
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 1112–1127

December 20-24, 2025 ©2025 Association for Computational Linguistics

Illusions of Relevance: Arbitrary Content Injection Attacks Deceive
Retrievers, Rerankers, and LLM Judges

Manveer Singh Tamber and Jimmy Lin
University of Waterloo

{mtamber, jimmylin}@uwaterloo.ca

Abstract

This work considers a black-box threat model
in which adversaries attempt to propagate arbi-
trary non-relevant content in search. We show
that retrievers, rerankers, and LLM relevance
judges are all highly vulnerable to attacks that
enable arbitrary content to be promoted to
the top of search results and to be assigned
perfect relevance scores. We investigate how
attackers may achieve this via content injection,
injecting arbitrary sentences into relevant
passages or query terms into arbitrary passages.
Our study analyzes how factors such as model
class and size, the balance between relevant
and non-relevant content, injection location,
toxicity and severity of injected content, and
the role of LLM-generated content influence
attack success, yielding novel, concerning,
and often counterintuitive results. Our results
reveal a weakness in embedding models,
LLM-based scoring models, and generative
LLMs, raising concerns about the general
robustness, safety, and trustworthiness of
language models regardless of the type of
model or the role in which they are employed.
We also emphasize the challenges of robust
defenses against these attacks. Classifiers and
more carefully prompted LLM judges often fail
to recognize passages with content injection,
especially when considering diverse text topics
and styles. Our findings highlight the need for
further research into arbitrary content injection
attacks. We release our code for further study:
https://github.com/manveertamber/
content_injection_attacks.

1 Introduction

Ensuring that search systems consistently return
trustworthy information is essential. Modern
search systems increasingly rely on dense embed-
ding models and neural rerankers providing effi-
cient and effective search. More recently, LLMs
have also been employed to score how relevant
passages are to a given query.

In this work, we examine a black-box threat
model in which adversaries poison the search cor-
pus to propagate completely arbitrary, non-relevant
content. Our study highlights a sharp risk: with
content-injection attacks, adversaries can reliably
push arbitrary content into the top positions, often
ranking first or among the top five, and LLM judges
often assign these passages perfect or near-perfect
relevance scores. The central concern is not merely
exposure to arbitrary content, but that such content
can easily occupy the most trusted and visible spots
in search, where users are most likely to engage.

We focus on simple but highly effective arbitrary
content injection attacks, including inserting query
terms into unrelated passages or adding arbitrary
sentences to relevant ones. To better understand
this vulnerability, we study how factors such as
model size and effectiveness, the proportion of in-
jected content to relevant content, injection loca-
tion, toxicity, and use of LLM-generated passages
impact the success of these attacks. We evaluate
these attacks on dense retrievers, rerankers, and
LLM relevance judges, allowing us to study vulner-
abilities across all three model classes.

Our investigation yields surprising and novel
findings. Embedding models and rerankers fre-
quently rank passages containing completely un-
related inserted content above their perfectly rel-
evant counterparts. LLM relevance judges also
show particularly counterintuitive behaviors: they
often assign perfect relevance scores to passages
with injected random content, and attacks are usu-
ally even more effective when unrelated sentences
are inserted at the beginning rather than the end.
Moreover, LLM judges do not reliably penalize pas-
sages as more non-relevant content is added. While
LLMs are generally more robust than retrievers
and rerankers to query and keyword injection into
non-relevant passages, they are very susceptible to
sentence injection into otherwise relevant passages.
Across all model types, several concerning trends

1112

https://github.com/manveertamber/content_injection_attacks
https://github.com/manveertamber/content_injection_attacks


Figure 1: Retrievers, rerankers, and LLM relevance judges are vulnerable to arbitrary content injection attacks,
identifying passages containing random or even extremely malicious content as highly relevant.

emerge: larger or more effective models are gener-
ally not any more robust, models generally fail to
penalize potentially hateful injected content, and
LLM-generated passages with simple content in-
jection are often very successful in scoring highly.

Our results, while focused on search, highlight
a flaw that spans diverse model architectures. We
find that embedding models, LLM-based scoring
models, and generative LLMs all exhibit vulnera-
bility to content injection, which raises significant
concerns about the general robustness, safety, and
trustworthiness of language models, irrespective of
their specific application or role.

Finally, we show that defenses, including classi-
fiers and prompted LLM judges, often fail to reli-
ably detect these attacks, especially across diverse
domains and styles, highlighting the need for more
robust and generalizable solutions.

2 Background

2.1 Neural IR Models
Embedding Models With single-vector retrieval,
embedding models map queries and passages into
a vector space where proximity signifies rele-
vance (Reimers and Gurevych, 2019).

Rerankers Rerankers refine an initial candidate
list based on relevance. While various methods
exist, including pointwise, pairwise, and listwise
methods (Nogueira and Cho, 2019; Nogueira et al.,
2019; Sun et al., 2023), this work employs point-
wise rerankers due to their proven effectiveness
and computational efficiency, as they score query-
passage pairs independently.

LLM Relevance Judges LLMs can be used to as-
sess passage relevance (Thomas et al., 2024; Upad-

hyay et al., 2024). Following convention, we use
LLMs prompted to assign scores on a 0-3 scale,
using the prompt from Alaofi et al. (2024) and
following TREC DL guidelines given to annota-
tors (Craswell et al., 2019) (see Appendix A).

2.2 Fooling Ranking Models
Earlier Search Systems Keyword stuffing was
used to manipulate earlier search systems (Castillo
and Davison, 2011; Gyongyi and Garcia-Molina,
2005), and it remains important to study how
stronger modern methods are still vulnerable to
these classic manipulation techniques.

Ranking Attacks One research direction studies
adversaries elevating the ranking of lower-ranked,
but potentially relevant or topical passages, instead
of promoting arbitrary content. Raval and Verma
(2020) showed that small text changes, such as
changing a few tokens, can mislead ranking models
to underestimate passage relevance. PRADA (Wu
et al., 2023) introduced a word-substitution attack
that used a learned surrogate ranking model to re-
place small sets of tokens, boosting a passage’s
rank. Chen et al. (2023b) proposed generating
connection sentences using a language model to
weave queries into the target text to boost its rank.

There has also been research interest in white-
box attacks on retrieval models. Zhong et al. (2023)
presented a white-box corpus poisoning attack on
embedding models, using a gradient-based method
inspired by HotFlip (Ebrahimi et al., 2018) to itera-
tively modify tokens and maximize passage embed-
ding similarity with the query embedding. While
effective, this approach often resulted in unnatural
passages with low token likelihoods, making them
easier to detect. To address the issue of unnatu-

1113



ral passages with gradient-based methods, Song
et al. (2020) constrained token substitutions using
a language model to ensure fluency.

Prompting in ranking models also presents possi-
ble attack vectors. Parry et al. (2024a) showed that
certain rerankers using prompt phrases including
(Query, Document, and Relevant) could be manip-
ulated by inserting certain related phrases such as
(Relevant and true) into passages.

Robustness to Inserted Non-Relevant Content
Existing work has examined how neural ranking
models behave when sentences are inserted into
passages, but has not addressed the risk of ad-
versaries promoting arbitrary content in search.
ABNIRML (MacAvaney et al., 2022) found that
adding content previously retrieved for a query,
though judged non-relevant by humans, could
sometimes increase a document’s score from a
ranking model. However, since this content was
still query-related, it does not represent truly ar-
bitrary content that an adversary might promote.
Parry et al. (2024b) examined where to insert
non-relevant promotional content into passages.
The work found that while such insertions wors-
ened a passage’s rank, adding content later in pas-
sages rather than earlier reduces this effect. LLM-
generated rewrites of promotional content were
also shown to lessen negative impacts on ranking,
but often did so by rewriting the inserted content
to have superficial connections to the original text,
diluting the intended message. Neither study con-
siders the risk that arbitrary, non-relevant content
could be promoted to the top of search rankings.

2.3 Fooling LLM Judges

LLM relevance judges have emerged relatively re-
cently, and their adversarial robustness remains
underexplored. Alaofi et al. (2024) showed that
these judges may assign higher scores to passages
containing query terms, even when the content is
non-relevant or nonsensical. This work found that
inserting a query or its keywords into a random pas-
sage can sometimes fool GPT-4 into rating manip-
ulated passages as relevant. In our study, we also
test query and keyword injection on two LLM rele-
vance judges, but find their vulnerability to these
attacks is generally relatively low or negligible. In
contrast, we show that sentence injection leaves
LLM relevance judges highly vulnerable.

