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Abstract

The integration of large language models
(LLMs) into clinical medicine represents a ma-
jor advancement in natural language processing
(NLP). We introduce BioMistral-Clinical 7B, a
clinical LLM built on BioMistral-7B (Labrak
et al., 2024), designed to support continual
learning from unstructured clinical notes for
real-world tasks such as clinical decision sup-
port. Using the augmented-clinical notes
dataset provided by Hugging Face (2024), we
apply prompt engineering to transform un-
structured text into structured JSON captur-
ing key clinical information (symptoms, diag-
noses, treatments, outcomes). We employ self-
supervised continual learning (SPeCiaL.) (Cac-
cia and Pineau, 2021) to achieve efficient in-
cremental training. Evaluation on MedQA (Jin
etal., 2021) and MedMCQA (Pal et al., 2022)
shows that BioMistral-Clinical 7B improves
accuracy on MedMCQA by nearly 10 points
(37.4% vs. 28.0%) over the base model,
while maintaining comparable performance on
MedQA (34.8% vs. 36.5%). Building on this,
we propose the BioMistral-Clinical System,
which integrates Retrieval-Augmented Gener-
ation (RAG) (Lewis et al., 2020) to enrich re-
sponses with relevant clinical cases retrieved
from a structured vector database. The full sys-
tem enhances clinical reasoning by combining
domain-specific adaptation with contextual re-
trieval.

1 Introduction

Medical natural language processing (NLP) plays
a crucial role in improving clinical workflows and
supporting healthcare decision-making. From early
rule-based systems to modern machine learning
approaches, the field has evolved significantly to
better handle the complexity and variability of med-
ical data (Fieschi et al., 2003; Sutton et al., 2020).

The emergence of Large Language Models
(LLMs), particularly since GPT-3 (Brown et al.,
2020b), has further transformed medical NLP by

enabling the automation of clinical documenta-
tion, diagnostic support, and personalized care
(Thirunavukarasu et al., 2023). However, the grow-
ing size of these models raises concerns about com-
putational cost, deployment feasibility, and adapt-
ability to clinical-specific language.

To address the limitations of general LLMs
in clinical applications, specifically their limited
capacity for domain adaptation and their inabil-
ity to incorporate external knowledge, we pro-
pose the BioMistral-Clinical System, a lightweight
framework based on BioMistral-7B (Labrak et al.,
2024). We first built BioMistral-Clinical 7B
through continual learning on structured JSON-
formatted clinical records (Caccia and Pineau,
2021). In that way, we improve the domain speci-
ficity and clinical knowledge of the BioMistral
model. To further improve context-aware response
quality, we integrate retrieval-augmented genera-
tion (RAG) (Lewis et al., 2020). Thus, we enable
real-time access to external medical knowledge,
making its responses not only up-to-date but also
transparent and verifiable (see Figurel).

Our contributions are as follows: (i) we pro-
pose a data preparation scheme that converts
long unstructured clinical notes into structured,
information-rich JSON representations using chain-
of-thought prompting; (ii) we introduce a con-
tinual learning approach that updates only a tar-
geted subset of model parameters, enabling effi-
cient clinical knowledge integration while miti-
gating catastrophic forgetting; (iii) we include a
retrieval-augmented layer that grounds model out-
puts in relevant patient cases, thereby improving
response specificity without requiring additional
fine-tuning; (iv) we validate the proposed method-
ology (incremental learning on lightweight models
+ RAG enhancement) for clinical LLMs through
comprehensive qualitative and quantitative evalua-
tions, confirming its utility in this domain; and (v)
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Figure 1: Overview of the BioMistral-Clinical System. Unstructured clinical notes are transformed into structured
JSON using prompt engineering. These structured records are used to incrementally train the base model (BioMistral)
via Self-Supervised Training for Continual Learning (SPeCial.) , producing BioMistral-Clinical. The same data
is embedded to construct a clinical knowledge base. At inference time, user queries retrieve the top-3 relevant
documents via Maximum Inner Product Search (MIPS). These documents, together with the query, are passed to the

BioMistral-Clinical model to generate the final answer.

we open-source the dataset! and model?on Hug-
gingFace under the MIT License, to support clini-
cal NLP research.

2 Related Work

2.1 Traditional Approaches for Medical
Decision Support

Traditional approaches to prediction of medical out-
comes have long struggled with a trade-off between
rigid structure and practical usability. Early rule-
based Medical Decision Support Systems (MDSS),
for instance, offered interpretable if-then logic, but
were inflexible and sensitive to data quality (Fi-
eschi et al., 2003). Although subsequent genera-
tions, such as Clinical Decision Support Systems
(CDSS), improved adherence to clinical guidelines,
their widespread adoption was ultimately hampered
by persistent usability issues (Sutton et al., 2020).
This evolution highlights a critical gap for decision
support tools that are clinically robust and highly
intuitive, a niche that medical LL.Ms are poised to
fill.

