 3). Then, we find the relationship
between the different entities using Zero-Shot clas-
sification via Natural Language Inference (NLI).
These relationships (e.g., subset, equality, not re-
lated) are generally helpful in deciding appropriate
quantifiers in the logical form. For example, if the
entities are man and people, then it can be inferred
that man is a subset of people and that the man
would be bound by an existential quantifier in the
sentence x (see Prompt 4).

1. LF Example: Entity Extractor
Referring expressions:

• man: x
• cheese: c
• people: y
• x ⊆ y

2. V Example: Entity Extractor
Referring expressions:

• boy: b
• skateboard: s
• bridge
• skateboardingTrick: y

The other set of sub-components are properties,
which describe a trait of a referring expression or
relationship between multiple referring expressions.
These properties are predicates in first-order logic.
We use a single module to extract the properties and

the relation between properties and entities. (see
Prompt 5). We also find the relationships between
various properties (see Prompt 6). For instance,
in the LF Example, it can be inferred that Like
and Love are contextually similar. Similarly, in our
valid example, jumping over skateboard implies do-
ing a skateboard trick. These relationships provide
an additional context that is not directly present in
the statement.

To identify these contextual relationships, we run
NLI between each pair of properties, i.e., by setting
one property as the hypothesis and the other as the
premise as the input to the NLI model. If we find
that any one property entails the other, we add the
relationship property1 ⇒ property2 to our con-
text. Before running the NLI model between a pair
of properties, we replace the variables in each prop-
erty with the referring expressions that they repre-
sent. This adds additional context that helps the
NLI model identify relations. For instance, in the
V Example, the NLI model is unable to find the re-
lation between JumpsOn(x, s) and Does(x, y), but it
can identify the relationship between JumpsOn(boy,
skateboard) and Does(boy, skateboardingTrick).

1. LF Example: Property Extractor + Background
Knowledge Retriever
Properties: Tall, Love, Like
Property entity relations: Tall(x),Love(x, c)
Background knowledge:

1. ∀x(Like(x, c)⇒ Love(x, c))
2. ∀x(Love(x, c)⇒ Like(x, c))
3. x ⊆ y

2. V Example: Property Extractor + Background
Knowledge Retriever
Properties: JumpsOn, inMiddleOf, Red, Does
Property entity relations: JumpsOn(b, s),
Red(bridge), inMiddleOf(b, bridge),Does(b, y)
Background knowledge:

1. ∀x(JumpsOn(b, s)⇒ Does(b, y))

Finally, we combine all of this information using
the relationships between properties and entities to
obtain the FOL form of the sentence with the help
of an LLM (see Prompt 7). For a logical fallacy, the
negation of the formula is expected to be satisfiable.
On the contrary, for a valid statement, the negation
of the formula should be unsatisfiable.

1. LF Example: NL2FOL Output
First-order logic: ((∀x(Like(x, c) ⇒ Love(x, c)))∧
(∀x(Love(x, c) ⇒ Like(x, c)))∧ (∃x(Tall(x) ∧
Love(x, c))))⇒ (∀y(Tall(y)⇒ Like(y, c)))

2. V Example: NL2FOL Output
First-order logic: (∀x(JumpsOn(x, s) ⇒
Does(x, y))∧Red(bridge)∧ inMiddleOf(b, bridge)∧
JumpsOn(b, s))⇒ Does(b, y)
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Module B: First-order logic to SMT. The next
step involves automatically creating an SMT file
for the negation of the first-order logical formula
generated. While one can easily write an SMT
file for a logical formula manually, generating one
automatically for an arbitrary formula has not been
done before. Thus, we develop a compiler that
parses a given logical formula and converts it into
an SMT file that can be given to CVC as input, as
described in Algorithm 1 (See Appendix).

Module C: Interpreting SMT results. To ver-
ify the validity of the logical formulas, we utilize
an SMT solver, CVC4 (Barrett et al., 2011). The
solver determines whether the formula is valid or
invalid, hence a logical fallacy. In the case of in-
validity, the model provides a counterexample to
the original logical formula, which shows that the
given claim or implication is a logical fallacy.

Example (Module B Output):
I met a tall man who loved to eat cheese, now I
believe all tall people like cheese.

