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Abstract

Test-time compute has emerged as a power-
ful paradigm in function-level code genera-
tion. However, previous proposed strategies
have been viewed as disparate, thus lacking a
fair apples-to-apples analysis enabling under-
standing of their operational mechanisms in
execution-based benchmarks. Therefore, we
present a mathematical framework that unifies
generation and reranking with theoretical justi-
fications through the lens of Minimum Bayes
Risk (MBR) decoding. Our proposed frame-
work leads to key research questions regard-
ing the effectiveness of using parallel and/or
iterative sampling, design choices of reranking
signals and soft/hard MBR utility functions,
and behaviors of the final selected program
across different methods. Our empirical find-
ings highlight the importance of the diversity
of sampled candidates (over self-improvement),
reranking with simple and high-quality signals,
and the effectiveness of test-time compute to
select programs that manifest general and edge
test case robustness. We open-source our analy-
sis toolkit and implementation to enable repro-
ducible research1.

1 Introduction

Increasing test-time compute (TTC) has been
shown to be a promising alternative to scaling train-
ing compute to further improve the performance
of large language models (LLMs) on math-related
downstream tasks (Snell et al., 2024). One way to
scale TTC is to prompt models to generate multi-
ple candidates and rerank them, for example, by
selecting the one that has the highest consistency
with other candidates (Bertsch et al., 2023).

However, unlike domains such as mathematical
reasoning and machine translation, where exact
matching and lexical metrics can be both used for

1https://github.com/deep-spin/doce.

evaluation and reranking (Wang et al., 2023; Fer-
nandes et al., 2022; Farinhas et al., 2023), function-
level code generation tasks adopt execution-based
evaluation with unit tests to measure the correctness
of generated programs. Therefore, TTC practices
on this task are different and non-trivial.

Previous works on TTC have tried to utilize
reranking signals from likelihood features (Zhang
et al., 2023b), trial unit tests provided in the prompt
(Shi et al., 2022; Li et al., 2022), and generated unit
tests (Chen et al., 2023; To et al., 2024), with Chen
et al. (2024) focusing on improving the quality
of candidates reranked through self-improvement.
However, despite the improving performance on
existing benchmarks, the operational mechanism of
scaling TTC using unit tests is poorly understood.

We attribute this to two reasons. Firstly, there is
a strong inconsistency behind the mathematical for-
mulation of all these methods, with each of them
defining the problem independently, making un-
derstanding TTC prohibitive. Additionally, due to
the lack of unified experimental assumptions, e.g.,
whether there is access to inputs to the unit test
for evaluation, analysis on the decisive decision
choices for better quality is missing.

The lack of mathematical and empirical formal-
izations thus calls for a unified framework to better
analyze TTC on function-level code generation. In
this paper, we present such a framework (See Fig-
ure 1) with empirical findings. Our contributions
are listed as follows:

• Mathematically, we unify TTC for function-
level code generation. We put forward candi-
date generation as the basis, with an emphasis
on the reranking stage. Importantly, we prove
that previous reranking works with unit test-
ing can be mathematically justified through
the lens of Minimum Bayes Risk (MBR) de-
coding, manifesting that the key differences
between methods lie in some decision choices
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Natural Language Description
Write a function to find the median 
length of a trapezium.
--------------------------------

Trial Unit Test
assert median_trapezium(15,25,35) == 20

Sampling
y1
y2
…
yN

N-Best Reranker
/MBR

…

score(y1)

score(y2)

score(yN)

ŷ = y2

Self-Debug
(optional)

Private UT inputs

Gen UTs

Figure 1: Our proposed framework. Given a natural language description and trial unit tests, a generative model
performs parallel sampling and iterative sampling (as self-debug). Generated candidates are then reranked with
signals from trial, private, and generated unit tests according to different contexts, before a final solution is selected.

in reranking/utility functions.

• We design experiments under two contexts:
the user has access to private unit tests or can
only use generated unit tests. Following our
mathematical framework, we analyze the ef-
fect of different decision choices in different
contexts.

• We observe that candidate diversity should be
emphasized more than self-improvement in
the generative stage, and the optimal decision
choices vary under different contexts. That
being said, simple high-quality reranking sig-
nals like trial unit tests are always preferred.
Through behavioral analysis, we observe that
the selected candidates with the best decision
choices are general and edge case robust.

• We provide further analysis by scaling unit
testing and combining iterative sampling with
reranking. Results support our findings on
reranking decision choices and emphasis on
parallel over iterative sampling.

We hope our findings provide practical insights
for implementing test-time compute strategies in
code generation tasks, particularly the importance
of matching unit test behavior types and using soft
reranking methods when leveraging automatically
generated unit tests. We open-source our analysis
toolkit and implementation to enable future princi-
pled research.

2 Formalizing Test-Time Compute for
Function-Level Code Generation

In this section, we provide a formal definition of
test-time compute in function-level code genera-
tion. We first introduce the sampling and evaluation
of the task. We then provide a formulation from
the perspective of MBR decoding of reranking of
generated candidates.

