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Abstract

While majority of current resources rely on
formal text corrections, our work shifts the fo-
cus to non-native spoken Hindi error correc-
tion, which presents unique challenges due to
its rich morphology, complex syntax, and dis-
tinct error patterns. To address the scarcity of
authentic learner data, we introduce HilLearn-
ers, a dataset gathered from 2,500 real non-
native Hindi speakers across three linguistic
backgrounds (English, Bengali, Dravidian),
capturing authentic error patterns including
transfer errors, overgeneralization patterns, and
contextual agreement issues. Furthermore, to
overcome data resource limitations, we de-
velop a methodical synthetic data augmenta-
tion technique, utilizing Large Language Mod-
els (LLMs) with a pattern analysis and con-
trolled generation approach similar to Retrieval-
Augmented Generation (RAG), yielding 5,500
carefully verified synthetic examples. Through
extensive experiments on individual, mixed,
and progressive curriculum-based configura-
tions using multilingual models, we demon-
strate that LLM-based synthetic data combined
with three-phase curriculum learning signifi-
cantly boosts performance, achieving a 76.92
GLEU score and surpassing human-only base-
lines. This work bridges the gap between
native-centric error correction research and non-
native Hindi learner needs, establishing a real-
istic assessment standard for advancing low-
resource language processing.

1 Introduction

In multilingual contexts, non-native speakers are
individuals whose first language (L.1) differs from
the target language they are acquiring. In our study,
non-native Hindi speakers are specifically defined
as individuals whose mother tongue is not Hindi en-
compassing speakers from diverse linguistic back-
grounds including English, Bengali, and Dravidian
languages who are acquiring Hindi as their other
language.

The errors produced by non-native Hindi speak-
ers manifest through distinct systematic patterns
that fundamentally differ from both native speaker
mistakes and grammatically accurate, intentional
multilingual phenomena. Corder (1967) estab-
lished that non-native speaker errors are system-
atic deviations occurring when individuals have
not yet mastered target language rules, contrasting
sharply with occasional performance errors made
by native speakers. These systematic L2 errors typ-
ically emerge through three primary mechanisms:
transfer errors, where non-native speakers apply
L1 structures to the target language (Kim, 2025);
overgeneralization errors, where Hindi grammat-
ical rules are extended beyond appropriate con-
texts (Hassan and Rami, 2024); and contextual
agreement errors, representing failures to maintain
grammatical consistency across complex sentence
structures (Rothman and Slabakova, 2018).

Selinker (1987) characterized this systematic na-
ture through interlanguage theory, demonstrating
that non-native speakers develop transitional lin-
guistic systems influenced by L1 transfer, learning
strategies, and overgeneralization patterns. This
framework helps distinguish systematic non-native
speaker errors (including those where code-mixing
results in grammatical violations) from intentional
code-mixing behaviors commonly observed in mul-
tilingual Indian communities, where speakers de-
liberately alternate between languages for commu-
nicative purposes without necessarily making gram-
matical violations.

Hindi’s morphologically rich nature, with its in-
tricate gender-number-case agreement system and
complex verbal morphology, presents particular
challenges for non-native speakers from typologi-
cally diverse backgrounds. While Patel et al. (2024)
provided evidence of bidirectional transfer effects
in Hindi-English contexts, and recent studies show
that transfer patterns vary significantly based on L1
backgrounds (Rothman, 2015), spoken Hindi error
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Our country's President a good man is and he for country’s development dowork .
FAR SN & TEufa Uh oD AT & SR O AT e dEH G fgem  @d g |
[Case] [Noun] [Adjective] [Verb] [Pronoun] [Verb]
[m sing] [m plu] [m plul [‘he’ - polite] [m plul
| | | | | |
ED| nfade I=ST g ag HAT &l
[L1 Transfer-English]  [m sing] [m sing] [not polite] [m sing]
(@
Brother with me yesterday in the office next project about the talked for along time .
S 7 e &l THER A et ulRElsrT FIRHT v IHy dah ara R
[Noun] [Pronoun] [Noun] [Word Order Error]
[m sing] [with me]
| | | |
ST i iStae a1 foran sist 99T da|

[L1 Transfer-Dravidian] [to me] [L2 Transfer-English]
(b)

Of the school all female students morning in prayer stood and song wassinging.

e & oft sEme gog wdH @St off ofik e et off)

[Noun] [Verb] [Verb]
[f plu] [f plu] [f plu]
| | |
EjEII @ s T @I ATI
[Incorrect Noun Inflection] [m plu] [m plu]

