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Abstract
Coreference resolution is a fundamental task
in natural language processing that involves
linking different references to the same entity
within a text. However, existing models often
struggle to reliably identify referential relation-
ships in contexts with extensive length or com-
plex modifiers. This study proposes a data aug-
mentation technique adding adjective phrases
and employing a prompt-based adversarial fil-
tering pipeline to address these challenges.
Specifically, we generated and inserted contex-
tually appropriate adjective phrases through the
interaction between GPT-4o-mini based Few-
shot Prompting and a Discriminative Language
Model. The grammatical and semantic consis-
tency of these phrases was validated via human
evaluation and inter-annotator agreement (IAA)
procedures. The generated synthetic dataset
was integrated with existing data, leading to
enhanced model performance. On the LitBank
dataset, the CoNLL-F1 score increased by up
to 1.7%, while the synthetic dataset improved
linguistic diversity and the complexity of ref-
erential structures. The proposed pipeline rep-
resents a significant step towards developing
coreference resolution models capable of better
capturing linguistic variety and demonstrating
robustness under challenging conditions. Our
data can be accessed on Zenodo1.

1 Introduction

Coreference resolution (Karttunen, 1969) is a fun-
damental challenge in natural language processing,
requiring the accurate identification and linking
of multiple mentions referring to the same entity
within a document. It plays a crucial role in appli-
cations such as pronoun resolution, information re-
trieval, document summarization, question answer-
ing, and dialogue systems. While recent advances

∗Equal Contribution
†Corresponding Author
1https://zenodo.org/records/16404431

in pre-trained Large Language Models based on
the Transformer architecture (Vaswani et al., 2017)
significantly improve performance, challenges re-
main, particularly in scenarios requiring long-range
contextual reasoning or the interpretation of com-
plex lexical structures. Existing coreference res-
olution datasets (Pradhan et al., 2013; Bamman
et al., 2020) often consist of relatively simple sen-
tence structures, limiting models’ ability to learn
linguistically diverse patterns—particularly those
involving adjectival and adverbial modifiers. These
more intricate expressions are especially prevalent
in literary texts, and the inability to learn them
effectively can substantially impair the general-
ization performance of a model. This limitation
is further exacerbated in real-world applications,
where models frequently encounter highly modi-
fied and contextually complex language, making
robust coreference resolution even more challeng-
ing.

To address these issues, recent studies explore
data augmentation (Feng et al., 2021) and adver-
sarial filtering (Bras et al., 2020). Data augmen-
tation is a well-established technique that exposes
models to a variety of linguistic patterns, reducing
their reliance on specific expressions or biased fea-
tures. Adversarial filtering, in contrast, generates
and curates sophisticated example variants, encour-
aging models to learn linguistic cues and complex
relationships that might otherwise be overlooked.
There is also growing interest in combining adver-
sarial filtering with data augmentation to systemat-
ically adjust dataset difficulty and mitigate model
weaknesses (Bhargava and Ng, 2022).

However, existing research often focuses on
techniques such as synonym substitution, sentence
reordering, and noise injection to generate chal-
lenging examples, even within adversarial filter-
ing frameworks. While these techniques are ef-
fective for generating difficult-to-distinguish ex-
amples, they fall short in tasks like coreference
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resolution, where context preservation, referential
integrity, and entity recognition are crucial. For
instance, a model cannot inherently recognize that
“the city” and “the breathtakingly vibrant city” re-
fer to the same entity. This highlights the need
for methods that deliberately incorporate syntactic
modifiers, such as adjectives and adverbials, to en-
rich coreferential expressions and better reflect nat-
ural linguistic variation. This approach enables the
model to perform coreference resolution based on
contextual understanding and referential reasoning
rather than relying on simple keyword matching.

