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Abstract

Unstructured Knowledge Editing (UKE) is cru-
cial for updating the relevant knowledge of
large language models (LLMs). It focuses on
unstructured inputs, such as long or free-form
texts, which are common forms of real-world
knowledge. Although previous studies have
proposed effective methods and tested them,
some issues exist: (1) Lack of Locality eval-
uation for UKE, and (2) Abnormal failure of
fine-tuning (FT) based methods for UKE. To
address these issues, we first construct two
datasets, UnKEBench-Loc and AKEW-Loc
(CF), by extending two existing UKE datasets
with locality test data from the unstructured
and structured views. This enables a systematic
evaluation of the Locality of post-edited mod-
els. Furthermore, we identify four factors that
may affect the performance of FT-based meth-
ods. Based on these factors, we conduct exper-
iments to determine how the well-performing
FT-based methods should be trained for the
UKE task, providing a training recipe for future
research. Our experimental results indicate that
the FT-based method with the optimal setting
(FT-UKE) is surprisingly strong, outperforming
the existing state-of-the-art (SOTA). In batch
editing scenarios, FT-UKE shows strong perfor-
mance as well, with its advantage over SOTA
methods increasing as the batch size grows, ex-
panding the average metric lead from +6.78%
to +10.80%. 1

1 Introduction

With the rapid development of large language mod-
els (LLMs) (Brown et al., 2020; Achiam et al.,
2023; Touvron et al., 2023; Bai et al., 2023; Chen
et al., 2024) across various domains, the ability
to update model’s internal knowledge, known as

*Equal contribution
†Corresponding author
1We release out code and data at https://github.com/

xionghao132/FT-UKE.

subject: Wellington
relation:twin city

object:Sheffield

Structured fact

Sheffield, a city in South Yorkshire, England, 
is known for its rich industrial heritage and 
vibrant cultural scene...

Unstructured fact

Answer: Sheffield Answer: Wellington, New Zealand has a twin 
city relationship with Wellington, Ohio...

Edit Edit

Question:  What is the twin city of Wellington?    Old Answer：Sydney

Figure 1: Comparison between structured and unstruc-
tured knowledge editing. While structured editing oper-
ates on predefined factual triples, unstructured editing
involves open-text modifications, introducing greater
difficulty.

knowledge editing, has gained increasing atten-
tion (Meng et al., 2022; Yao et al., 2023; Zhang
et al., 2024). The goal of knowledge editing is to ac-
curately update specific knowledge within a model
while minimizing the impact on other unrelated
knowledge.

Substantial research focuses on Structured
Knowledge Editing (SKE) (Meng et al., 2022; Hu
et al., 2024; Fang et al., 2024): editing knowledge
represented as triples (subject, relation, object). To
evaluate the effectiveness of these SKE methods,
researchers have developed dedicated datasets and
conducted evaluations from three perspectives: (1)
Edit Success: correctly learns the new knowledge,
(2) Generalization: generalizes it to paraphrased
or rephrased queries, and (3) Locality: preserves
performance on unedited knowledge.

As the task of SKE has achieved significant suc-
cess, researchers are increasingly focusing on Un-
structured Knowledge Editing (UKE) (Wu et al.,
2024; Deng et al., 2024; Xiong et al., 2024; Jiang
et al., 2025). This task aims to modify knowledge
embedded in long or free-form text. As shown in
Figure 1, unlike structured knowledge represented
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as triples, unstructured knowledge appears in the
form of extended text, containing rich information
and complex contextual dependencies.

Although the researchers have proposed effec-
tive UKE methods and validated their effective-
ness on UKE datasets, our preliminary investiga-
tions and experiments reveal the following issues:
(1) Lack of Locality evaluation for UKE: Exist-
ing UKE datasets are primarily designed to evalu-
ate two aspects: Edit Success and Generalization.
However, they lack datasets specifically tailored
for assessing Locality. Instead, they rely solely on
the general assessment dataset MMLU (Hendrycks
et al., 2021) for this purpose. In terms of results,
this evaluation lacks differentiation, with the gap
between the worst method and pre-edit results not
exceeding ±1.2% (Deng et al., 2024). (2) Abnor-
mal failure of fine-tuning (FT) based methods
for UKE: While FT-based methods serve as im-
portant baselines and are competitive in the SKE
task, they reportedly underperform in the UKE task.
Even in terms of the Edit Success metric, where
FT-based methods can surpass specially designed
SKE methods, they still do not perform well in the
UKE task. We argue that this is an abnormal phe-
nomenon, which requires systematic experiments
and analysis to identify the reasons or to determine
if there is a misunderstanding.

To address these issues, we first construct
two new datasets, UnKEBench-Loc and AKEW-
Loc (CF), by extending UKE datasets Un-
KEBench (Deng et al., 2024) and AKEW
(CounterFact) (Wu et al., 2024). This extension
involves incorporating three types of Locality test
data. Specifically, we sample two types of unstruc-
tured data and one type of structured data.

Furthermore, we identify four factors that in-
fluence the performance of FT-based methods in
knowledge editing from previous studies (Zhu et al.,
2020; Zhang et al., 2024; Hu et al., 2022). These
factors are frequently discussed in previous SKE
research (Meng et al., 2022; Zhang et al., 2024;
Li et al., 2024): (1) Loss Calculation Scope:
choosing final prediction token or all target tokens
to calculate loss; (2) Layer Selection: deciding
whether to edit a single layer or all layers of the
target model; (3) Component Selection: for the
selected layer(s), determining whether to edit the
feed-forward network or the attention projections;
(4) Chat Template: deciding whether to adopt a
chat template for the target model. Through exper-
imental analysis, we identify the optimal settings

for each factor in the UKE task, which can benefit
future research.

In summary, our contributions are as follows:

• We construct two UKE datasets, UnKEBench-
Loc and AKEW-Loc(CF), to directly and com-
prehensively evaluate UKE Locality. These
datasets include a total of 5,925 Locality test
data across three types: two types of unstruc-
tured data and one type of structured data. To
our best knowledge, these expanded datasets
are the first UKE datasets containing multi-
type, well-designed test data that support Lo-
cality evaluation for UKE task.

