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Abstract

Large Language Models (LLMs) excel at pro-
viding information acquired during pretraining
on large-scale corpora and following instruc-
tions through user prompts. However, recent
studies suggest that LLMs exhibit biases fa-
voring Western native English speakers over
non-Western native speakers. Given English’s
role as a global lingua franca and the diver-
sity of its dialects, we extend this analysis to
examine whether non-native English speakers
also receive lower-quality or factually incor-
rect responses more frequently. We compare
three groups—Western native, non-Western na-
tive, and non-native English speakers—across
classification and generation tasks. Our re-
sults show that performance discrepancies oc-
cur when LLMs are prompted by the differ-
ent groups for the classification tasks. Gener-
ative tasks, in contrast, are largely robust to
nativeness bias, likely due to their longer con-
text length and optimization for open-ended
responses. Additionally, we find a strong an-
choring effect when the model is made aware
of the user’s nativeness for objective classifi-
cation tasks, regardless of the correctness of
this information. This anchoring effect is a
form of cognitive bias shown to be present in
LLMs where the model is highly influenced by
additional information. Our analysis is based
on a newly collected dataset with over 12,000
unique annotations from 124 annotators, includ-
ing information on their native language and
English proficiency.

1 Introduction

English, as the global lingua franca, is predominant
in large-scale text corpora used to train Large Lan-
guage Models (LLMs) (Ziems et al., 2023; Zhang
et al., 2023), including widely used datasets like
CommonCrawl. These datasets are primarily tai-
lored to an English-speaking audience located in
the United States, and are mainly composed of priv-
ileged English dialects from wealthier educated ur-

ban zones (Talat et al., 2022; Ziems et al., 2023;
Ryan et al., 2024; Gururangan et al., 2022). This
biased training dataset composition permeates the
LLM, resulting in models tailored to these English
dialects (Santy et al., 2023; Hall et al., 2022). This
highlights underlying design biases in LLMs, a
phenomenon where design choices result in im-
proved downstream performance for specific sub-
populations (Santy et al., 2023). Consequently,
their effectiveness considerably decreases when
prompted in other languages or in underrepresented
English dialects (Lai et al., 2023; Zhang et al.,
2023; Bang et al., 2023; Ziems et al., 2023; Ryan
et al., 2024).

LLMs are highly sensitive to prompt formula-
tions (Beck et al., 2024; Chakraborty et al., 2023).
Ryan et al. (2024) show how models’ responses
are tailored to Western English dialects, with
prompt selection impacting LLMs’ preference tun-
ing. Therefore, prompting models in other dialects
can result in performance differences due to these
design biases. Ziems et al. (2023) even provide a
dataset covering multiple English dialects. How-
ever, unlike those studies focusing only on English
dialects from native English-speaking countries,
our research also incorporates participants from
countries where English is not an official language.
We assess if word sensitivity in prompts dispro-
portionately benefits native English speakers, lead-
ing to better model performance. In this case, the
model has an inherent native language bias.

In this paper, we examine performance differences
when LLMs are prompted by speakers from three
groups: Western native (WN), non-Western native
(NWN), and non-native (NN) English speakers.
We find performance differences when LLMs are
prompted by both NWN and NN versus WN speak-
ers. More specifically, some models generate inac-
curate responses for non-native speakers and rate
the WN prompts more positively than intended. We
also highlight how LLMs are more robust against
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In this task, you are given an impractical statement. You are also \
given three reasons (associated with "A", "B", "C") explaining why @

In this task, you're given a review from Amazon's food products. Your task
is to generate a rating for the product on a scale of 1-5 based on the review.

this statement doesn't make sense. You must choose the most The rating means 1: extremely poor, 2: poor, 3: neutral or mixed, 4: good,

5: extremely good.

Answer GPT40 ‘Annotator
Prompt

-, E,
gl =y

(a) The desired output is C. This is an example prompt of an (b) The desired output is 4. This is an example prompt of an
objective classification task. subjective classification task.

corresponding reason explaining why this statement doesn't make

sense.

Understood!

We eat many people
[Annotator Prompt]

1 bought [Annotator Prompt]

Annotator
Prompt Native EN Speaker

@ Non-native EN Speaker

Native EN Speaker Answer GPT4o

Non-native EN Speaker

Figure 1: Two example prompts of a native and non-native English speaker and the corresponding output given by
GPT4o0, where Annotator Prompt represents the placeholder for the annotations. For the objective task, the model
selects the wrong answer for the non-native English speaker, while semantically the same message was conveyed.
While Sentence B from the non-native speaker ("People can’t be eaten.") may seem different from Sentence A
from the native speaker, it is a direct translation from the non-native speaker’s first language and conveys the same
meaning from the non-native prompt writer’s perspective. This demonstrates how slight variations in phrasing,
common among non-native speakers, can lead to misinterpretations or different model responses, despite semantic
equivalence. For the subjective task, we see how the model estimates the native answer to be more positive than

actually intended.

this native bias on generative tasks. Moreover, we
uncover deeply embedded bias within models to-
wards native speakers for the classification tasks, as
explicitly stating that a prompt writer is non-native
leads to lower model performance compared to
stating that the writer is native regardless of the cor-
rectness of this information. We collect a dataset
comprising over 12,000 unique prompts from na-
tive and non-native English speakers worldwide
and demonstrate how different prompt formulations
can lead to worse performance despite conveying
the same message. An example prompt from our
dataset is shown in Figure 1.

Our contributions are as follows: 1) Native bias
analysis: We quantitatively and qualitatively ana-
lyze how LLM performance differs between native
— both Western and non-Western— and non-native
English speakers on objective and subjective classi-
fication tasks', as well as generative tasks. 2) Novel
Dataset: We publish our multilingual instruction-
tuning dataset and code used for the experiments”
containing over 12,000 unique prompts from di-
verse native and non-native English speakers, with

!By subjective tasks, we mean classification tasks where
the correct answer depends on the subjective interpretation as
explained in Beck et al. (2024)

2https ://anonymous . 4open.science/r/native_en_
bias-EDC5/README.md

translations into eight languages. 3) Innovative
Data Collection: Our large-scale, structured an-
notation process across various tasks provides a
comprehensive view of LLM responses from di-
verse user groups. 4) Novel Experimental Set-up:
We propose a novel design evaluating the impact
of informing the model about user nativeness, ex-
ploring whether it mitigates bias—an aspect not
systematically studied before.