Based on this perspective, this work presents a
dataset that is augmented with complex adjective
phrases, and proposes a prompt-based adversarial
filtering pipeline to generate complex adjectival
variants for coreferent mentions. The main contri-
butions of this study are as follows: (1) To com-
plement the monotonous representation of existing
coreference resolution datasets, we introduce ex-
amples with modifier phrases to expand learning
opportunities for complex coreference relations. (2)
We design a Prompting-based Adversarial Filtering
pipeline that utilizes GPT-4o-mini (Brown et al.,
2020) as a Generator Language Model, proposing
a data selection method that considers both con-
textual relevance and difficulty. The augmented
dataset is validated through Inter-Annotator Agree-
ment following human evaluation. (3) We construct
a synthetic dataset by integrating the augmented
dataset with the original data and fine-tune a pre-
trained language model, which significantly im-
proves the F1 score of coreference resolution mod-
els. By integrating data augmentation techniques
into coreference resolution research, this study in-
troduces a novel approach that simultaneously en-
hances model performance and data quality.

2 Related Works

2.1 Coreference Resolution

Coreference resolution refers to identifying and
linking multiple expressions that denote the same
entity within a text (Karttunen, 1969). It is typi-
cally categorized into entity and event coreference.
In this study, we focus on entity coreference res-
olution, which involves identifying groups of ex-
pressions that refer to the same real-world entity
(Haghighi and Klein, 2010). The process gener-
ally comprises two stages: mention detection and
mention linking (Pradhan et al., 2012). The former
detects expressions that can serve as mentions of

entities, while mention linking groups them into
coreference clusters (Lee et al., 2017).

Several benchmark datasets are widely used for
coreference resolution, including CoNLL 2012
(Pradhan et al., 2012), GAP (Webster et al., 2018),
LitBank (Bamman et al., 2020), and WikiCoref
(Ghaddar and Langlais, 2016). CoNLL 2012 cov-
ers multiple languages, including English, Chi-
nese, and Arabic, and spans various text genres.
GAP comprises sentence pairs containing gender-
ambiguous pronouns extracted from Wikipedia ar-
ticles. LitBank provides fine-grained coreference
annotations for literary texts, whereas WikiCoref
includes annotated with both entity types and coref-
erence links from Wikipedia corpora.

Coreference resolution models can be broadly
categorized based on their learning paradigms
into mention-pair classifiers (Haghighi and Klein,
2010), entity-level models (Clark and Man-
ning, 2016), latent-tree models (Fernandes et al.,
2014), and mention-ranking models (Wiseman
et al., 2016). More recently, deep learning and
transformer-based large language models (Vaswani
et al., 2017) are introduced to further enhance coref-
erence resolution performance. However, chal-
lenges remain in handling complex contextual de-
pendencies and modifier phrases.

2.2 Adversarial Filtering
Adversarial filtering is a technique designed to sys-
tematically increase the difficulty of a dataset in
order to effectively evaluate the limitations of ma-
chine learning models. This method involves using
a weak model to make predictions on data sam-
ples, discarding those that are easily answered cor-
rectly, and retaining only the samples for which the
model produces incorrect answers or expresses un-
certainty. Such a process prevents models from
relying on superficial patterns or dataset biases
and encourages the development of deeper reason-
ing capabilities and improved generalization. This
method proves particularly useful in enhancing data
quality in tasks and is employed in the construc-
tion of large-scale, challenging datasets such as
HellaSwag (Zellers et al., 2019).

Recent advancements in adversarial filtering
demonstrate its effectiveness in various domains.
DISCOSENSE (Bhargava and Ng, 2022) extends
the adversarial filtering framework by introducing
Controlled Adversarial Filtering, leveraging dis-
course connectives to assess commonsense reason-
ing abilities and generating adversarial distractors
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Dataset #Train #Dev #Test
LitBank 80 10 10
PreCo 36,120 500 500

Table 1: Number of documents in LitBank and PreCo
datasets.

Dataset #Best #Worst #Weird
Augmented LitBank 175 133 24
Augmented PreCo 4,029 1,371 1,193

Table 2: Number of augmented cases in LitBank and
PreCo datasets.

to increase evaluation difficulty.
Specifically, we employ GPT-4o-mini (Brown

et al., 2020) to generate, insert, and replace adjecti-
val phrases in coreference expressions. The modi-
fied instances are then filtered via a discriminative
language model, yielding a more challenging and
informative dataset. Through this approach, we aim
to simultaneously enhance both the performance
and robustness of coreference resolution models by
exposing them to more complex linguistic patterns.