2.4 Attacks on RAG Systems

Recent research on attacks in retrieval-augmented
generation (RAG) systems is also worth mention-
ing. Zou et al. (2024) and Shafran et al. (2024)
demonstrated that adversarial passages can be
crafted to lead LLMs to produce incorrect or manip-
ulated outputs. In black-box scenarios, the attacks
relied on prepending queries to target passages; in
white-box settings, gradient-based methods such
as HotFlip are used to craft adversarial passages.

2.5 Defending Against Attacks

Effective defenses against language model vulner-
abilities remain limited. This remains true with
information retrieval models as well. Chen et al.
(2023a) explored supervised classifiers trained to
detect specific manipulations from passage pro-
motion attacks (Liu et al., 2022; Wu et al., 2023;
Chen et al., 2023b). However, these classifiers
only remained effective when attempting to iden-
tify manipulations specifically targeted in training.
Perplexity-based filtering has shown some success
in identifying adversarial passages generated by
gradient-based methods (Zhong et al., 2023), but
is easily bypassed with more careful token selec-
tion (Song et al., 2020; Chen et al., 2023b).

In this work, we evaluate trained BERT-based
classifiers (Section 4.2) and a more carefully
prompted GPT-4o relevance judge (Appendix C).
Overall, we find that detecting content injection is
challenging for all defense types, even when focus-
ing on the narrower classification task of identify-
ing potentially hateful sentence injection from the
ToxiGen dataset (Hartvigsen et al., 2022). Unlike
prior work, we also highlight the difficulty of de-
fending in diverse, out-of-domain settings through
evaluating on BEIR corpora, where models espe-
cially suffer.

3 Experimental Setup

3.1 Threat Model

In our black-box threat model, adversaries poison
retrieval corpora by adding passages with arbitrary
content. We focus on the conservative case of the
addition of a single passage containing arbitrary
non-relevant content, with the attacker aiming for
it to rank highly or be judged as relevant by an
LLM relevance judge for a given user query. The
addition of multiple passages would only increase
the chance of attack success.

1114



Although our query-injection experiments as-
sume the attacker knows the target query, the at-
tacks do not require the exact query in practice. For
keyword injection, only the key terms are needed.
For sentence injection, adversaries insert arbitrary
sentences into a passage, and our results show that
the modified passage can rank highly for queries
where the original passage ranked highly. For sen-
tence injection, we assume the attacker can iden-
tify top-scoring passages to modify. However, we
explore attacks using LLM-generated relevant pas-
sages, relaxing this requirement, and we show that
this approach is even more effective in practice.

This threat model is practical because, for exam-
ple, it lets adversaries promote ads, harmful con-
tent, misinformation, and even launch prompt injec-
tion attacks in RAG systems. These manipulations
require little effort yet remain highly effective.

3.2 Evaluation Models
We select a variety of embedding models, rerankers,
and LLMs while aiming to keep a reasonable com-
putational budget. All experiments in this study
were conducted using single RTX A6000 GPUs,
except for experiments with GPT-4o, which were
run through the Azure OpenAI API.

Embedding Models We evaluate five embed-
ding models selected for varied sizes and
training approaches. These include models
from the BGE family (Xiao et al., 2024),
BGE-base (bge-base-en-v1.5) and BGE-large
(bge-large-en-v1.5), to compare the impact of
model size, initialized from either BERT-base or
BERT-large (Devlin et al., 2019). We also incor-
porate two E5 models (Wang et al., 2022), un-
supervised E5-unsup (e5-base-unsupervised) and
fine-tuned E5-sup (e5-base), to assess the ef-
fect of supervised fine-tuning. Finally, we
include Arctic-base (Merrick et al., 2024)
(snowflake-arctic-embed-m-v1.5), initialized from
BERT-base. When analyzing the susceptibility of
embedding models to content injection attacks, we
consider the adversarial passage’s rank among the
entire retrieval corpus.

Rerankers Our reranker model evaluation
included ms-marco-MiniLM-L-12-v2 (Reimers
and Gurevych, 2019) (denoted MiniLM), a
lightweight (33M parameters) model fine-tuned
on MiniLM-L12-H384-uncased (Wang et al., 2020).
We also studied the T5-based MonoT5 fam-
ily (Nogueira et al., 2020; Raffel et al., 2020),

comparing MonoT5-base (220M) and MonoT5-
large (770M) to assess scaling effects. Additionally,
we included RankT5-base (Zhuang et al., 2023),
also T5-based, to explore alternative fine-tuning
strategies. When analyzing the susceptibility of
rerankers to content injection attacks, we consider
the adversarial passage’s rank among the top-100
passages reranked from an initial BM25 retrieval.

LLM Relevance Judges Given the higher costs
of running LLMs, we limited our focus to two
LLM judges. These included GPT-4o (OpenAI,
2023), the 2024-08-06 version, selected as a pow-
erful and well-established model and Llama-3.1
(8B) (Llama Team, 2024), a lightweight and open-
source model. When analyzing the susceptibility
of LLM relevance judges to adversarial passages,
we consider the relevance score (0-3) assigned by
the LLM judge to the adversarial passage.

3.3 Evaluation Datasets

Our evaluation is primarily based on the MS-
MARCO passage ranking task, specifically us-
ing the TREC Deep Learning Track datasets
DL19 (Craswell et al., 2019) and DL20 (Craswell
et al., 2020). For greater diversity, we also in-
corporate several datasets from the BEIR bench-
mark (Thakur et al., 2021), particularly in our
defense evaluations. These include FiQA (Maia
et al., 2018), SciFact (Wadden et al., 2020), TREC-
COVID (Voorhees et al., 2021), NFCorpus (Boteva
et al., 2016), and Climate-FEVER (Diggelmann
et al., 2020). Together, these datasets span a range
of query styles (e.g., factual, opinion-based), cor-
pus sources (e.g., Wikipedia, scientific literature,
online forums), and domains (e.g., finance, health,
climate). For all datasets, we only include queries
with at least one annotated relevant passage. We
provide statistics on the corpora in Appendix B.

3.4 Adversarial Passages

3.4.1 Passage Types
We study three types of passages: relevant, random,
and scrambled-word. For relevant passages, we
adopt two approaches: in model-specific settings,
we treat the top-scoring passage for a query as rel-
evant, while in model-agnostic settings, we use
GPT-4o to generate passages explicitly prompted
to be perfectly relevant. Random passages are sam-
pled from the MSMARCO v1 passage corpus and
filtered to include only those with at least one com-
plete sentence (see Section 3.4.2), resulting in 8.4

1115



Query Injection Keyword Injection Sentence Injection

Random Scrambled Random Scrambled Relevant

×1 ×2 ×3 ×1 ×2 ×3 ×1 ×2 ×3 ×1 ×2 ×3 ×1 ×2

Retrievers (R@1 / R@5)

BGE-B 0.4 / 1.6 9.3 / 28.5 17.5 / 42.9 2.3 / 9.5 28.2 / 61.6 43.5 / 74.6 0.2 / 1.0 2.9 / 9.9 6.6 / 19.4 0.4 / 1.0 11.8 / 28.9 18.4 / 42.9 2.5 / 34.2 0.8 / 16.1
BGE-L 0.0 / 1.4 6.6 / 19.6 12.0 / 34.0 3.5 / 18.6 29.1 / 62.7 38.6 / 73.4 0.0 / 0.6 3.1 / 10.3 5.8 / 15.1 0.4 / 6.0 13.4 / 33.8 18.6 / 41.9 8.7 / 56.3 3.5 / 34.6
E5-sup 0.0 / 0.0 9.9 / 31.3 20.4 / 46.8 0.4 / 5.6 19.2 / 46.0 22.7 / 53.4 0.0 / 0.4 4.1 / 16.7 9.1 / 31.8 0.8 / 2.7 11.8 / 31.8 16.7 / 39.8 9.9 / 66.4 3.1 / 39.2
E5-unsup 6.8 / 18.4 9.1 / 28.7 14.6 / 37.5 20.4 / 43.1 42.3 / 69.3 47.8 / 72.2 1.2 / 5.4 3.5 / 10.3 4.9 / 13.2 4.7 / 15.5 13.2 / 32.8 18.4 / 41.0 3.5 / 33.2 2.7 / 21.9
Arctic-B 0.6 / 4.3 10.9 / 34.8 16.3 / 42.5 1.0 / 8.5 21.4 / 52.6 30.5 / 63.3 0.4 / 2.1 4.1 / 15.5 7.2 / 24.7 0.4 / 3.9 7.4 / 27.2 12.8 / 36.3 8.9 / 56.1 2.5 / 32.2

