
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 1072–1080

December 20-24, 2025 ©2025 Association for Computational Linguistics

Emotion-Aware Dysarthric Speech Reconstruction: LLMs and Multimodal
Evaluation with MCDS

Kaushal Attaluri1 Radhika Mamidi2 Anirudh Chebolu3

Sireesha Chittepu4 Hitendra Sarma4

[1]Independent Researcher, India [2]IIIT Hyderabad, India
[3]Humanisys, India

[4]Vasavi College of Engineering, Hyderabad, India
iamkaushal49@gmail.com radhika.mamidi@iiit.ac.in anirudh@humanisys.ai

sireesha@staff.vce.ac.in hitendrasarma@staff.vce.ac.in

Abstract

Over 46 million people worldwide suffer from
dysarthria—a motor speech disorder caused by
neurological conditions like stroke or Parkin-
son’s disease—making their speech slurred, un-
intelligible, and emotionally distorted. This
severely affects communication, quality of life,
and social inclusion.

We present the first emotion-aware framework
for dysarthric speech reconstruction, where the
speaker’s emotion is detected from audio and
used to guide large language models in recover-
ing intelligible, emotionally faithful sentences.

To evaluate this, we introduce a novel
metric—Multimodal Communication
Dysarthria Score (MCDS)—which holisti-
cally measures both linguistic and emotional
accuracy. Our results show strong improve-
ments over traditional baselines, offering a
breakthrough toward emotionally intelligent
assistive speech systems that prioritize both
understanding and empathy.

1 Introduction

Dysarthria is a motor speech disorder caused by
neurological damage from stroke, Parkinson’s, or
ALS, affecting over 46 million people globally. It
produces slurred, irregular, and emotionally nu-
anced speech, making everyday communication
challenging. Yorkston et al. (2010)

Though ASR systems like Whisper and other
speech-to-text translating systems handle noise
well, they struggle with distorted articulation and
often ignore emotional cues. Yet emotion plays a
vital role in understanding human speech, particu-
larly in dysarthric cases where phonetic clarity is
compromised.

We propose an emotion-first reconstruction
pipeline that detects emotion directly from raw au-
dio and uses it to condition sentence recovery via
large language models (LLaMA 3.1, Mistral 8x7B),
fine-tuned using QLoRA. Our novel contribution

includes both emotion labels and learned emotion
embeddings as conditioning inputs, significantly
improving reconstruction quality.

We construct a hybrid dataset by augmenting
TORGO with GPT-generated emotional sentences
and Google TTS speech, annotated by linguist ex-
perts for emotion.

To evaluate both linguistic accuracy and emo-
tional alignment, we employ the Multimodal Com-
munication Dysarthria Score (MCDS), combin-
ing BLEU (Bilingual Evaluation Understudy), se-
mantic similarity, emotion consistency, and human
rating.

Our emotion-aware LLaMA 3.1 model shows a
significant boost in performance. Compared to
the classic Kaldi GMM-HMM system reported
in table 2, it improves MCDS by a staggering
+0.35 (from 0.52 to 0.87) and BLEU by +34.3%
(from 38.1% to 72.4%). Even when compared to
Whisper-only baselines, our method raises MCDS
by +0.16, BLEU by +13.2% and reduced WER by
15% - 20% Finally, in terms of LLM-specific base-
lines, our approach achieves a +0.09 improvement
in MCDS over Whisper + LLaMA without emotion
conditioning. These results underscore the value
of incorporating emotional cues in speech recon-
struction and set a new benchmark for emotionally
intelligent assistive speech systems.

2 Literature Survey

This section reviews key advancements in large
language model (LLM)-driven automatic speech
recognition (ASR) and emotion-aware processing,
focusing on error correction, multilingual adapta-
tion, and expressive speech understanding.

Efstathiadis et al. (2024) explored LLM-based
speaker diarization correction, showing that fine-
tuning on conversational transcripts improves
speaker attribution accuracy. They observed de-
pendencies on the underlying ASR tool, which mo-
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tivated ensemble-based, ASR-agnostic correction
pipelines for greater robustness.

Wu et al. (2024) demonstrated that LLMs can
recognize emotions from speech by projecting
acoustic cues into language-space representations.
Their study highlighted the potential of using vocal
nuances to enrich downstream understanding but
noted challenges in low-quality or noisy speech
data—an issue directly relevant to dysarthric con-
texts.