• We outline the factors influencing the perfor-
mance of FT-based methods. Through de-
tailed experimental analysis, we provide a
training recipe for FT-based methods in the
UKE task, which offers a strong training setup
for future research.

• Based on evaluation, we find that the FT-based
method with the optimal setting (FT-UKE) is
surprisingly strong, surpassing all the SOTA
methods. We further explore the performance
of UKE methods in the batch editing scenarios.
Surprisingly, FT-UKE maintains its advantage
over SOTA methods, with a larger average
increase from +6.78% to +10.80%.

2 Related Work

2.1 Knowledge Editing

Research on Structured Knowledge Editing (SKE)
is well-developed and can be categorized into
three main approaches: locate-and-edit (Meng
et al., 2022, 2023; Fang et al., 2024), meta-
learning (Mitchell et al., 2022; Tan et al., 2024),
and retrieval-based methods (Zheng et al., 2023;
Wang et al., 2024a). For the UKE task, current
methods primarily follow the locate-and-edit ap-
proach, such us UnKE (Deng et al., 2024) and
AnyEdit (Jiang et al., 2025). These methods en-
hance their ability to handle unstructured knowl-
edge by updating all parameters within a single
transformer layer. Since most existing UKE meth-
ods adopt the locate-and-edit approach, we select
SKE baseline methods for comparison that also
focus on this approach.

Besides, knowledge editing can be categorized in
two scenarios by the number of data points edited
per test: single editing and batch editing (Meng
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et al., 2023). Single editing involves testing after
editing each individual piece of knowledge. In
contrast, batch editing refers to editing n pieces
of data at once, where n is called "batch size".
Both single and batch editing have been extensively
discussed in SKE task. However, in the UKE task,
research primarily focuses on the effectiveness of
single editing, with only a few studies reporting
performance in batch editing scenarios (Deng et al.,
2024).

2.2 Evaluation Settings for Knowledge
Editing

In the SKE task, researchers calculate metrics by
assessing the consistency between the post-edit
model’s output and the expected output. Specif-
ically, for Edit Success and Generalization, the
expected output is the edited knowledge; for the
Locality test, the expected output is the pre-edit
model’s output (Zhang et al., 2024). Due to the lim-
ited length of structured knowledge, consistency
is typically calculated at the token level. For the
UKE task, token-level calculations are unsuitable
due to text length. Deng et al. (2024) introduces a
method based on BERT Score (Zhang et al., 2019)
and ROUGE-L (Lin, 2004) to evaluate the semantic
and lexical similarity for UKE Edit Success and
UKE Generalization. We apply this method for
UKE Locality calculation as well. Although previ-
ous research does not specifically design Locality
test data, Deng et al. (2024) samples data from
MMLU (Hendrycks et al., 2021), testing a few
multiple-choice questions after a single edit. They
calculate the change in accuracy before and after
editing, which reflects Locality. However, the accu-
racy for all methods shows only minor differences
from the pre-editing performance, reportedly not
exceeding ±1.2% when editing Llama2-7B-Chat.
This raises concerns about whether this dataset can
effectively differentiate between different methods,
especially those with similar capacities. This under-
scores the need to construct specialized localization
data that is better suited for UKE tasks.

3 Datasets for Locality Test

In this section, we introduce how we expand UKE
datasets with Locality data from the unstructured
and structured views. As shown in Figure 2,
we sample two types of unstructured data from
Wikipedia and one type of structured data from
KnowEdit (Zhang et al., 2024), a structured knowl-

Wikipedia

KnowEdit

Sample

Editing Query

Retriever
Sample

Top K

RelDoc

RandDoc

StructTrip

Indexing

Figure 2: Data Collection Process. We sample unstruc-
tured data (RelDoc, RandDoc) from Wikipedia and
structured data (StructTrip) from structured knowledge
editing dataset KnowEdit.

edge editing dataset. Pre-process details are listed
in Appendix A.

• Relevant unstructured data (RelDoc): For
each editing query, we retrieve a Wikipedia
document that is semantically related but
factually disjoint from the target knowl-
edge. To facilitate effective document re-
trieval, we train a Dense Passage Retrieval
(DPR) (Karpukhin et al., 2020) model using
a collection of question-answering datasets.
The training setup is detailed in Appendix A.
To ensure factual disjointness, we exclude doc-
uments containing same entity-relation pairs
as those appearing in the editing query 2. Us-
ing RelDoc, we can assess the influence of
editing methods on semantically related un-
structured knowledge.

• Random unstructured data (RandDoc): We
randomly sample a Wikipedia document, ex-
cluding the top 100 documents most relevant
to the editing query. This type of data allows
us to investigate global Locality by assessing
the post-editing impact on distant and unre-
lated unstructured knowledge.

• Structured data (StructTrip): We also
sample structured knowledge from the SKE

2entity-relation pairs are extracted by OpenIE.
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UnKEBench-Loc AKEW-Loc (CF)

# Editing query 1,000 975
# Locality test data

Total 3,000 2,925
RelDoc 1,000 975
RandDoc 1,000 975
StructTrip 1,000 975

Average length of Locality test data*
RelDoc 118.56 117.43
RandDoc 116.19 116.31
StructTrip 8.34 8.18

Table 1: Statistics of UnKEBench-Loc and AKEW-Loc
(CF), including the number of editing query, and the
number and average length of Locality test data. *:
Calculated by NLTK (Bird and Loper, 2004).

dataset KnowEdit, which is unrelated to the
edited unstructured knowledge. This enables
us to evaluate how the editing of unstruc-
tured knowledge impacts unrelated structured
knowledge.

Based on the above approach, we expand two
UKE datasets UnKEBench (Deng et al., 2024) and
AKEW(CounterFact), a subset of AKEW (Wu
et al., 2024). We exclude the other two AKEW
subsets (MQUAKE-CF, WikiUpdate) because they
lack the data necessary for evaluating Generaliza-
tion, rendering them less suitable for a comprehen-
sive assessment. We mark the expanded datasets as
UnKEBench-Loc and AKEW-Loc (CF) respec-
tively, and summarize the statistics of them in Ta-
ble 1.