(c)

Figure 1: This figure illustrates typical errors found in the HiLearners dataset from Hindi language learners. (For
clarity, correct words are highlighted in green, and incorrect words are highlighted in red.) (m:masculine, plu:plural,
sing:singular): (a) Errors made by an English L1 learner, specifically using English words directly and failing to
use the correct polite (honorific) forms for high-status individuals. (b) Examples of multiple error types: influence
from Dravidian (as L.1), English lexical interference (as L.2), incorrect pronoun usage, and mistakes in sentence
word order. (c) Errors primarily reflecting Bengali L1 influence, particularly concerning verb agreement (gender

and number) and noun case/number inflection.

correction remains severely understudied. Most re-
search has focused on formal text correction (Son-
awane et al., 2020; Sharma and Bhattacharyya,
2025), leaving a significant gap in understanding
authentic non-native speaker errors in spoken pro-
duction.

Our work specifically targets systematic errors
made by non-native speakers, including those aris-
ing from code-mixing as a legitimate communica-
tive strategy, focusing on individuals who pos-
sess basic Hindi speaking ability and foundational
grammar knowledge but lack proficiency in com-
plex grammatical structures and complete mastery
of Hindi’s intricate morphosyntactic systems (Li
et al., 2025).

Thus, we present our contributions as follows:

1. HiLearners Dataset: We introduce the first
spoken Hindi error correction dataset com-
prising 2,500 sentences with 24 distinct error
types collected from non-native Hindi speak-
ers across three linguistic backgrounds (En-
glish, Bengali, Dravidian). The dataset cap-
tures systematic transfer errors, overgeneral-
ization patterns, and contextual agreement vi-
olations as illustrated in Figure 1. The dataset
is available for access at link!.

Thttps://github.com/Souravakb24/HiLearners

2. Synthetic Data Augmentation: We develop
5,500 LLM-generated synthetic sentences that
authentically replicate learner error patterns.
Each synthetic example is verified by native
speakers to ensure linguistic validity and main-
tains error distribution consistency with real
non-native speaker production.

3. Comprehensive Evaluation Framework:
We design a systematic experimental frame-
work employing curriculum learning with
three progressive difficulty phases and vary-
ing synthetic data proportions (25%-100%) to
identify optimal training strategies for spoken
Hindi error correction systems.

This work bridges the gap between native-
centric NLP research and non-native Hindi speak-
ers’ needs. It presents the first systematic collection
of authentic spoken Hindi errors from non-native
speakers, establishing a benchmark for error cor-
rection research and adaptive language learning
technologies.

2 Related Works

Non-native speaker errors in second language ac-
quisition are systematic deviations that occur when
learners transfer linguistic patterns from their first
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language to the target language. These errors,
which Corder (1967) identified as evidence of in-
terlanguage development rather than random mis-
takes, predominantly manifest as grammatical vio-
lations involving gender agreement, case marking,
number concordance, and verbal morphology, espe-
cially in morphologically rich languages (Lee and
Seneff, 2008; Han et al., 2006). Research indicates
that speakers from diverse linguistic backgrounds
produce distinct error patterns when acquiring the
same target language, reflecting the impact of L1
transfer on morphosyntactic structures.

The availability of authentic non-native speaker
data has been vital for advancing error correction
research. English benefits from extensive learner
corpora such as ICLE (Granger et al., 2020), NU-
CLE (Dahlmeier et al., 2013), TOEFL11 (Blan-
chard et al., 2013), and crowd-sourced Lang-8
data (Mizumoto et al., 2011; Tajiri et al., 2012).
Similar resources exist for other languages, in-
cluding CEDEL2 for Spanish L2 (Lozano et al.,
2009). More recent English resources include
W&I+LOCNESS (Bryant et al., 2019) and the
CoNLL-2014 benchmark (Ng et al., 2014). These
corpora have facilitated robust error correction sys-
tems by capturing systematic learner errors and
interlanguage phenomena. In contrast, Hindi sig-
nificantly lacks authentic non-native speaker data.
Existing Hindi Error correction research relies on
Wikipedia editorial corrections (Sonawane et al.,
2020; Sharma and Bhattacharyya, 2025), which
capture formal text improvements instead of gen-
uine learner productions, thus failing to represent
transfer errors and morphological overgeneraliza-
tion patterns typical of authentic L2 acquisition.

