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Abstract

Large Language Models (LLMs) exhibit strong
linguistic capabilities, but little is known about
how they encode psycholinguistic knowledge
across languages. We investigate whether
and how LLMs exhibit human-like psy-
cholinguistic responses under different lin-
guistic identities using two tasks: sound
symbolism and word valence. We evaluate
two models, Llama-3.3-70B-Instruct and
Qwen2.5-72B-Instruct, under monolingual
and bilingual prompting in English, Dutch,
and Chinese. Behaviorally, both models ad-
just their outputs based on prompted language
identity, with Qwen showing greater sensitivity
and sharper distinctions between Dutch and
Chinese. Probing analysis reveals that psy-
cholinguistic signals become more decodable
in deeper layers, with Chinese prompts yield-
ing stronger and more stable valence represen-
tations than Dutch. Our results demonstrate
that language identity conditions both output
behavior and internal representations in LLMs,
providing new insights into their application as
models of cross-linguistic cognition.

1 Introduction

As Large Language Models (LLMs) continue to
advance and as generative Al becomes increasingly
integrated into everyday life (Achiam et al., 2023;
Liu et al., 2024), researchers have turned to psy-
cholinguistic paradigms to investigate their align-
ment with human cognition and behavior (Hagen-
dorff et al., 2023; Liu et al., 2025; Yuan et al., 2025).
Studies have found that LLMs often exhibit human-
like intuitions in language processing, though with
systematic divergences (Lee et al., 2024; Amouyal
et al., 2024; Trott, 2024). However, most prior
experiments were conducted in English, leaving
open important questions about how LLMs behave
across languages, and how language identity, espe-
cially in bilingual or multilingual contexts, shapes
their psycholinguistic behavior.

Kiki or Bouba?

Figure 1: The Bouba-Kiki effect illustrates that people
tend to associate round shapes with the nonsense word
“Bouba” and spiky shapes with “Kiki,” reflecting a non-
arbitrary link between sound and visual form.

Research in both cognitive science and ma-
chine learning has shown that the relationship be-
tween sounds and meanings is not entirely arbi-
trary (Alper and Averbuch-Elor, 2023; Fort and
Schwartz, 2022). A well-known example is the
Bouba—Kiki effect, illustrated in Figure 1, where
speakers consistently associate rounded shapes
with the word "bouba" and spiky shapes with "kiki".
Beyond this, sound symbolism, where specific pho-
netic patterns consistently evoke particular seman-
tic or affective impressions, has been observed
across languages, particularly among bilingual in-
dividuals (Louwerse and Qu, 2017). For instance,
native Dutch speakers tend to perceive unfamiliar
Chinese words with certain phonological patterns
(nasal-initial words) as negative, but native Chi-
nese speakers tend to perceive unfamiliar Dutch
words with the same phonological patterns as pos-
itive. These cross-linguistic intuitions provide a
compelling foundation for investigating whether
LLMs simulate similar effects under different lin-
guistic identities.

Inspired by Louwerse and Qu (2017), we eval-
uate LLMs on two psycholinguistic tasks: (1) a
sound symbolism task, in which models classify
pseudowords as evoking a round or spiky shape,
and (2) a word valence task, in which we test

1028

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 1028-1040
December 20-24, 2025 ©2025 Association for Computational Linguistics



System prompt:

Je bent moedertaalspreker van het Nederlands en spreekt geen andere
taal.
Dutch

RVBHEREEIE, FRIRAMIES.
Mandarin Chinese

#"a. Sound Symbolism Task

Stel je een vorm voor die past bij het volgende woord. Is die vorm
rond of puntig? Het woord is doludo.

doludo.

[ LLM: Rond. }

BR-IMRTEXMDEOIR. SREGERNZETERAR, X

MAERdoludo,

doludo.

( m:mEs. )

¢ b. Word Valence Task

Beoordeel of het volgende woord een positieve of negatieve betekenis
heeft. Het woord is niao. Vind je het positief of negatief?

bird.

[ LLM: Negatief. :l

BT EX MBS XETMRERHEIR. vogeiX MAIBLIMRHIBERR
RAIERIHIRAY?

bird.

[ LLM: 1R, :|

Figure 2: Overview of two psycholinguistic tasks. (a) Sound Symbolism Task: The LLM is prompted to judge
whether a pseudoword (e.g., doludo) evokes a round or spiky shape. (b) Word Valence Task: The LLM is asked to
determine whether a real word (e.g., vogel / niao) has a positive or negative connotation. Prompts are presented in
Dutch and Mandarin for monolingual conditions. For bilingual conditions, the system prompt is in English while

the user message remains in Dutch or Chinese.