↓
First-order logic: ((∀x(Like(x, c) ⇒ Love(x, c)))∧
(∀x(Love(x, c) ⇒ Like(x, c)))∧ (∃x(Tall(x) ∧
Love(x, c))))⇒ (∀y(Tall(y)⇒ Like(y, c)))

↓
SMT classification: Logical fallacy
Explanation: Counterexample

↓
• John is tall (Tall(John) is True). John likes

cheese (Likes(John,Cheese) is True).
• Jane is tall (Tall(Jane) is True). No constraint

Jane likes cheese.

Therefore, there exists a tall person (John) who likes
cheese, but it does not follow that all tall people like
cheese, since Jane serves as a counterexample.

Figure 2: Example of logical fallacy detection using
NL2FOL. The resulting classification is explained using
a counterexample generated by the SMT solver.

The result of the SMT solver is hard to interpret, as
it uses technical terminology generally only well
understood by those who are familiar with CVC4
and SMT. To obtain an explanation in natural lan-
guage, we prompt an LLM with the claim, impli-
cation, referring expressions, properties, FOL for-
mula, and the counterexample generated by CVC4.
The model then interprets the counterexample with
natural language, as depicted in Figure 2.

4 Experiments

We evaluate our approach on both logical falla-
cies (positive class) and valid statements (negative
class). For logical fallacies, we use the LOGIC and

LOGICCLIMATE (Jin et al., 2022) datasets, origi-
nally designed for training models to identify and
classify different fallacies. These datasets contain
examples of logical fallacies, each labeled with
multiple categories from 13 different categories,
including faulty generalization, circular claim, and
ad hominem. The LOGIC dataset contains 2,449
examples of common logical fallacies collected
mostly from quiz websites. The LOGICCLIMATE

dataset comprises 1,079 examples of logical falla-
cies drawn from climate change news articles on
the Climate Feedback platform. It is intended to
test the model’s ability to generalize out-of-domain.

To test our approach with valid statements, we use
the Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015), which supports the
development of natural language inference sys-
tems. This dataset features over 570,000 human-
annotated sentence pairs, where each pair consists
of a premise and a hypothesis labeled as entailment,
contradiction, or neutral. We focus on the entail-
ment class in this study, extracting over 170,000
sentence pairs where the premise entails the hypoth-
esis. We construct valid sentences by combining
the premise and hypothesis into a single sentence.

The task is set up as a simple binary classification
task, where the input consists of sentences drawn
from the LOGIC or LOGICCLIMATE datasets la-
beled as logical fallacies or from the SNLI dataset
labeled as valid sentences. Here, we treat logical
fallacies as the positive class. To ensure a balanced
evaluation, we select an equal number of fallacies
and valid statements, allowing for a fair comparison
across both classes. Finally, our model is evaluated
on standard binary classification metrics such as
precision, recall, f1 score, and accuracy.

Models. We compare our method to pretrained
language models, including Llama2-7B (Touvron
et al., 2023), GPT4o-mini (OpenAI, 2024), GPT4o
(OpenAI et al., 2024a) and OpenAI o1-preview
(OpenAI et al., 2024b) with few-shot in-context
examples (see Prompt 1). We also run NL2FOL
with each of the above models used for the LLM
prompting stages. Llama2-7B was chosen for our
experiments as it had the best performance dur-
ing testing over an initial subset of the data, out-
performing Llama3.1-8B (Grattafiori et al., 2024),
Llama3.2-11B (AI, 2024a), and Ministral-8B (AI,
2024b). We evaluate BART (140M parameters)
(Lewis et al., 2020) finetuned on MNLI (Williams
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LOGIC LOGICCLIMATE

Model Method Acc. P. R. F1 Acc. P. R. F1

Llama-7B End-to-end 0.41 0.45 0.82 0.58 0.31 0.38 0.62 0.47
NL2FOL (Ours) 0.63 0.58 0.92 0.71 0.66 0.60 0.94 0.73

GPT-4o-mini End-to-end 0.91 0.94 0.88 0.91 0.64 0.67 0.55 0.60
NL2FOL (Ours) 0.70 0.64 0.91 0.75 0.73 0.66 0.93 0.77

GPT-4o End-to-end 0.96 0.96 0.96 0.96 0.70 0.95 0.42 0.58
NL2FOL (Ours) 0.78 0.76 0.82 0.78 0.80 0.80 0.80 0.80

OpenAI o1-preview End-to-end 0.93 0.89 0.98 0.93 0.73 0.84 0.56 0.67
NL2FOL (Ours) - - - - - - - -

Table 2: Comparison of few-shot model performance metrics (abbreviations: Acc. = accuracy, P. = precision, R. =
recall, F1 = F1 score) on the LOGIC+SNLI and LOGICCLIMATE+SNLI datasets using End-to-end vs. NL2FOL
(Ours). Results on NL2FOL with o1-preview are omitted as o1-preview failed to complete the pipeline in most
cases, likely due to its poor instruction following capabilities.

et al., 2018) to analyze the relationships between
properties and referring expressions. We ran the
experiments on a V100 GPU, with one run costing
around 2 GPU hours.