Error correction methodologies have signifi-
cantly evolved. Initially, rule-based systems (Foster
and Andersen, 2009) used manually crafted gram-
matical rules. This was followed by statistical ap-
proaches, which introduced probabilistic model-
ing using corpus frequencies and n-gram language
models to flag uncommon linguistic sequences as
potential errors (Izumi et al., 2004). Early mile-
stones included spell checking systems focused on
orthographic errors before expanding to basic gram-
matical patterns. The shift to neural approaches
fundamentally transformed the field, initially con-
ceptualizing the task as machine translation where
erroneous text is mapped to corrected forms (Brock-
ett et al., 2006). This was later advanced through
transformer models (Vaswani et al., 2017) and so-
phisticated architectures like multilayer convolu-

tional encoder-decoder networks (Chollampatt and
Ng, 2018) and copy-augmented architectures (Zhao
etal., 2019) designed for low-resource grammatical
error correction tasks. Recent developments have
further incorporated pre-training strategies and un-
supervised methods (Grundkiewicz et al., 2019) to
enhance performance across diverse error types and
linguistic contexts. Additionally, specific works
like UTTAM (Jain et al., 2018) and SCMIL (Etoori
et al., 2018) have applied probabilistic and deep
learning approaches, respectively, to spelling cor-
rection in Indic languages, while simple n-gram
based models (Singh and Singh, 2019; Kanwar
et al., 2017) have been used for "RealWord" error
correction.

Evaluation frameworks for error correction have
seen significant advancements, introducing stan-
dardized metrics like the M2 scorer (Dahlmeier
and Ng, 2012) for improved error-level assessment,
and GLUE metrics (Napoles et al., 2015) as alter-
natives to traditional BLEU scoring. Annotation
tools such as ERRANT (Bryant et al., 2017; Felice
et al., 2016) enable systematic categorization of
errors, a method adapted for Hindi by Sonawane
et al. (2020) and Sharma and Bhattacharyya (2025).
However, these existing datasets still exhibit lim-
ited coverage of context-based errors commonly
encountered by Hindi learners. Our Hilearners
dataset addresses this gap, providing a benchmark
that captures authentic learner errors for more com-
prehensive Hindi Error Correction evaluation.

3 Data

This section details the datasets employed in
our study: HilLearners, a meticulously human-
annotated corpus of non-native Hindi, and a Syn-
thetic Data set specifically designed to augment
and complement it.

3.1 HiLearners

The Hilearners dataset is a collection of 2,500 sen-
tences, all generated by non native Hindi speakers.
These learners come from three different linguis-
tic backgrounds: English, Bengali, and Dravidian,
as illustrated in Figure 2. To gather this data, we
designed structured writing tasks specifically to
highlight authentic learner errors across various
proficiency levels.

To ensure annotation quality, all 2,500 sentences
were independently reviewed by three native Hindi
linguists who classified errors. We evaluated inter-
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Figure 2: Distribution of sentences by non-native speak-
ers language background (L1).

annotator agreement using Cohen’s Kappa coeffi-
cient (Cohen, 1960), achieving a score of 0.96 at
the sentence level, which happens because the an-
notators are native Hindi speakers. The HiLearners
sentences contain anywhere from one to six errors
per sentence.

Our focus in HilLearners is on three common
types of errors encountered in language acquisition:

1. Transfer Errors: These involve issues with
morphology and syntax that arise from inter-
ference from the learner’s first language (L.1).

2. Overgeneralization Errors: This category
includes the incorrect application of Hindi
grammatical rules, such as gender-number
agreement. This is particularly common
among speakers whose native languages don’t
have grammatical gender.

3. Contextual Agreement Errors: These errors
highlight difficulties in maintaining grammati-
cal consistency within complex sentence struc-
tures, indicating struggles with long-range de-
pendencies.

It’s important to note that most errors found in
morphology, pronouns, and nouns are typically cat-
egorized as either L1/L2 transfer errors or overgen-
eralization errors. Other error types generally en-
compass overgeneralization and contextual agree-
ment errors.

A significant portion of the errors within
HiLearners include issues with word order, phrase
order, and transliteration. Sentences with more
than two errors were primarily manually annotated
by our linguists. This was crucial because certain
error types, such as transliteration and word order,
simply cannot be handled by automated tools such

as ERRANT. Through this comprehensive process,
we successfully identified and categorized a total
of 24 distinct error types. You can see examples of
these in Figure 3, and Figure 4 further illustrates
the frequency distribution of sentences based on
the number of annotated errors.

