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Abstract

Preference optimization is a critical post-
training technique used to align large language
models (LLMs) with human preferences, typi-
cally by fine-tuning on ranked response pairs.
While methods like Direct Preference Opti-
mization (DPO) have proven effective in En-
glish, they often fail to generalize robustly to
multilingual settings. We propose a simple yet
effective alternative, Confidence-Aware Pref-
erence Optimization (CAPO), which replaces
DPO’s fixed treatment of preference pairs with
a dynamic loss scaling mechanism based on a
relative reward. By modulating the learning sig-
nal according to the confidence in each prefer-
ence pair, CAPO enhances robustness to noisy
or low-margin comparisons, typically encoun-
tered in multilingual text. Empirically, CAPO
outperforms existing preference optimization
baselines by at least 16% in reward accuracy,
and improves alignment by widening the gap
between preferred and dispreferred responses
across languages.

1 Introduction

Preference optimization (PO) is a widely adopted
post-training technique used to enhance the perfor-
mance of large language models (LLMs) by align-
ing their outputs with human preferences. This
is typically achieved by fine-tuning models us-
ing ranked responses or preference-based signals.
While effective, most existing work in this area has
been heavily centered on English (Rafailov et al.,
2023; Meng et al., 2024a; Ethayarajh et al., 2024;
Guo et al., 2024), with only recent efforts begin-
ning to explore its application in languages other
than English.

Multilingual alignment (Lai et al., 2023; Wu
et al., 2024; Dang et al., 2024) increasingly adapts
techniques such as PPO (Schulman et al., 2017),
RLHF (Christiano et al., 2017), and especially DPO
(Rafailov et al., 2023). However, existing methods
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Figure 1: Density distribution of reward differences
(Ar) across languages after DPO (top) and after apply-
ing our proposed confidence-aware preference optimiza-
tion - CAPO (bottom). CAPO shifts the distributions
towards higher Ar values, indicating improved separa-
tion between preferred and dispreferred responses.

still face challenges: DPO treats all preference mar-
gins equally (Yang et al., 2025b), RLOO relies
on reward models, KTO (Ethayarajh et al., 2024)
collapses rich feedback to binary labels, and DPL
(Nath et al., 2025) uses fixed thresholds that may
not generalize. Recent task-specific approaches
continue to improve multilingual translation, rea-
soning, and safety (Xu et al., 2024b,a; She et al.,
2024; Aakanksha et al., 2024).

We thus propose CAPO!, Confidence Aware
Preference Optimization, a simple yet effective en-
hancement to DPO that incorporates a Relative Re-
ward Margin (RRM) into the optimization objective.

'The code is publicly available at https://github.com/
PortNLP/CAPO.
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Prompt

Translate this text to German - He attempted to justify his betrayal by appealing to
Loyalist public opinion , but the Patriots strongly condemned him as a coward and
turncoat.

Response A - preferred

Er versuchte , seinen Verrat zu rechtfertigen , indem er an die loyalistische
offentliche Meinung appellierte , aber die Patrioten verurteilten ihn entschieden als
Feigling und Verriter.

Response B - dispreferred

Er versuchte , seinen Verrat zu rechtfertigen , indem er an die loyalistische
offentliche Meinung appellierte , aber die Patrioten verurteilten ihn entschieden als
Feigling und Turncoat.

Response A Response B
CAPO Other PO
"Wait... they Ar Ar

both seem
kinda okay?"

Stronger L :
signal

— Response A

v

Figure 2: An example of a preference pair where both responses appear similarly plausible. CAPO leverages RRM to
interpret such cases and provide a more informative learning signal. In other words, RRM boosts confidence in favor

of the preferred response.

Unlike prior methods that treat all preference pairs
equally, our approach dynamically adjusts the loss
based on the relative difference in reward scores, al-
lowing the model to calibrate its confidence during
training.

As shown in Figure 1, this leads to a shift in the
reward difference distributions towards the positive
side across multiple languages. This is particularly
important in multilingual settings, where language-
specific inconsistencies and reward model uncer-
tainty can make preference data noisier or less sep-
arable. Figure 2 illustrates how CAPO leverages
RRM to improve ambiguous cases by adjusting the
learning signal. By reweighting low-confidence or
ambiguous examples and emphasizing clearer pref-
erence signals, RRM mitigates the risk of overfitting
to hard multilingual cases and improves alignment
robustness.

Our key contributions are as follows:

* We propose CAPO, a new PO technique de-
signed for multilingual alignment. CAPO en-
hances DPO by dynamically adjusting loss
based on confidence in preference pairs and
also without requiring a reference policy.