2.1 Evaluating and Sampling for
Function-Level Code Generation

Evaluation. We evaluate a generated program
y using a set of private unit tests Tprivate =
{(i1, o1), . . . , (iM , oM )} that remain inaccessible
to the LLM. Specifically, a generated program is
considered correct if and only if it satisfies all pri-
vate tests, i.e., ∀(i, o) ∈ Tprivate, y(i) = o. Follow-
ing Chen et al. (2021), we measure performance
using Pass@N, defined as the probability that at
least one of N generated programs successfully
passes all unit tests.

Sampling from Code LLMs. A code generation
LLM defines a conditional probability distribution
pθLLM

(y | x) over possible programs, conditioned
on input x. Typically, x includes a natural language
description nl and a set of trial unit tests Ttrial.2

Sampling usually takes two forms:

• Parallel Sampling. The most common
method is ancestral sampling that generates N
programs Y = {y1, . . . , yN} independently
by controlling temperature (Dabre and Fujita,
2021) and top-p (Holtzman et al., 2020).

2Trial unit tests may overlap with private tests; however,
the private tests should never be entirely contained within the
trial tests.

1158



Method f(y)

Ttrial Filtering (FT)
∏

(i,o)∈Ttrial
1{y(i) = o}

Exec. Filtering (FE)
∏

(i,o)∈I′private
1{y(i) ̸= NULL}

Test Scoring (TS) 1
|Tgen|

∑
(i,o)∈Tgen

1{y(i) = o}

Table 1: Summary of n-best reranking scoring functions.
Note that NULL means the program cannot yield an
output given a test input.

• Iterative Sampling. This is a broader term
in general. However, we refer to iterative
sampling as self-debug (Chen et al., 2024)
in this paper, where a generated program is
iteratively fed into the same LLM, along with
execution feedback running this program on
Ttrial. Iterative sampling stops once the gener-
ated program has passed Ttrial or a maximum
number of turns has been reached.

Note that these two types of sampling can be
combined, with multiple generated programs being
resubmitted multiple times.

2.2 Rerank with Unit Tests

With N sampled candidates, choosing the best can-
didate is crucial after introducing the variation of
contexts. We now introduce a clear unification of
reranking strategies using n-best Reranking and
MBR Reranking. Importantly, we provide theoreti-
cal justifications to show that previous works lies
in either one of these strategies or a combination
of these, as their claimed innovations are no more
than decision choices from our formalization of
n-Best/MBR reranking.

2.2.1 Access to Unit Tests
For function-level code generation, a set of exam-
ples as trial unit tests is usually provided by annota-
tors to help both annotators and models understand
the program (Chen et al., 2021; Austin et al., 2021;
Jain et al., 2024). However, there are two different
cases depending on the context.

In some cases of online assessment, interviewees
have access to some of the input from private tests
I ′private = {io, . . . , iK},K ≤ M to help them ver-
ify the validity of the written program (Chen et al.,
2024). In other cases, reranking requires models
to generate unit tests Tgen (Li et al., 2022; Chen
et al., 2023; To et al., 2024). Note that there are
also strategies utilizing inputs of trial unit tests (Shi
et al., 2022; Zhang et al., 2023b), which we do
not include in this paper as they provide weaker

Method U(y, y′)

MBR-i-H
∏

(i,o)∈T 1{y(i) = y′(i)}
MBR-i-S 1

|T |
∑

(i,o)∈T 1{y(i) = y′(i)}
MBR-io-H

∏
(i,o)∈Tgen

1{y(i) = o}1{y′(i) = o}
MBR-io-S 1

|Tgen|
∑

(i,o)∈Tgen
1{y(i) = o}1{y′(i) = o}

Table 2: Choice of utility functions and test inputs. “i”
and “io” refer to using only test inputs and using the
entire input-output pairs. “H” and “S” refer to hard and
soft utilities, respectively. Note that MBR-io can only
be applied with generated test cases, obviously.

reranking signals compared to simply filtering with
the entire trial unit tests.

2.2.2 n-Best Reranking with Unit Tests
In its simplest form, n-best reranking selects the
candidate maximizing a scoring function f :

ŷ = argmax
y∈Y

f(y). (1)

Table 1 summarizes reranking strategies defined
by their respective scoring functions. Note that ex-
ecutability can only be done with access to I ′private.

2.2.3 Formalization of MBR Decoding
While MBR decoding has been formalized in many
generation tasks, including machine translation
(Fernandes et al., 2022; Farinhas et al., 2023) and
mathematical reasoning (Wang et al., 2023), the for-
malization in code generation is not clear. Specif-
ically, the only effort we are aware of is Shi et al.
(2022), which has not been experimented on with
inputs of Ttrial.

With a utility function U(y⋆, y) measuring the
similarity between a candidate y and some refer-
ence (correct) code y⋆, MBR selects the candidate
in Y that maximizes the expected utility consider-
ing all candidates as possible references:

ŷ = argmax
y′∈Y

1

N

∑

y∈Y
U(y, y′). (2)

Choice of Utility Functions and Unit Testing.
We categorize utility functions based on two di-
mensions: soft/hard, and input-only/input-output
pairs. Table 2 summarizes the utility functions of
these decision choices. Note that most previous
works utilizes MBR-i-H (Shi et al., 2022; Li et al.,
2022; Chen et al., 2024) except for CodeT (Chen
et al., 2023) and SRank (To et al., 2024). We now
show that these two methods can also be recovered
as MBR decoding.
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Works Context FT FE Iter. Sampling

Shi et al. (2022) Inputs of Ttrial ✗ ✓ ✗

Li et al. (2022) Tgen ✓ ✗ ✗

Chen et al. (2023) Tgen ✗ ✗ ✗

To et al. (2024) Tgen ✗ ✗ ✗

Chen et al. (2024) I ′private ✓ ✓ on single candidate
Ours Tgen and I ′private ✓ ✓ ✓

Table 3: Unification for analysis in our work compared
with experimental settings from previous works.