Prompt tuning. For prompt tuning, 20 samples
from the LOGIC dataset were selected and manu-
ally annotated with intermediate and final results.
They were then split into 10 train and 10 valida-
tion examples. For each prompt, we start with a
simple description of the task. 4-6 examples were
randomly selected from the train set as in-context
examples, with the relevant intermediate outputs
depending on the stage. Results were tested on the
validation examples, and the prompt was updated
to address common mistakes. To ensure fairness, a
fixed number of 5 improvement iterations was used
for each prompt, and the one showing best perfor-
mance over the validation examples was chosen.

5 Results and Discussion

As shown in Table 2, our method achieves an
F1 score of 78% when used with GPT-4o on the
LOGIC dataset. When run end-to-end, the Llama-
7B model reached an F1 score of only 58%, but
when used with the NL2FOL pipeline, reached
a score of 71%. Although end-to-end classifica-
tion has shown better performance in other models,
comparisons can be skewed because they may have
been exposed to the LOGIC dataset and its labels
during training because this dataset was compiled
from publicly accessible web sources. On average,
NL2FOL demonstrated high recall, whereas end-
to-end classification demonstrated high precision.

Our challenge set LOGICCLIMATE+SNLI contains
real-world logical fallacies from climate change
news. Since this dataset was used to test gener-

alization, the in-context examples we provide to
all models are from the LOGIC dataset. NL2FOL
yields results that are highly similar to the results
from LOGIC, whereas end-to-end classification saw
a drop in performance. This demonstrates that
our system is also robust and adapts well to real-
world texts, including texts with significant domain-
specific context. This makes it effective in detect-
ing and mitigating misinformation. Specifically,
on this dataset, we find that NL2FOL outperforms
direct translation with all LLMs that we tested.

5.1 Quantitative Analysis
Error analysis and interpretability. The pro-
posed method is interpretable due to the use of
natural language inputs and outputs at each step
of the pipeline. This structure allows for precise
identification of the specific module responsible
for a failure by examining intermediate results. To
evaluate this aspect, we performed an in-depth er-
ror analysis by annotating the module responsible
for failure in 100 incorrect predictions made by the
model. The results are summarized in Table 4.

Our analysis reveals that the majority of errors oc-
cur in the ‘Background Knowledge Retriever’, in-
volving missed or incorrectly added contextual in-
formation in the logical form. Other errors typically
pertain to incorrect identification of claims, impli-
cations, or properties. In contrast, inaccuracies in
the generation of logical forms are relatively infre-
quent, suggesting that the model performs well in
constructing accurate logical representations when
provided with reliable information about the con-
stituent entities and properties within a sentence.
This finding underscores the importance of improv-
ing the background knowledge retriever module to
improve overall model performance.
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Type Sentence Logical Form Prediction
1 LF X has been around

for years now. Y is
new. Therefore, Y
is better than X.

(IsNew(a) ∧ ∼ IsNew(b))⇒ (IsBetterThan(a,b)) LF: Correct prediction

2 LF Everyone is doing
the Low-Carb Diet.

(∃ b (∃ a (IsDoing(b,a)))) ⇒ (∃ c (∃ a (IsDo-
ing(c,a)))).

V: Incorrect prediction - Wrong
translation given when no claim
given

3 V Two dogs are fight-
ing in a field. Con-
sequently, the two
dogs are outside.

(∃ b (∃ a (IsFighting(a, b) ∧ IsInField(b) ∧ IsIn-
Field(b))))⇒ (∃ a (IsOutside(a)))

LF: Incorrect prediction - Missing
semantic ground truth claim: ∀ a
(IsInField(a)⇒ IsOutside(a))

4 V A baseball player
gets ready to catch
a fly ball near
the outfield fence.
Therefore, a person
is playing baseball
outdoors.