3.2 Synthetic Data Generation

To address data resource limitations, we developed
a synthetic data augmentation technique generat-
ing 5,500 sentences using ChatGPT from the train-
ing and validation splits of HiLearners. Our RAG-
inspired approach employed pattern analysis and
controlled generation in a three-step methodology
to replicate authentic error patterns from the train-
ing data.

1. Pattern Analysis: We started by conducting
a thorough analysis of the human-annotated
HiLearners data. This involved providing
ChatGPT and Claude with pairs of incorrect
and corrected sentences, allowing it to iden-
tify and extract the underlying error patterns
across all defined categories. This step gave
LLM a clear understanding of how these er-
rors manifest and what types of changes are
typically made during correction. This pro-
cess mirrors the "retrieval" aspect of RAG,
where the model learns from existing knowl-
edge.

2. Controlled Generation: We utilized Chat-
GPT and Claude and fed it clean Hindi sen-
tences from the BPCC corpus (Gala et al.,
2023) and specifically prompted it to intro-
duce errors that replicated the patterns identi-
fied in the HiLearners dataset. This "genera-
tion" phase, informed by the learned patterns,
allowed us to create new examples with con-
trolled error types.

3. Native Speaker Verification: Finally, ev-
ery synthetically generated sentence was sub-
jected to rigorous manual verification by na-
tive Hindi speakers. This crucial step ensured
the linguistic authenticity of the sentences and
confirmed that the induced errors genuinely
reflected real learner mistakes. During this
verification, we also ensured that the filtered
sentences contained errors ranging from 1 to 6
per sentence, consistent with the distribution
observed in our Hilearners data. From the
total output, we carefully selected the 5,500
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Data  #Sentence Pairs #Tokens 4 Experiments
Human 2500 113336 . .
Synthetic 5500 360412 We conduct comprehensive experiments to evaluate

Table 1: Dataset Statistics with Number of sentence
pairs and tokens

sentences that accurately mirrored the error
characteristics of the HiLearners dataset.

This synthetic dataset is stratified by error count
and type, enabling curriculum learning where mod-
els progressively learn from simple to complex er-
ror patterns, optimizing correction capabilities.

Table 1 provides a detailed overview of the statis-
tics for both the human-annotated HiLearners and
the synthetically generated datasets, including the
number of sentence pairs and tokens.
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Figure 4: Distribution of sentences based on the number
of annotated errors.

the effectiveness of our hybrid dataset approach for
Hindi Error Correction. Our experimental frame-
work systematically investigates optimal data com-
position strategies through varying synthetic data
proportions and implementing curriculum learning
with progressive difficulty phases.

4.1

We evaluate three multilingual language models
that have demonstrated strong performance on
low-resource language tasks inclusing Hindi. In-
dicBART (Dabre et al., 2021) is a sequence-to-
sequence model specifically designed for Indian
languages, pre-trained on 11 Indian languages
including Hindi using the ai4bharat/IndicBART
checkpoint. mT5-large (Xue et al., 2020) repre-
sents a multilingual variant of TS5 trained on the
mC4 corpus covering 101 languages, employed
through the google/mt5-large checkpoint. mBART-
large-50 (Tang et al., 2020) is a multilingual denois-
ing auto-encoder pre-trained on 50 languages using
the facebook/mbart-large-50 checkpoint, which has
shown effectiveness in multilingual text generation
tasks.

Models

4.2 Dataset Mixing Strategy

Our data mixing experiments systematically eval-
uate the impact of synthetic data augmentation by
training models with varying proportions of syn-
thetic data combined with human-annotated data.
The mixing strategy includes configurations with
25%, 50%, 75%, and 100% synthetic data propor-
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tions, alongside pure human-only and synthetic-
only baselines. Each mixed configuration main-
tains the complete human-annotated dataset (1,750
samples) while incrementally adding synthetic data
ranging from 954 samples (25%) to 3,822 samples
(100%) to analyze the optimal balance between
authentic learner errors and scaled synthetic pat-
terns. All synthetic data portions employ stratifica-
tion by error count to ensure balanced representa-
tion across different error complexities, enabling
systematic analysis of how synthetic data quantity
affects model performance on authentic learner er-
Tofrs.

4.3 Curriculum Learning

We implemented a progressive three-phase cur-
riculum learning approach, mimicking natural lan-
guage acquisition by gradually increasing error
complexity. Each phase utilizes a carefully curated
mix of human and synthetic data:

1. Easy Phase: Targets simpler 1-2 error sen-
tences with synthetic samples, building foun-
dational correction capabilities.