2 Related work

Model Positionality and Design Bias. Model po-
sitionality, coined by Cambo and Gergle (2022),
refers to the social and cultural position of a model,
influenced by the stakeholders involved in its devel-
opment, such as annotators and developers. This
positionality affects the inclusivity of LLMs, as
they evolve with certain biases that may disadvan-
tage specific populations (Cambo and Gergle, 2022;
Santy et al., 2023). Design biases arise when re-
searchers make choices that improve model perfor-
mance for specific sub-populations (Santy et al.,
2023). A notable example is the overrepresenta-
tion of English pretraining corpora, which leads
to disproportionate performance improvements in
English compared to other languages (Qin et al.,
2023; Blasi et al., 2022; Joshi et al., 2020).
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Effect of demographic background on LLM per-
formance. Recent literature suggests that LLM
performance on subjective tasks is influenced by
the demographic attributes of the user (Beck et al.,
2024; Santy et al., 2023). Moreover, when assigned
a persona, LLMs reveal deep inherent stereotypes
against various socio-demographic groups (Cheng
et al., 2023; Gupta et al., 2023; Deshpande et al.,
2023). For example, Gupta et al. (2023) show how
ChatGPT3.5, when asked to solve a math ques-
tion while adopting the identity of a physically
disabled person, generates that it cannot answer
the question, as a physically disabled person. Fur-
thermore, Barikeri et al. (2021) demonstrate that
LLMs can infer demographic attributes from dialog
interactions. Additionally, research shows biases
in favor of Western populations (Santy et al., 2023;
Durmus et al., 2023). In model alignment liter-
ature, Ryan et al. (2024) show this similar bias
within preference models and Gururangan et al.
(2022) illustrate that even within a Western coun-
try like the US, GPT3 prefers the more privileged
dialects. Furthermore, Hofmann et al. (2024) il-
lustrate how models show covert biases towards
African American English speakers. Additionally,
Kantharuban et al. (2024) show how LLMs express
racially stereotypical recommendations regardless
of whether the user explicitly or implicitly revealed
their identity. Finally, Ziems et al. (2023) have pro-
vided a cross-dialectal English dataset for countries
with English as an official language. Building on
these findings, we extend the research to include
non-native English speakers, who use English di-
alects influenced by their native languages. Further-
more, while Gupta et al. (2023) assign a persona to
the model, we analyze performance differences of
LLMs both with and without explicitly informing
the model about the user’s native language and thus
with and without assigning a persona to the prompt
writer. However, note that models providing differ-
ent answers based on demographic background is
not always problematic as noted in Jin et al. (2024).

3 Methodology

Given the sensitivity of LLMs to prompt formula-
tion (Beck et al., 2024; Chakraborty et al., 2023),
the diversity of English dialects (Ziems et al., 2023;
Ryan et al., 2024), and alignment of models to-
wards Western native English speakers (Ryan et al.,
2024; Santy et al., 2023; Gururangan et al., 2022),
we investigate whether LLMs exhibit bias in favor

of native English speakers over non-native speakers.
More specifically, we aim to answer the following
research questions:

1. Do LLMs perform differently when prompted
by native vs. non-native English speakers?
And is there a performance difference for dif-
ferent groups of native English speakers?

2. Are certain tasks more prone to performance
disparities between native and non-native
speakers?

3. Which tasks, if any, remain robust to these
differences?

4. Are these trends consistent across models, or
do they vary by architecture?

5. Does explicitly providing information about
a speaker’s nativeness amplify performance

gaps?

To answer these research questions, we collected
a new dataset containing both classification and
generation tasks, along with information about the
native languages of the annotators, as this is lacking
in existing literature. An overview of our method-
ology and experimental setup is shown in Figure 2.

3.1 Dataset

Our dataset was constructed including samples
from ten diverse task datasets from various natural
language instruction tasks® (Mishra et al., 2022;
Wang et al., 2022), covering classification (subjec-
tive and objective) and generation tasks. These
tasks, representing typical LLM interactions, fol-
low a standard instruction pattern and should not
inherently favor native speakers. The tasks include
paraphrasing, article generation based on a sum-
mary or title, sentiment analysis, natural language
understanding, multiple-choice answering, and re-
view writing. This last task is the subjective classi-
fication task in our experiments. The different tasks
provide varying levels of freedom in the dataset an-
notation tasks. This approach was explicitly chosen
to have a range of more and less standardized anno-
tation tasks where the level of freedom in prompt
annotations varies depending on the underlying
task. This way, our approach provides a compre-
hensive analysis of model performance.

3https://github.com/allenai/
natural-instructions
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Figure 2: Methodology and experimental setup. The left part shows the data collection steps. After gathering the
different datasets, study participants annotated the examples. Then we validated them and used them as input to
generate LLM responses. The right part of the figure shows the evaluation phase, where we gathered the respective

scores depending on the task.

From each original dataset, we randomly selected
100 examples, manually ensuring they were cor-
rectly annotated and free of offensive language.
Additionally, one extra example per dataset served
as a tutorial for the annotator to get used to the task.

More information about the different tasks in-
cluded in our dataset can be found in Appendix A.

3.2 Annotations

We required all annotators to have a minimum En-
glish proficiency level equivalent to a high school
or university-level proficiency to establish a base-
line, ensuring that performance differences stem
primarily from dialectal variation rather than over-
all language proficiency. Each annotator worked
on 20 to 240 examples. We gathered them through
direct recruitment, opting for an open annotation
process rather than an existing annotation platform
to ensure high-quality annotations. All annotators
were reimbursed at a minimum rate of 12.11 euros
per hour.

In addition to gathering self-reported linguistic
data—such as native language, English proficiency,
and frequency of English use—we also collected in-
formation from native English speakers about how
they acquired the language. This allows us to com-
pare three groups: the non-native speakers (NN),
Western native speakers (WN), and non-Western
native speakers (NWN). The term Western native
here refers to native English speakers who learned
English from native speakers from countries like
the UK, US, Australia, or Canada.

Annotators performed different tasks depending
on the assigned datasets. An example annotation is
shown in Figure 1, where a task definition is pro-

vided together with an impractical statement. The
annotator has to provide the [Annotator PROMPT]
based on the task definition and the desired out-
put, which is C in this example. We identified the
[Annotator PROMPT] per example depending on
the dataset. More details about the annotation setup
including information about the annotator prompts
per dataset can be found in Appendix B.

The authors manually validated the annotations
before including them in the final dataset, deeming
one invalid if it met any of the following criteria: 1)
The response was unrelated to the task, i.e. "I don’t
know / understand”, or a response for a different
topic or question. 2) The response contained (part
of) the answer. 3) The response did not follow the
required format or task definition. 4) The annotator
misunderstood the task. Examples per validation
criterion are included in Appendix C.

After validation, we removed instances with
more than 50% rejected annotations to ensure the
quality of the dataset. In total, we removed 12
examples entirely and a total of 162 individual an-
notations. Our final dataset contains 12,519 anno-
tations from 124 annotators. More information on
the dataset statistics can be found in Appendix D*.

We thus enforced strict quality control through
the data collection phase to mitigate annotator vari-
ability through manual validation, removal of low-
quality responses, and filtering examples with over
50% rejected annotations. This ensures that perfor-
mance differences reflect linguistic or model-driven
effects.

“Due to the nature of the tasks, we did not calculate inter-

annotator agreement scores, as annotators were providing
prompts, and invalid prompts were filtered out.
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4 Experimental setup

4.1 Gathering LLM responses

Using gathered annotations, we conducted exper-
iments with the chat-versions of well-established
LLMs, as these are used in daily life. An
overview of the checkpoints per model is shown
in Appendix F. We included GPT3.5%, GPT40°,
Haiku (Anthropic, 2024), Sonnet (Anthropic,
2024), using the appropriate APIs, and Qwenl1.5
7B’ (Bai et al., 2023) in line with the provided
licenses and all consistent with the intended use.
This set includes models of varying sizes, different
performances, and from different developers, en-
suring a diverse representation. Moreover, Qwen,
developed by Chinese researchers, provides an in-
teresting comparison in terms of design bias.

To answer our predefined research questions
mentioned in Section 3, we first ran our experi-
ments for all models without any additional infor-
mation. Next, to answer the last research question,
we provided information about the nativeness of the
prompt writer to the LLM. To see whether the LLM
entails an inherent bias against native speakers, we
included both correct and incorrect information.