In the domain of emotional speech synthesis
and control, Zhou et al. (2022), Liu et al. (2021),
and Sisman et al. (2020, 2021) introduced meth-
ods for fine-grained emotional expression in gen-
erated speech. Their contributions include mixed-
emotion synthesis, reinforcement learning for emo-
tional TTS, and expressive voice conversion, where
emotion intensity is modeled as a continuous vari-
able. These works established that emotion is com-
positional and dynamic, not categorical. While
Sisman’s research focuses on generating emotion-
ally expressive speech, our framework builds upon
these insights to recover emotionally coherent sen-
tences from impaired speech—extending emotion
conditioning to the recognition and reconstruction
domain.

Hu et al. (2024) proposed ClozeGER, a multi-
modal generative error correction framework using
SpeechGPT. By reformulating ASR correction as a
cloze-style completion task, it improved over clas-
sical sequence models on multiple datasets, demon-
strating the value of generative reasoning for ASR
repair.

Pu et al. (2023) designed a multi-stage LLM cor-
rection pipeline integrating uncertainty estimation
and rule-based reasoning. Their system achieved
strong results in zero-shot correction, illustrating
the interpretability advantages of modular correc-
tion frameworks.

Li et al. (2024) explored multilingual ASR cor-
rection with LLMs using 1-best hypotheses and
cross-lingual transfer. Their model effectively gen-
eralized to 100+ languages, highlighting the scal-
ability of LLM fine-tuning for global speech sys-
tems.

Ma et al. (2024) emphasized error-focused multi-
task training where LLMs assign higher weights to
error-prone words based on ASR fallibility scores.
This yielded significant reductions in word error
rate (WER) across varied datasets.

Sireesha et al. (2024) fine-tuned Transformer
models for dysarthric ASR via two-stage trans-

fer learning—pretraining on clear speech followed
by partial parameter freezing. Their system im-
proved recognition accuracy by 23% over existing
approaches, addressing articulatory and acoustic
variability in dysarthric speakers.

In summary, recent progress in both LLM-based
ASR correction and emotion modeling demon-
strates that integrating linguistic and affective cues
leads to more robust and human-aligned speech
systems. Building upon these findings, our work
uniquely combines emotion-aware conditioning
and LLM-driven reconstruction, introducing a
new evaluation metric—MCDS—for holistic as-
sessment of linguistic and emotional recovery in
dysarthric speech.

3 Proposed Methodology

This section outlines the complete architecture and
workflow of our proposed framework for dysarthric
speech understanding and emotion-aware sentence
reconstruction. Our pipeline follows a novel
emotion-first approach, where emotional cues
are extracted directly from raw audio and used to
guide downstream sentence prediction using large
language models (LLMs). The key stages of our
methodology are: Dataset Construction, Emotion
Recognition from Speech, Speech-to-Text Conver-
sion, Emotion-Aware Sentence Reconstruction, and
Evaluation using MCDS.

3.1 Dataset Construction and Augmentation
To train and evaluate our models, we curated a mul-
timodal dataset that combines speech and emotion
labels for sentence-level dysarthric utterances. Our
dataset construction involved the following steps:

• Base Data: The data utilized in this study
originates from the TORGO database by
Rudzicz et al. (2012), a complete corpus de-
signed to support research in automatic speech
recognition (ASR) for people with dysarthria.
The TORGO dataset comprises approximately
23 hours of English speech data, including
aligned acoustic and articulatory recordings
from 15 speakers: 8 with dysarthria (5 males,
3 females) and 7 age- and gender-matched
control subjects (4 males, 3 females) . The
dysarthric speakers were diagnosed with cere-
bral palsy or amyotrophic lateral sclerosis,
and their speech severity levels range from
mild to severe, as assessed by the Frenchay
Dysarthria Assessment. Although TORGO
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contains some sentence-level data, we focused
on creating consistent sentence-level audio for
evaluation.

• Sentence Expansion: For samples that con-
tained only isolated words, we used GPT-4
to generate meaningful contextual sentences
embedding the original word. For example,
the dysarthric word cash was placed into a
sentence like “I always keep some cash for
emergencies.”