Rerankers (R@1 / R@5)

MiniLM 13.0 / 36.9 21.9 / 49.1 24.7 / 50.9 8.9 / 35.9 17.5 / 44.1 20.2 / 48.0 6.0 / 28.0 11.5 / 36.1 13.4 / 37.9 5.6 / 27.0 10.1 / 35.5 12.6 / 37.3 0.4 / 62.5 0.2 / 42.9
MonoT5-B 7.6 / 26.6 23.1 / 51.8 29.3 / 61.2 10.5 / 33.8 29.5 / 60.0 32.8 / 65.6 7.2 / 22.9 17.5 / 38.4 19.8 / 42.5 7.6 / 28.2 21.2 / 42.1 23.7 / 47.6 0.4 / 57.3 0.4 / 34.8
MonoT5-L 4.5 / 25.6 20.6 / 48.9 27.2 / 57.1 16.7 / 44.5 34.6 / 67.0 39.0 / 72.8 2.3 / 16.3 8.0 / 28.0 13.0 / 31.8 8.7 / 28.5 20.0 / 40.8 20.2 / 43.1 0.0 / 42.1 0.0 / 29.1
RankT5-B 1.9 / 8.5 10.9 / 34.6 15.7 / 42.5 4.5 / 21.9 19.2 / 47.0 23.3 / 51.8 0.6 / 6.8 9.7 / 27.6 15.3 / 34.6 2.9 / 15.3 16.9 / 38.6 21.6 / 42.3 7.2 / 74.4 3.1 / 55.9

LLM Judges (S@3 / S@2+)

GPT-4o 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.2 / 0.2 0.0 / 0.4 0.0 / 1.0 0.2 / 0.2 0.0 / 0.2 0.2 / 0.4 53.2 / 97.9 55.7 / 99.0
Llama-3.1 0.6 / 1.4 0.8 / 2.1 0.2 / 0.6 0.0 / 0.8 0.4 / 2.9 0.0 / 0.8 0.8 / 2.1 0.8 / 1.4 0.2 / 0.2 0.0 / 1.2 0.0 / 1.6 0.0 / 1.0 22.6 / 59.5 13.2 / 61.6

Table 1: Examining query, keyword, and sentence repetition on DL19 and DL20 queries across injection attacks and
three passage types (random, scrambled word, and relevant). The queries, keywords or sentences are inserted into
the start of the passage between one and three times. Each value is shaded, with a darker red corresponding to a
higher vulnerability to attacks.

million candidates. We also include scrambled-
word passages, created by randomly sampling n
words from the MSMARCO corpus. We typically
compare scrambled-word passages to random pas-
sages and take n to match the random passage’s
word count. Scrambled-word passages are inher-
ently meaningless, serving as clear non-relevant
content to study model failures.

3.4.2 Passage Manipulations
We study three passage manipulation techniques:
sentence, query, and keyword injection.

Sentence injection adds arbitrary non-relevant
text to relevant passages. We study both random
and potentially hateful sentence injection. Ran-
dom sentences are sampled from the MSMARCO
v1 passage corpus (Bajaj et al., 2016), capturing
diverse topics, grammar, and styles. Potentially
hateful sentences are drawn from the ToxiGen
dataset (Hartvigsen et al., 2022), limited to those
generations labelled toxic by humans or classifiers.
Although ToxiGen produces fluent adversarial text,
the text is generated by language models, which
may introduce repetitive patterns that limit general-
izability. Accordingly, we focus primarily on ran-
dom sentence injection as a more content-agnostic
threat, while Section 4.1 and our defense evalu-
ations explore the effects of potentially hateful
content. Sentences are extracted using spaCy’s
en_core_web_sm model (Honnibal et al., 2020) and
filtered to ensure basic meaningfulness: they must
be 30–300 characters long, contain at least 5 words,
and include both a verb and a noun.

Query injection appends the full query to a pas-
sage, while keyword injection inserts query terms
(excluding stopwords) into the passage. Both tech-

niques aim to increase a passage’s relevance score
through surface-level query signals, regardless of
the passage’s actual semantic content.

3.4.3 Experiments with Adversarial Passages
Adversarial passages are created using one of three
injection types: sentence, query, or keyword injec-
tion. Injected text is inserted at the beginning, mid-
dle, or end of the base passage. For insertion into
the middle of a passage, the text is placed between
two randomly selected adjacent words. We also ex-
plore variations involving repeated query/keyword
insertions and multiple sentence injections.

To reduce variance in reported results due to
specific passage or sentence choices, for query and
keyword injection, we sample five random passages
and five scrambled-word passages per query. For
sentence injection, random sentences are sampled
five times and inserted into relevant passages.

3.5 Attack Success Metrics

For retrievers and rerankers, we report R@1 and
R@5, the proportion of times that the adversarial
passage ranks first or within the top five, respec-
tively. For LLM judges, we use S@3 and S@2+,
where S@3 is the proportion of adversarial pas-
sages rated as perfectly relevant (score of 3), and
S@2+ includes those rated as highly relevant (score
of 2 or higher). Note, the scores are clearly defined
in Appendix A.

R@1 and S@3 provide stricter and more crit-
ical measures of attack success than the relaxed
metrics R@5 and S@2+. An R@1 attack success
means the adversarial passage ranks at the top of
the corpus, even outranking relevant corpus pas-
sages. An S@3 success indicates the LLM judge

1116



Query Injection Keyword Injection Sentence Injection

Random Scrambled Random Scrambled Relevant

Start Mid End Start Mid End Start Mid End Start Mid End Start Mid End

Retrievers (R@1 / R@5)

BGE-B 0.4 / 1.6 0.0 / 0.2 0.2 / 1.2 2.3 / 9.5 0.6 / 2.5 0.4 / 1.9 0.2 / 1.0 0.2 / 0.4 0.0 / 0.4 0.4 / 1.0 0.0 / 0.2 0.0 / 0.0 2.5 / 34.2 4.3 / 48.9 6.8 / 59.6
BGE-L 0.0 / 1.4 0.0 / 0.8 0.0 / 0.8 3.5 / 18.6 0.2 / 4.3 0.4 / 6.2 0.0 / 0.6 0.0 / 0.2 0.0 / 0.6 0.4 / 6.0 0.0 / 0.2 0.0 / 0.4 8.7 / 56.3 9.1 / 68.9 10.7 / 76.3
E5-sup 0.0 / 0.0 0.2 / 1.2 0.0 / 0.2 0.4 / 5.6 1.0 / 6.6 0.6 / 2.3 0.0 / 0.4 0.0 / 0.2 0.0 / 0.4 0.8 / 2.7 0.0 / 0.2 0.0 / 0.8 9.9 / 66.4 12.4 / 73.6 23.1 / 83.7
E5-unsup 6.8 / 18.4 0.2 / 3.3 22.1 / 37.3 20.4 / 43.1 2.9 / 8.0 2.5 / 9.7 1.2 / 5.4 0.2 / 0.6 3.9 / 10.5 4.7 / 15.5 0.2 / 2.1 0.6 / 2.9 3.5 / 33.2 13.2 / 59.4 15.9 / 53.8
Arctic-B 0.6 / 4.3 0.2 / 1.0 0.0 / 0.6 1.0 / 8.5 0.0 / 1.9 0.0 / 0.6 0.4 / 2.1 0.0 / 0.6 0.0 / 0.2 0.4 / 3.9 0.0 / 0.4 0.0 / 0.4 8.9 / 56.1 12.2 / 77.7 14.0 / 83.9

Rerankers (R@1 / R@5)