CodeT (Chen et al., 2023) is MBR-io-H. Chen
et al. (2023) introduced a clustering method to form
different “consensus sets” of the generated pro-
grams that pass the same set of generated unit tests.
Concretely, a consensus set S = {(y, (i, o))|y ∈
Sy, (i, o) ∈ STgen , where ∀y ∈ Sy, (i, o) ∈
STgen , y(i) = o, which is equivalent to MBR-io-
H combined with generated test scoring. We leave
the proof to Appendix A.1.

SRank (To et al., 2024) is MBR-i-S. According
to To et al. (2024), after generated programs are
clustered by output agreement into K clusters C =
{C1, . . . , Ck} given inputs of generated tests. By
defining an interaction matrix I ∈ RK×K and a
cluster feature V ∈ RK×1. This is equivalent to
MBR-i-S. We leave the proof to Appendix A.2.

3 Experiments

3.1 Systematic Analysis

Table 3 illustrates the experimental design of previ-
ous works and our analysis. We are mainly moti-
vated to combine disparate contexts, i.e., whether
having access to private test inputs. Notably, we
also find that most previous works omitted simple
but effective reranking features like FT, which we
are motivated to include in our analysis as well.

3.2 Datasets and Models

We conduct experiments using three widely recog-
nized execution-based datasets: HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), and Live-
CodeBench (Jain et al., 2024). Concretely, we
utilize EvalPlus (Liu et al., 2023), which includes
more than 35 times more private unit tests than the
original benchmark, enabling our study of rerank-
ing using both generated unit tests and private test
inputs. See Appendix B for further details.

We generate candidates with the CodeLlama-
{7B,13B,34}-Instruct (Rozière et al., 2023)
and DeepSeekCoder-{6.7B,V2-Lite,33B}-Instruct
(Guo et al., 2024; DeepSeek-AI et al., 2024). We

use instruction-tuned models that enable simple
processing of generated codes for both candidate
generation and iterative sampling (self-debug).

3.3 Generation

We generate 5 to 50 candidates for each task. We
first explore sampling temperature by varying it
between 0.2 and 2.0 with p-nucleus sampling p
0.95, before deciding what sampling temperature
we use for subsequent experiments. With MBPP-
S and LiveCodeBench, we vary the temperature
between 0.2 and 1.8. When generating multiple
candidates, we use the open-source vLLM (Kwon
et al., 2023) for fast inference. To answer research
questions related to generation and reranking, we
present the results from CodeLlama-7B-Instruct.
The final temperature selection is based on the best
performance with FT-only to ensure fairness.

For iteratively sampling, i.e., self-debug, we con-
sider the simple setting proposed by Chen et al.
(2024), using only unit test (UT) feedback, i.e., the
feedback obtained from execution when a gener-
ated candidate is tested on trial unit tests. We only
consider this simple setting because 1) our main
focus is to test generally the impact of self-debug
on improving the oracle’s performance, 2) it does
not require steps of generation using the LLM other
than self-debug, thus requires less computation at
test-time and 3) it is the feedback that gives the
largest gain to execution accuracy post-debugging
according to Chen et al. (2024). We perform 3
rounds of self-debug for candidates generated with
sampling because Chen et al. (2024) demonstrated
that most debugging can be finished in 3 rounds. In
each round, the LLM debugs the candidates gener-
ated in the last round.

3.4 Reranking

For a fair comparison across contexts, we use either
100 generated tests or 20 private test inputs for most
experiments. For experiments on HumanEval, we
use 200 generated tests or 50 private test inputs.

For n-best reranking, we consider two types of
filtering, i.e., filtering on trial unit tests and filtering
executability on private unit tests. For MBR decod-
ing, we considered all utility functions we present,
providing a more panoramic view of reranking with
generated or private tests. Note that we do not in-
dependently test generated test scoring as it is inte-
grated into the original implementation of CodeT
(Chen et al., 2023).
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(a) HumanEval+ (b) MBPP-S+ (c) LiveCodeBench

Figure 2: Performance of reranking and oracle over
sampling temperatures using CodeLlama-7B-Instruct
with 50 generated candidates over 4 runs.

(a) HumanEval+ (b) MBPP-S+ (c) LiveCodeBench

Figure 3: Improvement in Pass@k of CodeLlama-7B-
Instruct after iterative sampling (SD) compared to no
iterative sampling applied.

Note that we only include execution-based sig-
nals here. We also include reranking with non-
execution-based signals in Appendix C.3.