4.2 Evaluation

To measure the bias within the models, we look into
the performance difference between the native and
non-native speaking groups. These performance
disparities could contribute to allocational harms
and representational harms, as defined by Blod-
gett et al. (2020). Allocational harms can arise if
non-native prompts result in systematically lower-
quality responses, potentially affecting users’ ac-
cess to accurate information, career guidance, or
educational support. Similarly, representational
harms may arise if certain English varieties are
implicitly treated as less legitimate, reinforcing lin-
guistic hierarchies and marginalizing speakers of
underrepresented dialects.

We measure these performance differences across
classification tasks and generative tasks. Con-
cretely, native bias measured for the classification
tasks is defined as follows:

Anative = ¢ (M (T ‘ 'fnative) ﬂp)
Anon-native = (25 (M (T ‘ xnon—native) 7¢)

5https ://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/

6https ://openai.com/index/hello-gpt-40/

"We ran the experiments for Qwen using A100 GPUs.

with native bias discriminative = Apative —
Apon-native, template 7, user prompt z, model M,
accuracy ¢, and original ground truth /. The native
generative bias is defined as follows:

d) (M (T | xnative))
d) (M (T | xnon-native))

Anative =

Anon-native =

with native bias generative = Apative — Anon-natives
template 7, user prompt x, model M, and
performance metric ¢p. The Western native bias can
be similarly inferred by splitting the native group
into a Western native and non-Western native

group.

Classification tasks. When assessing classification
tasks, both objective and subjective classification
tasks, we focus on the accuracy of the predictions.
We only consider classifications as correct if they
follow the instructions correctly or if the correct
classification can be determined automatically.

Generative tasks. In assessing the generative tasks,
we include the following metrics: fluency, coher-
ence, and relevance (Bavaresco et al., 2024). All
metrics were evaluated using a Likert scale: fluency
was rated on a 3-point scale. Coherence and rele-
vance were scored on a 5-point scale. Fluency is de-
fined as the quality of the generated text in terms of
grammar, spelling, etc. Coherence assesses the col-
lective quality of the sentences. Finally, relevance
refers to the inclusion of important content in the
generated text. These definitions are based on the
ones used in Bavaresco et al. (2024). The prompt
templates used are shown in Appendix G. All re-
sults were rescaled to a range of O to 1 to ensure
clarity. We evaluated the performance of the gen-
erative tasks using an LLM-as-a-judge approach,
specifically leveraging Llama-3.3-70B-Instruct to
assess each prompt’s output according to the three
generative metrics mentioned earlier. For trans-
parency, we have also included the exact evalua-
tion prompts in Appendix G. To ensure reliability
of the LLM-generated responses, we manually an-
notated 100 examples and observed a correlation
of 81.3% with the model’s evaluations. The Co-
hen’s kappa score is 0.5564. However, given that
the generation results are evaluated on a three- and
five-point Likert scale, the correlation score is the
most informative metric.
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Figure 3: WN is best-performing for objective classi-
fication tasks and worst-performing for the subjective
classification tasks. The figure shows average model
performance per group and task type averaged for all
models and runs; y-axis is adjusted to 0.65-1 for clarity.

5 Results

Below, we analyze the results from our experi-
ments answering each of the research questions.
Throughout the next paragraphs, we analyze the
performance of the native speakers— consisting
of Western native speakers (WN) and native speak-
ers that are non-Western (NWN)— and non-native
English speakers (NN).

The WN group performs best for the objective
classification tasks, outperforming both NWN
and NN. This is shown in Figure 3, where the
average performance per group on the objective
classification tasks is displayed on the left. WN
speakers achieve the highest overall performance
in objective classification tasks, reinforcing find-
ings from previous research (Hofmann et al., 2024;
Ryan et al., 2024) that models favor Western priv-
ileged dialects. In contrast, NWN and NN En-
glish speakers perform similarly, with the NN
group slightly outperforming NWN speakers. How-
ever, this difference is minimal and not substantial
enough to draw strong conclusions. The perfor-
mance gap between WN and the other groups, how-
ever, suggests the advantage of Western dialects.
Manual analysis reveals how LLM misclassifica-
tions stem from ambiguities in non-native prompts.
In Timetravel, less fluent phrasing made incorrect
options appear plausible, while in McTaco and
TweetQA, non-native formulations led to misin-
terpretations. This highlights an inherent model
bias toward native speakers rather than annotation
inconsistencies.

The WN group performs worst for the subjec-
tive classification task as models predict their
rating more positively than actually intended.

1.0

0.8 77

7

Score

777777
N

0.2 (X% [Z2 Western Native (WN)
77 // <1 Non-Western Native (NWN)

X3 Non-Native (NN)

coherence relevance

Metric

fluency

Figure 4: The generative tasks are more robust against
native bias. This figure shows the average model per-
formance for the generative tasks per group and metric
averaged over the different runs. We rescaled the results
so that they range from O to 1.

The right part of Figure 3 shows this opposite ef-
fect for the subjective classification tasks. For these
tasks, both the NN and NWN show again similar
performance and are now outperforming the WN
group. This finding is remarkable, as it contra-
dicts the results in the subjective classification lit-
erature (Santy et al., 2023; Durmus et al., 2023).
When further analyzing the results, we find that
for the Western native English-speaking group, we
find that the models often predict the rating more
positively than actually intended. While for the NN
and NWN groups, GPT4o0 predicted around 50%
of all wrongly predicted annotations to be more
positive than intended, this was around 70% for the
WN English-speaking group for GPT4o indicating
cultural differences. Appendix H includes more
information on the different answer distributions
per model.

The generation tasks are more robust against
(Western) native bias. Figure 4 shows the aver-
age performance scores for all models and groups.
The figure shows that no clear performance dif-
ference exists among the groups compared to the
classification results. A slight performance differ-
ence favoring the WN group is found for coherence,
with the NWN and NN groups performing simi-
larly. Nevertheless, the performance differences
are not substantial. Therefore, we conclude that
generation tasks are rather robust against (West-
ern) native bias. Nevertheless, when zooming in
on the results, we find discrepancies depending on
the specific task at hand. These are shown in Ap-
pendix L. For two of the datasets, namely Story
Cloze and Paraphrase, we find differences in terms
of the coherence scores. More specifically, the WN
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group is here outperforming both the NWN and NN
groups. Interestingly, these two tasks also include
the smallest written annotations by the prompt
writer and generated text by the model. Addition-
ally, when analyzing the CNN DailyMail responses,
we find differences in summarization styles among
groups. We find how non-native speakers tend to
stick closer to the original text when summariz-
ing, while native speakers summarize more freely.
Finally, the CODA19 dataset comprises medical
articles that utilize specialized medical terminol-
ogy. Given that most annotators were unfamiliar
with this vocabulary, native English speakers (WN
and NWN) did not have a specific advantage over
non-native speakers. Additionally, research articles
are commonly written in English by authors from
various backgrounds. Therefore, this specific task
might be robust against the native versus non-native
preference.