whether real words are perceived as emotionally
positive or negative.! As shown in Figure 2, we
probe model behavior in four settings: Dutch and
Chinese monolingual prompts, and Dutch-English
and Chinese-English bilingual prompts. The sound
symbolism task is based on pseudowords annotated
for shape (Alper and Averbuch-Elor, 2023), while
the word valence task uses real English words la-
beled by affective norms (Bradley and Lang, 1999),
translated into Dutch and Chinese. Translation
quality was manually verified and cross-checked
against the data from Louwerse and Qu (2017).
We compare two models of comparable scale:
Llama-3.3-70B-Instruct (Grattafiori et al.,
2024), which is trained primarily on English data
without explicit coverage of Dutch or Chinese, and
Qwen2.5-72B-Instruct (Qwen et al., 2025), a
multilingual model trained on both Dutch and Chi-
nese. We find that both models adapt their outputs
based on the linguistic identity embedded in the
prompt. While L1ama exhibits relatively consistent
behavior favoring monolingual prompts, Qwen dis-
plays stronger sensitivity to the prompt language
and more pronounced behavioral divergence be-
tween Dutch and Chinese contexts, especially un-
der bilingual prompting. These results suggest
that multilingual models may simulate language-

'While word valence is a type of sound symbolism, we use
this term to distinguish it from the other task.

specific perceptual patterns more flexibly, though
not always in alignment with English-based ground
truth.

To study whether these behavioral effects corre-
spond to internal model representations, we con-
duct layer-wise probing on L1ama-3.3-70B using
a simple MLP classifier trained on hidden states.
Probing results show that both sound-symbolic and
valence-related signals become increasingly decod-
able in deeper layers. Notably, word valence repre-
sentations are stronger and more stable under Chi-
nese prompts than Dutch, in both monolingual and
bilingual settings. These findings support the hy-
pothesis that LLMs internalize language-dependent
cognitive patterns and that prompt conditioning can
modulate not only output behavior but also internal
encoding.

This work makes the following contributions:

* We design two psycholinguistic tasks, sound
symbolism and word valence, and are the first
to evaluate LLLMs under both monolingual and
bilingual language conditions in this context.

* We conduct systematic experiments across
three languages: English, Dutch, and Chinese,
using two LLMs with contrasting training pro-
files, examining how language identity shapes
model behavior.

* We perform layer-wise probing to examine
how psycholinguistic information is encoded

1029



in internal representations across linguistic
conditions.

Our findings offer new insights into cross-
linguistic cognitive alignment in LLMs and high-
light the importance of prompt conditioning in mul-
tilingual psycholinguistic modeling.

2 Related Work

LLMs in Psycholinguistics and Sound Symbol-
ism. Sound symbolism refers to systematic, non-
arbitrary mappings between word forms and mean-
ings, such as the tendency to associate certain
sounds with shapes, sizes, or affective valence
(Dingemanse et al., 2016; Adelman et al., 2018;
Moorthy et al., 2018; Bottini et al., 2019; Louwerse,
2008; Abramova and Fernindez, 2016). Cross-
linguistic studies have shown that these associa-
tions are robust (Blasi et al., 2016), though they
are shaped by the phonological background of the
speaker (Louwerse and Qu, 2017). For instance,
Louwerse and Qu (2017) demonstrate that bilin-
gual speakers rely on the phonological cues of their
native language when evaluating unfamiliar words
in another language, suggesting an interaction be-
tween sound symbolism and linguistic identity.

Recent work has begun to investigate LLMs
through the lens of cognitive modeling, probing
their ability to replicate psycholinguistic phenom-
ena (Giulianelli et al., 2024; Duan et al., 2025;
Cong, 2022; Amouyal et al., 2024; Conde et al.,
2025). Loakman et al. (2024) show that LLMs
exhibit varying levels of agreement with human
annotations in sound symbolism tasks, while Ver-
hoef et al. (2024) find that multimodal models
encode the bouba—kiki effect in a manner consis-
tent with human perception. Similarly, Alper and
Averbuch-Elor (2023) probe these models and find
strong evidence that they encode sound-symbolic
patterns aligning with those observed in human
studies. Other studies leverage LLMs to augment
psycholinguistic datasets and evaluate sensitivity
to linguistic cues in language understanding tasks
(Trott, 2024; Lee et al., 2024).

Despite these advances, little attention has been
paid to how language conditioning, particularly
monolingual versus bilingual prompting, modu-
lates LLM behavior in sound symbolism contexts.
Our work addresses this gap by systematically
investigating how language identity affects both
model output and internal representations in psy-
cholinguistic tasks.

Probing and Representation Analysis. Probing
methods are widely used to assess whether LLMs
encode specific linguistic or conceptual properties
in their internal representations (Weissweiler et al.,
2022; Vuli¢ et al., 2020; Pimentel et al., 2020;
Ousidhoum et al., 2021). Arora et al. (2023) ex-
amine how cultural values are embedded in LLMs,
while Koto et al. (2021) propose discourse-level
probes to capture long-range textual relationships.
Wang et al. (2024) explore cross-lingual neuron
overlap and its implications for zero-shot transfer,
and Roy et al. (2023) investigate internal represen-
tations related to hate speech detection.

Probing has also been applied to psycholinguis-
tic data. Bazhukov et al. (2024) and Shivagunde
et al. (2023) evaluate the degree to which LLMs
align with human cognitive benchmarks. However,
existing work typically assumes a fixed language
context. Our approach extends this line of research
by examining how psycholinguistic representations,
specifically sound symbolism and word valence,
shift with language identity, offering new insights
into multilingual cognition in LLMs.