3.5 Classifying Behaviors of Unit Testing

A unit test, generated or written down by experts,
tests a specific behavior of a generated program.
Therefore, inspired by Langr et al. (2015), we de-
velop a unit test profiling dataset that classifies unit
tests into one of the following categories: General
case, which tests general behaviors of the gener-
ated code; Cardinality edge case, which tests if a
program can handle an input of length or size that is
either zero or one; Extreme edge case, which tests
if a program can handle inputs that require signifi-
cantly more memory or time compared to normal
cases; Other edge cases, which test if a program
can handle other types of edge cases, dependent on
the task itself.

In practice, we ask DeepSeek-V3 to generate
the profiling functions of different tasks, followed
by refinement from three experts with at least 8
years of software engineering experience. Note that
we ask experts to discuss with each other before
making a final decision.

With this dataset, we analyze behaviors of differ-
ent types of unit test cases and the performance of
reranked programs on these unit tests.

HE+ MBPP-S+ LCB

Random 30.2 41.9 13.3
Greedy 39.0 44.8 13.4
Oracle 76.2 72.0 44.1

FT 59.7 60.8 29.6

Reranking w/ Tgen

MBR-i-S 46.0 48.7 20.8
MBR-i-H 36.1 46.8 18.4
MBR-io-S 37.0 44.9 15.7
MBR-io-H 41.6 48.8 19.3
MBR-io-S + TS 34.9 47.3 16.6
MBR-io-H + TS 43.3 49.4 19.6
FT + MBR-i-S 64.2 61.6 32.0
FT + MBR-i-H 46.8 54.8 27.0
FT + MBR-io-S 54.6 56.2 29.3
FT + MBR-io-H 58.1 58.9 29.3
FT + MBR-io-S + TS 56.6 58.6 27.7
FT + MBR-io-H + TS 58.7 58.9 29.9

Reranking w/ I ′private

FE 69.8 68.3 14.8
MBR-i-S 34.5 43.1 19.4
MBR-i-H 69.5 68.1 21.6
FT + MBR-i-S 52.4 55.2 30.4
FT + MBR-i-H 71.8 69.4 33.0
FT + FE 71.0 70.0 31.6
FE + MBR-i-S 67.5 65.9 23.0
FE + MBR-i-H 70.9 68.6 23.7
FT + FE + MBR-i-S 71.8 69.4 32.3
FT + FE + MBR-i-H 72.0 69.7 33.2

Table 4: Comparison of reranking methods on Hu-
manEval (HE)+, MBPP-S+, and LiveCodeBench (LCB).
Some results are centered as they do not use either
generated or private unit tests. We highlight best and
second best reranking results.

4 Results

In this section, we provide results of our experi-
ments and discuss the operational mechanism be-
hind test-time compute. We propose research ques-
tions (RQs) with respect to generation, reranking,
and behaviors that reranked programs manifest. For
results on more experiments, see Appendix C.

4.1 RQ1: How should we configure sampling
for better candidates?

We answer this question by focusing on studying
sampling temperature for parallel sampling and the
number of debugging rounds for iterative sampling.

Selecting high temperature is helpful, and
reranking performance with FT is indicative.
We show results in Figure 2, finding that sampling
with a previously unseen high gives a higher ora-
cle of reranking performance, peaking between 1.6
and 1.8 for HumanEval+ and MBPP+, and between
1.2 and 1.4 for LiveCodeBench. This suggests that
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Avg MBR-i-S-Gen MBR-i-H-P + FE
Base +FT Base +FT

HumanEval+

Gen. 37.2 52.2 69.6 76.1 76.7
+40.2% +87.5% +104.4% +106.1%

Ext. 52.6 65.7 77.1 81.9 81.9
+25.0% +46.7% +55.8% +55.8%

Card. 58.3 71.1 82.6 87.2 87.2
+22.0% +41.5% +49.6% +49.6%

Other 40.1 54.3 71.5 80.0 80.1
+35.3% +78.2% +99.7% +99.7%

MBPP+

Gen. 44.8 52.7 68.2 71.1 72.2
+17.7% +52.3% +58.7% +61.2%

Ext. 51.7 61.5 68.8 73.6 73.6
+19.1% +33.0% +42.3% +42.3%

Card. 63.6 73.1 80.1 84.3 84.3
+14.8% +25.9% +32.4% +32.4%

Other 55.4 64.5 74.2 78.7 79.0
+16.5% +34.0% +42.1% +42.7%

Table 5: Pass rates (pass@1) by category using the best
methods in Section 4.2. The improvement percentages
are highlighted in green.

sampling with a lower temperature is suggested
when applied to tasks that are more difficult, e.g.,
competitive programming, when compared to ba-
sic programming. However, sampling in practice
generally can be done with a higher temperature
than previously suggested (Chen et al., 2021; Li
et al., 2022; Shi et al., 2022; Liu et al., 2023; Jain
et al., 2024).

Moreover, we observe substantial differences in
oracle and FT performances when different tem-
peratures are selected for generation, highlighting
the importance of controlling this hyperparame-
ter. Last but not least, we find that selecting tem-
perature with FT performances is indicative, as it
closely follows changes of oracle performance3.