4 Revisiting Fine-tuning based method
for UKE

In this section, we revisit fine-tuning (FT) based ap-
proaches for UKE, including: (1) direct weight
fine-tuning, which directly updates the original
model weights (e.g., FT-L (Zhu et al., 2020) and FT-
M (Zhang et al., 2024)); and (2) additional parame-
ter fine-tuning, which introduces additional train-
able modules, such as adapters, while keeping the
original model weights frozen (e.g., AdaLoRA (Hu
et al., 2022)). Although frequently adopted in prior
studies (Meng et al., 2022; Deng et al., 2024), these
methods show suboptimal performance for UKE.
We argue that this underperformance is abnormal
and does not stem from the fundamental limitations
of fine-tuning itself. Therefore, we conduct a sys-
tematic analysis of FT-based methods considering
four factors: loss calculation scope, layer selection,

component selection, and chat template. Table 2
lists the choices for these factors.

Loss Calculation Scope The scope of loss calcu-
lation is crucial for aligning training signals with
the desired output. One approach, used by FT-L,
involves calculating the loss solely on the final pre-
diction token to maximize the probability of the
output. In contrast, another approach, employed by
FT-M and AdaLoRA, calculates the loss across all
tokens of the output.

Layer Selection The choice of which layer to
edit is a critical factor in knowledge editing. Meng
et al. (2022) introduced a causal tracing technique
to identify the most causally relevant layers for
intervention, subsequent work has shown that the
selected layer can significantly impact editing out-
comes. Based on these insights, we explore two
strategies: editing a single middle layer or updating
all transformer layers. These design choices are
informed by empirical findings from frameworks
such as EasyEdit (Wang et al., 2024b).

Component Selection Direct weight fine-tuning
methods directly modify the weights of specific
components in the original model, often targeting
the feed-forward network (FFN) layers, such as
downproj in the MLP. In contrast, additional pa-
rameter fine-tuning methods, such as AdaLoRA,
introduce low-rank adapter modules into the at-
tention projections (e.g., qproj , kproj , vproj , oproj),
allowing for efficient adaptation while keeping the
base model frozen. These designs are not strictly
exclusive. To better understand how different ed-
itable components affect editing performance, we
follow prior work (Zhang et al., 2023; Wang et al.,
2024b) and evaluate several common configura-
tions under both paradigms. A summary of these
configurations is provided in Appendix C.

Chat Template Unstructured knowledge editing
typically involves natural language instructions as
inputs. For instruction-tuned language models, the
use of standardized chat templates helps align the
input format with the model’s pretraining and fine-
tuning distribution. In contrast, editing without
such templates may introduce discrepancies be-
tween the input and the model’s expectations, po-
tentially reducing editing effectiveness. In our anal-
ysis, we compare variants with and without stan-
dardized chat templates to examine their impact on
editing performance.
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Factor Choices

Loss Calculation Scope final prediction token
all target tokens

Layer Selection single layer
all layers

Component Selection* FFN
Attention

Chat Template w. template
w/o. template

Table 2: Factors we considered for the FT-based method
in UKE task. *: Detailed settings are provided in Ap-
pendix C.

By reevaluating fine-tuning based methods with
refined configurations and instruct-compatible set-
tings, we aim to establish a strong setup for FT-
based methods in unstructured knowledge editing
and provide a training recipe for future research.

5 Experiments

In this section, we conduct experiments on datasets
introduced in § 3: UnKEBench-Loc and AKEW-
Loc (CF).

5.1 Experiment Setup
Language Models Following Jiang et al. (2025),
we use Llama3-8B-Instruct (AI@Meta, 2024) and
Qwen2.5-7B-Instruct (Qwen, 2024) as the lan-
guage models to be edited.

Baseline Methods We report two UKE meth-
ods: UnKE (Deng et al., 2024) and AnyEdit (Jiang
et al., 2025), as well as our adopted FT-based
methods FT-UKE and AdaLoRA-UKE, which are
best-performing settings across all settings we dis-
cussed in § 4. Additionally, we report three widely
used SKE methods for comparison: ROME (Meng
et al., 2022), MEMIT (Meng et al., 2023), and Al-
phaEdit (Fang et al., 2024). To demonstrate the
difference in performance before and after editing,
we also report the performance before editing, de-
noted as Pre-edit. Details of baseline methods are
listed in Appendix B.

Evaluation Metrics We evaluate from three per-
spectives: (1) Edit Success (Ori): Tests whether
the model correctly answers the original edit query
with the new target. (2) Generalization (Para):
Uses paraphrased queries to assess whether the edit
generalizes beyond the original phrasing. (3) Local-
ity (Loc): Measures whether unrelated knowledge

is preserved by checking if the model’s output on
unaffected inputs remains unchanged. Finally, we
report the average of Ori, Para, and Loc as a com-
prehensive metric, Overall score (OA).

Following Jiang et al. (2025); Deng et al. (2024),
we use two metrics to measure the similarity be-
tween post-edited model’s output and reference out-
put: BERT Score (BS) (Zhang et al., 2019) for se-
mantic similarity and ROUGE-L (RL) (Lin, 2004)
for lexical similarity. 3

5.2 Main Result
We compare FT-based methods with other strong
UKE and SKE methods for editing two LLMs.
Consistent with Deng et al. (2024), we adopt a
batch size of 1 and set the decoding temperature
to 0.001. The main results are listed in Table 3.
According to these results, we have the following
observations:

(1) The best FT-based method, FT-UKE, con-
sistently outperforms the SOTA UKE methods.
We surprisingly find that FT-UKE outperforms all
methods, including the SOTA UKE methods, ex-
cept in one instance (BS of OA in AKEW-Loc
(CF), editing Llama3). Compared to the best UKE
method in the previous studies, AnyEdit, it exceeds
by 4.44% and 9.12% in the BS and RL of OA
score on AKEW-Loc (CF), with an average ad-
vantage of 6.78%. Notably, even when compared
to the results reported in the original paper, FT-
UKE still demonstrates a significant advantage.
Moreover, as shown in the Fact-Score results in
Appendix D, FT-UKE also achieves the highest
factuality score, further demonstrating its superi-
ority. Besides, AdaLoRA-UKE also demonstrated
very competitive performance. For example, in
the experiments on Qwen2.5-7B-Instruct, its OA
consistently surpassed the SOTA UKE methods.