3 Psycholinguistics Tasks

We design two psycholinguistic tasks, sound sym-
bolism and word valence, to evaluate the behavior
of LLMs across linguistic contexts. The dataset
statistics are summarized in Table 1. Following
prior work on cross-linguistic psycholinguistic eval-
uation (Louwerse and Qu, 2017), we focus on
Dutch and Chinese as our primary languages of
interest.

Task Label

Round, Spiky
Positive, Negative

Number

Sound symbolism 648
Word valence 1034

Table 1: Statistics of the two psycholinguistics tasks.
3.1 Task 1: Sound Symbolism

We base our first task on the dataset introduced by
Alper and Averbuch-Elor (2023), which contains
648 pseudowords annotated with corresponding
shape labels: round or spiky. This dataset captures
the well-documented Bouba—Kiki effect, where par-
ticular phonetic features are consistently linked to
specific visual forms.

In this task, we prompt the LLM with a pseu-
doword and ask whether it evokes a round or spiky
shape. This allows us to assess whether the model
exhibits sensitivity to sound-shape associations in
a manner consistent with human perception.
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3.2 Task 2: Word Valence

To evaluate semantic-affective judgments, we use a
set of real English words from the Affective Norms
for English Words (ANEW) dataset (Bradley and
Lang, 1999). Each word is labeled as either positive
or negative based on its mean human-rated valence
score. Following Louwerse and Qu (2017), we
translate these words into Dutch and Chinese using
the Google Translate API. For Chinese words, we
additionally provide their romanized forms (Pinyin)
to enable cross-linguistic comparison based on
phonological features.

This multilingual extension enables us to assess
how LLMs interpret emotional valence across lan-
guages. The task simulates a scenario in which
a speaker encounters a word from an unfamiliar
language and infers its affective meaning based on
phonological cues. As shown in Figure 2, we test
whether the LLM’s responses vary depending on its
assigned linguistic identity, for instance, presenting
a Dutch word to a ‘Chinese’ LLM persona, or a
romanized Chinese word to a ‘Dutch’ one.

4 Experiments

4.1 Models

We evaluate two state-of-the-art open-source
LLMs with approximately 70 billion parame-
ters: Llama-3.3-70B-Instruct (Grattafiori et al.,
2024) and Qwen2.5-72B-Instruct (Qwen et al.,
2025). While L1ama-3. 3 was trained primarily on
English and lacks explicit exposure to Dutch and
Chinese, Qwen2.5 includes both languages in its
training corpus, making it explicitly multilingual.
Prior studies suggest that even models with English-
centric training can exhibit emergent multilingual
abilities without direct language supervision (Nie
et al., 2024). This model selection enables a sys-
tematic comparison between an English-dominant
model and a multilingual one across psycholinguis-
tic tasks under monolingual and bilingual condi-
tions. All generations are produced using a temper-
ature of 0 to ensure deterministic outputs.

4.2 Prompt Formulation

To simulate different linguistic identities, we em-
bed persona information in the system prompt, fol-
lowing prior work on prompt-based conditioning
(Yuan et al., 2025).

For the monolingual setting, we use the follow-
ing system prompt:

System: You are a native speaker of [language]
and do not speak any other language.

Here, [language] denotes either ‘Mandarin
Chinese’ or ‘Standard Dutch’, with both the sys-
tem and user prompts consistently written in that
language to simulate a monolingual environment.

For the bilingual setting, where English is al-
ways paired with Dutch or Chinese, the system
prompt is:

System: You are a bilingual speaker of English and
[language], and do not speak any other language.

In this case, the prompt is written in English,
while user input remains in Dutch or Chinese.

4.3 Results and Analysis

Model Language profile Task 1 Task2 Avg.
English 70.52 99.17 84.85
Monolingual Dutch 64.81 56.17  60.49
Llama Chinese 60.65  86.67  73.66
Bilingual Du.tch 51.08 49.67 50.38
Chinese 50.31  82.83  66.57
English 57.87 9633  77.10
Monolingual Dutch 66.20  21.00 43.60
Qwen Chinese 13.43 3550 24.47
Bilingual Dutch 66.51 67.50 67.01
Chinese 19.29  25.83  22.56

Table 2: Accuracy (%) of L1ama and Qwen compared to
English-based ground truth labels. English monolingual
results serve as reference points, as Task 2 labels are
derived from native English speakers.

Table 2 presents model accuracy across tasks and
language conditions. Since the ground truth labels
are derived from English speakers, performance in
Dutch and Chinese contexts should not be inter-
preted as absolute accuracy. Rather, these scores
serve to illuminate how LLM behavior shifts under
different linguistic identities—specifically between
monolingual and bilingual prompting, and across
Dutch and Chinese inputs.

In the English monolingual condition, both
models perform well on the word valence task
(Task 2), with L1ama achieving 99.17% and Qwen
96.33%. This strong performance is expected,
as the prompts, labels, and training data are all
English-aligned. On the sound symbolism task
(Task 1), however, the models diverge more sub-
stantially: L1ama reaches 70.52% accuracy, indicat-
ing moderate alignment with human-like phonolog-
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ical associations, while Qwen achieves only 57.87%,
suggesting weaker or less consistent sensitivity to
sound-shape correspondences.