2.2 Development of Medical LLMs

Since the launch of GPT-3 (Brown et al., 2020b),
general-purpose LLMs have been applied to clini-

'Available at: https://huggingface.co/datasets/
ZiweiChen/BioMistral-Clinical-Knowledge-Base

ZAvailable at: https://huggingface.co/ZiweiChen/
BioMistral-Clinical-7B

cal domains. Despite their strong language genera-
tion capabilities, their lack of domain-specific train-
ing raises safety concerns in clinical settings (Ko-
rngiebel and Mooney, 2021). These risks highlight
the need for models developed specifically for the
medical domain.

In response, specialized LLMs such as
GatorTron (Yang et al.,, 2022) and PMC-
LLaMA (Wu et al.,, 2024) were introduced.
GatorTron, trained on over 90 billion words (in-
cluding 82 billion de-identified clinical tokens), sig-
nificantly improved performance on clinical NLP
tasks. PMC-LLaMA incorporated biomedical text-
books and literature, outperforming ChatGPT on
QA benchmarks. Later models like MEDITRON-
70B (Chen et al., 2023) and OpenBioLLM-
70B (Ankit Pal, 2024) further scaled parameters
to achieve state-of-the-art performance. However,
scaling introduces challenges: high computational
cost, limited deployability, and diminishing returns.
As an example, MEDITRON-70B improved only
5-8% over its 13B version despite a 4x increase
in training expense (Hoffmann et al., 2022; Chen
et al., 2023).

2.3 Lightweight Clinical LLLMs

Recent research has shifted toward the develop-
ment of lightweight medical LLMs to reduce
computational demands and improve deployabil-
ity. BioMistral-7B (Labrak et al., 2024) achieved
85% of OpenBioLLM-70B performance with only
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1/10th of the parameters, supporting applications
on edge devices. This highlights a trend toward
efficiency and task-specific adaptability over pure
scale, enabling broader clinical adoption without
compromising reliability. However, BioMistral-7B
was trained primarily on general biomedical cor-
pora, which limits its grasp of real-world clinical
language.

Building on this trend, our work integrates
lightweight domain adaptation, self-supervised
continual learning, and retrieval augmentation into
a unified clinical language modeling framework.

3 Methodology

Our approach leverages prompt engineering to
structure unannotated clinical data into JSON for-
mat, enabling domain-adaptive pretraining via the
SPeCiaL. framework. We further construct a clin-
ical knowledge base to support real-time docu-
ment retrieval during inference. Technically, we
contribute a lightweight yet domain-specialized
model based on BioMistral-7B, a training pipeline
that supports continual learning, and a hybrid sys-
tem that integrates retrieval and generation for im-
proved clinical question answering (see Figure 1).

3.1 Datasets

This study utilizes the Augmented Clinical Notes
dataset provided by Hugging Face (2024) The
dataset comprises approximately 30,000 clinical
notes sourced from a combination of real-world
and synthetic data.

This dataset was originally developed to train
MediNote-7B and MediNote-13B, a pair of fine-
tuned clinical note generators from the MediTron
(Chen et al., 2023) family of LL.Ms. In this study,
we use this dataset for incremental training and
build the knowledge base.

The average length of the note is approximately
3000 words (SD = 1,473), with the full range ex-
tending from 746 to more than 31,000 words. Each
record contains diverse clinical components, such
as symptoms, diagnoses, treatment, and patient
outcomes. The complexity and extent of these nar-
ratives make the dataset highly suitable for building
clinical-specific models.

Example Case Summary

A 67-year-old patient with metastatic renal cell
carcinoma presented with shortness of breath,
pleuritic chest pain, and left scapular discomfort.
Imaging revealed a gastropleural fistula, multiple

metastases, and atelectasis. Treatment involved
gastrostomy and chest tubes, endoscopic suturing,
and laparoscopic fistula repair. The patient re-
covered successfully and was discharged to reha-
bilitation, with complete tube removal after four
months and no complications during follow-up.

Summarized by ChatGPT

This example shows that this dataset is able to
reflect complex clinical cases and diverse treatment
trajectories. However, the notes lack structure be-
cause they are narrative texts filled with redundant
or irrelevant information. It is inefficient to use
such records directly for training, especially for
lightweight models.

3.2 Model Selection: BioMistral-7B

In this study, we selected the publicly available
BioMistral-7B (Labrak et al., 2024) model® as our
base due to its demonstrated efficacy in process-
ing complex biomedical and clinical texts. The
model is built on Mistral 7B Instruct v0.1* and was
designed to incorporate instructions and fine-tune
across a range of tasks efficiently. It has been exten-
sively pre-trained on the PubMed Central corpus
(Jin et al., 2019), providing it with a strong foun-
dation in the medical literature, which aligns well
with the goals of this research in the medical field.