3 Methodology

3.1 Task Description

Coreference resolution refers identifying and link-
ing multiple mentions of the same entity within
a given text (Karttunen, 1969). In this study, we
generate a difficult dataset by augmenting correctly
predicted instances with adjectival phrases. The
adversarial dataset is then combined with the orig-
inal data to construct the final synthetic dataset.
Training on this synthetic dataset aims to enhance
coreference resolution performance.

3.2 Dataset Format

OntoNotes Formatting The OntoNotes dataset
(Pradhan et al., 2013) is structured as a collection
of documents, each containing multiple sentences.
Each sentence is represented as a word-level list,
and a document is formed by aggregating these
sentence lists. This hierarchical structure facilitates
contextualization and enables effective modeling
of document-level coreference relationships.
Cluster Structure A coreference cluster is defined
as a set of mention offsets that refer to the same en-
tity. Each offset specifies the start and end indices
of a particular word or phrase within a document,
uniquely identifying its occurrence. Mentions shar-
ing the same reference are grouped into clusters
based on their offsets, allowing the model to learn

and distinguish different coreference relationships.

Augmented Descriptive Phrase Structure In this
study, we leverage a generative language model to
expand the scope and complexity of the dataset by
incorporating descriptive phrases into coreferential
noun phrases. For instance, if the noun phrase "the
city" appears in a sentence, an adjectival phrase
such as "the beautiful city" is introduced to enhance
linguistic diversity while preserving the corefer-
ence relationship.

3.3 Datasets

LitBank (Bamman et al., 2020) is an annotated
dataset comprising 100 works of English litera-
ture, widely utilized in NLP and computational
humanities. It specializes in literary texts, con-
taining documents with long contextual spans and
complex narrative structures. These characteristics
enable a more sophisticated evaluation of coref-
erence resolution models that must process long-
range dependencies. Unlike general-domain texts
such as conversational transcripts or news articles,
literary texts are distinguished by their stylistic di-
versity, frequent use of metaphors, and long-range
dependencies. These features make LitBank par-
ticularly well-suited for assessing a model’s long-
range inference capabilities and anti-forgetting per-
formance in long documents with intricate corefer-
ence structures. It has been widely used for tasks
such as character tracking, event extraction, rela-
tionship modeling, and literary analysis.

PreCo (Chen et al., 2018) is a large-scale corefer-
ence dataset based on English textbooks, featuring
simpler syntax and explicit coreference chains com-
pared to the literature-focused LitBank. This do-
main contrast allows us to test the generalizability
of our method. Despite augmenting only a subset
of PreCo due to its size, we still observed CoNLL-
F1 improvements, suggesting effectiveness across
diverse linguistic settings.

Details of the dataset composition and augmen-
tation are provided in Table 1 and Table 2. Table 1
summarizes the number of training, development,
and test instances from LitBank and PreCo used
for model fine-tuning, while Table 2 presents the
distribution of augmented subsets derived from the
respective training sets. The three evaluation cri-
teria used in our experiments are described in Ap-
pendix B.
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Figure 1: Overall pipeline. The gray rectangle represents the Prompting-based Adversarial Filtering process. If
the discriminative model succeeds in making a prediction, the process repeats; otherwise, the data is collected and
moved to the human evaluation phase.

Input (Source Sentence):
On either side of this road straggled two uneven rows of
wooden buildings ; the general merchandise stores, the two
banks, the drug store, the feed store, the saloon, the post-
office. On the sidewalk in front of one of the stores sat a little
Swede boy, crying bitterly .
Output (Augmented Sentence):
On either side of this road straggled two uneven rows of
wooden buildings; the general merchandise stores, the two
banks, the drug store, the feed store, the saloon, the post-
office. On the sidewalk in front of one of the various stores
sat a little Swede boy, crying bitterly.

Table 3: Example of Valid Augmented Sentence. Adjec-
tive phrases are added appropriately before nouns.

3.4 Prompting-based Adversarial Filtering

The proposed data augmentation pipeline extends
adversarial filtering to coreference resolution, em-
phasizing the interaction between a discriminative
language model and a generator language model.
This pipeline is designed to enhance the general-
ization of model performance and robustness by in-
crementally introducing difficult examples, such as
descriptive phrases, into the coreference resolution
dataset through the generator model. This dataset is
then filtered using the discriminative model, which
filters the generated data to regulate quality and
adjust difficulty levels.