* We demonstrate CAPO’s effectiveness across
three multilingual benchmarks, consistently
outperforming relevant baselines.

2 CAPO: Confidence Aware Preference
Optimization

2.1 Limitations of uniform weighting in DPO

Given a prompt x along with a preferred (winner)
response y,, and a dispreferred (loser) response y;,
DPO optimizes the model by directly maximizing
the likelihood difference between these responses.
Formally, DPO optimizes the reward difference as:

m(y | @)
Tret(y1 | )

T(Yw ’ ) .

Ar = flog
Tret (Yo | )

It encourages the model to favor the preferred
response y,, over the dispreferred one y;. While
the loss dynamically adjusts its gradient based on
the size of Ar, it does not distinguish whether the
comparison is between two high-quality outputs
or two low-quality, poorly aligned ones; it does
so only in terms of absolute difference. It does
not account for the relative scale of rewards across
examples or languages. For instance, two prefer-
ence pairs might yield the same reward difference,
Ar = r(yy | ) — r(y | ) = 1, but in one
case the underlying rewards could be r = [5,4]
and in another » = [1.2,0.2]. The relative prefer-
ence is much stronger in the later (1.2/0.2 > 5/4).
This shows that absolute rewards fail to capture the
strength of preference well when rewards are large.
DPO treats both cases identically. This can become
problematic in multilingual alignment, where re-
ward distributions can vary significantly across lan-
guages. Empirically, we show that scaling the loss
by RRM improves preference signal.

In a multilingual setting, tokenization rate varies
from language to language. For example - for a
similar sample in en and ne, the reward difference
(Ar) between winning and losing will be bigger
for en and smaller for ne. The bigger reward dif-
ference for en means small penalty and vice versa.
DPO gives a different reward signal in this case,
which can unfairly bias optimization toward lan-
guages with shorter tokenizations or higher per-
token log-probs. Whereas in CAPO, RRM adjusts
on a per-example basis to account for these tok-
enization rate differences. Instead of treating all
reward differences uniformly, CAPO scales the loss
by the confidence (~ RRM) derived from the ratio

1145



= llama = DPO

Figure 3: Shift in reward signal across it and de under
llama and DPO. Although there is a shift of reward
difference towards the right, there are a lot of samples
for which the difference is negative.

of preferred to dispreferred log-probabilities. RRM
is bigger for ne which means penalty close to en.
This ensures that languages with inherently differ-
ent tokenization structures receive reward signals
that better reflect true preference strength rather
than tokenization-induced disparities.

Consider an example shown in Figure 3. While
DPO improves the reward margin in languages like
it and de, it still produces a substantial number
of preference pairs with negative Ar, indicating
that the model fails to consistently prioritize the
intended winning response. This suggests that the
same reward signal can have very different implica-
tions depending on the language and context. With-
out a mechanism to calibrate these signals—such
as through relative scaling—the model may over-
react to weak signals or underreact to strong ones,
leading to misaligned or unstable updates. A more
robust alignment objective must therefore account
not just for the direction of the preference, but also
for how decisively that preference is expressed in
each sample.

2.2 Relative Reward Margin

To improve multilingual preference optimization,
we propose augmenting the standard DPO frame-
work with a Relative Reward Margin (RRM). Given a
prompt x with preferred and dispreferred responses
Yw and y;, respectively, and a policy model 7 with
temperature 3, the log-likelihood terms are:

log m(yw | ) = preferred log-likelihood, (1)
log m(y: | «) = dispreferred log-likelihood. )

Standard DPO is based on the Bradley-Terry (BT)
objective, which models the probability of prefer-

ring 1, over ¥; as a sigmoid function of their log-
likelihood difference:

Lpr = —logo (B [logm(yw | #) —logm(yi [ z)]).  (3)

We incorporate RRM as a confidence-aware adjust-
ment to this objective by scaling the log-ratio with a
dynamic margin term, allowing the model to focus
more on examples with clearer preference separa-
tion. The resulting modified objective Lcapo en-
courages the policy to increase the relative margin
between preferred and dispreferred responses.

Learo(m) = ~E(z,y,,0) | log o (Blog w(y | 2)
—logm(y | ))
4. leamyln) )}

Tog 7 (y;]2)

“

RRM

where « is a tunable hyperparameter which adjusts
the weight given to RRM. A higher « increases the
emphasis on examples with a larger margin be-
tween preferred and dispreferred responses, while
a lower a reduces this emphasis. Following Meng
et al. (2024a), we eliminate the need for a refer-
ence model in our objective. We omit SimPO’s
length normalization since it is problematic in mul-
tilingual settings: tokenized lengths vary across
languages, leading to unfair penalties for longer-
tokenized languages (Tsvetkov and Kipnis, 2024).