One of the key reasons for selecting BioMistral-
7B is its lightweight architecture. In contrast to
the growing trend toward large-scale LLMs, there
is increasing interest in developing more efficient,
lightweight models that can deliver similar perfor-
mance benefits without requiring excessive compu-
tational power (Tian et al., 2024). With only 1/10th
the parameters of OpenBioLLLM-70B, it can reach
85% of its accuracy (Labrak et al., 2024). This
lightweight design makes it an ideal candidate for
further refinement and specialized clinical appli-
cations, especially when hardware resources are
limited. However, there remains room for improve-
ment, particularly in terms of its adaptability to
real-world clinical settings.

3.3 Prompt Engineering

To build high-quality data for incremental pretrain-
ing, we transform unstructured clinical notes into
a structured format. We employ prompt engineer-
ing (PE) with a general-purpose LLM to convert

3 Available at: https://huggingface.co/BioMistral/
BioMistral-7B

4 Available at:
Mistral-7B-v@.1

https://huggingface.co/mistralai/
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each note into a standardized JSON object. This
process captures essential clinical elements (e.g.,
main complaint, history, findings, diagnosis, and
treatment) within distinct subfields, thereby enhanc-
ing the data’s granularity and relational clarity for
model training.

We conducted initial experiments where we used
Zero-Shot and Few-Shot Prompting (Brown et al.,
2020a). Although Few-Shot prompting improved
format consistency, we found that it often failed
to capture fine-grained details across clinical sub-
fields. To improve consistency, we adopted Chain-
of-Thought (CoT) prompting (Wei et al., 2022),
which guides the model to reason through subtasks
step by step. The CoT template includes role defi-
nition, field explanations, rules, and multiple input-
output examples (see Figure in the appendix A).
GPT-4 was selected for large-scale annotation to
balance performance and cost.

Annotating 30K notes with GPT-4 consumed
~100M tokens and took ~40 hours. The struc-
tured output averaged 1,300 tokens, significantly
shorter than the original input length of approxi-
mately 3,000 tokens. This reduction also led to
a decrease in variability, with the standard devia-
tion dropping from 1,473 to 477. Figures 5 in the
appendix B show the length distribution after trans-
formation. In addition, an example of the JSON
output is shown in the appendix G.

3.4 Incremental Learning

3.4.1 Data Preparation and Tokenization

Structured JSON data from Section 3.3 distilled
through prompt engineering captures key patient in-
formation such as medical history, diagnoses, treat-
ments, and results. We set a maximum input length
of 1,024 tokens, covering 99.67% of all entries (see
Figure 6).

Tokenization was performed using the original
BioMistral-7B tokenizer to ensure vocabulary align-
ment. The data set was split 80/20 into training and
validation sets, the latter being used to monitor
generalization and prevent overfitting.

3.4.2 SPeCiaL: Self-Supervised Training for
Continual Learning

We adopt the continual self-supervised learning
framework proposed by Caccia and Pineau (2021),
where a pretrained LLM is incrementally updated
via autoregressive learning on new domain-specific
data. This strategy enables knowledge integration

without catastrophic forgetting, avoiding the need
for full retraining.

Self-supervised learning predicts future tokens
from the past context using causal masking, and un-
labeled data to refine model representations. This
is especially beneficial in clinical domains where
labeled data is scarce.

Our approach uses BioMistral-7B, a 32-layer,
7.2B parameter decoder-only transformer. To re-
tain basic biomedical knowledge while adapting to
clinical notes, we freeze the bottom 20 layers of
the model while fine-tuning the top 12 layers for
efficient continuous adaptation.

3.4.3 Training Strategy

Training was conducted for 5 epochs using an au-
toregressive objective on our structured clinical
inputs. Each batch contained 16 samples, fully
utilizing an NVIDIA A800 80G GPU. We used
Hugging Face Transformers to load the base model
and tokenizer with default settings. The total train-
ing time was 37 hours.

Training loss steadily decreased, indicating suc-
cessful learning. Validation loss initially dropped
but began rising after 11,000 steps, signaling over-
fitting. We thus selected the 10,000-step checkpoint
as the final model based on optimal validation per-
formance.

The resulting model, BioMistral-Clinical 7B,
inherits the general biomedical knowledge of
BioMistral-7B while being specialized for struc-
tured clinical narratives. All metrics were tracked
via Weights & Biases (wandb), as shown in Fig-
ures 7 and 8 in the appendix. All reported results
are based on a single training run without multiple
seed averaging.

3.5 Supervised Fine-Tuning

To adapt the model for multiple-choice clinical
question-answering tasks, we perform supervised
fine-tuning (SFT) using the low-rank adaptation
method (LoRA) (Hu et al., 2022), which enables
parameter-efficient learning by injecting trainable
low-rank matrices into pretrained weights while
keeping the original model frozen.