Iterative sampling improves oracle performance
of reranking, and one single round is enough.
According to Figure 3, iterative sampling helps
improve the oracle of reranking, represented by
the improvement on Pass@k across different ks.
However, later rounds of iterative sampling do not
show substantial improvement in the oracle com-
pared to the first round. Moreover, iterative sam-
pling with one single round LiveCodeBench shows
larger Pass@k improvement with larger ks. A sen-

3For later experiments, we choose the number of generated
candidates to be 50. We adopt sampling temperature 1.6 for
HumanEval and MBPP-S and 1.2 for LiveCodeBench, with
nucleus p 0.95. For DeepSeek models, we use temperature
1.2, as we observe that with temperature >1.2 on DeepSeek
models, sampling is more likely to generate token indices that
are not defined in the vocabulary, see https://github.com/
vllm-project/vllm/pull/3685.

sible guess for this trend is related to the higher
level of difficulty of problems in LiveCodeBench,
with iterative sampling regenerating a few sensi-
ble programs on problems that originally had no
sensible candidates. The disappearance of this im-
provement suggests that, since most code LLMs
have not been trained extensively on debugging ob-
jectives, iterative sampling regenerates candidates
close to greedy decoding.

4.2 RQ2: What are the best decision choices
under different contexts?

We now try to provide an apples-to-apples compar-
ison between different reranking methods utilizing
information from executing unit tests.

Soft and hard MBR utility functions have dif-
ferent best cases. According to Table 4, the per-
formance using soft versus hard utility functions
varies in different cases. In the case of using
only test inputs for reranking, MBR-i-S outper-
forms MBR-i-Hard when these test cases are gen-
erated once. In contrast, MBR-i-H leads to higher
Pass@1 when high-quality test cases are provided.
This finding is contrary to the claims from Ku-
mar and Byrne (2004), implicating the difference
in nature between function-level code generation
and other tasks. We attribute this to the nature of
this task, where evaluation is performed by execut-
ing a generated program on private unit test cases.
Our findings are different from Shi et al. (2022),
who claimed little difference between MBR-i-S and
MBR-i-H. Our findings also illustrated that reach-
ing best performance with SRank (To et al., 2024)
is no more than utilizing a soft utility function.

Better programs are selected with simpler sig-
nals. First, we find that using only generated unit
test inputs, when applied with soft utility func-
tions, outperforms using both generated inputs and
outputs, supporting the hypothesis that generating
more tokens as test outputs induces more halluci-
nation. This being said, when high-quality unit
test inputs are provided, simply applying FE and
MBR with a hard utility function is even a better
choice. The same applies to FT, which already out-
performs all previously proposed methods that lie
in the domain of MBR decoding.

4.3 RQ3: What behavior improvements do
selected unit tests manifest?

Even though we experiment with as many as 5
times the generated unit tests, the performance
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Model HumanEval+ MBPP-S+ LiveCodeBench
MBR SD-1 SD-Multi MBR SD-1 SD-Multi MBR SD-1 SD-Multi

∼7B Scale

CL-7B-Ins (P) 69.5 69.5 70.5 68.1 68.8 70.4 21.6 21.3 24.0
+ FT + FE 72.0 71.1 73.3 69.7 69.2 72.1 33.2 33.0 34.0
(Gen) 46.0 46.0 46.6 48.7 49.0 50.6 20.8 20.3 21.2
(Gen) + FT + FE 64.2 64.2 65.3 61.6 62.0 63.5 20.8 20.4 22.0

DS-6.7B-Ins (P) 85.5 86.0 87.0 78.6 78.8 79.3 30.6 30.6 31.3
+ FT + FE 90.7 90.4 90.4 82.1 81.7 82.8 41.9 41.2 42.0
(Gen) 83.5 84.0 85.2 75.2 75.3 75.6 29.3 29.1 29.9
(Gen) + FT + FE 88.0 87.0 87.0 79.2 79.3 81.0 40.8 39.9 41.1

∼13B Scale

CL-13B-Ins (P) 72.6 73.1 74.4 71.2 71.0 72.4 27.0 27.6 27.6
+ FT + FE 76.1 76.5 77.6 74.7 74.2 76.2 40.6 40.8 46.8

∼16B Scale

DS-V2-Lite-Ins (P) 83.5 83.4 85.1 80.1 81.0 81.4 45.8 45.4 46.6
+ FT 89.6 88.4 89.6 81.8 82.2 82.8 58.7 58.3 58.5

∼33B Scale

CL-34B-Ins (P) 74.1 74.5 75.9 72.6 72.6 74.5 27.5 27.9 28.3
+ FT 77.1 77.8 78.0 75.2 76.2 76.8 44.0 44.0 48.1

DS-33B-Ins (P) 84.8 83.9 86.8 80.3 82.0 82.2 42.8 42.6 42.9
+ FT 90.2 89.0 90.8 81.7 83.0 83.5 55.9 55.1 55.6

Table 6: Comparison of self-debugging methods with 50 candidates generated by CodeLlama-{7,13,34}B-Instruct
and DeepSeekCoder-{6.7B,V2-Lite,33B}-Instruct, and debugged over {1, Multi} candidates. We also provide the
upper bound after debugging. Results are averaged across 2 runs for LiveCodeBench and 4 runs for the rest.