The term RRM represents a ratio between pre-
ferred and dispreferred rewards and serves to adap-
tively modulate the loss based on the model’s
relative confidence in the given pair. When the
preferred reward substantially exceeds the dispre-
ferred one, RRM increases and the overall loss di-
minishes—signaling that the model is already well-
aligned in this example. In contrast, when the re-
ward margin is small, RRM downweights the learn-
ing signal to avoid overfitting on uncertain or noisy
preference pairs. In other words, it dynamically cal-
ibrates the optimization signal based on the model’s
confidence in each preference pair, particularly ben-
eficial in multilingual alignment, where preferences
are harder to model due to linguistic variability. By
emphasizing confident updates and softening gradi-
ents on ambiguous cases, our method encourages
more stable convergence and robust generalization
across diverse languages.
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Method

Objective

. _ 7o (yw|z) 7o (yilz)
DPO (Rafailov et al., 2023) log o (ﬁ log 7o 7w TS — Blog 2eL ‘z))
SimPO (Meng et al., 2024b) —logo ( \yil log o (yw|x) — zI log 7o (yi|x) — *y)
DPONLL (Yang et al., 2025b) —logo (Blog Zelbelsh — glog Zelwls)) | NILL
CAPO ~logo (Blogm(yu | #) — Blogm(y | o) +a - EZlel))

Table 1: Various preference optimization objectives given preference data D =

Y and y; are the winning and losing responses.

(z, Yw, Y1), Where x is an input and

Lang.

prompt

dispreferred

preferred

Direction . . Dataset
(Source Text) (Machine translation) (MTPE text)

en-tr People may not anticipate that  Insanlar bu sabir tahmin ede- Insanlar, iilkesine donenlere de ~ DIVEMT
patience and understanding are  meyeceginiz ve anlayig da eve  sabir ve anlayis gosterilmesi
also necessary for travellers re- donen yolcular igin gereklidir.  gerektigini tahmin edemeye-
turning home. bilir.

en-de He also begins an affair with  Er beginnt auch eine Affdre mit  Er beginnt auch eine Affire mit MLQE-
Veronica Harrington, who bails ~ Veronica Harrington, die ihn  Veronica Harrington, die ihn PE

him out.

rettet.

rettet.

Table 2: A sample each from the MTPE datasets.

3 Experimental Setup

3.1

We use Llama-3.1-8B-Instruct (llama) as the
base model and apply parameter-efficient fine-
tuning using LoRA (Hu et al., 2022) (additional
LoRA settings can be found in Appendix A). The
chosen and rejected samples are fed to the model in
the form of a dialogue, where the examples are for-
matted using a custom Zephyr-style chat template
(Tunstall et al., 2024). We conduct hyper param-
eter search to set the value of «, which is set to
2.0 based on maximum evaluation accuracy during
training (more details in Section §4.4).

Models and Implementation

3.2 Baselines

Consistent with prior work (Dang et al., 2024), as
our baselines, we consider base llama along with
tuned versions of llama with DPO (Rafailov et al.,
2023), SimPO (Meng et al., 2024a), and DPONLL
(Yang et al., 2025b). For DPO setup, the refer-
ence policy is identical to the policy being opti-
mized. We selected DPO as a relevant baseline
over SFT, given prior studies demonstrating its su-
perior performance (Wu et al., 2024; Yang et al.,
2025b,a), and over RLHF due to its greater effi-
ciency (Rafailov et al., 2023). We use the same
LoRA setting for finetuning across all the objec-
tives compared. Table 1 presents the optimization

objectives evaluated in this work.

3.3 Preference Dataset for Training

Multiple methods for creating multilingual prefer-
ence datasets have been explored (Dang et al., 2024;
She et al., 2024; Yang et al., 2025b; Aakanksha
et al., 2024); however, none of these datasets have
been publicly released. As such, inspired by Berger
et al. (2024), where they used Machine Translated
Post Edited (MTPE) data for preference alignment
on machine translation, we use MTPE data as our
preference data. MTPE data provides a natural,
human-grounded preference signal: the post-edited
output reflects human judgments of correctness
and fluency, while the corresponding raw machine
translation often contains errors or stylistic flaws.
This eliminates the need for synthetic preference la-
bels and introduces realistic, linguistically diverse
“hard examples”.