We trained on the multiple-choice datasets from
MedQA (Jin et al., 2021) and MedMCQA (Pal
et al., 2022). A maximum sequence length of 256
tokens was selected to cover the entire question-
answer pairs, and training was performed over 5
epochs. For this parameter-efficient tuning, we
employed LoRA with a rank of r = 8 and a scal-
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ing factor of o = 16. This resulted in approxi-
mately 20 million trainable parameters, which is
only about 0.5% of the complete model.

Training was conducted using batch sizes suit-
able for single-GPU setups. On an NVIDIA A800
80G GPU, training completed in approximately 7
hours, compared to 17 hours on an A10 24G. We
save four LoRA-adapted checkpoints for evalua-
tion.

3.6 Retrieval-Augmented Generation

To address limitations in fixed-knowledge language
models and improve response specificity, we inte-
grate a Retrieval-Augmented Generation (RAG)
framework (Lewis et al., 2020) into the BioMistral-
Clinical System. This enables the model to dynam-
ically retrieve relevant clinical cases from a struc-
tured corpus at inference time, providing real-time
contextual grounding for each query.

As shown in Figure 1, our RAG implementa-
tion begins by constructing a vector knowledge
base. Each clinical note 2z in our corpus is en-
coded into a 1024-dimensional embedding d(z) us-
ing the lightweight jinaai/jina-embeddings-v3
model (Sturua et al., 2024). At inference, a given
query x is similarly embedded, and we use Maxi-
mum Inner Product Search (MIPS) to retrieve the
top K = 3 most relevant documents {z1, 22, 23}
These documents are then prepended to the original
query to form a context-rich prompt for BioMistral-
Clinical, enhancing response specificity and con-
sistency without requiring model retraining.

4 Evaluation

We present a comprehensive evaluation of our ap-
proach via an ablation study on retrieval augmenta-
tion. We first evaluate the base model BioMistral-
Clinical 7B with incremental integration of clinical
knowledge (see Section 4.1), then evaluate the com-
plete BioMistral-Clinical System, which extends
the base model with a RAG mechanism for contex-
tual retrieval in real time (see Section 4.2).

4.1 Evaluation of BioMistral-Clinical 7B

To obtain a comprehensive view of the behavior
of our model, we evaluated BioMistral-Clinical
7B in two dimensions: (1) qualitative case com-
parisons that simulate real-world clinical scenarios
(see Section 4.1.1 and Section 4.1.2), and (2) quan-
titative evaluation using generated clinical queries
and public multiple-choice medical benchmarks
(see Section 4.1.3 and Section 4.1.4).

4.1.1 Clinical Scenario Comparison

To qualitatively assess clinical reasoning ability, we
generated a synthetic dataset of 100 basic clinical
questions using GPT-4 (Achiam et al., 2023). The
questions were created by prompting the model
with: “Please generate 100 common clinical ques-
tions.” These queries reflect general diagnostic
and treatment scenarios commonly encountered in
clinical practice. We used this dataset to evaluate
and compare the responses of BioMistral-7B and
BioMistral-Clinical 7B. Examples of these queries
are provided in Appendix 2.

We selected a representative clinical scenario
query. Below, we compare the responses generated
by the original BioMistral-7B and our proposed
BioMistral-Clinical 7B.

BioMistral-7B:

Severe obesity can be treated using a com-
bination of diet, exercise, and sometimes
medication. It is important for patients to
work with healthcare professionals to de-
velop a personalized plan.

BioMistral-Clinical 7B:

Severe obesity treatment typically involves
a comprehensive approach, including di-
etary changes, increased physical activ-
ity, behavioral therapy, and in some cases,
weight-loss medications or surgery. A mul-
tidisciplinary team often provides the best
outcomes.

As illustrated above, while both models outline
general treatment strategies, BioMistral-7B pro-
vides only broad recommendations. In contrast,
BioMistral-Clinical 7B generates a more structured
and specific response, suggesting different types
of interventions and team-based care. A more de-
tailed clinical example is provided in Appendix D
for further illustration.

4.1.2 Manual Content Analysis

Our manual analysis of the 100 generated clini-
cal question-answer pairs revealed that BioMistral-
Clinical 7B consistently generates qualitatively su-
perior responses compared to baseline. Specifically,
we observed the following patterns of improvement
throughout the reviewed samples:
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Figure 2: Comparison of answer length distribution and phrase count distribution between BioMistral-7B and
BioMistral-Clinical 7B across 100 clinical queries. Left: histogram of answer lengths; Right: histogram of phrase

unit counts.

1. It demonstrated significantly greater phar-
macological specificity, providing concrete
recommendations (e.g., “Amlodipine 5 mg
once daily, along with...hydrochlorothiazide
25 mg...”) instead of generic categories.

2. It generated more comprehensive treatment
plans by integrating diagnostics, lifestyle mod-
ifications, and multistep medication regimens.

3. It exhibited stronger contextual reasoning, tai-
loring recommendations to available patient
data, and crucially, refusing to speculate when
such information was absent.