2. Medium Phase: Introduces moderate com-
plexity (1-4 errors), including agreement and
syntactic issues, expanding the model’s expo-
sure through additional synthetic data.

3. Hard Phase: Encompasses the full range of
error densities (1-6 errors), including complex
multi-error scenarios, leveraging all available
synthetic data to prepare the model for real-
world complexities.

This phased approach allows models to develop
foundational correction skills before tackling more
challenging error patterns. Specific data splits for
all experiments are detailed in Appendix B.

4.4 Training and Evaluation Setup

All models undergo standard sequence-to-sequence
fine-tuning using cross-entropy loss with detailed
hyperparameters provided in Appendix A. We em-
ploy early stopping with patience of 5 epochs
based on validation performance to prevent over-
fitting. Each experiment maintains consistent eval-
uation using 375 human-annotated test samples
from HilLearners and 375 error-free test samples
to ensure fair comparison across different training
configurations.

We evaluate model performance using multiple
complementary metrics. GLEU (Napoles et al.,

2015) serves as our primary evaluation metric given
its strong correlation with human judgment for Er-
ror Correction tasks. We supplement this with Fg 5
scores computed using token-level alignment fol-
lowing established Error Correction evaluation pro-
tocols (Dahlmeier and Ng, 2012).

5 Results

We evaluated three state-of-the-art multilingual
models across different data mixing strategies and
curriculum learning phases, revealing optimal train-
ing configurations for Hindi Error Correction.

5.1 Model Performance Analysis

IndicBART, despite its Indian language focus,
shows modest but consistent improvements. The
model achieves gains of +-2.67 GLEU and 4-0.017
Fy.5 from human-only to optimal configuration,
with stable performance across various settings in-
dicating reliable but limited correction capabilities.
mT5-large demonstrates the most dramatic im-
provement trajectory, showing exceptional sensitiv-
ity to synthetic data augmentation. The model pro-
gresses from baseline performance (42.74 GLEU,
0.213 Fp5) to peak performance (63.98 GLEU,
0.519 Fy 5), representing gains of +21.24 GLEU
and +0.306 Fy 5. mBART-large-50 achieves supe-
rior performance across all configurations, reaching
peak scores of 76.92 GLEU and 0.693 Fy 5 in the
optimal setting. While its GLEU score shows a
modest increase (e.g., +1.94 GLEU from Human-
Only to Mixed (100%) or Hard Phase), the Fg 5
score demonstrates a more significant improvement
(e.g., +0.135 Fy 5 from Human-Only to Mixed
(100%) or Hard Phase). This pattern of a notable
Fo5 gain with relatively little GLEU inflation is
consistently observed across both synthetic data
mixing strategies and curriculum learning phases.
The model’s multilingual denoising pre-training
provides robust error correction capabilities, main-
taining strong precision-recall balance and achiev-
ing high Fy 5 scores, with most configurations ex-
ceeding 0.65.

5.2 Synthetic Data Mixing Analysis

Our systematic evaluation reveals that progressive
synthetic data inclusion directly correlates with
improved performance across all models. While
synthetic-only configurations underperform signif-
icantly (mT5-large: —11.88 GLEU, —0.139 Fy 5
vs. human-only), the Mixed (100%) configuration
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Experiment IndicBART mT5-large mBART-large-50
GLEU P R Fos |GLEU P R Fos | GLEU P R Fos
Human-Only | 46.26 0.237 0.275 0.237 | 4274 0.212 0.249 0.213| 7498 0.583 0.538 0.558
Synthetic-Only | 37.48 0.112 0.128 0.112 | 30.86 0.083 0.074 0.074 | 4745 0.357 0.260 0.310
Mixed (25%) | 47.53 0.239 0.283 0.240 | 42.59 0.195 0.226 0.195| 7431 0.680 0.640 0.655
Mixed (50%) | 47.85 0.241 0.284 0.242 | 55.07 0.395 0.377 0.370| 75.74 0.688 0.625 0.656
Mixed (75%) | 48.32 0.248 0.290 0.249 | 61.09 0.525 0.425 0.481 | 75.68 0.692 0.637 0.662
Mixed (100%) | 48.62 0.252 0.296 0.253 | 62.18 0.534 0.432 0.487 | 76.24 0.701 0.665 0.676