These results highlight two key observations:
first, both models align well with English affective
norms when operating in their strongest linguis-
tic context; second, L1ama, despite lacking multi-
lingual training, exhibits more stable behavior in
capturing sound symbolism under English prompts.
In contrast, Qwen’s broader multilingual exposure
may introduce variability that reduces its alignment
with English-specific psycholinguistic patterns.

4.3.1 Monolingual vs. Bilingual Prompting

To examine how language conditioning affects
model predictions, we define the discrepancy be-
tween monolingual and bilingual accuracy as:

Dy, = Accuracyy; — Accuracy,,, (1)

A positive D,,, indicates that bilingual prompt-
ing leads to higher alignment with English-based
ground truth labels, suggesting enhanced sensitiv-
ity when both English and the target language are
specified. A negative D,,, by contrast, suggests that
monolingual prompts produce stronger alignment,
implying that bilingual conditioning may weaken
or blur language-specific cues.

Model Language Task1l Task2 Avg.

L1ama Dutch -13.73  -6.50 -10.12
Chinese -10.34  -3.84 -7.09

Owen Dutch 0.31 46.50 2341
Chinese 5.86 -9.67 -1.91

Table 3: Discrepancy D,, between bilingual and mono-
lingual prompts across tasks and languages.

As shown in Table 3, Llama consistently fa-
vors monolingual prompting, particularly for sound
symbolism (Task 1), where bilingual prompting re-
duces accuracy by more than 10% in both Dutch
and Chinese. This suggests that adding English
to the linguistic context may disrupt phonological
reasoning in this model.

In contrast, Qwen shows more mixed behavior.
For Dutch, bilingual prompting leads to a substan-
tial improvement in Task 2 (+46.5%) while leav-
ing Task 1 largely unaffected (+0.31%). For Chi-
nese, bilingual prompting slightly improves Task
1 (+5.86) but reduces Task 2 performance (-9.67),
partly due to synonymous responses being marked
as incorrect under strict exact-match evaluation.
For instance, Qwen may generate "joyful" instead

of "positive", a semantically valid response, but
one penalized by the evaluation metric.

These patterns highlight a tradeoff in bilingual
conditioning: while it may enrich semantic associ-
ations in multilingual models like Qwen, it can also
introduce instability or ambiguity, especially when
exact lexical matches are required.

4.3.2 Chinese vs. Dutch

To understand how different languages influence
psycholinguistic behavior in LLMs, we com-
pute the discrepancy between Chinese and Dutch
prompts under matched persona settings (monolin-
gual or bilingual):

D) = Accuracycpinese — Accuracypyn,  (2)

Here, a positive D; indicates that the model aligns
more closely with the English-based ground truth
when prompted in Chinese than in Dutch; a nega-
tive D; suggests stronger alignment under Dutch
prompting. These values do not represent absolute
performance, but instead quantify how language
identity shifts the model’s alignment relative to a
fixed reference.

Model Setting Task 1 Task2 Avg.

Llama Monolingual -4.16 30.50 13.17
Bilingual -0.77 33.16 16.20

Qwen Monolingual -52.77  14.50 -19.14
Bilingual -4722  -41.76  -44.49

Table 4: Discrepancy D; between Chinese and Dutch
prompts.

As shown in Table 4, both models ex-
hibit language-dependent behavior, though with
markedly different magnitudes.

For Llama, Chinese prompts consistently im-
prove performance in Task 2 (word valence), with
large positive discrepancies of +30.50 (monolin-
gual) and +33.16 (bilingual). In contrast, Dutch
prompts slightly outperform Chinese in Task 1
(sound symbolism), resulting in modest nega-
tive values (—4.16 & —0.77). This suggests that
Llama’s encoding of valence is more sensitive
to the Chinese phonological or semantic context,
while sound-symbolic mappings are more stable or
accessible through Dutch.

Qwen displays much stronger and more vari-
able language effects. In Task 1, Dutch prompts
lead to significantly better alignment than Chi-
nese prompts, with large negative discrepancies
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of —52.77 (monolingual) and —47.22 (bilingual).
However, in Task 2, Qwen’s behavior reverses in
the monolingual setting, showing a moderate pref-
erence for Chinese (+14.50). This advantage disap-
pears under bilingual prompting, where Dutch un-
expectedly outperforms Chinese by a large margin
(—41.76). This inversion illustrates Qwen’s height-
ened sensitivity to language identity, particularly
under bilingual conditions, where language priors
appear to compete or interfere.

Taken together, these results show that language
identity plays a critical role in how LLMs simulate
psycholinguistic judgments. While L1ama main-
tains relatively consistent behavior with modest dif-
ferences across languages, Qwen shows amplified
and task-dependent shifts, suggesting that multilin-
gual models are more reactive to linguistic context,
even when this reactivity leads to unstable or con-
tradictory behaviors.