Interestingly, our analysis revealed that
BioMistral-Clinical 7B shows significant clinical
caution. In our manual review of 100 samples,
this behavior occurred in 9 cases where prompts
lacked sufficient patient-specific details. In these
instances, instead of generating a potentially
unsafe recommendation, the model would refuse
to answer and state its reasoning. For example, it
would respond:

“The patient’s medical history, specific diagnos-
tic findings, and diagnosis are not provided in the
available medical information. Therefore, it is not
possible to provide a comprehensive treatment plan
or postoperative course.”

This behavior reflects an increased sensitivity
to the clinical context, likely resulting from the
domain-specific pretraining process, where rich
contextual cues are often present. Notably, when
such contextual information is provided, the model
is able to generate more precise and individualized
recommendations.

4.1.3 Quantitative Analysis

To complement the results of the qualitative anal-
ysis, we performed quantitative analyses of these
100 queries and the corresponding answers.

Answer Length Analysis We used answer length
(in characters) as a proxy for response richness.
As shown in Figure 2 (left), BioMistral-Clinical
7B produced significantly longer responses (mean:
933.69) than BioMistral-7B (mean: 493.46). This
can demonstrate that the new model can suggest
more in terms of response length.

Phrase Count Analysis To further evaluate the
depth and granularity of the models’ responses, we
performed a phrase-level analysis using spaCy’s
en_core_web_sm model to extract noun phrases
from each answer. These phrases, which often en-
capsulate key clinical concepts and entities, reveal
the richness of information in the responses. On av-
erage, BioMistral-Clinical 7B generated responses
containing 40.5 noun phrases, while BioMistral-
7B produced an average of 23 noun phrases per
response. These findings are visualized in Figure 2
(right).

Vocabulary Usage Analysis We also analyzed
word frequencies, focusing on the top common
terms from each model’s output, to assess the clini-
cal importance and semantic depth of their output.
As shown in Figure 3, BioMistral-Clinical 7B relies
heavily on medical domain-specific terminology
(“treatment,” “diagnosis,” “symptoms,” “medica-
tion”), reflecting a strong focus on clinical themes.
In contrast, BioMistral-7B features frequent terms
like “treatment,” “therapy,” and “patient” alongside
more generic words (“avoid,” “help,” “cause”), in-

LR INT3
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Figure 3: Word cloud graph in responses generated by BioMistral-7B and BioMistral-Clinical 7B across 100 clinical

queries.

dicating a less concentrated emphasis on medical
expertise.

4.1.4 Public Dataset Comparison

To assess the capabilities of BioMistral-Clinical 7B,
we benchmark it against its base model, BioMistral-
7B, and other prominent medical LLMs on two pub-
lic multiple-choice question answering datasets:
MedQA (Jin et al., 2021) and MedMCQA (Pal
et al., 2022). We evaluate the models in two set-
tings: zero-shot and after supervised fine-tuning
(SFT). All results, including comparisons to ex-
ternal models, are presented in Table 1. Example
questions are available in Appendix C.1 and C.2.

Zero-Shot Performance We first evaluate the
models without any task-specific fine-tuning. For
MedQA, we use a 10% random sample (1,273 ques-
tions) of the English test set. For MedMCQA, we
use a 1,000-question sample from its surgery sub-
set to align with our model’s clinical focus. The
results reveal a clear trade-off: on the broader
MedQA dataset, the base model slightly outper-
forms the clinical version (36.5% vs. 34.8%). In
contrast, in the specialized MedMCQA surgery
subset, BioMistral-Clinical 7B shows a substan-
tial advantage over the base model, with a +9.4%
improvement in accuracy (37. 4% vs 28. 0%).
This highlights that continued pretraining on clini-
cal data enhances performance on domain-specific
tasks, albeit at the cost of a marginal drop in
broader medical knowledge.

Post-SFT Performance Next, we fine-tune both
models on the training splits of each dataset. For
MedQA, we use its complete training set. For
MedMCQA, to maintain focus on clinical special-
ization, we fine-tune both models exclusively on
their surgery subset, which contains 16,862 ques-
tions. As shown in Table 1, SFT increases perfor-

mance for both models. In MedQA, the perfor-
mance gap narrows, and the base model maintains
a slight edge (43. 5% vs 42. 3%). However, in
the MedMCQA surgery subset, the advantage of
BioMistral-Clinical 7B persists and remains sig-
nificant, achieving 47. 7% precision compared to
41. 2% for the base model (+6.5%). This indicates
that while SFT is broadly effective, the specialized
pre-training of BioMistral-Clinical 7B provides a
stronger foundation for adaptation to specific clini-
cal domains.