(a) HumanEval+ (b) MBPP-S+

Figure 4: Percentage of different test cases. “Evaluate”
refers to test cases used for evaluation, and “Private”
refers to private test cases used for reranking by sub-
sampling from “Evaluate” ones.

of MBR-i with them is still short of that of one
using fewer private test inputs. Figure 5 further
showcases the pass rate (as pass@1) of reranking
methods on different types of unit tests. We only
show results applied to HumanEval+ and MBPP+
since only these two benchmarks provide canonical
solutions for all problems.

MBR-i-S improves reranking performance
on all types of unit tests. According to Figure 5,
MBR-i-S works not only because it can improve
performance in general, but also because it helps
select candidates that can pass general test cases
and different types of edge cases. FT further boosts
this reranking, showcasing robustness over differ-
ent types of test cases used for evaluation.

Improvement on the reranking methods re-
lated to the types of the unit test distribution.
According to Figure 4, private test cases for rerank-

(a) HumanEval+ (b) MBPP-S+ (c) LCB

Figure 5: Scaling unit test cases for reranking.

ing show high similarity to the ones for evaluation,
especially in the category of general tests and task-
related edge tests. This is opposite to the distribu-
tion of generated tests, with false-positive test cases
replacing a large portion of general tests and task-
related edge tests detected with Evalplus’s false-
positive classifier (Liu et al., 2023).

5 Further Analysis

5.1 Scaling Unit Test Numbers for Reranking

Following our findings in Section 4.2, we now ana-
lyze the effect of reranking performances by scal-
ing unit tests.

When it comes to generated unit tests, improve-
ments of scaling only happen when it’s done
with MBR-i-S instead of an exact match. Ac-
cording to Figure 5, different trends happen when
applying exact matches versus MBR-i-S. For MBR-
i-S, we see an increasing trend with more test cases
used for reranking, while for MBR-i-H, we see the
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opposite. This finding further indicates that adopt-
ing soft utility functions when using generated unit
tests is helpful, challenging existing practices us-
ing hard utility functions (Li et al., 2022; Shi et al.,
2022; Ni et al., 2023; Chen et al., 2024).

5.2 Combining Both Sampling Strategies with
Reranking

Applying MBR-i-H on private test inputs with FT
gives close-to-oracle performances, suggesting that
improving the oracle performance with iterative
sampling (Chen et al., 2024) is a more sensible
choice than providing better reranking methods. In
this section, we first analyze the improvement in Or-
acle performance. We then compare our proposed
SD-Multi and SD-1 proposed by Chen et al. (2024).
For SD-Multi, we only use results with one round
of debugging, while we use results with 3 rounds
of debugging for SD-1. When using generated test
cases, we experiment with 7B models.

SD-Multi outperforms SD-1. According to Ta-
ble 6, SD-Multi consistently outperforms SD-1 in
most experiments, with better-performing models
having smaller margins of improvement with iter-
ative sampling. The only exceptions we find are
on experiments with candidates generated and self-
improved with DeepSeekCoder-{6.7B, V2-Lite}-
Instruct, where either the task is considered more
difficult compared to basic programming, or the
baseline performance with MBR-i-H on private
test inputs is already above 90.

6 Related Work

Reranking in function-level code generation.
Shi et al. (2022) and Li et al. (2022) proposed MBR
decoding using agreement on execution outputs.
Chen et al. (2023) extended the framework utilizing
generated input-output pairs. Huang et al. (2024)
utilized formal verifications as part of reranking.
Ma et al. (2025) further trained test case genera-
tors to help reranking. Li et al. (2025) utilized an
execution agreement assisted by a stronger LLM.
Our work differs from these works as our focus lies
in the formalization of TTC instead of proposing
methods. Specifically, while Ma et al. (2025) stud-
ies unit test generation, their generation focuses
on the “unittest” Python class, making it difficult
to study from our MBR decoding framework with
nuanced decision choices. Additionally, we do not
include Li et al. (2025) into our MBR framework

as we do not think utilizing a stronger LLM leads
to a fair comparison in our experimental settings.

Reranking on Other Execution-Dependent
Tasks. One related domain is Text-to-SQL gen-
eration, with Gao et al. (2024) including self-
consistency (Wang et al., 2023) into studying TTC
performances. Ehrlich et al. (2025) employed
TTC on repository-level software engineering tasks.
While all these tasks are related, we do not perform
analysis on these tasks due to their nature. Text-to-
SQL generation can be explicitly reranked through
exact-matching without requesting any test inputs,
and repository-level tasks focus on passing a new
set of unit tests without sacrificing current ones.

Generation strategies. Zhang et al. (2023a) pro-
posed Monte Carlo Tree Search on code generation.
Wang et al. (2025) studied concept planning based
on LLMs before generation. Zheng et al. (2025)
then incorporates multi-turn code generation with
execution feedback into model training. Our work
differs from these efforts as we only treat gener-
ation as a basis for TTC. While these efforts do
manifest impressive performances, we do not think
they will lead to many changes in our findings, in
which decision choices of reranking are a key part.

7 Conclusion and Future Work

We propose a formalization of test-time compute
for functional code generation. Mathematically, we
unify previous approaches through a generation-
reranking framework and provide theoretical justi-
fications of our reranking module, recovering previ-
ous works. Empirically, we ask key research ques-
tions with respect to generation, reranking, and be-
havior testing for this task. Our empirical findings
highlight the importance of configuring generation
parameters, reranking with appropriate and high-
quality signals, and different types of test cases
reranking methods manifest robustness on.