MiniLM 13.0 / 36.9 5.6 / 21.2 2.3 / 15.1 8.9 / 35.9 2.9 / 20.2 2.3 / 14.0 6.0 / 28.0 0.6 / 4.9 1.0 / 7.8 5.6 / 27.0 0.2 / 4.5 0.4 / 7.6 0.4 / 62.5 4.9 / 84.1 6.8 / 92.6
MonoT5-B 7.6 / 26.6 3.7 / 15.3 0.0 / 3.7 10.5 / 33.8 2.7 / 18.4 0.2 / 8.0 7.2 / 22.9 0.6 / 4.7 0.2 / 3.3 7.6 / 28.2 0.0 / 4.3 0.0 / 4.5 0.4 / 57.3 4.7 / 84.7 16.7 / 96.9
MonoT5-L 4.5 / 25.6 2.3 / 14.6 0.2 / 1.9 16.7 / 44.5 2.1 / 14.6 0.4 / 4.9 2.3 / 16.3 0.6 / 3.3 0.0 / 1.6 8.7 / 28.5 0.0 / 3.7 0.0 / 2.5 0.0 / 42.1 2.3 / 77.1 1.4 / 88.0
RankT5-B 1.9 / 8.5 4.5 / 17.9 2.5 / 12.6 4.5 / 21.9 4.7 / 25.4 4.5 / 21.4 0.6 / 6.8 1.0 / 5.6 1.0 / 8.9 2.9 / 15.3 1.6 / 8.5 2.1 / 16.7 7.2 / 74.4 4.9 / 85.4 14.2 / 97.3

LLM Judges (S@3 / S@2+)

GPT-4o 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.2 / 0.2 0.2 / 0.2 0.0 / 0.0 0.0 / 0.0 0.2 / 0.2 0.0 / 0.0 0.2 / 0.6 53.2 / 97.9 31.7 / 94.6 30.6 / 96.1
Llama-3.1 0.6 / 1.4 0.4 / 3.7 0.2 / 0.4 0.0 / 0.8 0.0 / 1.4 0.0 / 4.7 0.8 / 2.1 0.2 / 5.4 0.0 / 0.8 0.0 / 1.2 0.0 / 1.0 0.0 / 22.3 22.6 / 59.5 25.1 / 70.8 17.6 / 59.8

Table 2: Examining the effect of the location of insertion (start, middle, or end) on DL19 and DL20 queries across
query injection, keyword injection, and sentence injection attacks and three passage types (random, scrambled word,
and relevant). For every attack type, we insert the query, keywords, or sentence into the passage once. Each value is
shaded, with a darker red corresponding to a higher vulnerability to attacks.

considered the modified passage perfectly relevant,
despite containing random non-relevant content.

4 Results

4.1 Attack Success

We begin by analyzing attack success rates for
query, keyword, and random sentence injection
on the DL19 and DL20 datasets. Table 1 presents
results across all models, highlighting the impact
of repetition, while Table 2 examines how injection
location affects attack success.

Across all models, we observe widespread vul-
nerability, though the degree of vulnerability varies
by model and manipulation method. Every model
exhibits at least one attack configuration, defined
by injection type, position, and repetition, that
achieves over 20% attack success under strict cri-
teria (R@1 or S@3), and over 70% under relaxed
criteria (R@5 or S@2+), showing the severity of
the threat posed by simple content injection.

Comparing Injection Types For retrievers and
rerankers, all three injection types are effective,
with query injection consistently outscoring key-
word injection across insertion locations and repeti-
tions. Sentence injection is also effective, but query
and keyword injection can yield high success rates
simply through repetition.

In contrast, LLM judges are more resilient to
query and keyword injection. For instance, GPT-4o
showed negligible vulnerability, with query injec-
tion yielding just 0.2% S@3 success (only when
appended at the end), and keyword injection also
scored near zero across all settings. Llama-3.1 (8B)
also tends to have stronger robustness than the re-
trievers and rerankers, though one case stands out:

keyword injection into the end of scrambled pas-
sages resulted in a notable 22.3% S@2+ success
rate. Nonetheless, LLMs are highly susceptible to
sentence injection. For GPT-4o in particular, S@3
ranged from 30–60%, and S@2+ success exceeded
90% across all conditions, revealing a weakness
to sentence injection despite robustness to simpler
keyword or query-based manipulations.

Investigating the Impact of Query, Keyword,
and Sentence Repetition As shown in Table 1,
repeating query terms or keywords consistently
boosts attack success for retrievers and rerankers.
In contrast, increasing random sentence injections
consistently reduces attack success for these mod-
els, as expected, since additional non-relevant con-
tent should weaken relevance. Counterintuitively,
the opposite trend appears for LLM judges. While
query and keyword injection have low attack suc-
cess with the LLM judges, even with repeated
query terms, attack success against GPT-4o with
more injected sentences slightly increases, with
S@2+ and S@3 success rates rising. Llama-3.1
(8B) shows a similar pattern for S@2+.

Investigating the Impact of Location Table 2
compares the attack success of different insertion
locations (start, middle, end). For retrievers and
rerankers, attacks are generally most effective when
the non-relevant content appears later in the pas-
sage. Specifically, query and keyword injection at
the start of random or scrambled passages yield
the highest success rates, while sentence injection
is more effective when added to the end of a rel-
evant passage. LLM judges, however, again ex-
hibit more unexpected behavior. For GPT-4o, sen-
tence injection is most successful when placed at

1117



Model Relevant (Corpus) Gen-50 Gen-100 Gen-200

Retrievers (R@1 / R@5)

BGE-B 2.5 / 34.2 19.6 / 49.3 24.1 / 55.7 23.7 / 59.4
BGE-L 8.7 / 56.3 31.8 / 65.2 35.7 / 70.1 34.8 / 72.8
E5-sup 9.9 / 66.4 35.3 / 67.8 38.8 / 72.6 27.6 / 63.9
E5-unsup 3.5 / 33.2 6.4 / 26.0 14.6 / 37.5 19.0 / 46.8
Arctic-B 8.9 / 56.1 27.2 / 55.9 36.1 / 68.9 40.6 / 75.1

Rerankers (R@1 / R@5)

MiniLM 0.4 / 62.5 35.5 / 68.5 41.0 / 76.7 39.6 / 74.8
MonoT5-B 0.4 / 57.3 32.6 / 70.1 35.5 / 74.4 30.3 / 70.3
MonoT5-L 0.0 / 42.1 23.7 / 60.2 25.2 / 64.9 25.4 / 69.3
RankT5-B 7.2 / 74.4 46.6 / 81.9 54.2 / 84.1 56.1 / 90.1

LLM Judges (S@3 / S@2+)

GPT-4o 53.2 / 97.9 93.0 / 99.6 98.6 / 99.8 100.0/100.0
Llama-3.1 22.6 / 59.5 1.0 / 94.6 0.4 / 95.3 23.3 / 96.1

Table 3: Attack success on DL19 and DL20 for sentence
injection into the beginning of relevant MSMARCO
corpus passages and generated passages of roughly 50,
100, and 200 words. Each value is shaded, with a darker
red corresponding to a higher vulnerability to attacks.

the beginning of the passage, and Llama-3.1 (8B)
similarly shows higher S@3 success for sentence
injection at the start rather than the end. Due to
the low susceptibility of LLM judges to query and
keyword injection, we focus less on these attack
types for LLM judges. Nonetheless, we observe
a notable odd exception: Llama-3.1 (8B) shows a
surprisingly high S@2+ rate when keywords are
injected at the end of scrambled passages. Overall,
consistent with the repetition experiments, LLM
judges behave less predictably than retrievers and
rerankers and do not follow the expected patterns.

Model size and effectiveness do not predict re-
silience to attacks Although GPT-4o is gener-
ally considered a stronger LLM than Llama-3.1
(8B), Tables 1 and 2 show that it is often more
vulnerable to sentence injection. Similarly, among
retrievers and rerankers, larger or more effective
models, such as MonoT5-large (vs. MonoT5-base)
and BGE-large (vs. BGE-base), do not consistently
exhibit greater robustness and often show higher
attack success rates.

E5-unsup tends to be more susceptible to query
and keyword injection than other retrievers, but rel-
atively robust to sentence injection, including when
compared to its supervised counterpart (E5-sup).
Unlike other models fine-tuned on retrieval datasets
like MSMARCO, E5-unsup is trained solely via
contrastive pre-training on large-scale web data.
This may explain its sensitivity to query and key-
word injection, while its lack of potentially noisy
supervised training could make it less prone to ig-
noring non-relevant sentence-level content.