Comparison with External Models When com-
pared to other 7B parameter models, BioMistral-
Clinical 7B shows competitive performance in the
general MedQA dataset and establishes a clear ad-
vantage in its specialized clinical domain. Specif-
ically, while performing on the same level as
MediTron-7B (Chen et al., 2023) in MedQA (42.3%
vs 41.6%), our model outperforms it in the MedM-
CQA surgery subset (47.7% vs 41.3%). It also
substantially surpasses PMC-LLaMA 7B (Wu et al.,
2024) on both benchmarks. Although there is a
performance gap to the much larger GPT-3.5 Turbo
(OpenAl, 2023), these results establish BioMistral-
Clinical 7B as a leading open-source model for
tasks that require deep knowledge of the clinical
domain.

4.2 Evaluation of BioMistral-Clinical System
4.2.1 Retrieval Accuracy Evaluation

To quantify the quality of document retrieval, we
conducted a systematic manual evaluation on a set
of 100 queries sampled from our test scenarios
(Section 4.1.1). We assessed the relevance of the
top-3 retrieved documents for each query based
on two criteria: (i) Clinical Relevance: Does the
retrieved document address the same primary med-
ical condition or clinical question as the query?

1177



Model

MedQA MedMCQA

MedQA-SFT MedMCQA-SFT

34.8%
36.5%

BioMistral-Clinical 7B (Clinical)
BioMistral-7B (Base)
Improvement (Clinical - Base)

MediTron-7B* -
PMC-LLaMA 7B* -

GPT-3.5 Turbo 1106* 57.71%

37.4% 42.3% 47.7%
28.0% 43.5% 41.2%
+9.4% -1.2% +6.5%
- 41.6% 41.3%
- 25.5% 26.6%
53.79% - -

Table 1: Performance comparison on public medical QA datasets. Results are accuracy (%). *Scores are from
(Labrak et al., 2024). Positive improvements are in blue, negative in red.

(Binary: Yes/No); and (ii) Usefulness: Does the
document contain specific, actionable information
(e.g., diagnostic criteria, treatment options, symp-
toms) that could contribute to a comprehensive
answer? (Binary: Yes/No)

Our analysis of the 300 retrieved documents
(100 x 3 documents) revealed that a document
was clinically relevant in 82% of cases. Further-
more, for 77.6% of the queries, at least one of the
top-3 retrieved documents was rated as “useful,”
providing substantive information for the genera-
tion stage. All judgments were made using the
network-connected Gemini 2.5 Pro model (Google
DeepMind, 2025). Detailed examples of successful
and failed retrievals are provided in Appendix 2.

4.2.2 Qualitative Evaluation of the RAG
System

We conducted a qualitative analysis to assess the
impact of Retrieval-Augmented Generation (RAG)
on the final output. We compared the responses
from the RAG-enhanced BioMistral-Clinical 7B
against the baseline BioMistral-7B (without RAG)
for the same 100 queries. Our manual assessment
focused on identifying common patterns of im-
provement, primarily in three areas: (i) Specificity:
Providing concrete details (e.g., naming specific
drugs or therapies) versus generic statements; (ii)
Completeness: Offering a more comprehensive
overview that covers multiple aspects of the query
(e.g., causes, symptoms, and treatments); and (iii)
Factual Grounding: Reducing factual inaccura-
cies or hallucinations by grounding the response in
retrieved evidence.

Across our analysis, we observed that RAG sig-
nificantly enhanced the responses, particularly for
complex or less common conditions. In approx-
imately 70% of such cases, the RAG-enhanced
model provided greater specificity and complete-
ness. For instance, the example below illustrates
how RAG enriches a response about a complex
neurological disorder.

BioMistral-7B (No RAG):

There is no cure for multiple scle-
rosis (MS). Treatment includes
medications, lifestyle changes,
and rehabilitation.

BioMistral-Clinical (RAG-Enhanced):

Multiple sclerosis (MS) is a
chronic autoimmune disorder
affecting the central nervous
system, causing symptoms such
as fatigue, vision problems, and
cognitive issues. There is no
cure that exists, the management
involves medications, physical
therapy, and supportive thera-
pies tailored to individual pa-
tient needs.

This systematic analysis highlights that the
RAG component is crucial for moving beyond the
model’s pre-trained knowledge, enabling it to gen-
erate more accurate, detailed, and clinically useful
answers.

5 Conclusion

This paper presents the BioMistral-Clinical Sys-
tem, a lightweight clinical language model that
combines incremental learning with RAG. We
show that prompt-based annotation can efficiently
structure unlabeled clinical notes, enabling self-
supervised learning. A compact embedding-based
knowledge base facilitates semantic retrieval and,
when integrated via RAG, enhances response qual-
ity by grounding outputs in real-world clinical
content. These results highlight the potential of
lightweight, structured, and retrieval-enhanced ap-
proaches to build practical clinical LLMs with min-
imal annotation and computational cost.
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6 Limitations

Although this study uses continual training to de-
velop an improved model, BioMistral-Clinical 7B,
which achieves a nearly 10% gain on MedMCQA
compared to the base BioMistral-7B. In addition, it
incorporates RAG to form the BioMistral-Clinical
System, allowing dynamic access to external medi-
cal knowledge for more context-aware responses.
Despite these advancements, it is important to rec-
ognize several limitations that frame the scope and
generalizability of the findings.

