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Abstract

Large language models (LLMs) sometimes
hallucinate facts. Recent studies have shown
that use of non-factual LLMs (anti-expert)
have the potential to improve the factuality of
the base LLM. Anti-expert methods penal-
ize the output probabilities of the base LLM
with an anti-expert LLM. Anti-expert methods
are effective in mitigating hallucinations, but
require high computational costs because the
two LLMs are run simultaneously. In this pa-
per, we propose an efficient anti-expert method
called in-model anti-expert. It mitigated the
hallucination problem with a single LLM and
intervening to change the internal representa-
tions in the direction of improving factuality.
Experiments results showed that the proposed
method is less costly than the conventional
anti-expert method and outperformed existing
methods except for the anti-expert method. We
confirmed that the proposed method improved
GPU memory usage from 2.2x to 1.2x and la-
tency from 1.9x to 1.2x.

1 Introduction

Large language models (LLMs) (OpenAl, 2024;
Nvidia, 2024) demonstrate impressive capabilities.
However, LLMs sometimes generate plausible but
factually incorrect information, called hallucina-
tions (Ji et al., 2023; Zhang et al., 2023b). Hal-
lucinations degrade the reliability of applications;
hence, it is important to detect and mitigate them.

As a hallucination mitigation method, Zhang
et al. (2025) proposed to use a non-factual LLM
(i.e. anti-expert) to improve the factuality of the
base LLM. They obtained the output distribu-
tion of a factual LLM (i.e. expert) by contrast-
ing the output distributions of the base and anti-
expert LLM. In particular, they created the anti-
expert LLM by fine-tuning using hallucinated an-
swers, because fine-tuning using factual answers
might inadvertently make an LLM to hallucinate
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Figure 1: Anti-expert (upper) and in-model anti-expert
(lower). Our method produces contrasted output distri-
butions by shifting the internal representations of the
base LLM in the direction of improving factuality.
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by forcing it to answer questions beyond its knowl-
edge boundaries (Yang et al., 2024). Although
it has achieved state-of-the-art performance, their
method is computationally expensive because it
runs two LLMs simultaneously.

In this paper, we propose an efficient anti-expert
method called in-model anti-expert IMAE). Fig-
ure 1 illustrates this method. While an anti-expert
contrasts output distributions, our method makes
interventions in the internal representations to im-
prove factuality. Internal representation interven-
tion enables the LLM to mitigate hallucinations by
itself without running a separate anti-expert. How-
ever, it is difficult to implement this method be-
cause LL.Ms need to acquire the ability not only
to generate non-factual text but also to identify the
directions of improving factuality in the internal
representation spaces. We solve this challenge by
equipping the LLM with three modes for generat-
ing non-factual text, neutral text, and factual text.

Experiments results on Truthful QA (Lin et al.,
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2022) showed that our method outperformed exist-
ing ones except for the anti-expert method. More-
over, compared with the anti-expert method, it re-
duced the GPU memory usage and latency from
2.2x to 1.4x and from 1.9x to 1.2x, respectively.

2 Background

The preliminaries below explain the anti-expert
method, whereas the related work section de-
scribes other hallucination mitigation methods.

2.1 Anti-Expert for Hallucination Mitigation

A major challenge of hallucination mitigation was
that fine-tuning using factual data degrades the fac-
tuality of LLMs (Zhang et al., 2023a). This is
because traditional fine-tuning methods might un-
intentionally make LLMs hallucinate by forcing
them to answer questions beyond their knowledge
boundaries (Yang et al., 2024).

Zhang et al. (2025) proposed induce-then-
contrast decoding (ICD) as an extension of the
anti-expert originally proposed in the field of toxi-
city mitigation (Liu et al., 2021). ICD is a ground-
breaking method that uses a non-factual LLM be-
cause it is easy for LLMs to learn to generate non-
factual text. They created an anti-expert LLM by
fine-tuning the base LLM using synthetic halluci-
nation data generated by ChatGPT!.