Limitation

First of all, our paper is limited by the scale of
experiments as we cannot experiment with all the
large language models due to the limit of computa-
tion and the vast set of analysis, and our solution is
to select representative classes of open-source mod-
els and experiments. Additionally, the paper is lim-
ited by the inclusion of various sampling strategies
while we do not think it will be a game-changing
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module for us to analyze TTC in our framework
with a major focus on reranking stage.

Ethical Considerations

We do not consider the existence of ethical issues
related to the paper, due to the nature of code gen-
eration and our usage of publicly available datasets
that have been verified. However, we noticed the
risk of ethical concern due to our choice of sam-
pling temperature. We checked generations and
found no ethical issues in the generated content.
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A Proofing the Equivalence between
MBR and other reranking methods

A.1 Proof: Equivalence between CodeT and
MBR-io-H

(Chen et al., 2023) defined a consensus set S =
{(y, (i, o))|y ∈ Sy, (i, o) ∈ STgen}, where ∀y ∈
Sy, (i, o) ∈ STgen , y(i) = o. The final score for a
generated program y ∈ Sy is

|Sy| · |STgen |. (3)

Obviously,

|Sy| =
∑

y′∈Y

∏

(i,o)∈Tgen

1{y(i) = o} · 1{y′(i) = o},

(4)
and

|STgen | =
1

|Tgen|
∑

(i,o)∈Tgen

1{y(i) = o}. (5)

Therefore, MBR-io-S with the scoring on trial
unit tests is recovered.

A.2 Proof: Equivalence between SRank and
MBR-io-H

To et al. (2024) defined K clusters {C1, . . . , Ck}
based on exact match of test outputs given M
generated test inputs Igen = {i1, . . . , iM}, i.e.
∀y, y′ ∈ Ci,

1 =
∏

i∈Igen
1(y(i) = y′(i)). (6)

The interaction matrix I ∈ RK×K is defined as

Ii,j =
1

M

M∑

m=1

1(y(im) = y′(im)), (7)

where y ∈ Ci and y′ ∈ Cj .
To et al. (2024) also defined a cluster feature

V ∈ RK×1. Note that we only include the cluster
size as the feature, i.e. Vi = |Ci|.

After all, the final reranking score is R = I · V .
Specifically, the score that Ci receive is

Ri = Ii,1 · |C1|+ · · ·+ Ii,1 · |CK |. (8)

Specifically, for yi ∈ Ci,

Ii,j · |Cj | =
1

M

∑

yj∈Cj

M∑

m=1

1(yi(im) = yj(im))

(9)

Note that any generated program must belong to
a cluster, and any two different clusters are mutu-
ally exclusive. Therefore,

Ri =
1

M

∑

yj∈Y

M∑

m=1

1(yi(im) = yj(im)). (10)

Thus, the score for any candidate y is

1

M

∑

y′∈Y

M∑

m=1

1(y′(im) = y′(im)). (11)

Regarless of the normalization across N gener-
ated programs, MBR-i-S is recovered.

B Dataset Statistics

We use the HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) datasets in EvalPlus
(Liu et al., 2023), consisting of 164 and 395 prob-
lems respectively. For LiveCodeBench (Jain et al.,
2024), we use the version that includes competitive
programming problems from July 2023 to Septem-
ber 2024 to balance the risk of data contamination
and size of the dataset. For fair MBR decoding, we
only include problems presented as “functional”,
obtaining 283 problems, among which 88/135/60
are easy/mid/hard problems.

Note that when prompting the model to generate
programs for MBPP, EvalPlus adopts the format
that uses the first private unit test as the trial unit
test. The average numbers of trial unit tests in
HumanEval/MBPP/LiveCodeBench are 2.8/1/2.47.

C Experimental Results

C.1 Candidate Generation
To validate our choice of temperature, we
present the choice of sampling temperature using
other models. For CodeLlama-13B-Instruct and
DeepSeekCoder-6.7B-Instruct, we compare results
with our choice of temperature for further experi-
ments with results using temperature 0.8. Results
are presented in Table 7. All models we experi-
ment with allow a sampling temperature over 1,
with lower mean execution accuracy but higher or-
acle performance. Combined with filtering on trial
unit tests, MBR-i allows constant improvement
in execution accuracy when sampling with higher
temperatures, which is not guaranteed without fil-
tering.
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(a) HumanEval (b) MBPP-S (c) HumanEval+ (d) MBPP-S+

Figure 6: Improvement in Pass@k of CodeLlama-7B-Instruct after self-debugging compared to no self-debugging
applied.

(a) HumanEval (b) MBPP-S (c) HumanEval+ (d) MBPP-S+

Figure 7: Improvement in Pass@k of DeepSeekCoder-6.7B-Instruct after self-debugging compared to no self-
debugging applied.

(a) HumanEval (b) MBPP-S (c) HumanEval+ (d) MBPP-S+

Figure 8: Improvement in Pass@k of CodeLlama-13B-Instruct after self-debugging compared to no self-debugging
applied.