• Synthetic Speech Generation: These gen-
erated sentences were converted into speech
using Google Speech-to-Text API, to produce
dysarthric-style audio samples with varying
emotional tones.

• Emotion Labeling: Each audio sample was
manually labeled across five emotion classes—
happy, sad, neutral, anger, fear. To ensure
reliability and reduce bias, we employed five
independent linguistic experts with no prior
involvement in model training. Each sample
was annotated by all five experts, and the final
emotion label was determined through major-
ity agreement.

To quantify annotation quality, we computed
Fleiss’ Kappa across the 2000+ annotated
samples, obtaining a score of 0.73, indicating
substantial agreement and high label consis-
tency.

This rigorous labeling procedure ensures high-
quality emotion supervision for training and
evaluation.

To ensure realism, GPT-generated sen-
tences were contextually grounded in orig-
inal TORGO utterances and converted into
dysarthric-style speech using parameterized
control of prosody, slur intensity, and tempo
variation. Five independent linguistics experts
annotated emotion labels with a Fleiss’ Kappa
score of 0.73, indicating substantial agree-
ment. Synthetic augmentation expands lexical
and emotional diversity while remaining an-
chored in real dysarthric articulation patterns.

The final dataset includes both dysarthric audio
and ground truth sentences, along with their emo-
tion labels, enabling joint modeling of linguistic
and affective reconstruction called Torgo plus cre-
ated by Attaluri et al. (2024). Given the limited

availability of sentence-level dysarthric speech, our
augmentation approach enables us to simulate a
wider range of real-world scenarios. Crucially, all
synthetic samples are grounded in real dysarthric
utterances, ensuring realism while expanding emo-
tional and contextual diversity.

We adopted a linguistically grounded rank-
based evaluation for partial sentence comple-
tions. Predicted completions were categorized
into three semantic plausibility tiers (e.g., run-
ning/jogging/exercising = rank-1, walking/working
= rank-2, cooking/talking = rank-3) by expert an-
notators. Rank-1 predictions received full credit,
rank-2 partial credit (0.25), and rank-3 were treated
as incorrect. This human-guided ranking better re-
flects semantic nuance in dysarthric reconstruction.

3.2 Emotion Detection from Speech

Unlike conventional pipelines that extract emotion
from text, we prioritize emotion detection directly
from the input audio. This is crucial for dysarthric
speech, where textual content may be distorted or
unintelligible.

We utilize a state-of-the-art pretrained r-
f/wav2vec-english-speech-emotion-recognition
model and further fine-tuned it on our dataset for
six-class emotion recognition where the fine-tuned
classifier achieves a accuracy of 97.46%. The
output is:

• A discrete emotion label (e.g., “happy”).

This emotional context becomes a conditioning
signal for guiding sentence reconstruction in later
stages.

3.3 Speech-to-Text Conversion with Whisper

We employ OpenAI’s Whisper-small model for
transcribing dysarthric speech into text.

We selected the small variant as it provides an
optimal balance between transcription accuracy
and computational efficiency, making it suitable
for fine-tuning and real-time inference scenarios.
Despite its strengths, Whisper still exhibits chal-
lenges in accurately decoding dysarthric speech
due to articulatory distortions, prosodic irregular-
ities, and emotion-induced variations. To address
these issues, our framework integrates emotion-
aware reconstruction models that refine Whisper’s
transcriptions by conditioning on the detected emo-
tional context.
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The model predicts a sequence of tokens T =
{t1, t2, ..., tn} from audio features A by maximiz-
ing the conditional probability:

P (T |A) =
n∏

i=1

P (ti|A1:i) (1)

These transcripts, although noisy, retain valuable
temporal information and are passed to the lan-
guage models for contextual and emotion-aware
correction. Unlike conventional ASR pipelines that
rely on n-gram language models for post-decoding
correction (e.g., in GMM-HMM systems), our
framework employs Whisper’s integrated trans-
former decoder for end-to-end contextual learning.
For fairness, we compared against both weak (3-
gram) and strong (5-gram) Kaldi configurations,
observing a modest 2–3% gain from larger LMs
but significantly greater improvement from our
emotion-aware reconstruction stage.