Specifically, we repurpose two MTPE
datasets—DIVEMT (Sarti et al., 2022) and MLQE-PE
(Fomicheva et al., 2022)—into preference datasets,
although they were not originally designed/used
for this purpose. Together, they cover eight
language directions with English as the source:
en-ar, en-it, en-nl, en-tr, en-uk, en-vi (DIVEMT) and
en-de, en-zh (MLQE-PE).

As shown in Table 2, each sample includes
a source sentence, a machine translated output,
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and a post-edited version, where the source sen-
tence is the prompt , the post-edited version is

the preferred, and the machine translation is

the dispreferred . The prompt part is formatted
using the following prompt template.

Translate this text from {src_lang} to
{tgt_lang}:

{src_lang}: {src_sent}
{tgt_lang}:

We filter the dataset to include only samples where
the text length exceeds 50 characters, to make sure
the model receives sufficient context. Data is bal-
anced per translation direction, with 100 samples
per direction. This gives us 800 samples for train-
ing and 800 for evaluation. All related analysis are
done on the evaluation set. We perform validation
on a held out 800 samples built in the same way as
the training dataset for hyperparameter tuning.

3.4 Evaluation Benchmarks and Metrics

We consider three widely used multilingual bench-
marks for evaluation (see implementation details
in Appendix A).

Multilingual MT-Bench (Zheng et al., 2023)
evaluates the capabilities and alignment of lan-
guage models through two-turn dialogue prompts,
covering open-ended tasks like writing, reasoning,
and math. Models generate responses for each
turn based on prompts provided by the benchmark.
GPT-4-Turbo serves as the judge and assigns a
score from 1 to 10 for each turn based on overall
quality, including helpfulness, relevance, and flu-
ency. We report the average of the two turns. We
test on seven languages: the seen languages [en, zh,
it, and de], and the unseen languages [fr; es, and
jp], with 80 samples per language.

XLSum (Hasan et al., 2021) is a multilingual ab-
stractive summarization dataset consisting of BBC
news articles across a wide range of languages.
Following prior work on multilingual preference
optimization (Dang et al., 2024), we evaluate on 50
samples from each of six seen languages: [en, zh,
vi, ar, uk, tr], and three unseen languages: [fr, ja,
es]. We report win rates with GPT4o as the judge
model (and Rouge-L scores under Appendix C).

M-IFEval (Dussolle et al., 2025) is a multilin-
gual instruction-following benchmark that covers
4 languages: one seen - [en], and three unseen -
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Figure 4: Training Loss vs. Steps for DPO and CAPO:
CAPO demonstrates improved stability and conver-
gence over DPO and DPONLL.
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Figure 5: Comparison of reward accuracy between DPO
and CAPO on the validation data. CAPO shows im-
proved accuracy across all languages except in en.

[fr, ja, es]. It evaluates multilingual instruction-
following by models using objective checks like
string matching and rule-based evaluation rather
than relying on the LLM-as-judge model. We re-
port both strict (exact matches) and loose (accept-
able variations) evaluation metrics.

4 Results and Analysis

The following subsections present key findings
from our experiments with CAPO. We show that
it improves training stability, sharpens reward sig-
nals, and increases the gap between preferred and
dispreferred outputs. We also examine the effect of
varying the o parameter. Finally, we report results
on multilingual benchmarks.

4.1 CAPO makes training more stable.

We compare training curves for CAPO against two
baselines: DPO and DPONLL (Yang et al., 2025b)
in Figure 4. We observe clear differences in sta-
bility and convergence. DPO steadily improves
reward but shows some fluctuations in later epochs.
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Figure 6: Reward difference distribution between DPO vs CAPO per language. CAPO consistently shifts the

distribution toward higher reward differences.
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Figure 7: BLEU score between the preferred and dispre-
ferred samples in the training data per language.

DPONLL is more stable, with smoother and more
consistent reward growth. This stability comes
from the added negative log-likelihood reweight-
ing. CAPO shows the most stable and monotonic
reward increase. It learns faster in early stages
and then levels off gradually. This suggests that
CAPO’s confidence-aware design speeds up early
training and supports stable alignment later.

We further investigate the lower training loss
of CAPO compared to DPO and DPONLL.
While DPO uses a contrastive term based on
the log-sigmoid of log-probability differences,
and DPONLL adds an unbounded negative log-
likelihood (NLL) term that heavily penalizes low-
probability preferred responses, CAPO avoids such
penalties. Instead, CAPO combines the bounded
ratio-based component (RRM) that contributes a
smaller signal than NLL term. Since it adds only a
mild adjustment (compared to NLL) on top of the
reward difference, the overall loss remains lower.
This makes CAPQO’s loss lower from the start.