Examining Passage Types Across Tables 1 and
2, when considering query and keyword injection,
scrambled passages tend to yield higher attack suc-
cess rates than random passages for retrievers and
rerankers. This trend does not consistently hold for
LLM judges, which generally show low vulnerabil-
ity to query and keyword injection. MiniLM also
tends to be an exception, but the overall pattern
remains. This is particularly interesting because
scrambled-word passages are nonsensical. The rea-
son for this discrepancy is not entirely clear. One
possible explanation is that scrambled passages,
missing any coherent context, may be more sus-
ceptible to influence from injected query terms,
leading models to overemphasize these signals and
assign inflated relevance scores.

LLM-Generated Passages Table 3 compares
the effectiveness of sentence injection into LLM-
generated passages versus top-scoring passages
from the MSMARCO corpus using each model.
We generated passages by prompting GPT-4o to
produce perfectly relevant responses of specified
lengths for each query. Overall, attack success rates
were higher with generated passages and tended
to increase, though inconsistently, with passage
length. One explanation is that LLM-generated
passages maintain coherent and complete context,
which has been shown to improve retrieval effec-
tiveness (Tamber et al., 2023). Tan et al. (2024)
also observe that LLMs tend to favor semantically
rich and well-structured passages over shorter or
disjointed ones from retrieval corpora. Another
possible factor is that longer generated passages
may retain a higher proportion of relevant content
even after sentence injection, reducing the impact
of the added noise. Interestingly, even relatively
short, roughly 50-word generated passages often
yielded higher attack success than MSMARCO pas-
sages, which average around 58 words, suggesting
that coherence may be more important than length
alone. However, it is worth mentioning that the
Llama-3.1 (8B) judge showed lower S@3 success
rates with generated passages under 200 words.

Potentially Hateful Sentence Injection Table 4
compares the effectiveness of injecting random ver-
sus potentially hateful text with text gathered as
described in Section 3.4.2. To control for the differ-
ence in sentence lengths between MSMARCO and
ToxiGen sentences, we downsample the set of MS-
MARCO sentences until its sentence-length distri-
bution matches ToxiGen’s. Injecting ToxiGen sen-

1118



Sentences BGE-B BGE-L E5-sup E5-unsup Arctic-B MiniLM MonoT5-B MonoT5-L RankT5-B GPT-4o Llama-3.1

Hateful 4.7 / 49.9 18.6 / 79.4 20.8 / 79.8 4.9 / 39.2 15.5 / 73.4 0.2 / 68.9 0.2 / 68.0 0.2 / 60.6 15.1 / 90.3 41.4 / 96.0 26.7 / 59.4
Random 4.3 / 43.9 13.8 / 70.1 16.5 / 73.6 3.1 / 36.7 11.3 / 64.1 1.0 / 68.0 0.6 / 64.7 1.2 / 52.4 13.2 / 81.0 63.1 / 98.9 27.9 / 62.6

Table 4: Comparing the insertion of random vs hateful sentences on DL19 and DL20. One sentence is inserted at
the start of passages. We present R@1 / R@5 for retrievers and rerankers and S@3 / S@2+ for LLM judges. Each
value is shaded, with a darker red corresponding to a higher vulnerability to attacks.

tences does not usually result in lower attack suc-
cess rates, except for with the LLM judges, where
attack success is still high with potentially hateful
sentences. Overall, these results indicate that the
evaluated models generally do not sufficiently pe-
nalize potentially hateful content, despite the ideal
that such content would be penalized. Appendix C
explores a more careful prompting of LLM judges
to avoid successful sentence injections with poten-
tially hateful sentences, finding improved, though
imperfect, defense.

4.2 Investigating Defenses

In this section, we show that content injection at-
tacks prove difficult to detect when considering di-
verse passage topics and styles. This remains true
even when we limit the content of sentence injec-
tion to potentially hateful ToxiGen sentences rather
than more diverse sentences from MSMARCO.

Arbitrary content injection attacks threaten the
integrity of retrievers, rerankers, and LLM judges,
making it essential to explore defenses that also
preserve overall search effectiveness. A straightfor-
ward strategy is to filter adversarial passages from
retrieval corpora using a classifier. However, we
examine the limitations of classifiers. Note that
we also study making LLM judges more robust to
content injection in Appendix C. In all cases, we
emphasize that defense remains a challenge.

4.2.1 Training Classifiers
We train classifiers by generating adversarial pas-
sages during training, using queries and relevant
passages from the MSMARCO v1 passage rank-
ing training set. For sentence injection, we study
two cases: inserting random sentences from MS-
MARCO (content-agnostic) and potentially hateful
sentences from the ToxiGen test set. MSMARCO
sentences are split into train/dev/test subsets, while
ToxiGen training data is divided into train/dev for
fair evaluation, using the test set as-is.

For training data, per query, we create two
types of adversarial passages: (1) queries or key-
words injected into random or scrambled pas-

sages, and (2) relevant passages with injected sen-
tences. Key choices to be made, such as the injec-
tion type (query/keyword) and base passage (ran-
dom/scrambled) in the case of (1) along with the
number of insertions (1–3), and the insertion po-
sition (start/middle/end) both for (1) and (2) are
randomly selected with equal probability. Each
training batch includes a balanced mix of benign
and adversarial examples for classification.

We train two classifiers based on
ModernBERT-base (Warner et al., 2024) (using
learning rate 1e-5, 50 warmup steps, dropout
0.1, batch size 32). For sentence injection, one
is trained with MSMARCO sentences, while the
other is trained with ToxiGen sentences. Both aim
to distinguish adversarial from benign passages
and queries and are trained identically for query
and keyword injection, only differing in their
training for sentence injection.

4.2.2 Evaluating Classifiers

To evaluate classifier effectiveness, we measure er-
ror rates across all attack configurations, defined
by injection type, passage type, repetition count,
and position, with each configuration equally repre-
sented, following the methodology in Section 3.4.3.
For sentence injection evaluation, adversarial pas-
sages are constructed by injecting sentences into
top-scoring passages retrieved by BGE-base.

Table 5 reports false positive rates on benign
passages (from MSMARCO and BEIR corpora)
and error rates on adversarial ones. Note, random
passages for query and keyword injection are taken
from MSMARCO for non-relevant content.

False positive rates on benign passages are gen-
erally low (under 2%), but there are notable excep-
tions. On FiQA, the MSMARCO-trained classifier
misclassifies approximately 3% of benign passages,
while the ToxiGen-trained classifier misclassifies
nearly 13%. We hypothesize that this stems from
FiQA’s informal, user-generated content, which of-
ten contains coarse language. These patterns may
be misinterpreted by the classifiers as containing
injected toxic content. Both classifiers also strug-

1119



(a) Classifier Trained with MSMARCO Sentence Injection

Dataset False
Positive (%)

Keyword
Injection

Query
Injection

Sentence
Injection

(MSMARCO)

Sentence
Injection
(ToxiGen)

DL19 1.2 0.0 0.1 0.8 0.9
DL20 1.2 0.3 0.0 0.5 2.2
CLIMATE-FEVER 0.3 0.0 0.5 0.7 0.6
FiQA 3.2 0.0 0.6 0.8 0.9
NFCorpus 1.3 0.5 2.2 1.0 0.9
SciFact 1.0 0.0 0.3 0.8 0.7
TREC-COVID 1.4 0.0 0.2 8.9 12.7

(b) Classifier Trained with ToxiGen Sentence Injection

Dataset False
Positive (%)

Keyword
Injection

Query
Injection

Sentence
Injection

(MSMARCO)

Sentence
Injection
(ToxiGen)

DL19 0.7 0.1 0.1 26.3 0.5
DL20 0.7 0.2 0.0 24.8 1.6
CLIMATE-FEVER 0.4 1.1 10.2 18.2 0.5
FiQA 12.6 0.0 3.0 12.9 0.4
NFCorpus 1.1 0.5 4.6 13.7 0.9
SciFact 1.5 0.6 11.6 12.2 0.8
TREC-COVID 1.2 0.0 1.0 23.7 5.3

Table 5: False Positive (%) shows the proportion of passages in each dataset’s corpus classified as adversarial. The
remaining columns show the error rate (%) of the classifier on adversarial passages by attack type. Each value is
shaded, with a darker red corresponding to a higher classifier error.

gle with TREC-COVID sentence injection, which
might point to difficulty with detecting injected
content in out-of-distribution domains.