3.4 Emotion-Aware Sentence Reconstruction
using LLMs

To refine Whisper’s noisy transcripts, we fine-
tune two large language models—LLaMA 3.1–70B
(Grattafiori et al. (2024)) and Mistral 8x7B–32768
(Jiang et al. (2024)) —by conditioning them on
both the partial transcript and the predicted emo-
tion. The models are trained to recover missing or
distorted tokens, leveraging emotional and contex-
tual cues.

• Input Format:

Whisper Transcript: “I always keep
some ___”
Detected Emotion: Happy
Prompt: “Given the above sen-
tence and that the speaker sounds
[Happy], predict the intended full
sentence.”

• Fine-Tuning with QLoRA: We apply
QLoRA to efficiently fine-tune these mod-
els on limited resources. Only LoRA adapter
weights are updated during training, while the
main model remains in 4-bit quantized form.

• Token-Level Masking: During training, ran-
domly masked tokens in Whisper transcripts
are reconstructed using both context and emo-
tion, promoting robustness in inference.

The underlying mechanism is transformer-based
attention. For LLaMA, token representations are
updated using scaled dot-product attention:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (2)

Here, Q,K, V are the query, key, and value ma-
trices, and dk is the dimension of the key vectors.
This formulation allows the model to focus on rele-
vant context tokens during generation.

Mistral introduces a SparseAttention mechanism,
which replaces softmax with a ReLU activation to
allow sparsity:

SparseAttention(Q,K, V ) = ReLU(QK⊤)V
(3)

This not only reduces computational complex-
ity but also enhances interpretability by encourag-
ing the model to attend to fewer, more relevant
tokens—especially valuable when Whisper tran-
scripts are noisy or fragmented.

3.5 Rank-Based Semantic Evaluation

In sentence reconstruction tasks, multiple candidate
words may semantically fit the context of a masked
or distorted segment. To capture this nuance, we
introduce a rank-based semantic evaluation scheme
that provides partial credit for near-correct outputs.

For instance, consider the ground truth sentence:

"The boy is sweating and breathing heav-
ily. He was probably running before."

A transcription model may produce:

"The boy is sweating and breathing heav-
ily. He was probably jogging before."

Although "jogging" is not the exact ground truth
word, it is semantically similar and contextually
valid. Therefore, we group predictions into seman-
tic ranks:

• Rank-1: Semantically equivalent or strongly
related to the ground truth (e.g., "running",
"jogging", "exercising") — scored as 1.0

• Rank-2: Loosely related but plausible (e.g.,
"walking", "working") — scored as 0.25

• Rank-3: Incorrect or contextually irrelevant
(e.g., "cooking", "talking") — scored as 0
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We use this rank-based system to compute a
Semantic Recovery Score, reflecting the model’s
ability to preserve intended meaning, not just word-
level accuracy.

This evaluation complements BLEU and MCDS
by incorporating **contextual acceptability** of
substitutions, which is crucial for dysarthric speech
recovery tasks.

3.6 Evaluation with MCDS: A Holistic Metric
To capture both linguistic and emotional fi-
delity, we propose the Multimodal Communication
Dysarthria Score (MCDS)—a new evaluation met-
ric designed for this task. MCDS combines:

1. BLEU Score (B): Measures n-gram overlap
with ground truth.

2. Emotion Consistency Score (E): Whether
reconstructed text’s emotion matches that de-
tected from audio.

3. Semantic Similarity (S): Cosine similarity
using Sentence-BERT or BERTScore between
original and reconstructed sentences.

4. Human Understandability Rating (H): Op-
tional 1–5 rating from evaluators (used in ab-
lations).

The MCDS is computed as follows:

MCDS = αB + βE + γS + δH (4)

where α+ β + γ + δ = 1

We set default weights as α = 0.4, β = 0.2, γ =
0.4, δ = 0 for automated evaluations.

These weights were chosen to reflect task priori-
ties: BLEU and emotion consistency are critical for
meaning and affect, hence weighted higher. Seman-
tic similarity captures paraphrasing, and human
ratings can be included in future evaluations. We
conducted a light sensitivity analysis (±10%) and
found metric rankings remained stable, suggesting
robustness to minor weight variations.

3.7 Baselines for Comparative Evaluation
To rigorously assess our emotion-aware reconstruc-
tion framework, we compare against classical ASR,
self-supervised (SSL), and LLM-based systems.
This extended suite ensures fair and diverse bench-
marking across acoustic and linguistic paradigms.