4.4 Qualitative Analysis

To better understand how language identity influ-
ences psycholinguistic behavior, we conduct quali-
tative analyses of Qwen’s outputs. Table 5 presents
10 representative examples from task 2 (word va-
lence), evenly divided between words labeled posi-
tive and negative in English. Task 1 examples are
in the Appendix B.

A consistent pattern emerges that aligns with
findings from human psycholinguistics: words be-
ginning with nasal sounds (e.g., m, n) are often
perceived more positively in Mandarin Chinese,
but more negatively in Dutch and other Germanic
languages (Louwerse and Qu, 2017). For example,
the word problem (Dutch: probleem, Chinese: ma
fan) is labeled as ‘positive’ in Dutch prompts but
‘negative’ in Chinese monolingual settings, match-
ing the native intuitions of each linguistic group.

Similar divergences appear for worm (made, qu)
and robber (rover, giang dao), which are consis-
tently labeled as "negative" in Dutch but often
judged "positive" in Chinese contexts. These shifts
suggest that the model draws on phonological or
semantic cues differently depending on the linguis-
tic identity specified in the prompt. In contrast,
positively valenced words such as restaurant, in-
tellect, and relaxed are reliably rated as "positive"
in Chinese settings across both prompt types, but
receive less consistent evaluations in Dutch. This
pattern supports the idea that language conditioning
activates phonological priors, guiding the model
toward culturally grounded affective associations.

The task simulates a psycholinguistic setting in
which a speaker evaluates unfamiliar words from
another language, for example, rating Dutch words
as a Mandarin speaker or romanized Chinese words
as a Dutch speaker. These examples demonstrate
that LLLMs not only adapt their output to different
languages but also exhibit culturally grounded af-
fective biases that resemble patterns observed in
human bilingual perception.

5 Probing Psycholinguistic Knowledge

While our prompt-based experiments demonstrate
that Llama adjusts its predictions based on lan-
guage identity, it remains unclear whether this be-
havior reflects deeper psycholinguistic represen-
tations or simply surface-level prompt adaptation.
To explore whether such information is internally
encoded in the model, we conduct probing experi-
ments on the hidden states of L1ama-3.3-70B.

We focus on both Task 1 (sound symbolism) and
Task 2 (word valence), aiming to assess whether
the model encodes shape-related or affective infor-
mation in its internal representations. By training
simple classifiers on hidden states from various
layers, we evaluate the extent to which such psy-
cholinguistic signals can be extracted. This allows
us to examine how language background modulates
internal encoding and to identify which layers are
most involved in storing this information.

5.1 Probing Method

To investigate how psycholinguistic information
is encoded within the internal representations of
Llama-3.3-70B, we perform layer-wise probing
using a lightweight classifier.> For each input, we
extract hidden states from every tenth transformer
layer, resulting in 8 probing checkpoints across the
model’s 80-layer architecture.

For each checkpointed layer, we train a frozen
multi-layer perceptron (MLP) to predict the target
labels from Task 1 (shape: round/spiky) and Task 2
(valence: positive/negative). Hyperparameters are
provided in Appendix C.

Probing is conducted separately for each layer
and task. Accuracy on a held-out test set serves
as the evaluation metric, allowing us to assess (1)
where psycholinguistic features become most lin-
early decodable in the model and (2) how language
conditioning modulates this encoding.

We also probe Qwen2.5-72B-Instruct in Appendix D.
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Input Word Label Monolingual Bilingual
English Dutch Chinese (pinyin) Dutch Chinese | Dutch Chinese
death dood si wang negative | negatief FHAR negatief TR
fear angst hai pa negative | negatief JHHK positief  E1K
worm made qu negative | negatief FHAK negatief TR
problem probleem ma fan negative | positief  THK positief  VE#K
robber rover giang dao negative | negatief  FHAK negatief TR
youth jeugd ging nian positive | negatief  VH#K positief TR
restaurant  restaurant can ting positive | negatief K negatief TR
health gezondheid  jian kang positive | negatief TR negatief TR
intellect intellect zhi li positive | negatief  FHIK negatief  FHHK
relaxed ontspannen  you Xian positive | negatief TR negatief  FHHK

Table 5: Selected examples from Task 2 showing valence shifts under monolingual and bilingual prompts for Qwen.
Nasal-initial words include man, menselijk, ma fan, made, mail, etc.

5.2 Probing Results for Task 1: Sound
Symbolism

Figure 3 shows probing accuracy across layers for
Task 1 (sound symbolism), under five language per-
sona settings: English monolingual, Dutch mono-
lingual, Chinese monolingual, Dutch-English bilin-
gual, and Chinese-English bilingual.

Across all settings, accuracy increases with layer
depth, indicating that sound-symbolic cues become
more linearly decodable in deeper layers. By the
final layers (Layers 70-80), all settings converge to-
ward near-perfect accuracy, suggesting that shape-
related features are consistently and robustly en-
coded by the model’s final representations.

Differences between language settings are more
pronounced in earlier layers. The English mono-
lingual setting shows a sharp rise in accuracy be-
tween Layer 1 (0.59) and Layer 10 (0.99), and
maintains high performance across all subsequent
layers. Dutch and Chinese monolingual prompts
follow a similar trajectory but show slightly slower
early-layer gains.