(2) The failure of FT-based methods in the
previous studies may be attributed to the use of
suboptimal settings. Comparing FT-based meth-
ods reported by the previous studies and FT-UKE,
we find that while FT-based methods can achieve
strong performance, they require careful selection
of important factors. Therefore, we encourage fu-
ture researchers to adopt our training recipe to build
a strong baseline for UKE.

(3) UnKE and AnyEdit are still strong meth-
ods that significantly outperform the SKE meth-
ods. Taking the results of Llama3-8B-Instruct as an

3Specifically, we employ all-MiniLM-L6-v2 to compute
BERT Score.
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UnKEBench-Loc AKEW-Loc (CF)

Method Ori Para Loc OA Ori Para Loc OA

BS RL BS RL BS RL BS RL BS RL BS RL BS RL BS RL

Llama3-8B-Instruct
Pre-edit 63.18 23.67 62.73 23.52 100.00 100.00 75.30 49.06 64.03 15.74 40.20 5.52 100.00 100.00 68.08 40.42
ROME 81.76 45.22 80.47 42.36 78.49 47.90 80.24 45.16 83.75 49.68 57.74 26.34 79.60 45.47 73.69 40.50
MEMIT 75.93 29.83 74.44 28.53 83.24 60.38 77.87 39.58 76.40 31.36 47.81 15.89 81.98 55.73 68.73 34.33
AlphaEdit 73.84 26.84 72.58 25.91 84.74 63.13 77.05 38.63 72.44 24.57 45.68 14.20 83.44 59.25 67.19 32.68
UnKE 98.35 93.32 93.66 79.28 82.30 53.90 91.44 75.50 99.56 97.97 60.33 34.14 77.82 43.29 79.24 58.47
AnyEdit 99.79 99.48 91.87 77.62 86.24 60.24 92.63 79.11 99.99 99.99 62.72 43.33 79.24 43.33 80.65 62.22
AdaLoRA+ 87.26 92.17 81.17 76.53 - - - - - - - - - - - -
FT-L+ 11.63 7.26 10.16 6.53 - - - - - - - - - - - -
FT-L* 40.31 11.39 37.29 8.51 - - - - 42.89 13.12 31.44 5.24 - - - -
UnKE* 98.34 93.33 93.38 78.42 - - - - 98.62 96.37 59.62 32.89 - - - -
AnyEdit* 99.86 99.68 94.70 85.75 - - - - 99.95 99.98 64.24 45.31 - - - -

AdaLoRA-UKE 98.57 93.93 91.57 71.89 85.80 56.32 91.98 74.05 100.00 100.00 82.64 75.18 77.20 36.62 86.61 70.60
FT-UKE 99.95 99.97 99.05 97.07 81.11 50.04 93.37 82.36 100.00 99.99 74.89 65.51 80.38 48.52 85.09 71.34

Qwen2.5-7B-Instruct
Pre-edit 64.18 25.88 64.39 24.02 100.00 100.00 76.19 49.97 65.50 18.24 44.74 17.29 100.00 100.00 70.08 45.18
ROME 84.71 52.34 81.79 45.36 84.52 51.22 83.67 49.64 81.25 50.57 64.07 31.53 81.92 46.03 75.75 42.71
MEMIT 78.19 38.21 76.62 34.19 88.12 61.92 80.98 44.77 76.97 39.03 56.08 25.69 86.56 57.87 73.21 40.86
AlphaEdit 80.00 42.01 78.12 38.22 82.70 49.44 80.27 43.22 80.46 44.43 57.95 28.16 82.42 47.28 73.61 39.96
UnKE 96.90 90.49 83.83 51.29 82.65 51.58 87.79 64.45 97.46 90.55 59.20 29.14 80.69 45.73 79.11 55.14
AnyEdit 98.75 96.99 80.94 51.33 84.36 53.06 88.01 67.13 99.00 97.59 57.50 31.90 82.22 47.37 79.57 58.95
FT-L* 44.02 13.78 40.33 12.93 - - - - 46.66 14.63 32.34 12.31 - - - -
UnKE* 96.97 91.01 89.17 67.00 - - - - 97.34 90.44 59.29 29.27 - - - -
AnyEdit* 99.35 98.82 94.81 82.60 - - - - 99.63 98.99 60.78 32.95 - - - -

AdaLoRA-UKE 99.97 99.89 98.68 94.27 75.94 39.97 91.53 78.05 99.99 100.00 75.19 60.77 77.40 42.32 84.19 67.69
FT-UKE 99.97 99.89 99.08 97.04 79.02 41.41 92.69 79.45 100.00 99.95 77.88 71.14 76.74 38.80 84.87 69.96

Table 3: Knowledge editing performance with different methods. "BS" and "RL" are short for "Bert Score" and
"Rouge-L" respectively. The best results are highlighted in bold, and the second-best results are underlined. +:
Cited from UnKE (Deng et al., 2024), editing Llama2-7B-Chat on UnKEBench. *: Cited from AnyEdit (Jiang et al.,
2025), same experiment setup with us.

example, UnKE and AnyEdit demonstrate a signif-
icant advantage over the best SKE method, ROME,
across all datasets. For instance, UnKE’s BS and
RL of OA on UnKEBench-Loc are around 10%
and 30% higher than ROME’s. We observe similar
trends in other settings. This suggests that although
UnKE and AnyEdit are not as powerful as FT-UKE,
they remain competitive methods for the UKE task.

5.3 Analysis of Factors for FT-based Methods
In this section, we edit Llama3-8B-Instruct on
AKEW-Loc (CF) using FT-based methods, apply-
ing the factor settings discussed in § 4. As shown
in Table 4, our analysis yields the following key
findings:

(1) Calculate loss on final prediction token is
not a good choice for UKE. We find settings that
calculate loss using only the final prediction token
underperform those using all target tokens by over
50% in terms of OA. This significant difference
indicates that using the final prediction token is not
a good choice for the loss calculation scope in the
UKE task.