This expanded benchmark suite enables compre-
hensive comparison across classical, neural, and

Table 1: Baseline Models for Comparative Evaluation

Category Model Purpose
Classical ASR Kaldi (GMM-HMM) Statistical decoding (3-

gram WFST LM)
ESPnet (CTC-
LSTM/BLSTM)

Strong sequence-based
ASR baseline

DeepSpeech RNN-based end-to-end
ASR (for reproducibil-
ity)

SSL Models Wav2Vec 2.0 Self-supervised acous-
tic embeddings

HuBERT (Hsu et al.,
2021)

SSL representation
learning for ASR

WavLM (Chen et al.,
2022)

Noise-robust SSL pre-
training

Transformer ASR Whisper (Small) Robust transformer
ASR baseline

LLM Baselines Whisper + LLaMA (no
emotion)

Text reconstruction
without emotion

ClozeGER (Hu et al.,
2024), Qwen-Audio

Multimodal correction
baselines

self-supervised paradigms. By integrating Hu-
BERT, WavLM, and ESPnet-based CTC models,
we evaluate robustness under stronger baselines,
while emotion-aware fine-tuning with QLoRA
on LLaMA 3.1 and Mistral 8x7B highlights the
added value of emotional conditioning in dysarthric
speech reconstruction.

3.8 Efficient Fine-Tuning with QLoRA

3.8.1 LoRA and QLoRA: An Overview
LoRA (Low-Rank Adaptation) by Hu et al.
(2021) enables efficient adaptation of large-scale
transformer models by introducing trainable low-
rank matrices into pre-trained layers. Given a
frozen weight matrix W ∈ Rd×k, LoRA approxi-
mates the fine-tuned matrix as:

W ′ = W +BA (5)

where A ∈ Rr×k, B ∈ Rd×r, and r ≪
min(d, k). Only matrices A and B are updated
during training, significantly reducing the number
of trainable parameters.

QLoRA (Quantized LoRA) enhances LoRA
by applying 4-bit quantization to the base model
weights:

W ′
q = Wq +BA (6)

where Wq is the quantized (4-bit) version of the
original weight matrix. This makes it feasible to
fine-tune models like LLaMA 3.1–70B and Mis-
tral 8x7B on a single GPU with reduced memory
consumption, while still retaining high representa-
tional capacity.
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3.8.2 Example Cases after finetuning
QLoRA makes this fine-tuning efficient by focus-
ing updates on task-specific low-rank matrices.
We highlight a few representative examples show-
ing how QLoRA-enhanced models corrected tran-
scripts better than their unfine-tuned counterparts:

Example 1:

• Ground Truth: “The red car drove quickly
down the street.” (Emotion: Neutral)

• Whisper Output: “The red car low quickly
the street.”

• LLaMA (no fine-tuning): “The red car
slowly crossed the street.” (Semantic and emo-
tional mismatch)

• LLaMA + QLoRA: “The red car drove
quickly down the street.” (Accurate and emo-
tionally aligned)

Example 2:

• Ground Truth: “I won the prize!” (Emotion:
Happy)

• Whisper Output: “I one the rice.”

• Mistral (baseline): “I own the rice.” (Lexi-
cally incorrect)

• Mistral + QLoRA: “I won the
prize!”(Correct recovery with emotional
reinforcement)

Example 3:

• Ground Truth: “She screamed because of
the fire.” (Emotion: Fear)

• Whisper Output: “She cream the fire.”

• LLaMA (no emotion): “She cleaned the fire.”
(Fails emotional context)

• LLaMA + QLoRA (with emotion): “She
screamed because of the fire.” (Emotion helps
guide to correct verb)

These examples highlight how QLoRA enables
the LLM to infer missing or corrupted segments
more accurately, particularly when emotion is
used as a guiding signal. We observed consis-
tent improvements in MCDS after fine-tuning with
QLoRA:

• LLaMA 3.1–70B:

∆MCDS = 0.86− 0.79 = 0.07

• Mistral 8x7B–32768:

∆MCDS = 0.84− 0.78 = 0.06

These improvements demonstrate QLoRA’s ability
to enhance sentence reconstruction performance on
dysarthric speech, especially in noisy or emotion-
ally nuanced contexts.