4.2 The reward signal to the model gets better
with CAPO.

Reward accuracy refers to how often a reward
model assigns a higher score to the response that
humans prefer in a pairwise comparison (more de-
tails under Appendix B). Figure 5 shows results
across eight languages and 5 settings. On aver-

age, CAPO significantly outperforms DPO by 16%
and DPONLL by 33%. It achieves the highest re-
ward accuracy in all languages except English en.
CAPO’s poor performance in en may be due to
using EN — other languages MTPE data, which
might have introduced learned preferences that are
subtly different from native English data. Viet-
namese vi enjoys the most gain just like in the
standard DPO. These results suggest that CAPO
not only improves training stability but also leads
to better reward modeling aligned with human in-
tent. We attribute this to RRM, which helped deliver
more reliable reward signals during optimization.

4.3 CAPO leads to increase in reward
difference.

Figure 6 shows the distribution of reward differ-
ences between preferred and dispreferred responses
under DPO and CAPO across eight languages.
The reward difference reflects how confidently
the model separates the preferred response from
the rejected one. Compared to DPO (where the
curves are more narrowly peaked around zero),
CAPO?’s distributions often show a broader spread
with a greater mass concentrated on the right side
of zero on all languages. This indicates that un-
der CAPO, the reward model assigns significantly
higher scores to preferred responses more fre-
quently, leading to stronger reward separation.

We conduct further analysis. Languages like
vi, ar, and uk show larger shift towards the right
which can be credited to the lower BLEU scores
(i.e. lower similarity) in these languages (see Fig-
ure 7) between preferred and dispreferred samples.
This hints that languages exhibit clearer preference
signals benefit more from CAPO. Supporting this,
we observe an inverse correlation (r = —0.47) be-
tween BLEU scores and the CAPO-vs-DPO reward
shift across languages, computed by correlating
BLEU scores with the difference in KDE-weighted
means of reward distributions.
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Prompt

Patriots strongly condemned him as a coward and turncoat.

Response A - preferred

Patrioten verurteilten ihn entschieden als Feigling und Verriter.

Response B - dispreferred

Patrioten verurteilten ihn entschieden als Feigling und Turncoat.

Translate this text to German - He attempted to justify his betrayal by appealing to Loyalist public opinion , but the

Er versuchte , seinen Verrat zu rechtfertigen , indem er an die loyalistische &ffentliche Meinung appellierte , aber die

Er versuchte , seinen Verrat zu rechtfertigen , indem er an die loyalistische 6ffentliche Meinung appellierte , aber die

Reward Difference

llama

DPO -0.26

pronLL ()

CAPO 5.75

Figure 8: The reward difference shows how well each model distinguishes the responses. CAPO increases the gap

between preferred and dispreferred responses the most.
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Figure 9: Impact of o on training loss and evaluation
accuracy.

For instance, Figure 8 shows an example where
the initial reward gap between the preferred (Re-
sponse A) and dispreferred (Response B) is neg-
ative, with llama assigning -3.72. DPO slightly
improves this to -0.26, while DPONLL remains
similar at -3.71. CAPO significantly increases the
reward gap to 5.75, showing a much stronger dis-
tinction in favor of the preferred response.

4.4 Impact of varying «.

We investigate the impact of the reweighting coef-
ficient « in the Lcapo objective, where « scales
the log-ratio term that encourages stronger separa-
tion between preferred and rejected responses. As
shown in Figure 9, increasing o consistently re-
duces training loss, indicating improved optimiza-
tion. However, evaluation accuracy exhibits a trade-
off: it increases up to o = 2.0 but drops sharply
beyond that point. This suggests that while moder-
ate reweighting strengthens preference alignment,
excessive weighting of the RRM term leads to over-
reweighting and harms generalization. Overall, the
results highlight a critical tradeoff between train-
ing loss minimization and evaluation performance
when tuning a.

Lang. llama DPO SimPO CAPO
en 7.83 8.12 6.49 8.08
de 7.43 7.01 7.25 7.07
it 6.80 7.16 6.87 7.39
zh 6.55 6.60 6.87 7.62
fr 7.01 6.93 6.72 7.40
es 6.73 7.07 7.72 7.09
ja 6.85 6.71 6.75 7.18
Avg 7.03 7.09 6.95 7.40

Table 3: Results on multilingual MT-Bench benchmark.