During decoding, the method calculates a fac-
tual probability pexpert(-) by contrasting the out-
put distributions of the base and anti-expert LLM.

Pexpert (Ti|T<;) = softmax (3 10g ppase(wi|T<;)

- logpanti(xi’$<i)) (1)

Phase(+) and panti(-) represent the probability of
the base and anti-expert LLMs, respectively. z;
represents the i-th token, and x ; is all previous to-
kens. 3 is a hyperparameter for contrast strength.
Li et al. (2023c) pointed out that penalizing all
tokens would degrade generation quality. There-
fore, they only penalize a subset of tokens, Vy1iq.

Vialid = {xi € V 1 logityaee (Til <)
> 6 max(max 10gith e (w]7<)
1 w

logity . (-) represents next-token logits of the
base LLM. V represents the vocabulary. ¢ is a hy-
perparameter to control the strength of constraint.

"https://chat.openai.com

ICD has achieved state-of-the-art performance
on TruthfulQA. In paricular, Llama2 (7B) with
ICD performed comparably to GPT-4. However,
anti-expert methods are computationally expen-
sive. ICD requires 2.2x GPU memory usage, as
it runs two LLMs. Its latency increases by 1.9x be-
cause ICD requires time to contrast probabilities.

2.2 Related Work

Hallucination in LLMs. Hallucination (Dziri
et al., 2022; Zhang et al., 2023b) is a behavior
in which LLMs generate content that contradicts
the user input (Dale et al., 2023; Rehman et al.,
2023), previous context (Shi et al., 2023; Wan
et al., 2023), or established fact (Bang et al., 2023;
Hu et al., 2023). We focus on fact-conflicting hal-
lucination because it has the potential to cause seri-
ous problems in specific domains (Pal et al., 2023).

Hallucination Mitigation. Lee et al. (2023); Li
et al. (2023b); Chuang et al. (2024) modified the
decoding algorithm. These methods are efficient
but less effective because improvement without
learning is limited. Zhang et al. (2023a) pro-
posed a fine-tuning method to recognize knowl-
edge boundaries, but it risks excessive conser-
vatism. Zhang et al. (2024) proposed an editing
internal representation method. It is effective in
in-domain data settings but requiring paired cor-
rect and hallucinated answers. The anti-expert mit-
igates hallucinations effectively without pair data.

3 Proposed Method

We alleviate the increase in memory usage and la-
tency by integrating the anti-expert LLM into the
base LLM and shifting the internal representation
in the direction of improving factuality.

3.1 Model Architecture

Figure 2 shows the proposed architecture. It is
based on parallel adapter (He et al., 2022). We add
an anti-expert unit to each MLP layer of the base
LLM and a mode control unit. The anti-expert unit
consists of an MLP layer and a gate layer. We de-
note the MLP layer of the base LLM by MLP},,4¢
and that of the anti-expert unit by MLP »,;.

Anti-Expert Unit. The gate layer controls the
extent to which the output of the anti-expert unit
is considered by calculating o € R.

a = softmax(Wh + b)g € R
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Figure 2: Architecture of IMAE.

h € R? represents an input vector of the MLP
layer. W € R?*? and b € R? are learnable param-
eters. The gate layer outputs an input of MLP ;.

y = MLPyi(ah) € RY

MLP,,¢e retains the ability to understand and gen-
erate language, so we embed only the information
for generating non-factual text in MLP ;. There-
fore, MLP ,,t; can be smaller than MLPy,46c.

Mode Control Unit. IMAE operates in three
modes: anti-expert, base, and expert. The mode
control unit outputs a scalar o € {—1,0,1} cor-
responding to each mode: 1 for generating non-
factual text (anti-expert mode), 0 for replicating
the base LLM output (base mode), and —1 for gen-
erating factual text (expert mode). We only use
expert mode during inference. The output of the
MLP layer is calculated as follows:

MLP(h) = MLPypage(h) + oy

3.2 Loss Function

We freeze the parameters of the base LLM and
only fine-tune the parameters of the anti-expert
unit. We fine-tune the anti-expert unit so that the
opposite vector of the MLP,,; output points in
the direction that improves the factuality of the
output vector of MLPy},,.. For fine-tuning, we
use a dataset in which each sample consists of a
question and its hallucinated answer. We split the
dataset in half, using one half for training the anti-
expert mode and the other half for training the ex-
pert mode. We apply multi-task learning so that
the model generates non-factual text in anti-expert
mode and generates factual text in expert mode.
We use the cross-entropy loss for the anti-expert
mode L,nti, and propose a new loss function for
the expert mode Lexpert, Where we calculate a tar-
get probability with improved factuality, prarget(-)-
We define prarget(-) @S Pexpert(-) in Equation 1. We

only penalize Vy,jq in the same way as ICD.
Lexpert is formulated as follows:

Lexpert =

DKL (pexpert («Tz ‘$<Z) ‘ |ptarget (xz ‘$<i ) )

Dexpert () and D, represent the probability of ex-
pert mode and Kullback-Leibler divergence.

Besides the loss for MLP i, we introduce a
loss for the gate layers Lgate.

11—«
Lgate:{
«

Ttact 1S a subset of tokens that affect the factuality
of text. Here, let us explain how to identify Tf. .
in §3.3. The gate output « is large when gener-
ating tokens in Tg,., and small when generating
other tokens. As a result, the output of the anti-
expert unit is considered only when generating to-
kens that affect the factuality of text. The total loss
L is formulated as: L = Lanti + Lexpert + Lgate-
In preliminary experiments, we confirmed that the
weighted sum of the losses do not significantly
affect performance. Therefore, we removed the
weights for simplicity.

if T; € Tfact
if z; ¢ Tfact

3.3 Token Filtering

If we use all tokens for training MLP,;, in-
formation irrelevant to factuality is embedded in
MLP,,;i. Hence, we identify a subset of tokens
that affect the factuality of text, T¢,.¢. We only use
Ttact, for calculating Lng; and Lexpert -

To identify Tt..¢, we create an anti-expert LLM
modified from the one of Zhang et al. (2025). We
identify T¢, using the base and anti-expert LLM.

Tfact = {:U'L eT:
10g Panti (%i|T <) — 108 Dhase(Xi|T<i) > 7}

T is a set of input tokens. <y is a hyperparameter to
control the strength of constraint.

4 Experiments

We evaluated IMAE on a question-answering task.
To compare our method with the existing ones, we
followed the settings of Zhang et al. (2025).

4.1 Settings

Benchmark. As training and evaluation data,
we used the HaluEval dataset (Li et al., 2023a) and
Truthful QA (Lin et al., 2022), respectively.
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We used multiple-choice-based metrics: MC1,
MC2, and MC3 scores. MC1 evaluates whether
models assign the highest score to the best answer.
MC?2 assesses whether the normalized probability
of all correct answers exceeds that of incorrect
ones. MC3 checks whether each correct answer
is scored higher than every incorrect answer. MC1
aligns best with greedy decoding settings, so we
consider it to be the most important metric.

Comparison Methods. As a base LLM, we
used Llama2-7B-Chat (Meta, 2023). In addition to
ICD, we compared our method with ITI (Li et al.,
2023b), DoLa (Chuang et al., 2024), and CD (Li
et al., 2023c). ITI shifts the model activations by
using attention heads. DolLa contrasts the output
distributions from different layers of the LLM. CD
contrasts the output distributions from LLMs of

different parameter sizes 2.

4.2 Results and Discussion

Does IMAE improve truthfulness? Table 1
shows the experimental results. IMAE signifi-
cantly improved the truthfulness of Llama2-7B-
Chat on Truthful QA. IMAE and ICD improved all
truthfulness scores, but the other methods did not
improved MC1 score. Moreover, IMAE outper-
formed the existing methods in MC1, except for
the conventional anti-expert method. Since MC1
evaluates the correctness of the most plausible re-
sponse, we consider that it simulates the greedy
setting. In comparison, MC2/3 consider all correct
answers. IMAE increased the probability of some
tokens and decreased the probability of others. As
a result, it increased the probability of the most
plausible answer but decreased the probability of
some correct answers.