First, although the study provides strong evi-
dence for the feasibility of self-supervised incre-
mental learning in structured clinical data, the un-
derlying dataset itself is inherently imperfect. The
JSON-formatted entries generated through PE used
in training are still based on a limited corpus of
clinical narratives. In particular, many of these
narratives were synthetically generated rather than
transcribed from actual patient-doctor interactions
(Hugging Face, 2024). As a result, they may lack
the linguistic diversity, contextual nuance, and clin-
ical irregularities found in real-world settings. This
constraint implies that certain specialties, rare con-
ditions, or edge cases may be underrepresented,
thereby limiting the breadth and balance of the
knowledge captured by the model.

Secondly, the clinical knowledge base con-
structed for the RAG module, although it was de-
signed systematically and empirically validated,
must recognize that the scope remains narrow. The
coverage of the knowledge base is still limited com-
pared to the diversity of real-world clinical practice.
The current findings validate the methodology for
transforming structured data via embedding and
retrieval, but do not yet reflect the behavior of the
system at scale.

Third, a minor trade-off in general-domain per-
formance was observed after incremental clini-
cal learning, as evidenced by a slight decrease in
MedQA accuracy (34.8% compared to 36.5% for
the base model). Although this does not detract
from the clinical improvements of the model, it
does highlight the importance of maintaining do-
main balance during specialization. We still lack
experimental proof of the same approach for other
domains, such as finance or education, and it is not
possible to draw generalizations.

Finally, due to the absence of publicly available
benchmark datasets that map detailed patient symp-
toms to case-level retrieval outcomes, the evalu-

ation of the RAG pipeline in this study relies in
part on qualitative analysis. Qualitative and man-
ual evaluations such as the ones conducted in this
study are often considered the gold standard for as-
sessing retrieval relevance. However, the absence
of standardized, large-scale benchmarks limits the
ability to perform consistent and reproducible quan-
titative comparisons. Therefore, the development
of such benchmarks remains an important direction
for future work in the field.

7 Ethical Considerations

In addition to the promise in clinical applications,
ethical issues must be thoughtfully addressed. First
and foremost, patient privacy and data protection
are critical. Since the system handles sensitive
clinical content, compliance with HIPAA (1996)
and GDPR (2016) standards is essential to prevent
misuse and maintain trust (Yadav et al., 2023).

Second, the system is designed as a clinical de-
cision support tool and cannot substitute profes-
sional medical judgment. Generative models ex-
hibit variability in their outputs in different runs and
inputs (Zhu et al., 2024), and it is the responsibility
of healthcare professionals to critically interpret
the suggestions of the model. Al-generated recom-
mendations should complement, not replace human
expertise. The responsible incorporation of such
systems necessitates transparency, protection fea-
tures, and ongoing emphasis on human oversight.

All datasets used in this study, including MedQA
and MedMCQA, are publicly released and licensed
for research use. In accordance with their original
terms, all derived artifacts, including structured
JSON output, the trained BioMistral-Clinical 7B
model, and the retrieval corpus, are used solely
for academic research purposes. These artifacts are
not intended for clinical deployment or commercial
use.

Lastly, we disclose that Al assistants (e.g., Chat-
GPT and Deepseek) were used to support writing
and code development. However, all scientific de-
sign decisions, data processing steps, and model
training were conducted solely by the authors.
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A The Chain-of-Thought prompt template.

As a professional clinical note’s organizer, my task is to take a set of clinical
notes and structure them into a JSON format. This format will help in
standardizing the patient data for better analysis and record-keeping. Below, |
will explain each field in the JSON structure and provide an example based on a
hypothetical clinical note.

JSON Field Explanation:
Example Input-Output:

Medical case data:
{message}

Output Json: /

Figure 4: The Chain-of-Thought prompt template.
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Figure 5: Text length distribution after PE. Figure 6: Token counts distribution after tokeniza-
tion.

C Example Question from Public QA Benchmark

C.1 Example Question from MedQA

Question: A 3-month-old baby died suddenly at night while asleep. His mother noticed that he had died
only after she awoke in the morning. No cause of death was determined based on the autopsy. Which of
the following precautions could have prevented the death of the baby?

Options:

A. Placing the infant in a supine position on a firm mattress while sleeping
B. Routine postnatal electrocardiogram (ECG)

C. Keeping the infant covered and maintaining a high room temperature
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D. Application of a device to maintain the sleeping position

E. Avoiding pacifier use during sleep
Correct Answer: A

C.2 Example Question from MedMCQA-Surgery

Question: Delayed union of fracture of a bone following a surgical treatment may be due to:
Options:

A. Infection

B. Inadequate circulation

C. Inadequate mobilization

D. All of the above

Correct Answer: D

D Example: Refined Scenario — Patient-Specific Case

Detailed Question: This is a severely obese patient who has gained weight over the past year,
suspected to be related to his use of montelukast for seasonal allergies. His BMI is very high,

classed as obesity level 3. His lipid profile is normal, but his symptom checklist score is abnormal.
How would you develop a treatment plan to help him lose weight and improve his health?