(2) The optimal choice for component may
differ for FT-based methods between SKE and
UKE tasks, while the choice for layer and chat
template remains the same. The best settings for

additional parameter fine-tuning (AdaLoRA-UKE)
and direct weight fine-tuning (FT-UKE) are high-
lighted in green in the table. For the optimal choice
for component in UKE task, AdaLoRA-UKE in-
volves whole attention projections (qproj , kproj ,
vproj , oproj), which differs from that in SKE (qproj ,
vproj) (Wang et al., 2024b). As for FT-UKE, the
optimal choice remains the same (downproj) be-
tween SKE and UKE. Similarly, the optimal choice
of layer remains consistent, with all for AdaLoRA-
UKE, and one for FT-UKE. As for chat template,
applying it during editing significantly boosts per-
formance across all settings. Detailed comparisons
can be found in Appendix C.

5.4 Performance in Batch Editing Scenarios
To further assess the robustness of various editing
methods under batch editing scenarios, we edit
Llama3-8B-Instruct using different batch sizes (1,
10, 50, and 100) on the AKEW-Loc (CF) dataset.
We aim to investigate how FT-UKE and AdaLoRA-
UKE perform in batch editing scenarios. Therefore,
we present the results of four methods in Figure 3:
FT-UKE, AdaLoRA-UKE, and two UKE methods,
UnKE and AnyEdit. These methods perform well
in the single editing scenario (§ 5.2).

As shown in Figure 3, FT-UKE maintains its
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Scope Layer Component Ori Para Loc OA

BS RL BS RL BS RL BS RL
AdaLoRA (additional parameter fine-tuning)

final prediction token

all qproj 100.00 100.00 53.01 23.49 84.51 54.58 79.17 59.35
all qproj , vproj 99.99 100.00 80.35 70.15 78.41 37.82 86.25 69.32
all qproj , kproj , vproj , oproj 100.00 100.00 82.64 75.18 77.20 36.62 86.61 70.60

single qproj 68.55 18.94 42.28 13.30 96.65 87.64 69.16 39.96
single qproj , vproj 74.18 26.90 44.51 15.15 90.45 67.97 69.71 36.67
single qproj , kproj , vproj , oproj 99.83 99.17 51.17 23.41 87.64 59.73 79.54 60.77

FT (direct weight fine-tuning)

final prediction token

all qproj , vproj 3.34 1.98 3.08 1.89 1.77 27.39 2.73 10.42
all qproj , vproj , downproj 3.25 1.36 3.30 1.34 1.91 31.43 2.82 11.37
all downproj 3.36 1.40 3.36 1.36 1.98 32.76 2.90 11.84

single qproj , vproj 11.75 5.29 11.21 5.22 15.55 42.42 12.84 17.64
single qproj , vproj , downproj 9.92 4.81 11.09 6.01 40.36 35.59 20.46 15.47
single downproj 29.44 12.19 27.10 10.92 56.10 41.82 37.55 21.64

all target tokens

all qproj , vproj 89.30 88.36 86.39 83.30 13.60 17.01 63.09 62.89
all qproj , vproj , downproj 100.00 99.99 75.68 65.87 78.00 45.00 84.56 70.28
all downproj 18.35 13.45 17.75 13.03 3.67 27.09 13.26 17.86

single qproj , vproj 100.00 99.98 75.66 65.96 77.86 44.74 84.51 70.23
single qproj , vproj , downproj 100.00 100.00 68.88 54.35 81.00 47.17 83.29 67.17
single downproj 100.00 99.99 74.89 65.51 80.38 48.52 85.09 71.34

Table 4: Performance of FT-based methods with different factor settings on AKEW-Loc (CF). All settings apply the
chat template. The best results for each group are highlighted in bold, and the settings used in §5.2 are highlighted
in green (FT-UKE, AdaLoRA-UKE). The comparison for the "chat template" can be found in Appendix C (Table 6).

advantage over SOTA UKE methods in batch
editing scenarios, demonstrating strong robust-
ness and effectiveness. All methods exhibit a gen-
eral decline in performance as batch size increases.
However, FT-UKE degrades more gradually, which
results in a progressively larger advantage in aver-
age OA over other methods, increasing from 6.78%
to 10.80%. In contrast, AdaLoRA-UKE suffers
the steepest drop, indicating greater sensitivity to
batch interference. Specifically, AdaLoRA-UKE
shows a more significant decline compared to other
methods as the batch size increases to 10, partic-
ularly in the OA of RL, where it decreases from
70.60% to 45.16%. When the batch size reaches
100, AdaLoRA-UKE becomes almost ineffective,
with an OA of only 37.66/22.12 (BS/RL). As for
UnKE and AnyEdit, although AnyEdit is the SOTA
UKE method in single editing scenarios with a
batch size of 1, it is surpassed by UnKE when the
batch size increases to 50.

For future work, we recommend incorporating
batch editing scenarios into testing to more com-
prehensively evaluate the effectiveness of UKE
methods. Additionally, FT-UKE is the most suit-
able FT-based method for comparison, rather than
AdaLoRA-UKE, which may not perform well with
large batch sizes.

5.5 Comparison with Locality Evaluation
Using General Assessment Dataset

Previous studies rely on a general assessment
dataset MMLU to evaluate the Locality of UKE
(Deng et al., 2024), by observing changes in
multiple-choice accuracy before and after editing.
However, we argue that such evaluations are in-
sufficient for Locality evaluation. To support our
argument, we utilize the Locality data constructed
by Deng et al. (2024) based on MMLU, referred
to as MMLU-Loc, instead of the Locality data we
constructed, to report the performance on datasets
UnKEBench-Loc and AKEW-Loc (CF) for editing
Llama3-8B-Instruct.

As shown in Table 5, most editing methods ex-
hibit performance similar to the pre-edit model
on MMLU-Loc. Even the method with the lowest
accuracy (ROME) shows a decline of only 1.17%
from the pre-edit model. Given that MMLU-Loc
provides only a few multiple-choice questions for
the Locality data of a single edit query, and con-
sidering that evaluations based on such a small set
can be random, we are concerned that this narrow
gap may fail to accurately reflect the differences
in Locality between methods, especially when the
capabilities of them are similar. For instance, the
differences between AnyEdit and UnKE are very
small, less than 0.1% on AKEW-Loc (CF).
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Figure 3: OA of different methods for editing Llama3-8B-Instruct on AKEW-Loc (CF) in batch editing scenarios. FT-
UKE has advantages over SOTA UKE methods across different batch sizes, and the magnitude of these advantages
increases with larger batch sizes. Detailed results are listed in Appendix (Table 8).

