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Abstract

We show that human players’ gameplay in the
game of Wordle is influenced by the semantics,
orthography, and phonology of the player’s pre-
vious guesses. We compare actual human play-
ers’ guesses with near-optimal guesses using
NLP techniques. We study human language
use in the constrained environment of Wordle,
which is situated between natural language use
and the artificial word association task.

1 Introduction

Wordle is a daily word-guessing game where play-
ers attempt to identify an unknown five-letter word
within six attempts (Wardle, 2021). Players usu-
ally attempt to minimize the number of guesses
they make. Players also usually want to maintain a
“streak"” of having solved the game within at most 6
guesses for several days.

We explore the difference between near-optimal
play and human gameplay, which may be influ-
enced by cognitive shortcuts and biases. In order to
estimate near-optimal plays, we use the maximum-
entropy heuristic. We verify that the heuristic is
near-optimal.

In settings where word association is important,
humans are influenced by salient past informa-
tion, a phenomenon known as priming in psychol-
ogy (Schacter and Buckner, 1998). We conjecture
that priming effects exist in the game of Wordle as
well. Additionally, we conjecture that humans will
tend to depart less from previous guesses in order
to minimize cognitive load.

We review the prior work on priming in psy-
chology, and in particular, how priming influences
future word choice. We then review the optimal
strategy in Wordle, as well as heuristics that ap-
proximate it. Following this discussion, we intro-
duce our human guess data. We then present our
approach to measuring human biases in Wordle

gameplay and demonstrate the systematic differ-
ences between human play are near-optimal play.

2 Background: Human Cognitive
Processes

Priming is a phenomenon in psychology where
past experience influences behavior without the per-
son’s explicit knowledge of the influence (Schacter
and Buckner, 1998). Priming sometimes mani-
fests in word association. Prior works have demon-
strated the grammatical class, semantic meaning
and rhyme of the previous (cue) word would influ-
ence the later (response) word by humans. This
effect has also been explained through models of
lexical access in speech production, where residual
activation from previously retrieved lexical items
can facilitate or bias subsequent retrievals (Levelt,
1989; Roelofs, 1992).

Deese (1962) and De Deyne and Storms (2008)
explore the effect of the grammatical class of cue
words over the response word.

Steyvers and Tenenbaum (2005) use data col-
lected by Nelson (1999) to demonstrate that the
word association network — a graph where two
words are connected if they are members of a
cue-response pair — is sparse, with each word
connected to only 0.44% of other words. They
also use data collected by Miller (1995) and Fell-
baum (1998), and found that the word network
constructed based on semantics of words exhibits
sparseness, connectedness, neighboring clustering,
and power-law degree distribution. All of these
are the same characteristics exhibited in the free
association network.

Nelson et al. (1987) demonstrate the effect of
rhyme on memory and word association. They ran
an experiment where subjects would initially study
(read aloud) the cue-target pair of a given rhyme;
then 1.5-2 minutes after they finished studying, a
meaning-related cue word and its semantic relation
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with the target word would be given and the par-
ticipants would be required to read it aloud and
recall the word they studied. In the experiment, cue
words that rhyme with many other words would de-
crease the accuracy of the respondent, regardless of
the meaning-related cue word. Through conducting
a further experiment that changed all the cue-target
pairs studied to be meaning-related and only half to
be also rhyme-related, Nelson et al. (1987) showed
that the effect of rhyming appears only if the sub-
jects actively attend to it when studying the word
pairs.

Matusevych and Stevenson (2018) studied hu-
man word association based on word attributes.
Luo et al. (2025) demonstrated it is possible to
weakly predict human amusement responses to
Wordle gameplay using features similar to the ones
used in this study.

Related work on word puzzle solving provides
further evidence that lexical retrieval and phono-
logical awareness are central to constrained word-
generation tasks. Underwood et al. (1994) found
that expert crossword solvers outperform intermedi-
ate solvers in generating candidate words, solving
anagrams, and manipulating morphemic and syl-
labic components of words. These skills are closely
tied to efficient lexical access and morphological
processing. These findings suggest that in tasks
such as Wordle, players may similarly rely on lexi-
cal retrieval strategies and phonological structure
to guide their guesses.