4.5 Multilingual Benchmarks

Next, we compare CAPO with the strongest base-
line DPO in the following downstream bench-
marks.

Multi-turn Conversation and Instruction Fol-
lowing (Multilingual MT-Bench) Table 3
presents results on the multilingual MT-Bench
benchmark across seven languages. CAPO
achieves the highest average score (7.40), outper-
forming DPO (7.09), SimPO (6.95), and the base
llama model (7.03). Among the seen languages (en,
de, it, zh), CAPO performs competitively, with no-
table improvements in it and zh, suggesting better
generalization in training-aligned languages. For
unseen languages (fr, es, ja), CAPO also shows
consistent gains over other models except for es.
This indicates that the confidence-aware objective
used in CAPO improves not only in-domain align-
ment but also enhances cross-lingual generalization
to languages not observed during training.

Summarization (XLSum) Figure 10 shows the
pairwise win rates of CAPO compared to the base
llama model (Figure 10a) and DPO (Figure 10b)
across eight languages. Against llama, CAPO
achieves substantial improvements in most lan-
guages, winning over 50% of the time in en, zh,
uk, fr, ja, and especially es (64%). This demon-
strates that preference optimization significantly en-
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Text

llama

DPO

CAPO

The application is designed to stop
using the computer’s central pro-
cessing unit (CPU) when it is left to
run in the background. It means
users can receive calls or instant
messages without the risk of ex-
hausting their laptop battery. The
move may help Skype [...]

Microsoft has released a
new version of Skype that
can pause and resume ac-
tivity without using the
computer’s central process-
ing unit, allowing users to
receive calls or messages
without draining their lap-
top battery.

The software update for
Skype allows the program
to run in the background
without consuming the
computer’s CPU power,
thus saving battery life for
laptops and tablets.

The new version of Skype
will conserve laptop battery
life by automatically sus-
pending activity when the
application is left to run in
the background.

Table 4: An example of the summaries generated by different models and their head to head comparison against

CAPO. Here, CAPO’s answer is selected by the judge (GPT4o0) both the times.

B Lose

Win Tie

ar 42.0% YY)
en S 42.0%
es 640% IIIEXA
fr 60.0% A
ja 54.0% IIRTYY)
tr 40.0% YT
uk 56.0%
"
zh 60.0%

0% 20% 40% 60% 80% 100%
(a) Win rate of CAPO against llama.

Win Tie

ar SO 42.0%
es 56.0%
fr 50.0%
o
uk S 42.0%
vi 440% YY)
zh S 44.0%]

0% 20% 40% 60% 80% 100%
(b) Win rate of CAPO against DPO.

B Lose

Figure 10: Comparison of CAPO’s win rates against
Ilama and DPO for XLSum summaries. CAPO shows
improved ability to generate better summaries across
languages compared to the baselines. Standard devia-
tions across runs are in Appendix E.

hances response quality over the base model. When
compared to DPO, the margins are narrower but
still favorable to CAPO in most cases. CAPO out-
performs DPO in six out of eight languages, with
strong gains in ar, uk, zh, and es, where win rates
reach or exceed 56%. DPO outperforms CAPO is
en and vi, with a 52% and 56% win rate respec-

Lang. Score Type DPO CAPO
en Strict 0.46 0.47
Loose 0.6 0.63

es Strict 0.56 0.55
Loose 0.68 0.69

fr Strict 0.46 0.48
Loose 0.63 0.64

ja Strict 0.23 0.29
Loose 0.41 0.43

Table 5: Comparison between the average scores (strict
and loose) of M-IFEval using DPO and CAPO.

tively. These results indicate that CAPO offers
robust multilingual improvements.

We further examined sample summaries gen-
erated by llama, DPO, and CAPO in en. Table 4
presents one example from each model for the same
input text. A judge model compared the CAPO
summary against those from llama and DPO. In
both cases, the CAPO summary was rated better
than the other two.

Instruction-Following (M-IFEval) Table 5 re-
ports the accuracy of the response for the given
prompts. Here again, we can see that CAPO con-
sistently outperforms DPO under both the settings.