We also found that DoLa and CD, which are
widely used for mitigating hallucination, are ef-
fective for base models (Chuang et al., 2024; Li
et al., 2023c) but not effective for MC1 in chat
models. DoLa and CD contrast the distributions
and adjust token probabilities relatively modestly,
which is effective for MC2/3 but ineffective for
MC1 because it does not substantially boost the
probability of the top candidate. We consider that
our method and DoLa/CD possess characteristics
that make them particularly effective for MC1 and
MC2/3, respectively.

*We used Llama2-13B-Chat for contrasting.

MC1 MC2 MC3
baseline 36.96 54.62 27.95
ICD (upper bound) 46.32 69.08 41.25
o 37.01 54.66 27.82
DoLa 32.97 60.84 29.50
CD 28.15 54.87 29.75
" IMAE (ours) 40.02 57.12 28.96

Table 1: Experimental results on Truthful QA.

memory latency
baseline 13.2 (1.0x) 2.09 (1.0x)
ICD 28.6 (2.2x) 4.05 (1.9%)
. 16.2 (1.2x) 2.09 (1.0x)
DoLa 15.1 1.2x) 2.21 (1.1x)
CD 41.0 (3.1x) 6.42 (3.1x)
"IMAE (ours) 18.4 (1.4x) 2.60 (1.2x)

Table 2: Computational costs. We measured the GPU
memory usage (GB) and latency (ms/token).

Does IMAE reduce computational costs? Ta-
ble 2 shows the computational costs on Truth-
fulQA. We evaluate the average GPU memory us-
age and latency per token. ICD required high ad-
ditional computational costs. IMAE improved the
GPU memory usage from 2.2x to 1.4x and the la-
tency from 1.9x to 1.2x. Moreover, it alleviated
the increase in additional computational costs to a
level comparable to that of I'TI and DoL.a.

Is IMAE also effective for other model
sizes? We conducted additional experiments us-
ing Llama3.2 (3B) and Llama3.1 (8B) (Meta,
2024). Table 3 shows the experimental results.
IMAE significantly improved the truthfulness of
both LLMs on Truthful QA. These results indicate
that IMAE is also effective for smaller LLMs.

5 Conclusions

We proposed a novel and efficient hallucination
mitigation method. An anti-expert is effective and
only requires hallucination data, which is easier
to prepare than paired data. However, their ap-
proach comes with significant computational costs
because they runs two LLMs simultaneously. To
overcome this limitation, our method intervenes in
the internal representations in order for the LLM
to mitigate hallucination by itself.

Experimental results showed the effectiveness
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MC1 MC2 MC3
Llama3.2-3B-Instruct 35.25 54.75 27.44
+ ICD 40.13 73.67 44.67
+ IMAE (ours) 38.19 59.36 32.10

" Llama3.1-8B-Instruct  40.88 59.90 31.35
+ ICD 44.80 79.03 50.99
+ IMAE (ours) 43.08 63.62 36.01

Table 3: Experimental results of Llama3 family.

and efficiency of the proposed method: the in-
model anti-expert outperformed existing methods
except for the anti-expert method on truthfulness
and reduced the GPU memory usage and latency
of the conventional anti-expert methods. These re-
sults suggest that our method provides an effective
and scalable solution to hallucination mitigation.

Limitations

While IMAE showed promising results in mitigat-
ing hallucinations with lower computational costs
compared with existing anti-expert approaches,
this research has several limitations.

Dependency on parametric knowledge of
LLMs. One of the main causes of hallucination
is knowledge recall failure (Zheng et al., 2023).
The proposed method helps to mitigate hallucina-
tions caused by knowledge recall failures. Mallen
et al. (2023) suggested lack of knowledge as an-
other cause of hallucination in LLMs. While our
method can not mitigate hallucinations caused by
lack of knowledge, methods referring to external
knowledge, such as retrieval-augmented genera-
tion (RAG) (Lewis et al., 2021), are effective in
mitigating these sorts of hallucination (Gao et al.,
2023; Ram et al., 2023). Recently, various RAG-
based methods have proposed (Yu et al., 2023;
Asai et al., 2024; Cuconasu et al., 2024). This
study is orthogonal to these lines of research, but
it is likely that the proposed method is compatible
with and may yield additional performance gains
when used together with RAG-based methods.