Table 2: Performance comparison across multilingual models on Hindi error correction showing GLEU scores,
Precision (P), Recall (R), and Fy 5 scores for base models (Human only & Synthetic only) and different data mixing

strategies. Best model is represented in bold

Experiment IndicBART mT5-large mBART-large-50
GLEU P R Fo5 |GLEU P R Fo |GLEU P R Fos
Easy Phase 48.03 0.240 0.284 0.242| 57.22 0.415 0.391 0390 | 76.22 0.704 0.656 0.677
Medium Phase | 48.55 0.251 0.291 0.251| 62.19 0.539 0.441 0.497| 76.74 0.715 0.653 0.684
Hard Phase 4893 0.253 0.299 0.254 | 63.98 0.559 0.465 0.519| 76.92 0.718 0.672 0.693

Table 3: Performance comparison across multilingual models on Hindi error correction showing GLEU scores,
Precision (P), Recall (R), and F 5 scores for different curriculum learning phases. Best model is represented in bold

consistently achieves optimal results, demonstrat-
ing the power of knowledge distillation from large
language models (Table 2). Key findings include:

1. Human-only baselines are insufficient — all
models only reach their best performance
when either 100% synthetic data augmenta-
tion or Hard Phase data is incorporated.

2. Synthetic data consistently boosts perfor-
mance — Across all models, we observe a
significant and consistent increase in scores as
synthetic data is progressively added during
mixed-data training.

5.3 Curriculum Learning Analysis

The three-phase curriculum approach demonstrates
progressive performance gains. mT5-large shows
clear progression: Easy Phase (57.22 GLEU, 0.390
Fop.5) — Medium Phase (+4.97 GLEU, +0.107
Fos) — Hard Phase (+1.79 GLEU, +0.022
Fo5), with Hard Phase consistently matching
Mixed (100%) results across all models (Table 3).
mBART-large-50 achieves the best results in low-
resource scenarios.

Table 4 shows curriculum learning’s impact
on complex error handling with mBART-large-50.
Easy Phase excels for 1-2 errors, while Hard Phase
demonstrates superior robustness for higher error
counts: 3-error sentences show +2.45 GLEU and

+0.026 Fy 5 over Medium Phase; 6-error sentences
achieve +7.40 GLEU and +0.039 Fy 5 improve-
ment over Easy Phase. Hard Phase’s exposure to
diverse synthetic patterns enables better handling
of challenging multi-error scenarios, validating our
curriculum design. Figure 5 illustrates model per-
formance by correction status; detailed error analy-
sis is in Appendix C.

5.4 Error-free test samples Analysis

Table 5 showing three multilingual models on the
test set consisting of fully correct samples. This
evaluation is crucial as it measures the model’s abil-
ity to avoid making spurious corrections to error-
free Hindi text.

The near perfect scores, especially for mnBART-
large-50, confirm that the training methodology
does not significantly compromise the models’ abil-
ity to preserve fluency and grammaticality when
no error correction is needed. This is an important
validation of the model’s overall robustness.

Model GLEU Fy;
IndicBART 96.01 0.86
mT5-large 98.09 091

mBART-large-50 99.19 0.97

Table 5: Performance Metrics on the test set of fully
correct samples showing GLEU scores, Precision (P),
Recall (R), and Fy 5 scores for all models

1282



#Errors Easy Phase Medium Phase Hard Phase
GLEU P R Fos | GLEU P R Fos | GLEU P R Fos
1 87.09 0.63 0.68 0.64 | 86.03 0.629 0.668 0.628 | 86.44 0.6140 0.6507 0.6141
2 81.15 0.74 0.65 0.70 | 78.04 0.687 0.635 0.662| 78.64 0.676 0.631 0.652
3 80.97 0.76 0.69 0.73 | 78.63 0.754 0.671 0.721 | 81.08 0.777 0.699 0.747
4 65.15 0.74 0.55 0.66| 68.66 0.766 0.608 0.704 | 66.97 0.705 0.558 0.640
5 59.34 0.66 048 0.58| 58.43 0.612 0.486 0.594| 60.66 0.681 0.518 0.675
6 57.79 0.66 039 0.54| 57.79 0.630 0392 0.547 | 65.19 0.667 0.487 0.586

Table 4: Performance analysis by error count per sentence comparing Easy Phase, Medium Phase, and Hard Phase

models using mBART-large-50 with best model for each error count is represented by bold.