(Western) Native bias is model-dependent for
the classification tasks. Figure 5 illustrates that
the preference for WN speakers over NWN speak-
ers in objective classification tasks varies by model.
Notably, this trend is pronounced in GPT-3.5 and
GPT-40, while Qwen and Claude models show lit-
tle to no performance difference between WN and
NWN speakers. Interestingly, OpenAl’s models
even appear to favor NN speakers over NWN speak-
ers. Moreover, it is interesting to see how the Qwen
model, developed by Chinese researchers shows al-
most on par results between both native groups. Ad-
ditionally, within a model family, the performance
disparity increases with model size and overall ca-
pability. This aligns with prior research showing a
positive correlation between model size and biases,
such as gender bias (Tal et al., 2022). Furthermore,
Sclar et al. (2023) demonstrate that prompt sensi-
tivity does not decrease as models scale, suggest-
ing that larger models may reinforce rather than
mitigate biases. Also for the subjective classifica-
tion tasks, the results are strongly model-dependent.
However, all models do provide the lowest perfor-
mance for the WN group. For the generative results,
on the other hand, all models show similar trends
as is shown in Appendix L.

Objective classification tasks are largely affected
by adding information about the nativeness of
the prompt writer. Figure 6 shows the effect
of providing the model with (in)correct informa-
tion about the nativeness of the annotator on model
performance. This figure clearly shows how the ad-

ditional information of the nativeness highly affects
the results. Adding correct information about the
nativeness results in a clear performance preference
for the native group, while adding incorrect infor-
mation results in a preference for the non-native
group. Moreover, it not only shows how the per-
formance is influenced by this information, but it
also reveals deeply embedded bias towards non-
native speakers. Adding this information results
in a different performance, where the model fo-
cuses more on the initial given information than
on the prompt itself. This phenomenon is called
anchoring.This term is used for human cognitive
bias indicating that a person might insufficiently
change its estimates away from an initially pro-
vided value (Jones and Steinhardt, 2022; Tversky
and Kahneman, 1974). This effect is demonstrated
in LLMs by Jones and Steinhardt (2022), who
found that code generation models modify their
outputs to align with related solutions included in
the prompt. Moreover, also Nguyen (2024) shows
how LLM responses are highly influenced by pre-
viously given information. Our results reveal a
similar anchoring effect, where the model focuses
on the additional information about the nativeness
of the prompt writer, regardless of whether or not
this information is correct. This anchoring effect
was most clearly present for Sonnet. We find that
Sonnet answered several questions in languages
other than English, such as Spanish, French, or In-
donesian, when responding as if interacting with
non-native speakers. This resulted in a clear drop
in performance as is also shown in Figure 11 in
Appendix K. Note that this occurred both for native
and non-native speakers. From the other models,
we see that Qwen and GPT40 seem to be most
robust against this added information. GPT3.5
and Haiku did show performance differences, how-
ever, not as pronounced as Sonnet. We manu-
ally analyzed examples for GPT3.5 and Haiku to
gather more insight into the performance differ-
ence. GPT3.5 makes more mistakes when informed
about the prompt writer being non-native, due to
repetition of the instructions, rather than answering
the question. Haiku explains the answers, arguing
why one option is better than another, thereby fail-
ing to follow the instructions. If both answers are
mentioned, we classify the response as inaccurate.

The subjective classification tasks and gener-
ation tasks are more robust against this addi-
tional information about the prompt writer’s na-
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Figure 5: This figure shows the average performance for the different classification tasks per model and group. We
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for both native groups for the objective classification task. For the subjective classification tasks, the Western native
group is the worst performing group for all models. We adjusted the y-axis to range from 0.65 to 1 for clarity.
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Figure 6: Performance drops when the model is told the
prompt writer is non-native rather than native, regardless
of the correctness of this information, for objective tasks.
Subjective tasks are more robust to this anchoring effect.
The figure shows average performance per group and
task type based on (in)correct nativeness information
averaged over the different models and runs; y-axis is
adjusted to 0.65-1 for clarity.

tiveness. In the subjective classification tasks, we
observed only slight performance differences, with
the non-native group consistently outperforming
the native group. These experiments appear largely
unaffected by the addition of information, as the
non-native group remains the best-performing re-
gardless of whether accurate or inaccurate details
about nativeness are introduced. Also for the gen-
erative tasks, the addition of information about the
prompt writer’s nativeness does not impact perfor-
mance ranking, as shown in Figure 7. All different
groups continue to perform similarly, regardless
of the additional information provided.These find-
ings suggest that models are more robust to native-
ness cues in generative and subjective classification
tasks than in objective classification tasks. This is
likely due to their primary optimization for gener-
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Figure 7: Generative tasks are more robust against the
anchoring effect. The figure shows average performance
per group and metric averaged over the different models
and runs based on (in)correct nativeness information;
We rescaled the results so that they range from O to 1.

ation rather than classification, particularly given
that we use the chat-based versions. Additionally,
the longer context in both the initial prompt and
generated output may reduce the impact of the an-
choring effect.

6 Discussion

In our experiments, we define native bias as the
model’s performance disparity when prompted by
native versus non-native English speakers. Ad-
ditionally, we also further split the native speak-
ers into two groups: Western Natives (WN) and
Non-Western Natives (NWN). In general, we find
that there are performance differences when
the model is prompted by people from different
backgrounds.

More specifically, we find an interesting over-
all preference towards the WN group, where the
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NWN group is performing similarly as the NN
group. This aligns with literature showing how
models are tuned towards western native English
dialects. The subjective classification tasks on the
other hand, favor the western native group the least,
across all different models, contradicting findings
from (Santy et al., 2023; Durmus et al., 2023). This
is explained by the models interpreting the (west-
ern) native results more positively than intended.

When analyzing the generative results, we find
that this task type is more robust and performing
similarly for all evaluated groups. This is probably
due to the longer context length in both input and
generated output, which seems to help the models
to perform similarly across different groups. Ad-
ditionally, the model checkpoints used were also
optimized for these generative tasks rather than
classification tasks.

We show how the performance ranking of the
three groups are also model-dependent for the clas-
sification tasks. More specifically, the two GPT
models are even preferring the NN group over the
NWN group on objective classification tasks. The
other models show similar performance for both
native groups, for the objective classification tasks.
Interestingly, Qwen is thus not showing this clear
WN preference, but rather a general native prefer-
ence, similar to Sonnet and Haiku. This is espe-
cially interesting given that Qwen is made by re-
searchers that are not based in the US. In literature,
studies showing Western native bias have also been
conducted on models made by researchers from
Western countries (Hofmann et al., 2024; Santy
et al., 2023; Durmus et al., 2023). However, as was
shown by Buyl et al. (2024), different models have
different ideologies, which in turn influence the dif-
ferent biases entailed in the models. Furthermore,
also for the subjective tasks, we see how group
preference depends on the model. Nevertheless,
all models perform worst for the WN group. The
generative tasks on the other hand seem to perform
similarly across all models.