Broader applicability of anti-expert methods.
While this study focused on truthfulness, it is
important to note that anti-expert methods were
originally proposed in the field of toxicity mitiga-
tion (Liu et al., 2021). Therefore, anti-expert meth-
ods have the potential to be effective in various
fields. We hope this study inspires further cross-

cutting research on anti-expert methods.

Limited Scope of Truthful QA Evaluations. In
this work, we have only evaluated our method in
the multiple-choice setting of TruthfulQA. While
multiple-choice evaluation is the most widely
adopted metric, it provides only a limited view of
model factuality. As future work, we plan to ex-
tend our evaluation to the open-ended setting of
Truthful QA to further assess the generality and ro-
bustness of our method in more realistic genera-
tion scenarios.
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Configuration Value
Epochs )
Batch size 24
Learning rate 5x107°
Intermedeate size of MLP,; 4096

Penalty strength 3 in pexpert (-) 2.0

Filtering strength 7y in Tgac 1.0

Penalty strength § in vy, 1.0

Table 4: Hyperparameters of IMAE.

A More Implementation Details.

Dataset details. As training data, we used
10k hallucinated QA pairs from the HaluEval
dataset (Li et al., 2023a). Li et al. (2023a) cre-
ated hallucinated answers by prompting ChatGPT
to generate non-factual answers. As evaluation
data, we used the popular Truthful QA (Lin et al.,
2022). Truthful QA consists of 817 QA pairs on
which LLMs tend to generate hallucinate answers
and covers 38 domains, such as medical, legal, and
political.

Finetuning details. We ran experiments with 8
NVIDIA RTX 6000 (24GB) GPUs. We trained the
models with the AdamW optimizer (Loshchilov
and Hutter, 2019). Table 4 shows the hyperparam-
eters of IMAE.

B Ablation Study

Which parts of the proposed method contribute
to improving the truthfulness score? Table 5
shows an ablation study on TruthfulQA using
Llama2-7B-Chat. Removing loss reveals their
contributions: excluding the anti-expert mode loss
(Lanti), expert mode 10ss (Lexpert), or gate loss
(Lgate) led to significant decreases in truthfulness
scores, highlighting their importance. The gate
layer and token filtering both provided additional
gains.

Does the MLP layer size of the anti-expert
unit affect the truthfulness score? Figure 3
shows the relation between the intermediate size
of MLPayti and MC1/2/3 scores. MC1/2/3
scores tended to improved up to 4096 for the inter-
mediate size of M LP i, but did not improve from
4096. This indicated that the truthfulness score

MC1 MC2 MC3
baseline 36.96 54.62 27.95
IMAE 40.02 57.12 28.96

“w/o gate layer ~ 39.05 55.96 29.07

W/0 Lanti 37.09 54.15 27.68
W/0 Lexpert 36.35 54.08 26.64
w/0 Lgate 37.33 54.28 27.24
w/o token filtering 38.80 55.46 28.43

Table 5: Ablation study of IMAE on TruthfulQA. All
methods in this table are based on Llama2-7B-Chat.

improves as the intermediate size of MLP 4 in-
creases up to a certain value.

1142
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39.0 56.0 28.0
38.0 55.0 27.0
37.0 54.0 26.0
16 32 64 128 256 512 1024 2048 4096 8192 16 32 64 128 256 512 1024 2048 4096 8192 16 32 64 128 256 512 1024 2048 4096 8192
intermediate size intermediate size intermediate size
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Figure 3: Comparison of different intermediate sizes of MLP,,; on TruthfulQA. The base LLM is Llama2-7B-
Chat.
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