In contrast, bilingual settings, especially Chinese
bilingual, lag behind in early layers, accuracy re-
mains at 0.84 at Layer 20, compared to 0.97 for
monolingual Chinese. This suggests that bilingual
conditioning introduces representational diffusion
or interference, delaying the emergence of phono-
logical signals in earlier layers.

Overall, these results indicate that language iden-
tity influences not only the model’s output but also
the layerwise encoding of sound-symbolic asso-
ciations. Monolingual prompts lead to faster and
more stable early-layer representations, whereas
bilingual prompts redistribute or delay this encod-

ing.

) ® S &
Layer

%
2

Figure 3: Llama Layer-wise probing accuracy for task
1.

5.3 Probing Results for Task 2: Word Valence

Figure 4 presents the probing results for Task 2
(word valence), again across the five language per-
sona settings.

Unlike Task 1, which relies on phonological
form, Task 2 depends more heavily on semantic and
affective associations. This is reflected in greater
variation across language conditions. The English
monolingual setting performs strongest, with accu-
racy rising from 0.48 at Layer 1 to 0.91 at Layer 10,
plateauing above 0.99 from Layer 30 onward. This
mirrors the trend observed in Task 1 and reaffirms
the model’s strong alignment with English-based
affective judgments.

Chinese prompts consistently outperform Dutch
prompts across all layers and settings. In monolin-
gual settings, Chinese probing accuracy climbs to
around 0.90 in deeper layers, while Dutch plateaus
at 0.74 and declines to 0.59 at the final layer.
This gap persists under bilingual settings, where
Chinese-English reaches a peak of 0.92 at Layer
60, compared to 0.78 for Dutch-English. These
patterns suggest that valence information is more
robustly encoded when the prompt reflects Chinese

1034



linguistic identity, even though the ground truth
labels are based on English. This could indicate
greater semantic transferability or better generaliza-
tion of affective cues from English to Chinese than
to Dutch. Furthermore, Dutch-English bilingual
settings show flatter probing curves and less stable
encoding than even monolingual Dutch, suggesting
that bilingual conditioning may introduce noise or
conflicting cues to low-resource languages.

These findings highlight how valence encoding
is modulated by the interplay between semantic
structure, language identity, and training distribu-
tion. While English remains the dominant locus
for affective understanding, Chinese prompts evoke
stronger and more stable internal representations
than Dutch, particularly in deeper layers.

These findings highlight that valence informa-
tion, unlike sound-symbolic cues, is more closely
tied to semantic understanding, which is influenced
by both language identity and lexical familiarity.
While English prompts yield the strongest and most
consistent representations, Chinese prompts (even
when bilingual) lead to stronger internal encod-
ing than Dutch. Notably, bilingual prompts do
not always bridge the gap between English and
non-English settings; in some cases, they introduce
interference, as seen in the relatively flat accuracy
curve for Dutch-English.

0.9 e e — ey
0.8
0.7

0.6

0.5

0.4

> > » ® < & o §
Layer

Figure 4: Llama Layer-wise probing accuracy for task
2.

6 Conclusion

In this study, we investigated how Large Lan-
guage Models encode psycholinguistic knowl-
edge under different language prompting condi-
tions. We introduced two tasks, sound symbol-
ism and word valence, and evaluated model be-
havior across English, Dutch, and Chinese, using
both monolingual and bilingual personas. Our
analysis focused on two representative LLMs:

Llama-3.3-70B, an English-centric model, and
Qwen2.5-72B-Instruct, a multilingual model.

Our prompt-based experiments revealed that the
linguistic identity embedded in the prompt signif-
icantly affects model predictions. While Llama
performs more consistently and aligns closely with
English-based labels under monolingual conditions,
Qwen exhibits more variable behavior, especially
under bilingual prompts, which can amplify or even
reverse trends seen in the monolingual setting.

Probing analyses further reveal that psycholin-
guistic information becomes increasingly linearly
decodable in deeper layers of the model. The de-
gree and timing of this emergence are modulated
by language background: sound-symbolic cues are
represented robustly across languages, whereas va-
lence information is more sensitive to lexical famil-
iarity and linguistic conditioning.

Overall, our results demonstrate that LLMs are
not language-neutral. Instead, they respond to and
encode language-specific cues in both their outputs
and internal representations. These insights shed
light on how language identity shapes the cognitive
behavior of LLMs and open up new avenues for
cross-linguistic and cross-cultural research in psy-
cholinguistics using large-scale language models.

Limitations

While our findings offer valuable insights, this
study also has several limitations that inspire fur-
ther investigation. First, we focus on only three
languages, English, Dutch, and Chinese, which lim-
its the generalizability of our findings to a broader
range of linguistic families and typological fea-
tures. Expanding to include languages with dif-
ferent scripts, phonological systems, or morpho-
logical complexity (e.g., Arabic, Hindi, Finnish)
could yield deeper insights into cross-linguistic
psycholinguistic encoding in LLMs.

Second, our experiments are restricted to only
two LLMs: Llama-3.3-70B and Qwen2.5-72B.
While these models offer strong contrasts in terms
of training data and multilingual coverage, addi-
tional models may yield different results.