Incorrect Correct Response Status
HdroRadduasegm HdroRadddoeraes A daRaidd gt correct
& MR Aowa o uRifl (Meri |71 & IR ARETd o gettl | @ ofiR TRed @t aii (Merd

tin ghariyon men se ek band
ho gaya hai aur marammat
karani paregt.)

€ Hg B & SR o iR
gl foh a8 X & 3y (Vah
mujhe fon ke Gipar bulaya aur
kaha ki vah der se aega.)

7 Y fopem Sgelt o ww A
T 7t firer mar a1 (Maine
Hindi philm dekhta tha jab
mera dost mujhe milne aya
tha.)

g R H JaT 3R SREER Ggdr

aya tha.)

(Mert tin ghariyon men se
ek band ho gar hai aur
marammat karani paregr.)
TT B I R g SR
gl o a8 3 T s (Usne fh a8 R & smgmi (Vah mujhe
mujhe fon par bulaya aur
kaha ki vah der se aega.)

# 3 e 2 et S A
g 73 fiem smar am (Main
Hindi philm dekh raha tha
jab mera dost mujhe milne

o 7 uger, a8 AR F 3 ofiR 98 R F FeT 3R SrEeR ugdr

tin ghariyon men se ek band
ho gal hai aur marammat
karani paregr.)

98 5 B T g SR FET partially correct
fon par bulaya aur kaha ki
vah der se aega.)

3 ) e &ma o A
o g e ol & (Maine
Hindi philm dekhte samay
mera dost mujhe milne aye
the.)

" incorrect

unchanged

o1 51 & ggan (Vah kamre men @SR Ug T At (Jab maim 91 1@ # ugdn (Vah kamre

baitha aur akhbar parhta tha
jab mairm pahunca.)
thi.)

pahunca, vah kamre men
baitht aur akhbar parh raht

men baitha aur akhbar parhta
tha jab mairm pahunca.)

Figure 5: Examples on mBART-large-50 Hard Phase model Performance according to correction status

5.5 Results on LLMs

The zero-shot results on LLMs such as GPT-5,
Gemini 2.5 Flash, and Claude Sonnet 4.5 are shown
in Table 6. LLMs have shown relatively mid-level
performance scores compared to fine-tuned mod-
els.

Model GLEU P R Fys
Gemini 2.5 Flash  67.23 052 0.56 0.51
Claude Sonnet4.5 69.05 0.58 0.52 0.55
GPT-5 7040 0.58 0.59 0.57

Table 6: Performance metrics on the test set showing
GLEU scores, Precision (P), Recall (R), and Fy 5 scores
for all models

6 Conclusion

Several limitations warrant consideration. The
HiLearners dataset, while pioneering in focusing

on non-native speakers, comprises only 2,500 sen-
tences from three linguistic backgrounds (English,
Bengali, Dravidian), which may not fully repre-
sent the diversity of Hindi learner populations.
Our synthetic augmentation approach, despite na-
tive speaker verification, may inadequately cap-
ture complex authentic errors arising from cul-
tural and pragmatic factors. The sentence-level
evaluation framework does not address discourse
coherence or contextual appropriate factors criti-
cal for real-world applications. Additionally, our
19-category error taxonomy may not encompass
all error patterns across varying proficiency lev-
els, and computational constraints restricted our
experiments to three multilingual models, leaving
potential architecture-specific optimizations unex-
plored.
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7 Limitations

While our work advances Hindi GEC through au-
thentic learner data and systematic synthetic aug-
mentation, several limitations exist. The HiLearn-
ers dataset (2,500 sentences) covers only three
linguistic backgrounds (English, Bengali, Dravid-
ian), potentially limiting generalizability to broader
Hindi learner populations. Our synthetic data gen-
eration, though verified by native speakers, may
not fully capture nuanced authentic learner er-
rors, particularly those from cultural and pragmatic
contexts. The evaluation framework focuses on
sentence-level corrections and may inadequately
assess discourse-level coherence or contextual ap-
propriateness crucial for practical applications. Our
19-category error taxonomy may overlook emerg-
ing patterns specific to different proficiency lev-
els. Computational constraints limited evaluation
to three multilingual models, and observed per-
formance gaps suggest unexplored architecture-
specific optimizations could yield further improve-
ments.