Edit query source UnKEBench-Loc AKEW-Loc (CF)

Loc. data source MMLU-Loc UnKEBench-Loc MMLU-Loc AKEW-Loc (CF)

Method Acc BS RL Acc BS RL

Pre-edit 64.18 100.00 100.00 64.06 100.00 100.00
ROME 63.66 (-0.52) 78.49 (-21.51) 47.90 (-52.10) 63.26 (-0.80) 79.60 (-20.40) 45.47 (-54.53)
MEMIT 63.96 (-0.22) 83.24 (-16.76) 60.38 (-39.62) 63.98 (-0.08) 81.98 (-18.02) 55.73 (-44.27)
AlphaEdit 63.78 (-0.40) 84.74 (-15.26) 63.13 (-36.87) 63.84 (-0.23) 83.44 (-16.56) 59.25 (-40.75)
UnKE 63.28 (-0.90) 82.30 (-17.70) 53.90 (-46.10) 62.95 (-1.11) 77.82 (-22.18) 43.29 (-56.71)
AnyEdit 62.56 (-1.62) 86.24 (-13.76) 60.24 (-39.76) 62.89 (-1.17) 79.24 (-20.76) 43.33 (-56.67)
FT-UKE 63.98 (-0.20) 81.11 (-18.89) 50.04 (-49.96) 63.71 (-0.35) 80.38 (-19.62) 48.52 (-51.48)
AdaLoRA-UKE 62.92 (-1.26) 85.80 (-14.20) 56.32 (-43.68) 63.06 (-1.01) 77.20 (-22.80) 36.62 (-63.38)

Table 5: Comparison of Locality evaluation results using MMLU-Loc and AKEW-Loc, showing the results for
editing Llama3-8B-Instruct with queries from AKEW-Loc (CF). The highest values are shown in bold. The values
in (parentheses) indicate the decrease compared to Pre-edit, with the largest decrease marked in red. For result on
UnKEBench, please refer to Appendix G.

In contrast, the Locality data we constructed
reveals clearer distinctions. Taking the BS score
of AKEW-Loc (CF) as an example: (1) The mini-
mum gap between methods and pre-edit is 16.56%,
which is much larger than that on MMLU-Loc
(1.17%); (2) The difference between UnKE and
AnyEdit is 1.42%, which is significantly larger than
that on MMLU-Loc as well. This demonstrates that
our datasets offer a more sensitive and informative
assessment of Locality. This is attributed to (1)
Our data consists of three types, including both
structured and unstructured data, and is meticu-
lously designed for edit queries. (2) Our evaluation
framework is similar to SKE datasets by compar-
ing the consistency between the output of post-edit
and pre-edit models, which is more suitable for the
knowledge editing task (Deng et al., 2024; Jiang

et al., 2025).
Furthermore, the minimal impact on downstream

tasks (as detailed in Appendix F) also supports
our argument that the observed performance dif-
ferences in Locality are not due to overall model
degradation but are specifically captured by our
designed Locality evaluation.

6 Conclusion

This paper constructs two datasets UnKEBench-
Loc and AKEW-Loc (CF) designed for Unstruc-
tured Knowledge Editing (UKE) from the unstruc-
tured and structured views. With three types of
Locality test data, these datasets can support di-
rect and comprehensive evaluation of UKE Local-
ity. Besides, we outline four factors influencing
FT-based methods in UKE and provide a recipe
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for training FT-based methods with strong perfor-
mance. Our experiment results indicate that the FT-
based method with the optimal setting (FT-UKE) is
surprisingly strong, surpassing all the SOTA meth-
ods. In batch editing scenarios, FT-UKE performs
strongly as well, with its advantage over SOTA
methods increasing as the batch size grows, thereby
expanding the average metric lead from +6.78% to
+10.80%. We encourage researchers to adopt our
training recipe to build a strong baseline for the
UKE task in future work.

Limitations

This paper conducts analytical experiments on
several factors of FT-based methods and derives
a training recipe for the UKE task. We opted
for a set of experiments that researchers have
proven to have competitive performance in the SKE
task, rather than enumerating all possible combina-
tions due to limitations in computational resources.
Specifically, the settings we skip include: (1) full-
parameter fine-tuning, which involves training all
parameters of all layers rather than just a part of a
layer component, and (2) other combinations for
the factor Component, such as editing joint con-
figurations of qproj , kproj , vproj , oproj , downproj .
Considering that the current FT-UKE in the set-
tings we experimented with already surpasses the
existing SOTA methods, we decide not to pursue
further exploration of the aforementioned settings,
opting to leave them for future work.
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a batch size of 6, resulting in an effective total batch
size of 36. The question and document encoders
are jointly trained for up to 31 epochs using the
Adam optimizer with a learning rate of 1e-5, a
linear learning rate scheduler with warm-up, and a
dropout rate of 0.1.

Following (Karpukhin et al., 2020)’s settings,
We begin by using a pre-processing script to ex-
tract clean textual content from the Wikipedia
dump, filtering out semi-structured elements such
as tables, infoboxes, lists, and disambiguation
pages. Each article is then segmented into multiple
non-overlapping text blocks of approximately 100
words, which are treated as individual retrieval doc-
uments. This process results in roughly 21M docu-
ments in total. To construct the locality dataset, we
first employ the trained DPR model to retrieve high
similarity documents for each question. For the
RelDoc setting, we use the Stanford OpenIE toolkit
to extract triples from the unstructured facts and en-
sure that none of the extracted entity-relation com-
binations appear in the retrieved documents. Rand-
Doc involves randomly sampling documents from
the entire corpus, while explicitly excluding those
that appear in the top-100 retrieval results. Struct-
Trip is constructed by sampling questions from the
structured editing dataset KnowEdit (Zhang et al.,
2024), with additional filtering to guarantee that
the involved entities do not reoccur in the retrieved
documents. For the final statistics of each Locality
test, we use the word_tokenize function from the
NLTK (Bird and Loper, 2004) library to count the
number of tokens.