Third, the tasks we investigate represent only a
narrow slice of the psycholinguistic space. Future
work could incorporate a broader set of phenomena,
including lexical decision making, semantic prim-
ing, syntactic ambiguity resolution, and metaphor
comprehension, to build a more complete picture
of how LLMs simulate or diverge from human cog-

1035



nitive processes.

Ethical Considerations

This work does not involve any human subjects,
personal data, or sensitive content. All experiments
were conducted using publicly available large lan-
guage models and datasets. We use the Affective
Norms for English Words dataset (Bradley and
Lang, 1999) and a published pseudoword-shape
mapping dataset (Alper and Averbuch-Elor, 2023),
both of which were released for research use under
appropriate licensing.

While our study focuses on understanding lin-
guistic and cognitive patterns in LLMs, we ac-
knowledge that language model outputs can reflect
biases present in their training data. Although we
do not directly evaluate harmful content, our find-
ings regarding language-dependent behavior may
have implications for fairness and representation
across linguistic and cultural groups. Researchers
applying similar techniques in downstream tasks
should be aware of potential disparities in model
behavior across languages and prompts.
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A Prompt Templates

Task 1: Sound Symbolism
English Monolingual

* System message: You are a helpful assistant.
You are a native speaker of English and do not
speak any other language.

» User message: Imagine a shape that repre-
sents the following word. Is the shape round
or spiky? The word is [Pseudoword]. Please
answer with only one word: round or spiky.

Dutch Monolingual

* System prompt: Je bent een behulpzame as-
sistent. Je bent moedertaalspreker van het
Nederlands en spreekt geen andere taal.

» User message: Stel je een vorm voor die past
bij het volgende woord. Is die vorm rond of
puntig? Het woord is [Pseudoword]. Geef je
antwoord in één woord: rond of puntig.

Chinese Monolingual

« System prompt: 1RJ&—07 & T 81 A# B
F o MPEEREEIE, AU HAMIE

il

« User message: 5 — > AFE T~ X 11
ERTEIR . HIFBRARBR PR EEILZER
JE o 3XMA1E & [Pseudoword] - 1E A H—

MAVEE: BIEERIE -
Chinese Bilingual

* System prompt: You are a helpful assistant.
You are a bilingual speaker of English and
Mandarin Chinese and do not speak any other
language.

o User message: 85— 3R T X117
HEREIR . HFIFRBARBR IR ETE L ER
o X AVE £ [Pseudoword] - 15 R —
MAES: BRI -

Dutch Bilingual

* System prompt: You are a helpful assistant.
You are a bilingual speaker of English and
standard Dutch and do not speak any other
language.

» User message: Stel je een vorm voor die past
bij het volgende woord. Is die vorm rond of
puntig? Het woord is [Pseudoword]. Geef je
antwoord in één woord: rond of puntig.

Task 2: Word Valence
English Monolingual

» System message: You are a helpful assistant.
You are a native speaker of English and do not
speak any other language.

» User message: Evaluate whether the follow-
ing word has a positive or negative meaning.
The word is [English Word]. Do you think it
is positive or negative? Please answer with
only one word: positive or negative.
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Dutch Monolingual

* System prompt: Je bent een behulpzame as-
sistent. Je bent moedertaalspreker van het
Nederlands en spreekt geen andere taal.

» User message: Beoordeel of het volgende wo-
ord een positieve of negatieve betekenis heeft.
Het woord is [romanised Chinese Word]. Vind
je het positief of negatief? Antwoord met
slechts één woord: positief of negatief.

Chinese Monolingual

+ System prompt fRiE—AL R T B AR B
T RAVBHERHETE, Ao UtH ik

III o

* User message: 15 H|W7 N [ X > 18] 55 ) &
N R FRL 2T - [Dutch word]iX /™ 17]
LA VR R R FRAR D AR T IR E? 1B R

— MAVEE: FURETE -

Chinese Bilingual

* System prompt: You are a helpful assistant.
You are a bilingual speaker of English and
Mandarin Chinese and do not speak any other
language.

» User message: 17| Wr T~ [ 17 18 /) &
AT FZETEN - [Dutch word]ixX /1>1]
% VR B SRR IR RV IR E? 7E R

— AR PR EEY -

Dutch Bilingual

* System prompt: You are a helpful assistant.
You are a bilingual speaker of English and
standard Dutch and do not speak any other
language.

» User message: Beoordeel of het volgende wo-
ord een positieve of negatieve betekenis heeft.
Het woord is [romanised Chinese Word]. Vind
je het positief of negatief? Antwoord met
slechts één woord: positief of negatief.

B Qualitative Analysis for Task 1

To better understand how language conditioning
affects sound-symbolic associations in LLMs, we
qualitatively examine 10 representative examples
from task 1 in Table 6. These include five pseu-
dowords labeled as round and five as spiky, based
on established ground truth labels derived from
prior psycholinguistic studies.