5 Related Work

Broadly, multilingual PO research can be catego-
rized into general-purpose methods that align mod-
els across multiple languages using shared opti-
mization mechanisms (Dang et al., 2024; Yang
et al., 2025a,b), and task-specific strategies adapted
to domains such as multilingual reasoning, safety
alignment, text quality evaluation, and machine
translation (She et al., 2024; Aakanksha et al., 2024;
Xu et al., 2024b,a; Pokharel and Agrawal, 2025).
A major focus of recent work has been on cross-
lingual alignment—developing techniques to trans-
fer preferences learned in one language (typically
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en) to others. Most prior approaches generate
synthetic multilingual preference data via trans-
lation. Lai et al. (2023) translate both prompts
and responses, Dang et al. (2024) translate only
prompts, and Yang et al. (2025b) translate comple-
tions to favor dominant language outputs. While
these cross-lingual strategies have enabled prefer-
ence alignment in many languages, they often carry
over linguistic artifacts and biases from the source
language, which may not reflect the true human
preference.

Regarding PO objectives, earlier studies have
extended a range of PO techniques originally de-
veloped for en. Lai et al. (2023) and Wu et al.
(2024) employ standard reinforcement learning
methods such as Proximal Policy Optimization
(PPO) (Schulman et al., 2017), with the latter
placing emphasis on cross-lingual transfer during
optimization. Cal-DPO (Xiao et al., 2024) cal-
ibrates implicit rewards to fixed targets using a
reference model. Likewise, SimPO operates in a
reference-free setting and applies length normal-
ization, which is problematic in multilingual set-
ting as discussed in Section 2.2. CPO (Xu et al.,
2024c) uses a contrastive loss to distinguish pre-
ferred from dispreferred responses based on their
log-probability differences and, similar to DPO,
treats all pairs uniformly. Furthermore, CPO de-
pends on a reference model, adding an additional
layer of complexity.

Similarly, Dang et al. (2024) explore Reinforce-
ment Learning with Optimal Outputs (RLOO)
alongside DPO, while Yang et al. (2025b) apply
DPO in conjunction with NLL of the preferred re-
sponse. Although RLOO improves upon traditional
RLHF approaches (Christiano et al., 2017) and
PPO by reducing variance through multi-sample
baselines, it still depends on a separately trained re-
ward model, which introduces potential alignment
gaps. Another PO method, Kahneman-Tversky Op-
timization (Ethayarajh et al., 2024), uses a prospect-
theoretic objective to model human-like cognitive
biases, but relies on binary desirability labels in-
stead of preference pairs. Diverse Preference Learn-
ing (Nath et al., 2025) adjusts loss contributions
based on the contrast between preferred and dispre-
ferred samples, amplifying clear preferences and
downweighting ambiguous ones. However, it relies
on fixed thresholds and global weightings, which
do not adapt to the reward dynamics of individual
examples.

6 Conclusion

This paper introduces CAPO, a novel multilingual
alignment objective that utilizes relative reward
differences between preferred and dispreferred re-
sponses to guide the model’s alignment. CAPO
avoids reliance on a reward model and bypasses
cross-lingual alignment methods that risk introduc-
ing translationese. Through empirical results on
multilingual benchmarks, CAPO demonstrates sig-
nificant improvements in aligning model outputs
with human preferences across diverse languages,
achieving 16-33% gains in reward accuracy. While
we relied on existing MTPE data for training, fu-
ture work should consider automatically generating
high-quality MTPE data to expand language cover-
age and better reflect true human preferences.

Limitations

We conduct our experiments using LoRA-based
fine-tuning with a small training set for each lan-
guage. While full fine-tuning may yield different
insights, our results demonstrate that even with ef-
ficient, lightweight training, CAPO achieves mean-
ingful improvements. Additionally, there remain
many languages that could not be studied in this
work.

Ethical Consideration

While our study focuses on a small set of lan-
guages, other languages especially low-resource
languages remain underexplored and could benefit
significantly from improved alignment techniques.
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Appendix
A Implementation Details

Finetuning Following the configuration of Thakkar
et al. (2024) on DPO finetuning, we set the LoORA
rank to 16, alpha to 32, and apply a dropout rate of
0.05. Likewise, optimization is conducted using the
Paged AdamW optimizer, paired with a cosine de-
cay learning rate scheduler. Training is performed
using the CAPO objective for 1 epoch, with a batch
size of 16 and a learning rate of 1le—6. We use a
temperature parameter of 5 = 0.1, consistent with
prior work.

MT-bench We use the multilingual MT-Bench
framework 2 (Zheng et al., 2023), following the
same setup as Yang et al. (2025b). The benchmark
extends the original MT-Bench with multilingual

Zhttps://github.com/lightblue-tech/multilingual-mt-bench
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support in en, de, it, zh, fr, es, and ja, with 80
samples per language.