Finally, we show how a strong anchoring ef-
fect occurs when the model is made aware of the
nativeness of the prompt writer for the objective
classification tasks. The bias is so deeply engraved
that informing the models about the nativeness of
both groups results in a preference towards the
group that was indicated as native, regardless of the
correctness of this information, being led by this
additional information rather than by the prompt
itself. This anchoring effect has been shown to ex-

ist in LLMs for a wide range of applications (Jones
and Steinhardt, 2022; Nguyen, 2024; Echterhoff
et al., 2024). Echterhoff et al. (2024) analyze the
existence of cognitive bias in decision-making with
LLMs, while Nguyen (2024) focus on using LLMs
for financial forecasting. Finally, Jones and Stein-
hardt (2022) focus in a case study on code gener-
ation. Our analyses show the existence of this an-
choring effect for the objective classification tasks
observing differences across models. GPT4o0 ap-
pears most resistant to this anchoring effect, while
Sonnet on the other hand even changes the lan-
guage of the response based on this anchor. Echter-
hoff et al. (2024) similarly find how GPT4 seems
less prone to the anchoring effect than GPT3.5.
Nguyen (2024) on the other hand, find the opposite
for financial forecasting. Nevertheless, given that
LLMs are not optimized for this task, this could
also affect the conclusions. In our experiments,
we also find that the anchoring effect is not clearly
present for the generative results, probably due to
the optimization of these models towards genera-
tive tasks compared to classification tasks, given
that we used chat-versions.

7 Conclusion

In this work, we analyze bias in LLMs towards
native English speakers. We analyze if models per-
form better for native compared to non-native En-
glish speakers and whether the models are even fur-
ther tuned towards Western native English speakers.
We find that there are performance differences be-
tween native and non-native prompts. More specif-
ically, models are most accurate for the Western-
native English speakers on objective classification
tasks. A slightly lower performance is shown for
the NWN group compared to the NN, nevertheless,
we show that this is mostly model-dependent. Both
GPT models seem even to prefer NN over NWN,
while the other models in our analysis show similar
performance for both native groups. Furthermore,
we find a strong anchoring effect when informa-
tion about the user’s nativeness is added for objec-
tive classification tasks. Generative tasks seem to
be in general more robust against this native bias,
probably due to the longer context length and the
optimization of the used models towards these gen-
erative tasks. For our experiments, we used a newly
collected dataset consisting of over 12,000 unique
prompts from a diverse set of annotators.
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8 Limitations

Our dataset contained a very diverse set of annota-
tors. Nevertheless, it would be interesting to have
more study participants for every sub-population,
such that general findings at sub-population level
could be made as well. The annotations in the
dataset are done by annotators from different
groups. However, there is an imbalance in number
of native English speakers compared to the number
of non-native English speakers. Furthermore, our
experiments contained mostly annotators having
a self-reported level of English of C1 and C2. It
would be very interesting to analyze the effects
on the performance of LLMs when prompted by
people having different levels of English as this
will probably also be impactful. Additionally, our
results were only gathered for five different mod-
els. It would be insightful to extend this analysis
to more models, as every model is trained differ-
ently and therefore these design choices might lead
to different biases within the model. An impor-
tant limitation of using LL.Ms and especially the
closed-source variant thereof, is the lack of repro-
ducibility of the results. We make available a mul-
tilingual dataset, however, have only analyzed the
English answers. We leave the analysis of bias in
the multilingual dataset for future research. Ad-
ditionally, some of the datasets contain a Western
focus in terms of the topics that are discussed (CNN
Dailymail, TweetQA, and McTaco). While other
datasets, like the Amazon Food reviews, are based
on user-generated content and may be less cultur-
ally specific, we recognize that the overall selec-
tion may still reflect Western contexts. Finally, we
acknowledge how the LLM-as-a-judge implemen-
tation for gathering generative results might be sub-
optimal to human annotators due to model-specific
biases. Therefore, we chose a different LLM than
the ones we will evaluate to serve as a judge to
avoid self-preference bias and we manually vali-
dated a sample. To further assess the reliability
we have included both the correlation and cohen’s
kappa score. Given the high score for both metrics
between the manual annotations and the LLM an-
notations, we assume that the LLLM annotations are
representative.

9 Ethical considerations

We included human annotators in this study. All
annotators were paid for the provided annotations
and the annotations were done on a voluntary base.

Moreover, our paper shows some of the conse-
quences of unfair design choices when develop-
ing models. We think this work is important to
highlight the necessity of taking into account mul-
tiple English dialects, as these models should work
equally well for everyone. In this paper, we focus
on the English language. We wanted to point out
that even in English, this problem of not having
enough diversified training data might also result
in performance differences among certain popu-
lations. However, this does not mean that other
languages do not require the same attention.
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A Dataset overview

We used the datasets as they were assembled
by Mishra et al. (2022) and Wang et al. (2022).
Table 1 shows an overview of the selected datasets,
together with their task ID in the original instruc-
tions dataset. The task definition given in the table
is the one we used when prompting the models. For
CNN Dailymail and CODA19, this differs from the
original task definition in the dataset because we
flipped the task. Instead of letting our annotators
write the article, we asked them to write the sum-
mary or title respectively. Datasets Abductivenli,
Timetravel, Amazonfood, McTaco, TweetQA, and
Commonsense are thus classification tasks, while
datasets StoryCloze, CNN Dailymail, CODAI19,
and Paraphrase are generation tasks.

B Annotation set-up

We have set up an annotation platform to gather
the annotations. The annotators first get informa-
tion about the task. They will get a task definition,
a prompt where part of the answer is marked out
with the placeholder [YOUR PROMPT], and the
desired output of the LLM. The annotators should
complete the prompt such that the desired output
would be generated by the LLLMs. Figure 8 shows
a screenshot of the landing page of the annotation
platform together with annotation instructions. An
example of an annotation that had to be annotated
is shown in Figure 9. An example of the different
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Task ID Name Task Definition

task069 Abductivenli In this task, you will be shown a short story with a beginning, two potential middles, and an ending. Your job is to choose the middle statement that
makes the story coherent / plausible by writing "1" or "2" in the output. If both sentences are plausible, pick the one that makes most sense.

task105 Story Cloze In this task, you're given four sentences of a story written in natural language. Your job is to complete the end part of the story by predicting the
appropriate last sentence which is coherent with the given sentences.

task065 Timetravel In this task, you are given a short story consisting of exactly 5 sentences where the second sentence is missing. You are given two options and you
need to select the one that best connects the first sentence with the rest of the story. Indicate your answer by *Option 1” if the first option is correct,
otherwise *Option 2. The incorrect option will change the subsequent storyline, so that at least one of the three subsequent sentences is no longer
consistent with the story.

task588 Amazonfood rating In this task, you're given a review from Amazon’s food products. Your task is to generate a rating for the product on a scale of 1-5 based on the
review. The rating means 1: extremely poor, 2: poor, 3: neutral or mixed, 4: good, 5: extremely good.

task020 Mctaco The answer will be "yes’ if the provided sentence contains an explicit mention that answers the given question. Otherwise, the answer should be 'no’.
Instances where the answer is implied from the sentence using "instinct" or "common sense" (as opposed to being written explicitly in the sentence)
should be labeled as "no’.

task241 TweetQA In this task, you are given a context tweet, a question and the corresponding answer of the given question. Your task is to classify this question-answer
pair into two categories: (1) "yes" if the given answer is right for question, and (2) "no" if the given answer is wrong for question.

task1553 CNN Dailymail In this task, you are given highlights ,i.e., a short summary, in a couple of sentences, of news articles and you need to generate the news article with a
maximum length of 2 paragraphs.

task1161 CODA19 In this task, you’re given a title from a research paper and your task is to generate a paragraph for the research paper based on the given title. Under
10 lines is a good paragraph length.

task177 Paraphrase This is a paraphrasing task. In this task, you’re given a sentence and your task is to generate another sentence which express same meaning as the
input using different words.

task295 Commonsense In this task, you are given an impractical statement. You are also given three reasons (associated with "A", "B", "C") explaining why this statement
doesn’t make sense. You must choose the most corresponding reason explaining why this statement doesn’t make sense.