(∃ a (IsGettingReady(a) ∧ (IsABaseballPlayer(a)
∧ IsCatchingFlyBall(a) ∧ IsNearOutfield-
Fence(a))) ∧ (∀ e ( IsABaseballPlayer(e) ⇒
IsPlayingBaseball(e))) ∧ (∀ f ( IsPlayingBase-
ball(f) ⇒ IsABaseballPlayer(f))) ∧ (∀ g (
IsNearOutfieldFence(g) ⇒ IsOutdoors(g))))
⇒ (∃ c (∃ a (IsPlayingBaseball(a) ∧ IsOut-
doors(c))))

V: Correct Prediction - The method
identifies additional context by es-
tablishing relationships such as Is-
BaseballPlayer implying IsPlaying-
Baseball, and IsNearOutfieldFence
implying IsOutdoors.

5 V A woman sits alone
on a park bench in
the sun. Hence, a
woman is in a park.

(IsSittingOn(a, b) ∧ isParkBench(b) ∧ IsIn-
Sun(a))⇒ (IsInPark(a)).

LF: Incorrect prediction - Miss-
ing semantic ground truth claim:
∀a∀b (IsSittingOn(a, b) ∧ isPark-
Bench(b)⇒ IsInPark(a))

6 V A woman is stand-
ing at a podium.
Thus, a person is at
a podium.

(∃a∃b (IsStandingAt(b, a))∧ ∀f∀e∀d (IsStandin-
gAt(d,e)⇒ IsAt(f,e))⇒ ∃c∃a (IsAt(c, a))

V: Correct prediction - The method
identifies additional context by
establishing the relationship Is-
StandingAt implying IsAt.

Table 3: Some example outputs of our model (abbreviations: LF = Logical Fallacy, V = Valid statement)

Sub-Module with Error Error Proportion

Claim and Implication Parser 0.19
Incorrect Label 0.01
Property Extractor 0.13
Background Knowledge Retriever 0.54
FOL Formulation Engine 0.13

Table 4: Categorization of model errors by type on
NL2FOL (GPT-4o), based on a review by domain ex-
perts in the logic of 100 randomly sampled examples

Impact of adding background knowledge to
NL2FOL. Based on the error analysis, missing or
incorrect background knowledge was a significant
contributor to incorrect predictions of our method.
To quantitatively assess the impact of grounding
on model performance, we evaluated several ap-
proaches for NLI in the Background Relation Ex-
tractor. These included: (a) a pipeline without any
background knowledge as a baseline, (b) a model
without context where the LLM (GPT4o) only pro-
cesses the input properties, (c) an LLM that incor-
porates both the input sentence and properties and
(d) a smaller model specifically fine-tuned for NLI
(BART-MNLI). Results are presented in Table 5.

We see that precision and recall both improve sig-
nificantly with better grounding techniques. The

LLM model with sentence context achieves the
highest overall performance. This is likely due to
the sentence context providing information about
clauses that are omitted due to the choice of rep-
resentation in FOL. This indicates that integrating
robust grounding mechanisms is critical to enhanc-
ing the accuracy and reliability of the method.

LOGIC+SNLI LOGICCLIMATE+SNLI

Method Acc. P. R. F1 Acc. P. R. F1

(a) No Grounding 0.54 0.52 0.88 0.66 0.57 0.54 0.94 0.69
(b) LLM 0.76 0.78 0.74 0.75 0.79 0.80 0.78 0.79
(c) LLM w/ context 0.78 0.76 0.82 0.78 0.80 0.80 0.80 0.80
(d) BART-MNLI 0.71 0.71 0.70 0.70 0.77 0.81 0.71 0.77

Table 5: Comparison of different grounding methods on
NL2FOL (GPT4o-mini) across the LOGIC+SNLI and
LogicClimate+SNLI datasets

Impact of using an SMT solver. To assess the
impact of using an SMT solver in our pipeline, we
compared its performance against an LLM as a
baseline for classifying the logical forms as valid
or fallacies. The results, summarized in Table 6,
demonstrate a significant improvement in perfor-
mance metrics with the integration of the SMT
solver. Results reveal the SMT-based approach sig-
nificantly outperforms the LLM-based approach
in all metrics across both the LOGIC and LOGIC-
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CLIMATE datasets. This underscores the advantage
of formal reasoning systems like SMT solvers for
tasks requiring precise logical inference and struc-
tured reasoning compared to LLMs, which may
lack systematic consistency in such contexts.