The base model evaluated in all experiments is
Llama 3.2 8B Instruct. We compare three vari-
ants: the untuned base model, a DPO-finetuned
model, and our proposed CAPO-finetuned model.
All generations are produced using identical decod-
ing settings, with a maximum of 1024 generated to-
kens. Sampling temperature is set to 0.7 by default.
To ensure a fair comparison, the same evaluation
pipeline is used across all model variants.
XLSum The evaluation prompt used to calculate
win rate between two summaries is adapted from
Yang et al. (2025b), which is shown in Figure 11.
To mitigate order bias, the summaries were ran-
domly shuffled.

B Reward Accuracy Calculation

As in SimPO, we compute reward accuracy
directly from the trained model’s own log-
probabilities, without using a reference model. For
each preference pair (x, y., y;), we calculate the
model scores as the log-likelihood of each response,
following SimPQO’s formulation. Reward accuracy
is then defined as the percentage of cases where
the model assigns a higher score to the preferred
response ¥, than to the dispreferred response ;.

C Multilingual Benchmarks

This section outlines the remaining analyses on the
multilingual benchmarks.

XLSum - RougeL. Figures 12 present Rouge-L
scores on the XLSum dataset for summarization
across multiple languages. CAPO achieves compa-
rable average performance to DPO, both slightly
outperforming the base LLaMA model. The per-
language breakdown in Figure 12 reveals that
CAPO shows more consistent or improved perfor-
mance in several individual languages, except for
fr and ja. The limited improvement may be due
to the limitations of ROUGE-L, particularly when
summaries are not too different at surface level.
As suggested in prior work (Fabbri et al., 2021;
Deutsch et al., 2021; He et al., 2023), automatic
metrics ROUGE-L or BERTScore often fails to
capture human preferences related to consistency,
relevance, and fluency. Because ROUGE relies on
lexical overlap, it is sensitive to exact word matches
and cannot effectively detect semantic equivalence
or paraphrasing. That is why we additionally re-
port win rates to better compare against human

XLSum Win Rate Prompt

Which of the following answers is the best
one for given instruction in [LANGUAGE].
A good answer should follow these rules:

1) It should be in [LANGUAGE]

2) It should answer the request in the
instruction

3) It should be factually and semantically
comprehensible

4) It should be grammatically correct and
fluent.

Instruction: Generate a one sentence sum-
mary of the text below in [LANGUAGE].

[TEXT]

Answer (A): [SUMMARY_A]
Answer (B): [SUMMARY_B]

FIRST provide a one-sentence comparison
of the two answers, explaining which you
prefer and why.

SECOND, on a new line, state only
‘Answer (A)’ or ‘Answer (B)’ or ‘TIE’.

Your response should use the format:
Comparison: <one-sentence comparison
and explanation>

Preferred: <‘Answer (A)’ or ‘Answer (B)’
or ‘TIE’>

Figure 11: Prompt used for win rate calculation on
XLSum summaries.
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0.1 Figure 13: Comparison of average reward accuracy
0054 across different objectives on the validation data.
0- Lang. SD (Win) SD (Tie) SD (Lose)
ar en es fr ja tr uk vi zh
en 1.41 0 1.41
zh 5.66 2.83 2.83
Figure 12: Average RougeL scores on XLSum dataset Vi ?i? 0 2'23
per language. ar : 0 141
uk 1.41 1.41 0
tr 0 0 0
preferences as suggested in Wang et al. (2024). fr 1.41 1.41 2.83
ja 2.83 0 2.83
D Language List es 424 0 4.24
Here, we provide the list of languages along with  Taple 7: Standard deviation between two runs of XL-
their corresponding language codes. Sum win rates for CAPO vs llama.
Code Language Lang. SD (Win) SD (Tie) SD (Lose)
Arabic ar en 1.41 0 1.41
Chinese zh zh 4.24 0 4.24
Dutch nl vi 4.24 0 4.24
English en ar 5.66 0 5.66
French fr uk 1.41 0 1.41
German de tr 1.41 1.41 2.83
Italian it fr 1.41 0 1.41
Japanese ja ja 1.41 0 1.41
Spanish es es 1.41 1.41 15.56
Turkish tr
Ukrainian uk Table 8: Standard deviation between two runs of XL-
Vietnamese vi Sum win rates for CAPO vs DPO.

Table 6: Language codes and their corresponding full
language names.

E.2 XLSum

Tables 7 and 8 report the standard deviation be-
tween the two runs of XLSum. Except for es, the
E More Results standard deviation remains low.

E.1 Reward Accuracy

Figure 13 presents the overall average reward
accuracy results. CAPO outperforms DPO and
DPONLL by 16% and 33% respectively.
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