3 Background: Wordle solving
mechanisms

The objective of Wordle depends on the player —
it can be maintaining the streak (i.e., trying not to
lose today’s game), winning in as few guesses as
possible, or even winning the game using funny
words.

However, most of the solving mechanisms are
designed to optimize objectives regarding the num-
ber of guesses, such as minimizing the average
number of guesses, minimizing the number of
guesses in the worst case, etc. Those mechanisms
can be classified into two classes: the exact opti-
mization approach and heuristic approaches. The
best approaches based on heuristics achieve results
that are only marginally inferior to exact methods.

Bertsimas and Paskov (2024) found an optimal
and efficient solution for Wordle that minimizes
the average number of guesses using dynamic pro-

gramming. They show that the word "SALET" is
the best starting guess and the minimum average
number of guesses required is 3.421. They demon-
strate that their optimal approach never results in a
loss (i.e., the algorithm always completes the game
within 6 guesses).

Heuristic approaches to Wordle can achieve
performance that is very close to optimal. The
depth-1 minimax heuristic aims to minimize the
number of guesses for the worst case, with search
depth of 1. For each guess, it iterates through
all possible words in the game and chooses the
one that minimizes the size of maximum partition
(the amount of possible solutions after the current
guess) as the guess. Given the starting guess as
"SALET", it is guaranteed to finish the game in 5
guesses, and has the average number of guesses of
3.482 (Cross, 2022). The entropy-based heuristic
(also with depth 1) reduces the uncertainty at each
step by choosing the guess that decreases (on aver-
age) the most number of potential solutions after
that guess (Shannon, 1948) (Cross, 2022). It is
also guaranteed to complete the game in 6 guesses
and have the average number of guesses of 3.432.
We use the Doddle! implementation to report those
results.

4 Data

The human guess data was sourced from Reddit.
The machine-generated guesses are obtained using
Doddle, an open-source Wordle solver introduced
earlier. Although an ideal comparison would be
with the optimal model, the Doddle solver was
chosen for computational reasons. It’s important
to note that the performance difference between
the exact dynamic programming solution and the
heuristic entropy solver is minimal: the exact solu-
tion achieves a minimum average of 3.421 guesses,
while the heuristic-based solver has an average of
3.482 guesses for its minimax heuristic and 3.432
guesses for its entropy-based heuristic. Doddle’s
heuristic min-entropy solver we use will be referred
to as the near-optimal strategy.

4.1 Data collection

The data is collected from the r/Wordle subreddit,
where people share their guesses online, contribut-
ing to a total of 83,000 data entries (Watchfull,
2023). We extract games posted by people in the

"https://github.com/CatchemAL/Doddle
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commonly-used format on the subreddit using a
regular expression.

5 Methods

5.1 Measuring Human Biases

To quantitatively assess the influence of human
cognitive biases in Wordle games, human plays
are compared to their entropy-based near-optimal
counterpart, where five different metrics described
below are used to reveal different aspects of human
biases (semantic, orthographic, and phonological).
For each guess in the data, the metrics below are
computed through comparing that guess with the
previous one (instead of comparing with all prior
guesses) unless otherwise stated.

5.1.1 Levenshtein Distance

The Levenshtein Distance measures the minimum
number of edits — insertions, deletions, or sub-
stitutions — needed to transform one word into
another (Levenshtein, 1966). This feature captures
how closely a player’s subsequent guesses align
with their previous ones in terms of structural simi-
larity. A smaller Levenshtein distance may indicate
that the player is selecting guesses that are more
similar to their prior attempts, potentially reflecting
a reluctance to explore novel letter combinations
or a preference for minimizing cognitive effort.

5.1.2 Semantic Distance

The GloVe (Pennington et al., 2014) distance is
computed using the negative cosine similarity be-
tween GloVe word embedding pairs. Humans may
potentially be biased to make guesses that are se-
mantically close to their previous guesses.

5.1.3 Hamming Distance

The Hamming distance between words is the num-
ber of locations where the words differ. We conjec-
ture that guesses that are close to previous guesses
in the Hamming distance sense are easier to make.