(a) HumanEval (b) MBPP-S (c) HumanEval+ (d) MBPP-S+

Figure 9: Improvement in Pass@k of DeepSeekCoder-V2-Lite-Instruct after self-debugging compared to no self-
debugging applied.
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Model DS-6.7B-Instruct CL-13B-Instruct DS-V2-Lite-Instruct
temp = 0.8 temp = 1.2 temp = 0.8 temp = 1.6 (1.2 for LCB) temp = 0.8 temp = 1.2

HumanEval(+)

Mean 77.3 (70.6) 72.5 -4.8 (65.1 -5.5) 45.7 (40.0) 35.8 -9.9 (31.1 -8.9) 81.7 (76.6) 81.7 -0 (76.6 -0)
MBR 87.0 (85.8) 86.4 -0.6 (85.5 -0.3) 72.0 (67.4) 74.3 +2.3 (72.6 +5.2) 84.8 (81.3) 85.8 +1.0 (83.5 +2.2)
FT + FE + MBR 90.7 (89.8) 91.6 +0.9 (90.7 +0.9) 76.5 (76.1) 80.5 +4.0 (76.1 +6.9) 91.5 (87.2) 92.4 +1.0 (89.6 +2.4)
Oracle 92.9 (91.5) 95.2 +2.3 (93.2 +1.7) 82.8 (75.1) 88.7 +5.9 (82.4 +7.3) 94.5 (89.7) 95.7 +1.2 (92.3 +2.6)

MBPP(+)

Mean 71.4 (61.8) 68.6 -2.8 (58.6 -3.2) 60.7 (51.0) 52.5 -8.2 (43.5 -7.5) 79.7 (67.2) 79.1 -0.6 (66.8 -0.4)
MBR 83.7 (78.2) 84.0 +0.3 (78.6 +0.4) 71.5 (64.7) 77.9 +6.4 (71.2 +6.5) 88.6 (78.5) 89.1 +0.5 (80.1 +1.6)
FT + FE + MBR 87.3 (80.5) 89.1 +1.8 (82.1 +1.6) 78.0 (67.8) 84.1 +6.1 (74.7 +6.9) 89.7 (79.6) 91.2 +1.5 (81.8 +2.2)
Oracle 91.2 (82.8) 93.2 +2.0 (85.6 +2.8) 82.0 (70.4) 88.4 +6.4 (78.0 +7.4) 91.3 (80.9) 93.1 +1.8 (83.9 +3.0)

LiveCodeBench

Mean 19.9 17.5 -2.4 17.4 15.9 -1.5 36.1 35.4 -0.7
MBR 30.0 30.6 +0.6 24.9 27.0 +2.1 42.6 45.8 +3.2
FT + FE + MBR 43.1 41.9 -1.2 35.7 40.6 +4.9 57.8 58.7 +0.9
Oracle 52.5 53.6 +1.1 46.8 50.4 +3.6 63.1 68.2 +5.1

Table 7: Comparison of performance of sampling and reranking using temperature 0.8 and those chosen for further
experiments. We report mean execution accuracies, MBR-i results, and oracle performances of 50 candidates
generated by DeepSeekCoder-{6.7B, V2-Lite}-Instruct or CodeLlama-13B-Instruct. Results that end with + mean
that it is evaluated on the plus with extended test cases, otherwise, it is evaluated on the original test cases. We also
show decreases and improvements of results in our choice of temperature over 0.8. Results are averaged across 4
runs for HumanEval(+) and MBPP-S(+), and 2 runs for LiveCodeBench.

(a) CL-7B (b) DS-6.7B (c) CL-13B (d) DS-V2-Lite

Figure 10: Improvement in Pass@k on LiveCodeBench.

C.2 Improving Oracle with Iterative
Sampling

We first present results of improvement of Pass@k
that estimates oracle improvement using candi-
dates generated and self-debugged by CodeLlama-
7B-Instruct (see Figure 6), DeepSeekCoder-6.7B-
Instruct (see Figure 7), CodeLlama-13B-Instruct
(see Figure 8), and DeepSeekCoder-V2-Lite-
Instruct (see Figure 9). We also provide cases for
LiveCodeBench (see Figure 10). Our findings align
with Section 5.2 as one round of self-debugging is
enough to improve the oracle.

C.3 Reranking with Non-Execution-Based
Metrics

Table 8 presents our preliminary results on non-
execution-based metrics including Coder-Reviewer
(Zhang et al., 2023b), CodeScore (Dong et al.,
2023), and CodeBertScore (Zhou et al., 2023). As
we observe that they perform worse than execution

HE+ MBPP-S+ LCB

Random 30.2 41.9 13.3
Greedy 39.0 44.8 13.4
Oracle 76.2 72.0 44.1

N-Best Reranking

LL 38.7 42.6 16.3
CR 40.5 43.1 15.9
CS 30.2 - 14.1

MBR

MBR-CBS 35.5 45.4 -
MBR-CS 31.9 - -

Table 8: Comparison of non-execution based reranking
methods on HumanEval (HE)+, MBPP-S+, and Live-
CodeBench(LCB). For N-Best Reranking, we compare
Likelihood (LL), Coder-Reviewer (CR), and CodeScore
(CS). For MBR, we compare CodeScore and Code-
BertScore (CBS). We highlight best and second best
reranking results of the class of reranking methods.

metrics, we focus on execution-based metrics.
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