B Experiment Details

The settings for FT-based methods and ROME, are
primarily based on those used in EasyEdit (Wang
et al., 2024b), while all other configurations fol-
low the original implementation of AnyEdit (Jiang
et al., 2025) to ensure consistency. All experiments
are conducted on a single NVIDIA H20 GPU with
96GB of memory. The following are their impor-
tant hyperparameter configuration contents.

UnKE UNKE performs edits at layer 7. The
model is trained with a learning rate of 5 × 10−1

for 25 optimization steps, using a weight attenua-
tion coefficient of 1×10−3. This is followed by 50
additional optimization steps with a reduced learn-
ing rate of 2× 10−4 to further refine the parameter
updates.

AnyEdit For Llama3-8B-Instruct, the standard
AnyEdit configuration is adopted, where editing
is performed at layer 7 with a clamp norm factor
of 4. The fact token is defined as the last token
in the prompt. During optimization, all parame-
ters within both the attention and MLP layers are
updated. A learning rate of 2 × 10−4 is used for
50 gradient steps. For key-value representation up-
dates, 25 optimization steps are conducted with a
higher learning rate of 0.5. The loss is applied at
layer 31, and a weight decay of 1 × 10−3 is em-
ployed. To mitigate unintended knowledge drift, 20
samples are drawn from the original model distri-
bution to serve as constraints. For chunked editing,
a chunk size of 40 tokens is used without over-
lap. For Qwen2.5-7B-Instruct, the configuration
remains the same, except that the loss is applied
at layer 27 and the chunk size is increased to 50
tokens.

ROME and MEMIT The key difference be-
tween ROME and MEMIT lies in the number of
layers involved in the editing process. ROME
performs updates exclusively on layer 5, whereas
MEMIT operates on a broader range of layers: [4,
5, 6, 7, 8]. Both methods are optimized using 25
steps with a learning rate of 5 × 10−1, a weight
attenuation coefficient of 1× 10−3, and a KL regu-
larization factor of 0.0625.

FT FT updates the model weights with a learning
rate of 5× 10−4, performing 25 optimization steps
for each training sample. The update is restricted
to a single transformer layer, and we explore two
optimization objectives: prompt-last, which su-
pervises the representation at the last token of the
prompt, and target-new, which directly supervises
the representation of the injected target entity.

AdaLoRA For the AdaLoRA experiments, we
adopt parameter-efficient tuning by inserting low-
rank adapter modules into all transformer layers.
We set the LoRA rank to 8, the scaling factor
lora_alpha to 32, and apply a dropout rate of
0.1. The learning rate is set to 5× 10−3. The target
modules include the attention projections: qproj ,
kproj , vproj , and oproj .

C Configuration Details

Component Selection Each Transformer layer
primarily consists of two submodules: the multi-
head self-attention (MHSA) module and the feed-
forward network (FFN) module. In the MHSA
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Method Ori Para Loc OA

BS RL BS RL BS RL BS RL

AdaLora (additional parameter fine-tuning)
w. template 100.00 100.00 82.64 75.18 77.20 36.62 86.61 70.60
w/o. template 89.33 95.07 48.40 33.14 76.00 40.80 71.24 56.34

FT (direct weight fine-tuning)
w. template 100.00 99.99 74.89 65.51 80.38 48.52 85.09 71.34
w/o. template 80.00 42.01 78.12 38.22 82.70 49.44 80.27 43.22

Table 6: Results of editing Llama3-8B-Instruct with (w.)
and with out(w/o.) chat template on AKEW-Loc (CF).
Settings of other factors keep same with the best setting
in Table 4.

module, the input hidden states are projected
through linear layers to produce the query (qproj),
key (kproj), and value (vproj) vectors. These are
used to compute attention scores and aggregate con-
textual information, followed by an output projec-
tion (oproj) that maps the result back to the original
hidden dimension. In the FFN module, the hidden
representations are transformed through a nonlin-
ear activation and projected back using the down
projection (downproj) layer.

Impact of Chat Template. We also investigate
the impact of chat template adaptation on editing
performance. Our results show a clear performance
gap between models with and without chat tem-
plate alignment. For instance, on the AdaLoRA
setting, using the template yields an average BS of
86.61% and RL of 70.60%, compared to 71.24%
and 56.34% without the template, a relative im-
provement of 14.26% in RL. Similarly, for FT, the
RL score improves from 43.22% (w/o template)
to 71.34% (w. template), a dramatic gain of over
28.12%. These results highlight the importance of
aligning with the model’s expected input format.
Omitting the chat template leads to suboptimal ed-
its, likely due to mismatches in prompt structure
and internal representations. Therefore, template
adaptation should be considered a necessary step
for effective knowledge editing, especially when
working with instruction-tuned models.

D Fact-Score Results

We evaluate the Fact-Score of Llama3-8B-Instruct
following the methodology of Deng et al. (2024).
As shown in Table 7, * indicates the results reported
in Deng et al. (2024), our reproduced UnKE result
is very close to that of the original study, despite
the difference in experimental models (Llama2-7B-
chat was used in Unke). Furthermore, FT-UKE also
demonstrates a superior Fact-Score in this setting.

Method Fact-Score

FT-UKE 77.86
AnyEdit 51.79
UnKE 42.56
UnKE* 42.49

Table 7: Fact-Score evaluation comparison

Method Ori Para Loc OA

BS RL BS RL BS RL BS RL

Batch Size=1
ROME 83.75 49.68 57.74 26.34 79.60 45.47 73.69 40.50
MEMIT 76.40 31.36 47.81 15.89 81.98 55.73 68.73 34.33
UNKE 99.56 97.97 60.33 34.14 77.82 43.29 79.24 58.47
AnyEdit 99.99 99.99 62.72 43.33 79.24 43.33 80.65 62.22
AdaLoRA-UKE 100.00 100.00 82.64 75.18 77.20 36.62 86.61 70.60
FT-UKE 100.00 99.99 74.89 65.51 80.38 48.52 85.09 71.34