8 Ethics Statement

The HiLearners dataset was collected by a univer-
sity Hindi linguist from non-native speakers across
diverse linguistic backgrounds, with explicit par-
ticipant consent for research use. All contribu-
tors participated voluntarily with full knowledge
of research objectives. No personally identifiable
or sensitive information was collected; all data is
anonymized and aggregated to ensure privacy pro-
tection. Participants were informed that their lan-
guage samples would contribute to grammatical
error correction systems for educational and acces-
sibility purposes. This work adheres to institutional
ethical guidelines for linguistic data collection and
computational research.
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A Implementation Details

Parameter Value
Number of Training Epochs 4
Per Device Train Batch Size 6
Per Device Eval Batch Size 6

Gradient Accumulation Steps 3
Warmup Steps 75
Weight Decay 0.01
Learning Rate 2e-5

LR Scheduler Type "linear"
Max Gradient Norm 1.0
Adam Epsilon le-8
Adam Betal 0.9
Adam Beta2 0.999

Table 7: Training parameters used for all models.

The key training parameters used for all models
(IndicBART, mT5-large, and mBART-1arge-50) in
our experiments mentioned in Table 7. These pa-
rameters were consistently applied across all data
mixing strategies and curriculum learning phases
to ensure a fair comparison of model performance
under different data compositions. All models were
fine-tuned using their official pre-trained versions
available on Hugging Face.

B Training Data Splits

Table 8 presents the experimental configurations
across different data mixing strategies and curricu-
lum learning phases used in this study. The base-
line experiments include a human-only configu-
ration and a synthetic-only setup, both utilizing
human-annotated test samples from HiLearners for
evaluation. Mixed data experiments progressively
combine human and synthetic data at various ra-
tios, with corresponding training and validation
sets. Crucially, in these mixed data configurations,
the training and validation samples maintain errors
relative to their respective dataset contributions (er-
ror count per sentence). Furthermore, in mixed
data experiments, errors were selected with proper
proportion according to their counts. The curricu-
lum learning approach implements three phases
with increasing difficulty: Easy Phase, Medium
Phase, and Hard Phase. All experimental config-
urations maintain the same human-annotated data
foundation while systematically varying the syn-
thetic data integration to evaluate the impact of data
augmentation and curriculum learning strategies on
grammatical error correction performance.

C Error Analysis

Figure 6 illustrates the distribution of correction sta-
tuses across different difficulty phases. The Easy
Phase demonstrates a higher proportion of correctly
corrected sentences compared to the Medium and
Hard Phases. Conversely, the Hard Phase yields
more partially correct sentences than the Medium
and Easy Phases. Interestingly, the Easy Phase
also shows a greater incidence of incorrect and
unchanged sentences. Overall, the Hard Phase ap-
pears to achieve the most favorable balance of cor-
rection outcomes.

Further analysis of error types, presented in Fig-
ure 7, reveals significant performance variations
across linguistic categories on the test set. The
model achieves over 80% correction rates for sys-
tematic grammatical patterns and well-represented
linguistic structures. However, morphologically
complex errors, particularly those involving noun
and pronoun morphology, and context-dependent
corrections pose greater challenges, with correction
rates falling below 60%. This substantial error rate
in morphological categories, especially for nouns
and pronouns, suggests a difficulty in recognizing
transfer errors potentially influenced by L1/L2 in-
terference. This hierarchy indicates that certain
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Experiments Train Samples Val Samples Human Data Synthetic Data
Human-Only Baseline 1,750 375 1,750 0
Synthetic-Only 3,822 819 0 3,822
Mixed Data (25%) 2,704 579 1,750 954
Mixed Data (50%) 3,659 783 1,750 1,909
Mixed Data (75%) 4,612 986 1,750 2,862
Mixed Data (100%) 5,572 1,194 1,750 3,822
Easy Phase 3,391 727 1,750 1,641
Medium Phase 5,492 1,177 1,750 3,742
Hard Phase 5,572 1,194 1,750 3,822

Table 8: Experimental configurations showing training and validation sample sizes across different data mixing
strategies and curriculum learning phases. All experiments use 375 human-annotated test samples from HiLearners

for evaluation.
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Figure 6: Frequency distribution of correction statuses (incorrect, correct, partially incorrect, and unchanged) across
Easy, Medium, and Hard phases in mBART-large-50 model.

error types benefit more from the curriculum learn-

ing progression.

The positive impact of curriculum learning is
evident in the model’s enhanced contextual under-
standing and improved recognition of systematic
error patterns. The Hard Phase results specifically
highlight successful adaptation to increasingly diffi-
cult linguistic phenomena, particularly in handling

multi-error scenarios.
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Figure 7: Percentage distribution of error correctness on test set across various error types on mBART-large-50
Hard Phase model.
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