Table 1: Overview of the different datasets used for the experiments in this paper.
Prompt generation v

Instructions

Prompt Validation

Figure 8: Screenshot of the landing page of the annota-
tion platform.

Task definition for the Chatbot:

Figure 9: An annotation example of the Abductivenli
dataset.

[Annotator PROMPT] per dataset is shown in Ta-
ble 2. We have anonymized all annotations by only
providing the self-reported linguistic information
in the dataset along with the user ID number.

C Annotation validation

Examples for each of the criteria of an invalid an-
notation are shown in Table 3.

For the annotations that did not follow the re-
quired format, we tried to change it into the correct
format without changing the content of the prompt,
if possible (i.e. removing Question: ). If this was
not possible, the annotation was rejected.

D Dataset Statistics -Annotations

The native-bias dataset consists of 12,519 anno-
tations from 124 annotators. Our dataset initially
contained 1,000 different examples. After deleting
the examples that were not validly annotated by at
least 50 % of annotators, we retained 988 examples
for 10 different tasks.

The annotators have varying native languages
as shown in Table 4. The languages are shown in
isocode format. Moreover, per native language, we
have also included the average validation rate, that
is the amount of annotations per person that were
valid over the total number of annotated examples.

Table 5 shows an overview of the number of an-
notators per group and set-id. All annotators were
given sets of examples that had to be annotated.
Every example has a unique set-id.

Furthermore, the annotators have reported their
level of English proficiency and the frequency of
which English was spoken. We provide this infor-
mation for the non-native speakers in Tables 6 and
7.

D.1 Prompt length

Table 8 shows the average prompt length per
dataset and per group. It is interesting to note
the large difference for the CNN dailymail dataset,
where the non-native English speakers have pro-
vided on average longer summaries. For the West-
ern native English group versus the not Western
native English group, the summaries for the latter
are on average 10 words longer than for the former.
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Dataset \ Example Prompt

Abductivenli Beginning: Mike was in the car on the highway. Middle 1 : [Annotator Prompt]. Middle 2: A deer
never ran in front of his car. Ending: When he got to the hospital, they saw that it had been broken

Story Cloze Sentencel: [Annotator Prompt] Sentence2: Suddenly, there was an announcement. Sentence3:
The school was on a lockdown. Sentence4: The kids sat quietly, and waited.

Timetravel Sentence 1: Little Charlie and his dad were painting the garage. Sentence 3: His dad turned around

and started to laugh Sentence 4: Charlie had paint on him from head to toe Sentence 5: His dad
rinsed him off with water from the hose Option 1: [Annotator Prompt] Option 2: Charlie had some
trouble controlling the brush.
AmazonFood rating | This is [Annotator Prompt]

McTaco Sentence: The legitimization of gambling led to its increased legalization across the US. Question:
[Annotator Prompt]
TweetQA Context: Praying for everyone here in Vegas. [ witnessed the most unimaginable event tonight. We are

okay. Others arent. Please pray. —Jake Owen (@jakeowen) October 2, 2017 Question: [Annotator
Prompt] Answer: people were not okay

CNN DailyMail [Annotator Prompt]
CODA19 [Annotator Prompt]
Paraphrase [Annotator Prompt]
Commonsense I walk under the park. [Annotator Prompt]

Table 2: Example of a prompt to annotate per dataset. [Annotator Prompt] indicates where the prompt of that the
annotator should come up with, should fit in the text.

Criteria ‘ Dataset Example Desired Answer
The response is unrelated to the task or it includes a response for a TweetQA Context: I lost the role in 50 Shades of Grey so you won’t be hearing no
different topic or question from me for awhile— Lena Dunham (@lenadunham) September 2,
2013 Question: which countries are next to France? Answer: liverpool
and everybody.
The response contains (part of) the answer. Amazonfood These are Amazon fish fingers, 5 stars from me - extremely good! 5
The response does not follow the required format or task definition. TweetQA Context: Kasich’s daughter on his dance moves: "You’re not going to no

go on "Dancing with the Stars’" #KasichFamily CNN Politics (@CN-
NPolitics) April 12, 2016 Question: no, as he is terrible at dancing
Answer: dozen

The person misunderstood the task. Commonsense He is wearing a green car choose an alphabet rating for this sentence, A
"A" for unreasonable meaning, otherwise "B"

Table 3: Examples for the criteria of an invalid annotation.
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l:i‘;:i;; aN:l:l::;:: Languages Validation rate
Other ‘36 BG, SL, RU, SW, ML, HU, FA, VI, BE, EL, TN, ID,PL, 0.83
MR, TR, PT, T, RO, FIL, UR, SQ
NL |23 0.80
EN | 28 0.83
ZH |1 0.82
EN, other | 9 PA, JA, SW, UR, VI, MR, EL 0.86
EN,ZH |1 0.88
ES |5 0.77
FR |4 0.94
T |3 0.94
HI |2 0.93
AR |1 0.94
ES, Other | 1 CA 0.84

Table 4: Overview of the native languages of the anno-
tators and the validation rate per native language.

Native or not Western native or not

Set ids Total
| Native  Non-native | Western — Not Western |
10 7 16 5 18 23
20 7 12 4 15 19
30 7 10 4 13 17
40 4 8 3 9 12
50 4 9 2 11 13
60 5 14 3 16 19
70 5 11 4 12 16
80 3 10 3 10 13
90 4 10 4 10 14
100 6 5 4 7 11

Table 5: Overview of the number of annotators per
group and set.

English proficiency level Number of non-native

annotators
C2 31
Cl 41
B2 13
Bl 1

Table 6: Overview of the self-reported English profi-
ciency of the non-native annotators.

English usage frequency Number of non-native

annotators
Daily 60
A few times per week 21
Once a week 4
Less than once a week 1

Table 7: Overview of the self-reported frequency of
English usage of the non-native annotators.

Native or not Western native or not

Dataset ids
‘ native non-native ‘ not Western native ‘Western native

0 11.08 10.17 11.52 10.14
1 9.15 8.94 8.31 9.26
2 9.40 9.71 9.73 9.58
3 14.95 13.00 14.8 13.39
4 7.56 7.57 741 7.61
5 7.53 7.74 6.91 7.93
6 59.32 66.14 56.48 66.41
7 12.09 11.74 12.04 11.77
8 11.28 11.38 11.38 11.34
9 2591 28.30 24.65 28.66

Table 8: Average prompt length per group and dataset.

group duration (in min)
native 2.07
non native 3.27
Western native 1.87
not Western native | 3.25

Table 9: Average duration of annotating 1 example per
group, in minutes

D.2 Time analysis annotators

Table 9 shows an overview of the average duration
of annotating one example per group in minutes.
Table 10, on the other hand, shows the average time
for annotating the given set in hours.