5.2 Qualitative Analysis
5.2.1 Success Modes of NL2FOL

S1: Captures implicit information not men-
tioned in premises. Previous works that directly
translate natural language to logical forms suffer
from an inability to capture implicit information
not mentioned in the premises (Olausson et al.,
2023). Our “Background Knowledge Retriever”
step allows us to capture this information in the
final logical form. An illustration of this can be
found in Example 4 of Table 3.

S2: Captures explicit information that is missed
in the representation. Our pipeline is also able to
capture information that is explicitly mentioned in
the premises but missed due to the choice of repre-
sentation in logical form. In Example 6, in Table 3,
the fact that the woman is both standing and is at
the podium is lost due to the choice representation
IsStandingAt. However, the fact that the woman
is at the podium is recovered in the final logical
form due to the identified background knowledge
IsStandingAt implies IsAt.

S3: Comparison to direct translation. To evalu-
ate the efficacy of the multi-step LLM pipeline, we
compared it against a direct translation approach,
where natural language inputs were converted into
logical forms with a single LLM call using a few-
shot prompt. However, this task proved to be exces-
sively complex for LLMs. Llama failed to generate
any output, citing an inability to comprehend the
prompt. Larger LLMs exhibited significant limi-
tations, with over 95% of their outputs containing
syntax errors. These findings highlight the inad-
equacy of direct translation for complex logical
reasoning tasks and underscore the necessity of a
structured, multi-step approach to ensure the accu-
racy and syntactic correctness of the logical form.

5.2.2 Failure Modes of NL2FOL

F1: Misses some background knowledge. As can
be observed in Table 4, incorrect identification of
background knowledge is the most common cause
for incorrect classifications. This is because any
gaps in background knowledge can cause a valid
statement to be identified as a logical fallacy, and

LOGIC LOGICCLIMATE

Classifier Acc. P. R. F1 Acc. P. R. F1
SMT 0.78 0.76 0.82 0.78 0.80 0.80 0.80 0.80
GPT-4o 0.69 0.71 0.62 0.66 0.73 0.72 0.74 0.73

Table 6: Comparison of classification methods used with
NL2FOL (GPT4o) on LOGIC and LOGICCLIMATE

an incorrectly added clause can cause a fallacy to
be identified as valid. One such case is present in
example 3 of the Table 3. In this case, the model
is not able to identify the extra context statement
because the NLI model does not identify a required
ground-truth relation. If this context were to be
added to the claim of the logical formula, then the
statement would have been predicted to be valid.

F2: Limitations of NLI. Our current approach
is limited to discerning relationships between two
properties at a time rather than handling multiple
relationships concurrently. For reference, consider
Example 5 in Table 3. Here, the semantic claim
involves the conjunction of two properties entail-
ing the third, while the ‘Background Knowledge
Retriever’ only checks whether one property en-
tails the other. Finding such complex extra context
requires more advanced techniques or additional
human intervention. Including them could further
improve the precision of the model overall.

F3: Imprecision of LLMs. Among the logical
fallacies that our model incorrectly predicted to
be a valid statement, most of these predictions
failed due to the imprecision of the LLM, leading to
false translations and incorrect results. Example 2
demonstrates a case where the input does not have
any claim but instead jumps straight to an implica-
tion. However, the model is not able to identify that
the example has no claim. As a result, we obtain
an incorrect translation with our technique.

6 Conclusion

We present an effective and automatic solution to
detect fallacies and tackle misinformation. We
developed a strategy to distinguish logical falla-
cies from valid statements, involving a chaining
approach to convert a sentence to first-order logic
using LLMs, followed by using SMT solvers to
identify whether the first-order logical statement is
valid or not. If not, we interpret the counter-model
generated by the SMT solver in natural language.
Our proposed technique shows promising results
in identifying logical fallacies and valid statements,
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as well as good generalizability across domains.

Ethics Statement

While the intended outcome of this research is to
help fight misinformation and promote rational dis-
course, there are several ethical challenges that we
must consider. First, dependence on AI to identify
logical fallacies could influence how individuals
engage in debates and discussions. There is a risk
that people may over-rely on AI judgments, po-
tentially stifling complex statements or dissenting
opinions that are essential for a healthy democratic
process. Moreover, the use of AI in moderating dis-
cussions, especially in identifying logical fallacies,
raises ethical questions about the automation of
content moderation. While it can enhance the qual-
ity of public discourse by filtering out fallacious
statements, it also risks automating censorship and
impacting the dynamics of online communities. In
the wrong hands, logical fallacy detection tools
could be exploited to silence speech or suppress
viewpoints under the pretext of promoting rational
discourse. This potentially allows governments or
organizations to stifle opposition or critique.