5.14 Rhyme

To determine whether two words rhyme or not,
their phonic transcription was used. This was
achieved using the pronouncing library, which
provides a phonetic transcription based on the
CMU Pronouncing Dictionary (CMU, 2015). Two
words are considered to have a perfect rhyme if
they have matching phonetic endings which include
stressed vowels (Per, 2019). We assess whether the
guess rhymes with the previous one.

6 Experiments

We compare how human guesses/plays differ sys-
tematically from near-optimal plays. We obtain dis-
tributions of human plays and near-optimal plays,
and compare them. We assess the effect size (dif-
ference between the distributions) using Cohen’s
d, and we computed the p-values based on the t-
statistics for the difference between the two distri-
butions.

We analyze separately games starting from dif-
ferent positions. We use the notation c,gc,ycyb and
(g, cy, cb), Where the number of “green" guesses
(correct letter in the correct place) is denoted with
cg» the number of “yellow" guesses (correct letter
in the incorrect place) is denoted with ¢, and the
number of letter guesses that are incorrect is cp.

In Figure 1, we present some observations on
the results of our comparison of human play with
near-optimal play for specific configurations. We
observe that in many, though not all, cases, humans
are biased towards their previous guesses. This is
particularly pronounced when there is a lot of free
choice. This indicates that human gameplay, which
combines creativity with optimization, shows more
evidence of lack of creativity when there is more
free choice. Figures 3 and 4 in the Appendix dis-
play the overall patterns: for more constrained posi-
tions, differences between near-optimal moves and
actual moves tend to be smaller.

We additionally report that the optimal guess
rhymes with the previous guess 7.3% of the time,
but humans make a guess that rhymes with the
previous guess 9.3% of the time (p-value < 0.001).

6.1 Relationship between semantic distance
and other measures

For valid Wordle word pairs, the Hamming distance
and the Levenshtein distance are strongly related
(Pearson-r=0.95 for all pairs, Pearson-r=0.81 for
character difference less than 5).

The relationship between character-based dif-
ferences and semantic distance (1 — cos(vg, vp)
where v, and v, are the GloVe vectors) is weaker:
Pearson-r= 0.06 (Figure 2), suggesting that the ef-
fects of semantic distance and orthographic dis-
tance likely operate separately.

7 Conclusions

Human gameplay in Wordle exhibits a bias toward
previous guesses semantically, orthographically,
and phonologically (e.g., sharing the last syllable).
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Figure 1: (¢4, ¢y, cp): the number of “green" guesses (correct letter in the correct place) is denoted with ¢, the
number of “yellow" guesses (correct letter in the incorrect place) is denoted with ¢,,, and the number of letter
guesses that are incorrect is cy,.
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Levenshtein distance vs GloVe distance
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Figure 2: GloVe similarity between guesses vs.
Levenshtein Distance

The bias is systematic, indicating human gameplay
does not merely randomly deviate from optimal
play.

In Wordle, we demonstrate an environment
where phenomena like word association can be
studied in a setting that is not as varied as natu-
ral speech, but where people are not merely per-
forming a task, as in the word association task
(cf. Hamilton and Huth (2020)). Environments
such as Wordle can be of interest when studying
other cognitive patterns.
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8 Limitations

We rely on publicly available data voluntarily
posted by users on Reddit. In principle, games
posted by Reddit users can differ systematically
from data sampled randomly from a different pop-
ulation of interest. This is due to selection effects
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as well as the fact that the population of Reddit
users, and specifically the Wordle subreddit, could
differ by demographics and linguistic background,
among other things, from other populations of in-
terest. We limit our study to the game of Wordle in
English. Our findings may not generalize to other
games in other languages.
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(a) Violin plot of Cohen d by green squares (GloVe).
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(c) Violin plot of Cohen d by yellow squares (GloVe).
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(e) Violin plot of Cohen d by grey squares (GloVe).
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(b) Violin plot of Cohen d by green squares (Word2Vec).
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(d) Violin plot of Cohen d by yellow squares (Word2Vec).
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(f) Violin plot of Cohen d by grey squares (Word2 Vec).

Figure 3: Distances between neighboring guesses, by amount of constraint on guess
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Figure 4: Distances between neighboring guesses, by amount of constraint on guess
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