Set-ids ‘ Native or not Western native or not

native non-native Western native not Western native
10 2.70 3.06 2.33 3.12
20 322 4.01 3.72 3.71
30 3.05 5.95 3.68 5.09
40 3.31 5.12 2.95 5.04
50 4.82 4.68 2.98 5.04
60 1.30 3.37 1.33 3.10
70 1.39 3.66 1.45 3.46
80 2.39 4.54 2.39 4.54
920 4.63 7.14 4.63 7.14
100 2.79 3.39 2.03 3.65

Table 10: Average overall duration of annotating all
annotations in set per group, in hours

E Prompt templates

General

system prompt: You are a helpful assistant.
chat history:

User: task definition,
Assistant:’Understood’,

User: Full English Prompt

Add Native

system prompt:You are a helpful assistant. Re-
spond as if you are interacting with a native En-
glish speaker

chat history:
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Task | Task definition

StoryCloze Only respond with the predicted
last sentence.

AmazonFood Only respond with the rating.

McTaco Only respond with "yes" or "no".

TweetQA Only respond with "yes" or "no".

CNN Dailymail | Only respond with the news article.

CODA19 Only respond with the paragraph.

Paraphrase Only respond with the paraphrased
sentence.

Commonsense Only respond with the letter indi-
cating the most corresponding rea-
son.

Table 11: Overview of the added instructions per dataset
to ensure consistent answers from the LLMs.

User: [task definition],
Assistant: Understood,
User: [Full English Prompt]

Add Non-Native

system prompt:You are a helpful assistant. Re-
spond as if you are interacting with a non-native
English speaker

chat history:

User: [task definition],

Assistant:Understood,

User: [Full English Prompt]

Since we found that some of the models were not
following the task definitions correctly for some
of the tasks, we added extra instructions as to how
the model should reply. Table 11 shows the instruc-
tions that were added to the task definition for the
different datasets.

F Checkpoints models and
hyperparameters

We used the following checkpoints of the different
models:

GPT 3.5 was made by OpenAI®. We used gpt-3.5-
turbo-0125.

GPT 40 was made by OpenAlI°. We used gpt-4o-
2024-05-13.

Haiku was made by Anthropic (Anthropic, 2024).
We used claude-3-Haiku-20240307.

Sonnet was made by Anthropic (Anthropic, 2024).
We used claude-3-Sonnet-20240229.

Qwen 7B is an open source model made by
the Alibaba group (Bai et al., 2023). We used

8https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/hello-gpt-40/

Owen/Qwenl.5-7B-Chat

We have generated the responses for the classifi-
cation tasks with a temperature set at 0 and for the
generation tasks at 0.7

G Evaluation metrics

All generative performance metrics were gathered
using Llama-3.3-70B-Instruct. Below, the prompts
for the different metrics were given. These are
based on the ones used for the Summeval dataset
by Bavaresco et al. (2024). Depending on the gen-
erative task, the prompts differ slightly. we use the
following structure: Final prompt= ""start_prompt
+ doc_gen: [model generated reply] + metric""
where the start prompt for fluency is:

"You will be given a doc_gen generated based
on a doc_comp. Your task is to rate the doc_gen
on one metric. Please make sure you read and un-
derstand these instructions carefully. Please keep
this document open while reviewing, and refer to it
as needed.

and the start prompt for the other metrics is: You
will be given a doc_gen and a doc_comp. Your task
is to rate the doc_gen on one metric. Please make
sure you read and understand these instructions
carefully. Please keep this document open while
reviewing, and refer to it as needed.

doc_gen and doc_comp depend on the dataset.
They are a ’closing sentence’ and a ’story’ for Story
Cloze; a "news article’ and a ’summary’ for CNN
Dailymail; an ’article’ and a ’title’ for CODA19;
and a ’paraphrased sentence’ and a ’sentence’ for
Paraphrase.

The metric is one of the following:

Fluency:

Evaluation Criteria: Fluency (1-3): the quality of
the doc_gen in terms of grammar, spelling, punctu-
ation, word choice, and sentence structure. Assign
a score on a scale of 1 to 3 where: - 1: Poor.
The doc_gen has many errors that make it hard
to understand or sound unnatural.- 2: Fair. The
doc_gen has some errors that affect the clarity or
smoothness of the text, but the main points are still
comprehensible.- 3: Good. The doc_gen has few
or no errors and is easy to read and follow. Evalu-
ation Form (scores ONLY):- Fluency:

Coherence.

The definition depends on the dataset. For CNN
Dailynews and CODA19 it is as follows:
Evaluation Criteria: Coherence (1-5) - the col-
lective quality of all sentences. We align this di-
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mension with the DUC quality question of struc-
ture and coherence whereby the doc_gen should be
well-structured and well-organized. The doc_gen
should not just be a heap of related information,
but should build from sentence to a coherent body
of information about a topic. Evaluation Steps:
1. Read the doc_comp carefully and identify the
main topic and key points.2. Read the doc_gen and
compare it to the doc_comp. Check if the doc_gen
covers the main topic and key points of the doc_gen,
and if it presents them in a clear and logical or-
der.3. Assign a score for coherence on a scale of 1
to 5, where 1: Very low coherence ; 2: Low coher-
ence; 3: Mediocre coherence ; 4: High coherence ;
5: Very high coherence. Evaluation Form (scores
ONLY):- Coherence:

For Paraphrase it is as follows:
Evaluation Criteria: Coherence (1-5) - The overall
quality of the paraphrased sentence in terms of log-
ical flow, structure, and alignment with the original
sentence. A coherent paraphrase should preserve
the meaning of the original sentence, avoid redun-
dancy, and introduce variation without altering
the main idea. The paraphrased sentence should
not feel disjointed or incomplete but should read
smoothly as a standalone sentence. Evaluation
Steps: 1. Read the doc_comp carefully and identify
the main topic and key points. 2. Read the doc_gen
and compare it to the doc_comp. 3. Assign a score
for coherence on a scale of 1 to 5, where 1: Very
low coherence ; 2: Low coherence; 3: Mediocre
coherence ; 4: High coherence ; 5: Very high
coherence. Evaluation Form (scores ONLY): - Co-
herence:

For Story Cloze it is as follows:
Evaluation Criteria: Coherence (1-5) - the col-
lective quality of all sentences. We align this di-
mension with the DUC quality question of struc-
ture and coherence whereby the sentences should
be well-structured and well-organized. The sen-
tences should not just be a heap of related in-
formation, but should build from sentence to a
coherent story.Evaluation Steps: 1. Read the
doc_comp carefully and identify the main topic
and key points. 2. Read the doc_gen and com-
pare it to the doc_comp. Check if the sentences are
clear and in a logical order. 3. Assign a score for
coherence on a scale of 1 to 5, where 1: Very low
coherence ; 2: Low coherence; 3: Mediocre coher-
ence ; 4: High coherence ; 5: Very high coherence.
Evaluation Form (scores ONLY): - Coherence:
Relevance.