Unsurprisingly, the ToxiGen-trained classifier
performs better on recognizing ToxiGen-injected
passages but worse on recognizing MSMARCO-
injected ones, demonstrating a trade-off between
specialization and generality in recognizing partic-
ular injected content.

For recognizing keyword injection, the
MSMARCO-trained classifier keeps error below
0.5%, though query injection error reaches as
high as 2.2%. The ToxiGen-trained classifier
performs worse on keyword and query injection,
especially where error rates exceed 10% on
CLIMATE-FEVER and SciFact. Given that
the only difference in training between the two
classifiers is the type of sentence injection data
used in training, this highlights that subtle shifts in
training data can hurt classifier effectiveness.

Overall, these results highlight the challenges
of training classifiers for passages with content in-
jection. Even when the detection task is more nar-
rowly defined, only identifying passages with po-
tentially hateful ToxiGen sentence injection, clas-
sifiers still produce a high rate of false positives.
While classifiers can filter adversarial passages,
they frequently miss others or mistakenly flag clean
content, especially in out-of-domain corpora with
diverse characteristics. Improving classifier effec-
tiveness is a challenge that likely requires training
on a large and more diverse set of queries and pas-
sages to better handle variation in style and topic.

5 Conclusion

Understanding and addressing arbitrary content in-
jection attacks is essential. This paper demonstrates
that language models used in IR, including retriev-
ers, rerankers, and LLM judges, are all vulnerable

to arbitrary content injection attacks. Even basic
manipulations, like adding arbitrary sentences to
relevant passages or inserting query terms into non-
relevant ones, allow adversaries to craft passages
with arbitrary content of their choosing that rank
at the top of search results and receive perfect rele-
vance scores.

Our analysis reveals widespread vulnerabili-
ties. Embedding models and rerankers often
rank content-injected passages above truly relevant
counterparts, while LLM judges often assign per-
fect relevance scores to passages with non-relevant
additions. LLM judges also exhibit counterintuitive
behaviors, such as inconsistent sensitivity to injec-
tion location or volume, and a high susceptibility
to sentence injection attacks. Notably, stronger or
larger models are not consistently more robust. The
presence of potentially toxic content also generally
does not reduce attack success, and sentence injec-
tion into LLM-generated passages proves to be a
highly effective method to craft seemingly relevant
passages with arbitrary content.

Defending against these attacks remains a chal-
lenge. Classifiers trained to detect content injec-
tion show promise but perform inconsistently, espe-
cially in out-of-domain contexts with varied topics
and writing styles, even when the injection involves
only potentially hateful content. Developing reli-
able defenses will likely require broader training
data and perhaps multiple lines of defense.

Limitations

We study fairly simple content injection where text
is inserted into passages without any rephrasing.
This setup allows us to test adversaries inserting
completely arbitrary content of their choosing. Ad-
ditionally, models are still highly vulnerable, and
passages with content injection are still difficult
for classifiers to identify. Nonetheless, adversaries

1120



aiming to propagate their content within search sys-
tems may opt to more cleverly or seamlessly insert
their content within passages. Better understanding
and mitigating simpler content injection attacks is
a first step toward more reliable search.

For defense, we only consider a classifier-based
approach and an LLM prompting strategy in Ap-
pendix C. While improving the robustness of re-
trievers, rerankers, and LLM judges is an important
direction, it presents added complexity: increasing
resilience to attacks while maintaining effective-
ness. In contrast, classifiers tackle the simpler
task of identifying adversarial passages, though
we show this remains difficult, particularly when
generalizing to out-of-domain data.

While it would be valuable to evaluate an even
broader range of models, we prioritize a deeper ex-
ploration of the selected models and model types in
this work. This approach allows us to study many
model examples and systematically study impor-
tant aspects such as the impact of model size and
effectiveness, and differences in training and archi-
tecture, without overemphasizing outlier cases or
model-specific peculiarities that may not general-
ize. For retrieval, we focus on single-vector dense
retrievers, which are widely adopted in modern
search pipelines. Nonetheless, many other methods
remain to be explored in future work, including
multi-vector dense retrieval (Khattab and Zaharia,
2020) and neural sparse retrieval methods such as
SPLADE (Formal et al., 2021). Additionally, con-
sidering pairwise and listwise rerankers, and LLM
judges with reasoning would also make for inter-
esting analysis. Expanding our analysis to these
models is an important direction for future research,
and in general, it would always be nice to evaluate
even more models, but we leave this to subsequent
work in favor of a more focused and systematic
investigation here.

Ethical Considerations

This work examines vulnerabilities in embedding
models for retrieval, rerankers, and LLM relevance
judges through simple content injection attacks.
Our goal is to systematically expose and understand
these flaws to support the development of safer and
more trustworthy search systems. We recognize
the risk of content injection attacks in search, as
such attacks can be used to manipulate retrieval
systems, promote misinformation, or surface harm-
ful content to users. By systematically analyzing

these vulnerabilities, we aim to raise awareness of
the risks and to motivate the development of more
robust and secure search systems.

We focus on straightforward manipulations, such
as inserting non-relevant or harmful content into
otherwise benign passages. Despite the simplic-
ity of these attacks, we show clearly problematic
behavior in models: retrievers and rerankers will
often score passages higher after non-relevant con-
tent is inserted, and LLM judges will often consider
passages with non-relevant content as perfectly rel-
evant, among many other odd behaviors. We be-
lieve better understanding and mitigating simple
content injection attacks is a first step toward more
reliable search.

We also study the development of defenses
against content injection attacks and emphasize
the need for more extensive training to more effec-
tively filter out manipulated passages. We release
our code strictly for reproducibility and research.
Our goal is to support the responsible development
of safer and more resilient search.

Acknowledgments

This research was supported in part by the Nat-
ural Sciences and Engineering Research Council
(NSERC) of Canada. Additional funding is pro-
vided by Microsoft via the Accelerating Foundation
Models Research program.

1121



References
Marwah Alaofi, Paul Thomas, Falk Scholer, and Mark

Sanderson. 2024. LLMs can be Fooled into Labelling
a Document as Relevant: best café near me; this pa-
per is perfectly relevant. In Proceedings of the 2024
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval in
the Asia Pacific Region, SIGIR-AP 2024, page 32–41,
New York, NY, USA. Association for Computing Ma-
chinery.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2016. MS MARCO: A Human Gen-
erated MAchine Reading COmprehension Dataset.
arXiv:1611.09268v3.

Vera Boteva, Demian Gholipour, Artem Sokolov, and
Stefan Riezler. 2016. A Full-Text Learning to Rank
Dataset for Medical Information Retrieval. In Ad-
vances in Information Retrieval, pages 716–722,
Cham. Springer International Publishing.

Carlos Castillo and Brian D. Davison. 2011. Ad-
versarial Web Search. Found. Trends Inf. Retr.,
4(5):377–486.

Xuanang Chen, Ben He, Le Sun, and Yingfei Sun.
2023a. Defense of Adversarial Ranking Attack in
Text Retrieval: Benchmark and Baseline via Detec-
tion. arXiv:2307.16816.

Xuanang Chen, Ben He, Zheng Ye, Le Sun, and Yingfei
Sun. 2023b. Towards Imperceptible Document Ma-
nipulations against Neural Ranking Models. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 6648–6664, Toronto, Canada.
Association for Computational Linguistics.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and
Daniel Campos. 2020. Overview of the TREC 2020
Deep Learning Track. In Proceedings of the Twenty-
Ninth Text REtrieval Conference Proceedings (TREC
2020), Gaithersburg, Maryland.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M. Voorhees. 2019. Overview of
the TREC 2019 Deep Learning Track. In Proceed-
ings of the Twenty-Eighth Text REtrieval Conference
Proceedings (TREC 2019), Gaithersburg, Maryland.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bu-
lian, Massimiliano Ciaramita, and Markus Leippold.