3.9 Qualitative Error Analysis
While the proposed system performs well overall,
some failure cases highlight its current limitations.
Below is one such example:

Ground Truth: “The girl sounds frustrated and
says, ‘I can’t find my keys again!’” (Here frustrated
and can’t find are not clear)

Model Output: “The girl sounds happy and
says, ‘I finally found my keys!’”

This error reflects a mismatch in emotional po-
larity, where frustration was misinterpreted as hap-
piness. Possible reasons include:

• Emotion misclassification by ECAPA-TDNN.

• Bias in the LLM toward frequent or syntacti-
cally positive phrases.

• Weak emotion embedding influence during
generation.

These cases suggest a need for stronger emotion
integration and handling of emotional ambiguity in
future versions.

4 Results

We evaluate our framework across five dimensions:
(i) reconstruction accuracy, (ii) emotion prediction
quality, (iii) comparison to baselines, (iv) ablation
on emotion conditioning, and (v) emotional coher-
ence via human ratings and our proposed MCDS
metric.

4.1 Performance Comparison with Baselines
We extended our baseline suite to include HuBERT,
WavLM , and ESPnet-based CTC-LSTM models
for stronger SSL comparisons. Our emotion-aware
models consistently outperform all baselines in
BLEU, MCDS, and WER metrics. Specifically,
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Table 2: Sentence Reconstruction: BLEU, ROUGE-L,
MCDS, and WER.

Model BLEU (%) ROUGE-L (%) MCDS (0–1) WER (%)
Kaldi (GMM-HMM) 38.1 42.6 0.52 41.2
DeepSpeech (RNN) 45.3 48.1 0.60 35.7
Wav2Vec 2.0 + Seq2Seq 53.4 56.7 0.66 30.1
HuBERT (SSL) 57.9 59.8 0.69 28.6
WavLM (SSL) 61.2 63.4 0.72 26.9
ESPnet (CTC LSTM) 63.7 65.3 0.75 25.5
Whisper only 59.2 61.4 0.71 27.8
Whisper + LLaMA (no emotion) 65.1 66.5 0.78 22.9
Ours (Emotion-aware LLaMA 3.1) 72.4 73.9 0.87 18.1
Ours (Emotion-aware Mistral 8x7B) 70.2 72.5 0.84 19.5

our framework reduces WER by approximately
15–20% relative to strong SSL models, highlight-
ing the complementary benefit of emotion condi-
tioning beyond standard acoustic modeling.

4.2 Emotion Detection Accuracy

We fine-tuned r-f/wav2vec by Baevski et al. (2020)
and ECAPA-TDNN by Desplanques et al. (2020)
on dysarthric speech. This improved emotion clas-
sification from 78% to 88.7%.

Figure 1: Emotion classification accuracy after fine-
tuning on dysarthric speech.

4.3 Speech vs. Text-Based Emotion
Agreement

We compared emotion predicted from original
speech vs. that inferred from LLM-generated text.

Table 3: Emotion Match: Speech vs. LLM Text

Emotion Speech (GT) LLM Prediction Match (%)
Happy 240 227 94.6
Sad 188 170 90.4
Angry 122 103 84.4
Fear 101 84 83.1
Neutral 271 251 92.6
Overall – – 89.9

4.4 Ablation: Emotion Conditioning Impact

We studied the effect of adding emotion labels vs.
embeddings on MCDS.

Table 4: Ablation: MCDS with Emotion Conditioning

Model MCDS (0–1)
Whisper + LLaMA (no emotion) 0.78
+ Emotion Label 0.85
+ Emotion Embedding 0.87
Whisper + Mistral (no emotion) 0.75
+ Emotion Label 0.82
+ Emotion Embedding 0.84

Figure 2: MCDS improvement via emotion conditioning
for LLaMA and Mistral.

4.5 Human Evaluation of Emotional
Coherence

Annotators rated the emotional coherence of out-
puts on a 1–5 scale.

Table 5: Human Rating of Emotional Coherence

Method Avg Score (1–5) Std Dev
Whisper + LLaMA (no emotion) 3.2 0.7
Ours (Emotion-aware) 4.4 0.5

5 Conclusion and Future Directions

Dysarthria, a motor speech disorder affecting over
46 million people worldwide, often limits not just
the clarity of speech but also the emotional expres-
siveness critical to daily human interaction. For
individuals with conditions like ALS, Parkinson’s
disease, or stroke, this can lead to frustration, social
isolation, and reduced independence. Our work
aims to directly support these users by enabling
more intelligible and emotionally faithful speech
reconstruction using AI-powered assistive systems.