The definition depends on the dataset. For Story
Cloze it is as follows:

Evaluation Criteria: Relevance (1-5) - The degree
to which the generated doc_gen effectively reflects
the main themes and purpose of the doc_comp. A
relevant closing sentence should provide a mean-
ingful and appropriate conclusion, aligning with
the tone and key points of the narrative. Evaluation
Steps: 1. Read the doc_comp and the doc_gen care-
fully. 2. Compare the doc_gen to the doc_comp and
identify the main points of the doc_comp. 3. As-
sess how well the doc_gen concludes the doc_comp,
and how much irrelevant or redundant information
it contains. 4. Assign a relevance score from I to 5
where 1: Very low relevance ; 2: Low relevance; 3:
Mediocre relevance ; 4: High relevance ; 5: Very
high relevance. Evaluation Form (scores ONLY): -
Relevance:

For all other datasets it is as follows:
Evaluation Criteria: Relevance (1-5) - inclusion
of important content from the doc_comp. The
doc_gen should include all important information
from the doc_comp. Evaluation Steps: 1. Read the
doc_comp and the doc_gen carefully. 2. Compare
the doc_gen to the doc_comp and identify the main
points of the doc_comp. 3. Assess how well the
doc_gen covers the main points of the doc_comp,
and how much irrelevant or redundant information
it contains. 4. Assign a relevance score from I to 5
where 1: Very low relevance ; 2: Low relevance; 3:
Mediocre relevance ; 4: High relevance ; 5: Very
high relevance. Evaluation Form (scores ONLY): -
Relevance:

H Distribution Amazon food reviews

Figure 10 shows an overview of the wrong predic-
tions of the AmazonFood review dataset for the
different groups and models for one of the three
runs. This shows the distribution between what was
predicted and what should be predicted. We only
consider here the cases where the model predicted
one of the given ratings, and excluded cases where
no prediction was given. As shown, for both the
native and Western native group, we find a large
amount of misclassification for the highest rating.
Additionally, neutral is not often predicted for these
classes compared to the other groups.

I Results Sonnet different languages

When adding that the model is interacting with a
non-native English speaker, we find that Sonnet
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Frequency of Predicted Scores and Req Outputs

(a) Overview of the predictions for the Western native
English speakers.

Frequency of Predicted Scores and Req Outputs

(b) Overview of the predictions for the non-native English
speakers.

Frequency of Predicted Scores and Req Outputs

e Amazon GPT3.5
GPT40

Haiku

29

(c) Overview of the predictions for the native English
speakers that are not western native.

Figure 10: Overall classifications for Western native, native that are not Western native, and non-native English

speakers

Language | Times Occurring

es 668
fr 25
id
it
It
SW
ru

e \° )1

Table 12: Occurrences of different languages in Sonnet

starts to answer in different languages. We find
that for 668 prompts the model answers in Spanish,
for 25 sentences in French, and for 5 sentences in
Indonesian. There were a couple of other languages
that also occurred sporadically. An overview is
shown in Table 12. However, these answers were
not related to the native language of the prompt
writer. This phenomenon was encountered mainly
for the Timetravel dataset. Interestingly, this effect
was not seen for the other models, not even for
Haiku.

J Example Paraphrase

As said, there are differences between native and
non-native speakers as to how they perceived the
paraphrasing task. For example given this desired
output: At this time of rapid change, those who lag
behind fall into irrelevance. Native speakers came
up with very freely paraphrased sentences, such
as: If you are not adapting to the quick changes of
the world, you will not succeed. while non-native
speakers stuck to In this fast changing ages, who-
ever is lagging becomes irrelevant. When giving
these different sentences to the model to paraphrase,
the result for the more freely paraphrased sentences
might cause the model to shift away further from
the initial sentence or gold answer.

K Classification results

Figure 11 shows the accuracy scores for the objec-
tive and subjective classification tasks per model
when information about the nativeness of the
prompt writer is added. We see how sonnet clearly
performs differently than the other models.
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Figure 11: Classification results per model and classification task when information about the nativeness of the
prompt writer was added. We clearly see how Sonnet is highly influenced by this additional information.

L LLM as a judge: Generative results

Figure 12 shows how similar behavior is found
across all three performance metrics per model.
Moreover, Figure 13 shows the results per dataset
for the generative results.

M Additional Analysis

In this section, we include some extra analyses on
the performance of the different groups within the
non-native English speakers. More specifically, we
add the results per level of English proficiency, as
well as per frequency of English. We see that there
are differences in performance across the different
groups.

M.1 Classification results

For the classification results, we see a clear connec-
tion between performance and level of English, and
frequency of usage of English. The groups with the
highest levels of English also obtain better results.
This is shown in Figures 14 and 15.

As we saw a performance difference, in terms
of levels of English, we also compare the results
when only taking into account level C1 and C2
non-native English speakers. The results are shown
in Figure 16. Here, we still see the same order in
performance as in Figure 3 was shown. However,
now there is a clearer performance difference be-
tween the natives that are not western native and
the non-native group.

M.2 Generative Results

For the generative tasks, however, we do not see
clear differences in terms of frequency of English
usage and performance, as shown in 17 and 18.
Only the people with the lowest level of English

Full dataset

G Objective Subjective
roup Classification  Classification
WN 0.8661 0.7366

NWN 0.8487 0.7986
NN 0.8518 0.8039

Only Overlapping Sets

G Objective Subjective
roup Classification  Classification
WN 0.8655 0.7366

NWN 0.8487 0.7986
NN 0.8492 0.8040

Table 13: Performance for the classification tasks on the
full dataset and only considering overlapping samples.

proficiency perform better in terms of coherence,
which is unexpected.

When analyzing the performance differences
only for the groups with highest proficiency (C2
and C1), as shown in Figure 19, we see similar
findings to Figure 4.

N Robustness analysis annotations

The dataset used in this paper is designed to be par-
allel, ensuring the same base samples for different
annotator groups. We divided the dataset into mul-
tiple sets as shown in Table 5. As shown, the WN
and NN groups have annotated all existing sets.
The NWN group annotated most of the dataset,
but did not annotate two out of the ten sets. Our
dataset was constructed through random sampling
and annotators from the three groups annotated the
majority of sets. Below we provide a robustness
check on the overlapping subsets.

Table 13 shows how the results remain consistent
when analyzing the full dataset and only the over-
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Figure 12: This Figure shows the performance of (western) native speakers and non-native speakers. We see how
the highest performance for Coherence and is obtained for the western native group across all different models. The
relevance scores show slightly less difference between groups, but the non-native and not western native group
performs worse overall. The fluency scores are similar for all groups. We rescaled the results so that they range

from O to 1.
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Figure 13: This figure shows the overall performanc
non-native speakers. However, when looking into the

e across the three groups: (western) native speakers and
coherence metric, we do see a preference for the western

native group. The results show how there is no difference regarding fluency and only a slight performance difference
when comparing the native categories with the non-native category for relevance.
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Figure 14: This figure shows the performance of English
non-native speakers per self-reported level of English
for the classification tasks.We adjusted the y-axis to
range from 0.65 to 1 for clarity.
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Figure 15: This figure shows the performance of En-
glish non-native speakers per self-reported frequency of
English usage for the classification tasks. We adjusted
the y-axis to range from 0.65 to 1 for clarity.
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for the C2 and Cl-level speakers per group.We rescaled
the results so that they range from O to 1.

Figure 16: This figure shows the performance of the
three groups only including C2 and C1 level English
speakers. We adjusted the y-axis to range from 0.65 to

1 for clarity.
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Figure 17: This figure shows the performance of English
non-native speakers per self-reported level of English

lapping sets for both the objective and subjective
classification tasks. This illustrates how our find-
ings demonstrate genuine performance differences
rather than artifacts of different datasets, confirm-
ing that the dataset’s structure does not impact the
findings.

for the generative tasks. We rescaled the results so that

they range from O to 1.
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Figure 18: This figure shows the performance of En-
glish non-native speakers per self-reported frequency of
English usage for the generative tasks. We rescaled the
results so that they range from O to 1.
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