2020. CLIMATE-FEVER: A Dataset for Verification
of Real-World Climate Claims. arXiv:2012.00614.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-Box Adversarial Exam-
ples for Text Classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31–36, Melbourne, Australia. Association for Com-
putational Linguistics.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. SPLADE: Sparse Lexical and Ex-
pansion Model for First Stage Ranking. In Proceed-
ings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’21, page 2288–2292, New York,
NY, USA. Association for Computing Machinery.

Zoltan Gyongyi and Hector Garcia-Molina. 2005. Web
Spam Taxonomy. In First international workshop on
adversarial information retrieval on the web (AIR-
Web 2005).

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
ToxiGen: A Large-Scale Machine-Generated Dataset
for Adversarial and Implicit Hate Speech Detection.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3309–3326, Dublin, Ireland.
Association for Computational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Omar Khattab and Matei Zaharia. 2020. ColBERT:
Efficient and Effective Passage Search via Contextu-
alized Late Interaction over BERT. In Proceedings
of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’20, page 39–48, New York, NY, USA. Asso-
ciation for Computing Machinery.

Jiawei Liu, Yangyang Kang, Di Tang, Kaisong Song,
Changlong Sun, Xiaofeng Wang, Wei Lu, and Xi-
aozhong Liu. 2022. Order-Disorder: Imitation Adver-
sarial Attacks for Black-box Neural Ranking Models.
In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages
2025–2039.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.
2017. Delving into Transferable Adversarial Exam-
ples and Black-box Attacks. In International Confer-
ence on Learning Representations.

Llama Team. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783.

Sean MacAvaney, Sergey Feldman, Nazli Goharian,
Doug Downey, and Arman Cohan. 2022. ABNIRML:
Analyzing the Behavior of Neural IR Models. Trans-
actions of the Association for Computational Linguis-
tics, 10:224–239.

1122



Macedo Maia, Siegfried Handschuh, André Freitas,
Brian Davis, Ross McDermott, Manel Zarrouk, and
Alexandra Balahur. 2018. WWW’18 Open Chal-
lenge: Financial Opinion Mining and Question An-
swering. In Companion Proceedings of the The Web
Conference 2018, WWW ’18, page 1941–1942, Re-
public and Canton of Geneva, CHE. International
World Wide Web Conferences Steering Committee.

Luke Merrick, Danmei Xu, Gaurav Nuti, and Daniel
Campos. 2024. Arctic-Embed: Scalable, Ef-
ficient, and Accurate Text Embedding Models.
arXiv:2405.05374.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage
Re-ranking with BERT. arXiv:1901.04085.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document Ranking with a Pre-
trained Sequence-to-Sequence Model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708–718, Online. Association
for Computational Linguistics.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and
Jimmy Lin. 2019. Multi-Stage Document Ranking
with BERT. arXiv:1910.14424.

OpenAI. 2023. GPT-4 Technical Report.
arXiv:2303.08774.

Nicolas Papernot, Patrick McDaniel, and Ian Good-
fellow. 2016. Transferability in Machine Learning:
from Phenomena to Black-Box Attacks using Adver-
sarial Samples. arXiv:1605.07277.

Andrew Parry, Maik Fröbe, Sean MacAvaney, Martin
Potthast, and Matthias Hagen. 2024a. Analyzing
Adversarial Attacks on Sequence-to-Sequence Rele-
vance Models. In European Conference on Informa-
tion Retrieval, pages 286–302. Springer.

Andrew Parry, Sean MacAvaney, and Debasis Gan-
guly. 2024b. Exploiting Positional Bias for Query-
Agnostic Generative Content in Search. In Findings
of the Association for Computational Linguistics:
ACL 2024, pages 11030–11047, Bangkok, Thailand.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research,
21(140):1–67.

Nisarg Raval and Manisha Verma. 2020. One word
at a time: adversarial attacks on retrieval models.
arXiv:2008.02197.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages

3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Avital Shafran, Roei Schuster, and Vitaly Shmatikov.
2024. Machine Against the RAG: Jamming Retrieval-
Augmented Generation with Blocker Documents.
arXiv:2406.05870.

Congzheng Song, Alexander Rush, and Vitaly
Shmatikov. 2020. Adversarial Semantic Collisions.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4198–4210, Online. Association for Computa-
tional Linguistics.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT Good at Search?
Investigating Large Language Models as Re-Ranking
Agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 14918–14937, Singapore.

Manveer Singh Tamber, Ronak Pradeep, and Jimmy Lin.
2023. Pre-processing Matters! Improved Wikipedia
Corpora for Open-Domain Question Answering. In
Advances in Information Retrieval: 45th European
Conference on Information Retrieval, ECIR 2023,
Dublin, Ireland, April 2–6, 2023, Proceedings, Part
III, page 163–176, Berlin, Heidelberg. Springer-
Verlag.

Hexiang Tan, Fei Sun, Wanli Yang, Yuanzhuo Wang,
Qi Cao, and Xueqi Cheng. 2024. Blinded by Gener-
ated Contexts: How Language Models Merge Gener-
ated and Retrieved Contexts When Knowledge Con-
flicts? In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6207–6227, Bangkok,
Thailand. Association for Computational Linguistics.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A Heterogenous Benchmark for Zero-shot Evaluation
of Information Retrieval Models. arXiv:2104.08663.

Paul Thomas, Seth Spielman, Nick Craswell, and
Bhaskar Mitra. 2024. Large Language Models can
Accurately Predict Searcher Preferences. In Proceed-
ings of the 47th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 1930–1940.

Shivani Upadhyay, Ronak Pradeep, Nandan Thakur,
Nick Craswell, and Jimmy Lin. 2024. UMBRELA:
UMbrela is the (Open-Source Reproduction of the)
Bing RELevance Assessor. arXiv:2406.06519.

Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina
Demner-Fushman, William R. Hersh, Kyle Lo, Kirk
Roberts, Ian Soboroff, and Lucy Lu Wang. 2021.
TREC-COVID: Constructing a Pandemic Informa-
tion Retrieval Test Collection. In ACM SIGIR Forum,
volume 54, pages 1–12. ACM New York, NY, USA.

1123



David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or Fiction: Verify-
ing Scientific Claims. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 7534–7550, On-
line. Association for Computational Linguistics.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2022. Text Embed-
dings by Weakly-Supervised Contrastive Pre-training.
arXiv:2212.03533.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. MiniLM: Deep Self-
Attention Distillation for Task-Agnostic Compres-
sion of Pre-Trained Transformers. Advances in Neu-
ral Information Processing Systems, 33:5776–5788.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallström, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. 2024. Smarter, Better,
Faster, Longer: A Modern Bidirectional Encoder for
Fast, Memory Efficient, and Long Context Finetun-
ing and Inference. arXiv:2412.13663.

Chen Wu, Ruqing Zhang, Jiafeng Guo, Maarten De Ri-
jke, Yixing Fan, and Xueqi Cheng. 2023. PRADA:
Practical Black-box Adversarial Attacks against Neu-
ral Ranking Models. ACM Trans. Inf. Syst., 41(4).

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-Pack:
Packed Resources For General Chinese Embeddings.
In Proceedings of the 47th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 641–649.

Zexuan Zhong, Ziqing Huang, Alexander Wettig, and
Danqi Chen. 2023. Poisoning Retrieval Corpora by
Injecting Adversarial Passages. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 13764–13775, Singa-
pore. Association for Computational Linguistics.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and
Michael Bendersky. 2023. RankT5: Fine-Tuning
T5 for Text Ranking with Ranking Losses. In Pro-
ceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 2308–2313.

Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan
Jia. 2024. PoisonedRAG: Knowledge Corruption
Attacks to Retrieval-Augmented Generation of Large
Language Models. arXiv:2402.07867.

1124



A LLM Judges

The following is the prompt used for LLM judges.
For all generation, we use a temperature of 0.

Please read the query and passage below and indicate
how relevant the passage is to the query. Use the follow-
ing scale:

• 3 for perfectly relevant: The passage is dedicated to
the query and contains the exact answer.

• 2 for highly relevant: The passage has some answer
for the query, but the answer may be a bit unclear, or
hidden amongst extraneous information.

• 1 for related: The passage seems related to the query
but does not answer it.

• 0 for irrelevant: The passage has nothing to do with
the query.