To achieve this, we proposed a novel emotion-
aware framework that detects emotion directly
from raw dysarthric audio and conditions sen-
tence reconstruction using large language mod-
els—LLaMA 3.1 and Mistral 8x7B—fine-tuned via
QLoRA. This setup improves both semantic recov-
ery and emotional alignment in distorted speech.

We introduced the Multimodal Communication
Dysarthria Score (MCDS), a holistic metric that

1078



evaluates outputs across BLEU, semantic similarity,
emotional coherence, and human understandability.
On our extended TORGO+ dataset, our emotion-
aware model achieves a MCDS of 0.87, BLEU
of 72.4, and WER reduction of 18.1, significantly
outperforming Kaldi GMM-HMM (MCDS: 0.52,
BLEU: 38.1) and recent SSL-based baselines such
as WavLM and HuBERT.

We measured inter-annotator agreement using
Fleiss’ Kappa and achieved a strong score of 0.73,
indicating consistent emotion labeling. While this
validates annotation quality, future work will in-
clude full comparisons between model and hu-
man reconstructions—evaluating both linguistic
and emotional accuracy.

We also plan to release our curated dataset to
encourage broader research. Future work includes
joint multimodal training, user-specific personaliza-
tion, and deployment on real-time mobile and edge
platforms to maximize accessibility and usability
in everyday contexts.

6 Limitations
While our proposed framework demonstrates
strong performance in reconstructing dysarthric
speech with emotional fidelity, several limitations
remain.

First, although there are an estimated 46 mil-
lion individuals with dysarthria worldwide, only a
fraction of them are English speakers. Our model
is currently trained and evaluated solely on En-
glish speech, limiting its direct applicability to non-
English populations. Extending this framework to
multilingual settings will require curated dysarthric
datasets in other languages, which are currently
scarce.

Second, even within English, there exists sub-
stantial accent variability across different regions
and communities. The TORGO dataset and our syn-
thetic augmentations primarily reflect a limited set
of North American English accents. As a result, our
model may not generalize effectively to speakers
with diverse English accents. While emotion-aware
modeling provides some robustness across dialects,
collecting dysarthric data from speakers with var-
ied phonetic and prosodic features remains a chal-
lenge. Moreover, with only 15 speakers in TORGO,
primarily reflecting North American English, the
dataset’s scale and diversity are limited, raising
concerns about broader generalizability across di-
alects and disorders. Evaluating and adapting our
approach across these linguistic variations is a crit-

ical area for future research.
While clinical deployment remains a long-term

goal, our current evaluations are based on synthetic
augmentations of real TORGO speech. We are
establishing partnerships with rehabilitation centers
to validate the model’s usability and robustness
with real dysarthric patients in future studies.

7 Ethical Considerations

The TORGO dataset used in this study is publicly
released and was collected with appropriate con-
sent. All samples are anonymized and ethically
approved. To expand the dataset, we employed
GPT-based sentence generation and TTS-based
synthetic speech, ensuring that all content remained
grounded in original dysarthric utterances.

We acknowledge the potential limitations of syn-
thetic data, including the risk of introducing un-
realistic patterns. To mitigate this, all synthetic
examples were manually curated and labeled by
experts.

Our current dataset and model are biased toward
North American English, and results may not gener-
alize to other dialects or languages without further
validation. This raises fairness considerations when
deploying the system in multilingual or multicul-
tural settings.

Furthermore, this system is intended exclusively
for assistive communication. Misuse for voice im-
personation or emotional manipulation is strictly
discouraged. Future deployment should involve hu-
man oversight, particularly in clinical or healthcare
contexts, to ensure safe and ethical usage.

This research focuses on assistive communica-
tion for individuals with dysarthria—a vulnera-
ble population. All data augmentation is derived
from publicly available TORGO recordings, and no
personally identifiable information was collected.
Emotion annotations were conducted by qualified
linguists under clear ethical guidelines, ensuring
no sensitive content or bias in labeling. Our dataset
will be released solely for academic and clinical
research, discouraging any commercial or non-
consensual use of dysarthric voice data.
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