To address these issues, we advocate for the devel-
opment of ethical guidelines for AI use that empha-
size transparency, accountability, and active user
engagement. These measures are crucial in encour-
aging public literacy in AI and logical fallacies, ulti-
mately empowering individuals to critically assess
both AI output and arguments they may encounter.

Limitations

Scope of logical reasoning tasks. Correct iden-
tification of background knowledge is crucial for
our method. While we have shown its potential in
detecting logical fallacies for short and structured
premises, it is important to note that this approach
may miss complex relational constructs (for exam-
ple, (a ∧ b) ⇒ (c ∨ d))), in which richer logical
patterns may often be required in real-world reason-
ing tasks such as those present in multi-paragraph
contexts or Question-Answering (QA) datasets.

Generalizability to other tasks and domains. We
have demonstrated promising results of our ap-
proach to logical fallacy detection, but whether
the findings generalize to other logical tasks and
domains remains unexplored. The performance of
our approach in other languages is untested and
may introduce unforeseen challenges.

Going beyond first-order logic. It is unknown
whether our approach would be sufficiently expres-
sive for reasoning tasks requiring higher-order or
non-classical logic, as we limit our exploration
to first-order logic. Conceptually, extending our
method to the aforementioned domains is feasible
but would require modification to the SMT integra-
tion and LLM-driven logic translation processes.
Thus, further testing may include translating to
logic beyond FOL, such as temporal and higher-
order logic.

Computational cost. Using LLMs and SMT
solvers can incur high computational costs, such as
high-performance GPUs for LLM inference, CPUs
optimized for SMT solvers, and high API usage,
particularly for models like GPT-o1 and Llama-7B.
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Appendix

A Algorithms

Algorithm 1: Compiling Logical Formula to
SMT
Input: Logical formula L in natural language or

First-Order Logic (FOL)
Output: SMT file S formatted for formal solvers

Step 1: Tokenize Formula
T ← Tokenize(L) // Split L into tokens based

on operators, parentheses, and commas

Step 2: Process Tokens
P ← ∅ // Initialize processed tokens set
foreach token t ∈ T do

if t is a predicate then
Identify arguments of t
Recursively ProcessTokens() for arguments

else if t is an operator or variable then
Add t to P

Step 3: Convert Formula to Prefix Notation
Fprefix ← InfixToPrefix(P) // Transform logical

formula from infix to prefix notation
Recursively apply InfixToPrefix() for predicate

arguments

Step 4: Determine Sorts
Ssorts ← UnifySort(Fprefix) // Assign sorts for

variables and predicates

Step 5: Format Formula for SMT
FSMT ← Parenthesize Fprefix according to SMT-LIB

syntax

Step 6: Generate SMT File
S ← GenerateSMT(Ssorts,FSMT)
Include

• (declare-sort) statements for sorts.
• (declare-fun) statements for variables and

predicates.
• Negation of FSMT.
• (check-sat) and (get-model) commands.

return S // Return the SMT file for use in
formal solvers

B Prompt Examples

Note: Additional in-context examples were re-
moved for brevity and denoted ‘[...]’ in the fol-
lowing prompts.

B.1 End-to-end LLM Prompts
Prompt 1. Classifying with in-context examples
(Few-shot)

A sentence is logically valid if and only if it is not
possible for it to be false.

Here are some examples of classifying sentences as
logical fallacies or valid sentences:
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Algorithm 2: UnifySort for Predicate A(x, y)

Input: Predicate A(x, y) with arguments and potential
instances

Output: Unified sort for predicate A or an error if sorts
are incompatible

Step 1: Declare the Current Sort Initialize the current
sort of A: (NULL,NULL,Bool)

Step 2: Process Each Instance of Predicate A foreach
instance of predicate A do

Step 2.1: Determine Instance Sorts foreach
argument xi in the instance do

if xi is a formula then
Set sort(xi) = Bool

else if xi is a variable then
Set sort(xi) = sort(variable) // May be

NULL

Step 2.2: Unify Current Sort with Instance Sort
foreach statement sort in current and instance
sorts do

if sorts are not NULL and different then
Raise an error: Incompatible sorts

else if current sort is NULL and instance sort is
not NULL then

Update current sort:
current_sort← instance_sort

else if instance sort is NULL and current sort is
not NULL then

Update variable sort to match current sort

Example 1:

Input: "I met a tall man who loved to eat cheese, now
I believe all tall people like cheese"
Answer: Logical Fallacy

[...]