BioMistral-7B:

The first step in developing a treatment plan for this patient is to discuss his weight gain with him.
It is important to let him know that his weight gain is a concern and that it is important to address
it. It is also important to let him know that his weight gain is not his fault and that there are many
things that can be done to help him lose weight.

BioMistral-Clinical 7B:

Based on the patient’s presentation, a multidisciplinary approach is necessary to address his
weight concerns. The treatment plan will involve lifestyle modifications, including a healthy diet
and regular exercise. The patient will be referred to a registered dietitian and a physical therapist
for further guidance. Additionally, he will be referred to a behavior therapist to address underlying
behavioral issues contributing to his weight problems. The patient will be closely monitored with
regular follow-up appointments to ensure the treatment is effective and to address any concerns.

E Training and Validation loss over steps

train/loss eval_loss
= biomistral-biomistral-7B-incremental-trained1.2 = biomistral-biomistral-7TB-incremental-trained1.2
\_\ 22 = 10000: 1.44434 biomistral-bi.. al-trained1.2
5 T - Press CMO4C to capy this data
——
|
\
'g 1.8
0.5 e —\
\
\ .
‘———+mjn/global_step . train/global_step
10k 15k 20k 25k sk 10k 15k 20k 25k
Figure 7: Training loss over steps. Figure 8: Validation loss over steps.
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F Evaluation of Retrieval Examples Table

Table 2: Evaluation of the top-3 retrieved documents for 10 sample clinical queries. We assess each retrieved
document’s diagnosis based on Clinical Relevance (R) and Usefulness (U) for answering the query. R: Is the
diagnosis clinically related to the query? (v* Yes / X No). U: Does the diagnosis provide specific, useful information
for answering the query? (v' Yes / X No).

Clinical Query Top-1 Document Top-2 Document Top-3 Document
Diagnosis R U | Diagnosis R U | Diagnosis R U
Manage type 2 diabetes? Type 2 diabetes v' ¥ |Reactive Hypoglycemia v' v | Type 2 diabetes v v
Treatment for hypertension? | Resistant hypertension v ' | Renal artery stenosis v' v |Renal artery stenosis v v
Treatments for asthma? Uncontrolled asthma v' v | Allergic bronchopulm. asp. v v | Severe asthma v v
Manage high cholesterol? | Hyperlipidemia v' V' | None X X | Thoracic aortic aneurysm X X
Treat a skin rash? Mycosis Fungoides v' V' |None v' V' | Fixed drug eruption v v
Manage arthritis pain? None v X | Rheumatoid Arthritis v' v | Gouty arthritis v v
Deal with constipation? Functional Constipation v* v | Severe constipation v' v | Rectal stenosis v v
Treatments for bronchitis? | Traction bronchiectasis v* v~ | Chronic bronchiectasis v' v | Bronchiectasis v v
Manage eczema? Eczematous dermatitis v' v' | Mycosis Fungoides v' X | Erythema nodosum X X
Manage varicose veins? Symptomatic varices v/ V' | Varicose Veins v' V' | Large gastric varix v v

Note: ’None’ indicates a missing ’diagnosis’ field in the retrieved document. For these cases, relevance (R) and usefulness (U)
were assessed by manually inspecting the full document content (e.g., symptoms, treatment plan).

G Example JSON Output

{
"PatientInformation": {
"ChicfComplaints™"
"Complaints of pain and swelling in the right back for several weeks",
"No significant health problems except a thoracic trauma one year prior"

"Medicalllistory" :

"PreviousInjury": "Thoracic trauma with a simple fracture of the 9th Tight rib"
¥,
"DiagnosticFindings": [
"Test": "X-ray",
"Finding": "A shadow in the lower part of the right hemithorax"
3,
{
"Test": "CT-scan",
"Finding": "A tumor with heterogeneous density and destruction of the 9th rib"
X

]

"Diagnosis”: {

"Sclerosing xanthofibroma",
": "Benign tumor",
"Location": "Thoracic wall"
¥
3,
"TreatmentAndQutcome": {
"Treatment": {
"Type": "Surgical resection and plastic repair",
"Details": "Involving three ribs and reconstruction with polypropylene mesh"

"Postoperative Course": {
"Recovery": "Uneventful",
"DischargeStatus": "Good condition"
},
"FollowUp": {
"Duration": "Two years",
"FunctionalStatus": "Patient returned to work one month after surgery"
¥
¥
H

Figure 9: Structured JSON output from the prompt-engineered dataset.
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