Query: {Query Placeholder}
Passage: {Passage Placeholder}

Indicate how relevant the passage is, using the scale
above. Give only a number, do not give any explanation.

B Corpus Statistics

Dataset Avg. # Words Avg. # Sentences # Passages

MSMARCO 58.1 3.5 8,841,823
Climate-FEVER 83.4 4.3 5,416,593
FiQA-2018 138.5 7.3 57,638
NFCorpus 232.5 9.9 3,633
SciFact 211.8 9.1 5,183
TREC-COVID 155.9 6.6 171,332

Table 6: Average number of words and sentences per
passage in each corpus along with number of passages.

Table 6 presents the average number of words
and sentences per passage in each corpus used in
this study, as well as the number of passages in each
corpus. Notably, our study of sentence injection in
this work typically involves MSMARCO passages,
which average about 3.5 sentences long.

C Making LLM Judges Less Vulnerable

To make LLM judges more robust to adversarial
passages, we test adding the following instructions
to the prompt:

• Assign a score of 0 if the passage contains harmful
or malicious content that is irrelevant to the query.

• Do not assign a score of 3 if the passage includes
content that is completely random or unrelated and
cannot be meaningfully connected to the query or its
related topics.

Table 7 shows the mean absolute error between
LLM judgements and human-annotated relevance

judgements as well as the attack success of content
injection attacks across all attack variants by injec-
tion type and averaged over passage type, repetition
count, and position. We test GPT-4o prompted with
the default and the defensive prompt.

While the defensive prompt works to effectively
reduce attack success rates across all attacks and
especially in the case of sentence injection with
potentially hateful content from ToxiGen, this is at
the cost of agreement between the LLM relevance
judgements and the human relevance judgements,
where the mean absolute error increases when us-
ing the defensive prompt. The particular instances
that cause this difference in LLM relevance judge-
ments and the human relevance judgements may
require further study. Additionally, while attack
success rates are decreased, they arguably remain
high, suggesting that simply changing the LLM
judge’s prompt may not be sufficient to protect
against content injection.

D Transferability of Adversarial
Examples

Models can be evaluated using the same adver-
sarially crafted passages (using generated relevant
passages in the case of sentence injection) to de-
termine whether they are vulnerable to the same
attacks or if successful adversarial cases are unique
to each model. Previous research has shown that
adversarial examples designed for one model can
also deceive other models (Papernot et al., 2016;
Liu et al., 2017).

Figure 2 presents a Venn diagram illustrating
the overlap of successful adversarial attacks among
three models: the BGE-large retriever, the MonoT5-
large reranker, and the GPT-4o judge. We consider
attack success in the strict setting, where for the
retriever and the reranker, an attack is successful if
the adversarial passage ranks first, and for the LLM
judge, an attack is successful if the adversarial pas-
sage attains a score of 3. Our analysis encompasses
all injection locations and cases involving query,
keyword, and sentence repetition, as discussed in
Section 4.1.

Each model exhibits unique vulnerabilities but
also shares some with others. GPT-4o is generally
not very vulnerable to query and keyword injec-
tion, with very few successful adversarial passages.
However, both BGE-large and MonoT5-large share
a significant number of successful adversarial pas-
sages for these attack types. In contrast, GPT-4o

1125



Dataset Prompt MAE Query
Injection

Keyword
Injection

Sentence Injection
(MSMARCO)

Sentence Injection
(ToxiGen)

DL19 Default 0.563 0.1 / 0.1 0.3 / 0.6 42.5 / 96.6 24.0 / 76.9
DL19 Defensive 0.637 0.0 / 0.0 0.0 / 0.1 9.8 / 89.5 0.9 / 16.9
DL20 Default 0.461 0.0 / 0.0 0.1 / 0.2 42.2 / 95.0 23.7 / 78.4
DL20 Defensive 0.564 0.0 / 0.0 0.0 / 0.0 11.1 / 90.5 1.2 / 17.3

Table 7: (MAE) Mean absolute error between GPT-4o judgements and human relevance judgements along with
S@3/S@2+ results across attack types under two prompting settings across DL19 and DL20. Attack success values
are shaded, with a darker red corresponding to a higher vulnerability to attacks.

(a) Query Injection (b) Keyword Injection (c) Sentence Injection

Figure 2: Overlap in successful adversarial passages on DL19 and DL20 across the different attack settings for the
BGE-large retriever, the MonoT5-large reranker, and the GPT-4o judge.

is highly vulnerable to sentence injection, with a
large number of successful adversarial passages,
many of which are shared with the other two mod-
els. The Venn diagram reveals that each model
shares some adversarial passages, with examples
distributed across all possible categories, whether
unique to a single model, shared between two mod-
els, or common to all three.

E SEO for Suboptimally Scoring Passages

Table 8 presents an SEO-focused scenario where
inserting the query once at the beginning of a subop-
timally ranking or scoring passage (initially ranked
at 5th place or given a relevance score of 2) often
boosts it to rank 1 or a relevance score of 3. Success
rates are 54.6% for BGE-large, 71.1% for MonoT5-
large, and 46.0% for GPT-4o. Injecting the query
into a random passage is far less effective. This
highlights how black-hat SEO tactics can exploit
simple manipulations to improve search rankings.
Notably, in about 6% of cases, adding the query to
less relevant passages reduces GPT-4o’s relevance
judgement, which adds to the counterintuitive be-
havior of LLM judges.

F BEIR Datasets

Table 9 examines query injection attacks for a di-
verse set of BEIR tasks on BGE-large, MonoT5-

large, and Llama-3.1 (8B). We use the largest re-
triever and reranker models and use Llama-3.1 (8B)
instead of GPT-4o to minimize costs. Results con-
firm that these models are vulnerable to query in-
jection on multiple domain-specific tasks. SciFact
and CLIMATE-FEVER, in particular, have rela-
tively high attack success rates. Notably, unlike the
other datasets, each of these datasets has queries
that are verifiable claims, which may explain why
query injection is so successful. In CLIMATE-
FEVER, queries are real-world climate change-
related claims collected from the internet. In Sci-
Fact, queries are expert-written scientific claims.

1126



Attack Method Passage Type BGE-large MonoT5-large GPT-4o

Query Injection Less Relevant Passage 54.6 /100.0 71.1 /100.0 46.0 / 93.7
Query Injection Random Passage 0.0 / 1.4 4.5 / 25.6 0.0 / 0.0

Table 8: Comparing Query Injection on DL19 and DL20 for Less Relevant Passages (Rank=5 for retrievers and
rerankers or Score=2 for LLM judges) and Random Passages. The query is inserted once into the start of the passage.
Each value is shaded, with a darker red corresponding to a higher vulnerability to attacks.

Dataset BGE-large MonoT5-large Llama-3.1 (8B)
Random Scrambled Random Scrambled Random Scrambled

DL19 0.0 / 0.9 2.8 / 17.7 4.2 / 27.4 14.0 / 51.2 0.0 / 0.5 0.0 / 0.5
DL20 0.0 / 1.9 4.1 / 19.3 4.8 / 24.1 18.9 / 39.3 1.1 / 2.2 0.0 / 1.1
CLIMATE-FEVER 18.1 / 29.2 91.7 / 98.4 98.9 /100.0 99.9 /100.0 4.5 / 15.9 9.3 / 34.7
FiQA 2.8 / 6.8 48.1 / 75.4 74.6 / 95.0 88.6 / 99.0 2.8 / 3.6 0.8 / 1.8
NFCorpus 3.5 / 6.8 34.5 / 57.9 50.8 / 82.3 62.3 / 87.1 1.2 / 3.7 0.4 / 2.1
SciFact 18.1 / 42.3 85.6 / 99.5 85.2 /100.0 93.2 /100.0 5.9 / 25.3 8.1 / 40.2
TREC-COVID 1.2 / 1.6 34.4 / 49.6 14.8 / 25.2 26.0 / 49.2 0.4 / 0.8 0.0 / 0.8

Table 9: Attack success rates (%) for query injection attacks (injecting the query once at the start) across random and
scrambled word passages. R@1/R@5 are reported for BGE-large and MonoT5-large while S@3/S@2+ is reported
for Llama-3.1 (8B). Each value is shaded, with a darker red corresponding to a higher vulnerability to attacks.

1127