Now, classify the following sentence. Answer with
either "Logical Fallacy" or "Valid" at the start of your
answer.

Input:

B.2 Intermediate NL2FOL Prompts

Prompt 2. Extracting claim and implication

Here are some examples of extracting claims and
implications from an input paragraph. There can be
multiple claims but only one implication.

Input: "I met a tall man who loved to eat cheese, now
I believe all tall people like cheese."
Output:
Claim: "A tall man loves cheese."
Implication: "All tall people like cheese."

[...]

Do not use any subordinating conjunctions in the
implication. Replace pronouns with the appropriate
nouns so that there are no pronouns. Now extract the

claim and implication for the following input.

Input:

Prompt 3. Getting referring expressions

You are given a sentence. Referring expressions are
noun phrases, pronouns, and proper names that refer
to some individual objects that have some properties
associated with them. Here are some examples of
finding referring expressions in a sentence:

Input: "A tall man loved cheese"
Referring expressions: A tall man

[...]

Now, find the referring expressions for the following
input:

Prompt 4. Getting entity relations

Please determine the relationship between the
two entities provided below. Choose the number
corresponding to the statement that best describes
their relationship:

1. "[Entity A]" is equal to "[Entity B]".
2. "[Entity A]" is a subset of "[Entity B]".
3. "[Entity B]" is a subset of "[Entity A]".
4. "[Entity A]" is not related to "[Entity B]".

Instructions:
- Equality check: If the two entities are equal (case-
insensitive after stripping whitespace), select state-
ment 1.
- Subset determination: If they are not equal, assess
whether one entity is a subset of the other based on
general knowledge and logical reasoning.

- If "[Entity A]" is a subset of "[Entity
B]", select statement 2.
- If "[Entity B]" is a subset of "[Entity
A]", select statement 3.

- Unrelated entities: If none of the above statements
accurately describes the relationship.

Here are some examples:

Example 1:

Entity A: "dogs"
Entity B: "animals"
Analysis: All dogs are animals, so "dogs" is a subset
of "animals".
Answer: 2

[...]

Entities:
- Entity A:
- Entity B:

Your Task:
- Analyze the relationship between "Entity A" and
"Entity B" based on the instructions.
- Provide only the number (1, 2, 3, or 4) that corre-
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sponds to the statement you have selected.

Prompt 5. Getting properties (claim)

Given a sentence, and the referring expressions of
that sentence. Properties are anything that describes a
relationship between two referring expressions, or
they may describe a trait of a referring expression.
These properties are essentially predicates in
first-order logic.

Here are some examples of finding properties in a
sentence:

Example 1:

Input sentence: A tall man loves cheese
Referring expressions: tall man: a, cheese: b
Properties: IsTall(x), LovesCheese(x)

[...]

Now extract the properties for the following input:

Prompt 6. Getting property relations

You are given two logical clauses. Your task is
to identify whether or not the first clause entails
the second clause, taking into account external
knowledge or ’common sense’. Also, take into
account the context from the input sentence.

Here are some examples:

Example 1:

Input sentence: A boy is jumping on skateboard in
the middle of a red bridge. Thus, the boy does a
skateboarding trick.
Clause 1: JumpsOn(boy,skateboard)
Clause 2: Does(boy, skateboarding_trick)
Answer: ENTAILMENT

[...]

Now given the following clauses. identify whether
the first clause entails the second clause.

Prompt 7. Retrieving FOL expression

Given a sentence, the referring expressions of that
sentence, and properties which are associated with
the referring expressions. Use the given properties to
convert the sentence into a first-order logical form.
Use -> to represent implies, & to represent and, | to
represent or and to represent negations.

Example 1:

Input Sentence: A tall man loves cheese
Referring Expressions: A tall man: x
Properties: IsTall(x), LovesCheese(x)
Logical Form: IsTall(x) & LovesCheese(x)

[...]

C Code and Artifacts

The complete set of prompt examples and code
is available in our public repository at https://
github.com/lovishchopra/NL2FOL.

We encourage readers to visit the repository for
details and latest updates.
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