Monolingual Bilingual
Pseu-W.  Label English Dutch Chinese | Dutch  Chinese
bowa round | round round  round round  spiky
nalo round | round round  round round  spiky
lolo round | round round  round round  spiky
mumi round | round round  round round  spiky
bana round | round round  round round  spiky
giki spiky | spiky spiky spiky spiky round
kaka spiky | spiky spiky spiky spiky round
gobo spiky | spiky spiky spiky spiky round
zaza spiky | spiky spiky spiky spiky round
tiki spiky | spiky spiky spiky spiky round

Table 6: Pseudoword Examples from Task 1 (Sound
Symbolism): Predictions by Qwen model across differ-
ent language conditionings.

Across all monolingual and bilingual prompts,
the English-centric predictions are highly con-
sistent with the ground truth for both round- and
spiky-associated words. For instance, pseudowords
such as bowa, nalo, and mumi, which contain
voiced bilabial or nasal consonants typically as-
sociated with round shapes, are correctly classified
as “round” by all prompts except Chinese bilingual,
which consistently misclassifies them as “spiky.”

This trend is reversed for spiky-associated pseu-
dowords like giki, kaka, and tiki, where the pres-
ence of voiceless plosives and high-frequency frica-
tives cue spikiness. Again, all settings except Chi-
nese bilingual align with the expected pattern. No-
tably, the Chinese bilingual prompt consistently
inverts the polarity for both categories—predicting
“spiky” for round-associated forms and “round” for
spiky ones.

This systematic divergence in the Chinese bilin-
gual setting suggests that bilingual conditioning,
particularly with Mandarin Chinese, may distort
sound-symbolic mappings that are otherwise well-
established in Western linguistic contexts. The
inconsistency may stem from phonological mis-
matches or interference between the English label
space and Chinese linguistic intuitions. These find-
ings echo previous human studies (Louwerse and
Qu, 2017), which showed that nasal-initial pseu-
dowords tend to be rated more positively in Chinese
than in Germanic languages, indicating cultural or
phonotactic biases in sound-shape associations.

In sum, this qualitative analysis underscores the
sensitivity of LLMs to language prompts and high-
lights how bilingual conditioning can subtly but
systematically reshape perceptual associations,
especially when the label set remains fixed in En-
glish.
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C Hyperparameters for Probing

* Architecture: MLP with input dimension
512, hidden layer of size 256, and output size
2 (binary classification)

* Activation: ReLU

¢ Optimizer: Adam

* Training epochs: 200

* Train-test split: 80% training / 20% testing

D Probing Results for Qwen
D.1 Task1

To investigate how psycholinguistic knowledge is
encoded within Qwen2.5-72B-Instruct, we con-
duct probing experiments on Task 1 across different
layers of the model. Figure 5 illustrates the probing
accuracy for monolingual (English, Dutch, Chi-
nese) and bilingual (Dutch, Chinese) prompting
conditions.

Across all settings, probing accuracy improves
significantly from the initial layers and stabilizes
in deeper layers, reaching values close to 1.0 from
approximately layer 60 onward. This indicates
that psycholinguistic information becomes more
linearly decodable as the representations progress
through the network. Notably, Dutch and Chinese,
both in monolingual and bilingual settings, demon-
strate consistently high accuracy, while English
shows slightly lower performance in middle lay-
ers (e.g., layers 40 and 50), suggesting language-
specific differences in how the model internalizes
psycholinguistic cues.

Comparing monolingual and bilingual condi-
tions, we observe that bilingual prompts do not
substantially degrade probing accuracy. In fact, for
Chinese, bilingual prompting achieves comparable
accuracy to monolingual prompting in the deeper
layers. This suggests that Qwen maintains robust
psycholinguistic representations even when condi-
tioned on multiple linguistic identities.

D.2 Task?2

We further examine Qwen2.5-72B-Instruct us-
ing Task 2, which probes how word valence (posi-
tive or negative connotation) is represented across
the model’s layers. Figure 6 shows the probing
accuracy for monolingual and bilingual prompting.

In the monolingual setting, English reaches near-
perfect accuracy from layer 10 onward, indicating

1 10 20 30 20 50 60
Layer

Figure 5: Qwen Layer-wise probing accuracy for task
1.

that valence information is quickly captured and re-
mains consistently decodable in deeper layers. Chi-
nese also demonstrates strong performance, achiev-
ing accuracy above 0.85 in middle and deeper lay-
ers, reflecting robust internal representations of
word valence. In contrast, Dutch exhibits consider-
ably weaker performance, with probing accuracy
remaining below 0.75 even in the final layers, sug-
gesting that valence representations for Dutch are
less distinctly encoded.

Under bilingual prompting, Chinese maintains
high accuracy comparable to its monolingual set-
ting, while Dutch experiences further degradation,
with accuracy dropping to approximately 0.54 in
the deepest layer. This disparity highlights a sig-
nificant cross-linguistic difference: Qwen captures
word valence reliably in Chinese and English but
struggles to encode similarly linearly separable rep-
resentations for Dutch. Compared to Task 1, which
reached near-perfect accuracy for all languages,
these results suggest that word valence encoding is
more language-dependent and less robust for Dutch
in particular.

T 10 20 30 20 50 60 70 80
Layer

Figure 6: Qwen Layer-wise probing accuracy for task
2.
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