Batch Size=10
ROME 72.86 28.13 51.60 19.52 79.55 45.02 68.00 30.89
MEMIT 54.15 14.23 40.18 12.21 72.28 47.34 55.53 24.59
UNKE 99.61 98.31 57.27 32.69 73.43 34.76 76.77 55.25
AnyEdit 99.86 99.78 56.75 39.02 78.16 36.37 78.25 58.39
AdaLoRA-UKE 90.17 67.61 53.60 26.52 80.80 41.34 74.86 45.16
FT-UKE 99.90 99.76 75.53 63.03 76.42 37.57 83.95 66.79

Batch Size=50
ROME 71.41 23.71 49.88 17.48 80.31 48.89 67.20 30.03
MEMIT 67.89 18.51 43.44 13.33 95.39 85.04 68.91 38.96
UNKE 99.57 97.90 54.70 28.51 76.03 36.93 76.76 54.45
AnyEdit 75.44 48.76 51.10 31.84 79.45 37.17 68.66 39.26
AdaLoRA-UKE 77.74 47.43 52.05 29.10 66.91 29.94 65.56 35.49
FT-UKE 99.91 99.72 68.74 50.27 77.29 36.80 81.98 62.26

Batch Size=100
ROME 72.36 24.95 49.44 17.86 80.55 48.57 67.45 30.46
MEMIT 68.27 18.69 42.24 13.18 96.39 88.05 68.97 39.98
UNKE 92.54 75.38 53.15 25.58 77.43 40.54 74.37 47.17
AnyEdit 71.33 45.34 50.51 31.40 80.01 37.77 67.28 38.17
AdaLoRA-UKE 42.96 23.50 31.12 18.04 38.89 24.83 37.66 22.12
FT-UKE 99.96 99.73 68.24 49.16 76.41 35.92 81.54 61.60

Table 8: Detailed results of Figure 3: Editing Llama3-
8B-Instruct on AKEW-Loc (CF) with batch size of 1,
10, 50, 100.

E Performance of Batch Ediging

As shown in Table 8, we further evaluate the perfor-
mance of various editing methods under different
batch sizes (1, 10, 50, 100) on the AKEW-Loc
dataset. FT-UKE consistently demonstrates strong
and stable performance across all batch sizes, main-
taining high factual accuracy (Ori) while effectively
preserving both generalization (Para) and locality
(Loc). Notably, its advantages become increasingly
evident as the batch size grows. While methods like
MEMIT exhibit relatively stable behavior, most
notably, AdaLoRA-UKE, whose accuracy drops
rapidly with increasing batch size. In contrast, FT-
UKE maintains a well-balanced performance, lead-
ing to a clear overall advantage (OA) over compet-
ing approaches.

F Downstream Tasks

We report downstream abilities as follows: for 10
sampled instances from AKEW-Loc(CF), we eval-
uate full broader functional tasks after each single
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edit and report the average result over the 10 ed-
its. In addition, we also report downstream abil-
ities after performing batch edits on these 10 in-
stances. The experiments are conducted based on
lm-evaluation-harness (Gao et al., 2024) with chat
template, and the results are shown in Table 9. It is
shown that all methods have little difference in av-
erage downstream abilities, with at most only a 3%
decrease compared to Pre-edit. Among them, FT-
UKE performs the best. The results under Batch
Edit are similar to those under Single Edit. Such
a small difference also supports our point in Sec-
tion 5.5: it is still necessary to construct Locality
test data for the UKE task and evaluate the consis-
tency of the output text before and after editing.

Method MMLU OpenBookQA xnli Average

Pre-edit 58.46 34.80 41.99 45.08

Single Edit
FT-UKE 59.05 34.50 41.96 45.17
UnKE 57.99 28.92 41.96 42.96
AnyEdit 57.92 31.02 41.98 43.64

Batch Edit
FT-UKE 60.25 33.40 41.97 45.21
UnKE 59.67 29.60 41.99 43.75
AnyEdit 58.83 26.00 42.30 42.38

Table 9: Downstream tasks performance after knowl-
edge editing

G Locality Results

Table 10 provides a detailed comparison of three
distinct types of locality, RelDoc, RandDoc, and
StructTrip, and illustrates how different editing
methods perform under these settings on the
UnKEBench-Loc and AKEW-Loc (CF) datasets.
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UnKEBench-Loc AKEW-Loc (CF)

Method RelDoc RandDoc StructTrip RelDoc RandDoc StructTrip

BS RL BS RL BS RL BS RL BS RL BS RL

Llama3-8B-Instruct
ROME 76.64 47.80 79.12 50.78 79.71 45.13 80.76 49.63 79.77 48.87 79.60 45.47
MEMIT 80.61 56.90 83.23 59.70 85.88 64.54 82.41 57.36 81.70 56.54 81.81 53.30
AlphaEdit 82.43 58.96 84.49 61.72 87.30 68.69 83.79 58.19 82.86 58.78 83.66 60.79
UNKE 80.37 51.69 83.46 55.49 83.08 54.51 80.31 51.57 79.72 50.24 73.43 28.07
AnyEdit 83.41 52.71 86.24 59.43 89.06 68.58 81.31 48.38 80.94 49.95 75.47 31.67
AdaLoRA 75.67 40.48 78.86 44.01 78.44 36.36 78.88 40.98 78.93 43.08 77.42 29.39
FT-M 72.16 45.02 77.70 55.23 83.05 58.67 76.40 45.29 82.24 56.00 85.78 60.48

Qwen2.5-7B-Instruct
ROME 86.17 51.72 87.06 53.58 80.31 48.36 83.61 46.00 84.61 47.73 77.53 44.36
MEMIT 89.11 62.71 90.94 64.79 84.33 58.27 88.21 58.35 90.02 61.83 81.45 53.42
AlphaEdit 83.99 49.37 86.45 52.16 77.65 46.80 84.76 47.54 85.98 50.73 76.51 43.55
UNKE 84.47 52.74 86.05 55.10 77.43 46.90 82.75 45.30 84.44 48.21 74.86 43.67
AnyEdit 86.07 54.43 87.90 57.89 79.10 46.85 84.48 47.30 86.08 51.72 76.10 43.08
AdaLoRA 76.48 41.47 77.92 43.01 71.39 34.79 79.48 43.53 80.79 46.76 70.69 40.07
FT-M 79.02 41.60 83.57 46.04 72.52 36.59 76.17 37.11 83.18 44.69 70.87 34.58

Table 10: Locality of post-edit models across three types.
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