Discriminative models predict coreference re-
lationships from input data and compare them
to gold-standard annotations to identify instances

Input (Source Sentence):
In accordance with this rule, it can reasonably be assumed
that Boston’s forefathers built their first prison-house some-
where near Cornhill around the same time they established the
earliest burial ground on Isaac Johnson’s land, surrounding
his honored grave. This grave later became the center of all
the tombs gathered in the old churchyard of King’s Chapel.
Output (Augmented Sentence):
In accordance with this rule, it can reasonably be assumed
that Boston’s forefathers built their first prison-house some-
where near Cornhill around the same time they established
the earliest burial ground on Isaac Johnson’s land, surround-
ing his respected honored grave. This grave later became
the center of all the tombs gathered in the old churchyard of
King’s Chapel.

Table 4: Example of Invalid Augmented Sentence. An
adjective phrase has been added after the pronouns un-
naturally.

where the model already makes correct inferences.
In this study, we employ Maverick-mes (Martinelli
et al., 2024) as the discriminative model. The gener-
ator model increases the complexity of the dataset
by adding or replacing descriptive phrases before
coreference expressions. The newly generated ex-
amples are then validated by the discriminative
model. For this purpose, GPT-4o-mini is utilized
as the generator model.

To ensure that the generator model accurately de-
termines the appropriate placement and integration
of descriptive phrases, we provide explicit exam-
ples within the prompts to facilitate the generation
of more natural and contextually appropriate ad-
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jectival phrases. Furthermore, we develop an auto-
mated pipeline to generate modified data based on
the prompts, which is subsequently validated and
filtered using the discriminative model. Figure 1 il-
lustrates the complete process of Prompting-based
Adversarial Filtering. Starting with the original
dataset, the generator model inserts appropriate
descriptive phrases before coreference expressions.

Table 3 shows the valid cases of the augmented
LitBank dataset, and Table 4 shows the invalid
cases from our augmented LitBank dataset. Al-
though the underlying format follows OntoNotes,
we present the examples in standard sentence for-
mat for readability. The underlined words indicate
coreference mentions, while bold-faced words rep-
resent augmented descriptive phrases. An example
prompt template for adversarial filtering is provided
in Appendix A.

3.5 Human Evaluation with Inter-Annotator
Agreement(IAA)

We conduct a human evaluation to assess the qual-
ity of the data generated by the Few-shot Prompt-
based Adversarial Filtering process. This evalua-
tion aims to directly assess the grammatical correct-
ness, semantic appropriateness, and coreference
relevance of the augmented data. Three researchers
perform the evaluation based on predefined criteria,
systematically reviewing all augmented datasets
produced through the adversarial filtering process.
The evaluation criteria are shown in Appendix B.

To ensure the reliability of annotations and as-
sess the consistency of the data, we measure IAA.
IAA quantitatively indicates the degree to which
multiple annotators consistently make judgments
on the same items. We employ two widely used
IAA metrics: Fleiss’ Kappa (Krippendorff, 2011)
and Krippendorff’s Alpha (Fleiss, 1971). Fleiss’
Kappa measures the agreement level among multi-
ple raters labeling categorical data; in our case, it
yields a score of 0.5911, which can be interpreted
as moderate agreement. Krippendorff’s Alpha, a
more generalized metric applicable to various data
types and tolerant of missing values, records a score
of 0.5915, indicating a level of agreement that re-
flects acceptable reliability. Given the moderate
agreement, final labels are determined via majority
voting. In cases where all labels received an equal
number of votes, the data is considered uncertain
and classified as the worst case. Only the best cases,
those with clear annotator consensus, are included
in the augmented dataset for further training and

evaluation.

4 Experiments

4.1 Model

Maverick-incr is a coreference resolution model
based on the Shift-Reduce Paradigm (Clark and
Manning, 2016) that incrementally updates the clus-
ters formed in the previous step. The model pro-
cesses text sequentially and determines whether
newly emerged mentions can be linked to exist-
ing clusters. If a mention can be included in an
existing cluster, it is merged. Otherwise, a new
cluster is created to maintain the coreference rela-
tionship. Unlike traditional sentence-by-sentence
approaches, Maverick-incr favors real-time and se-
quential processing, making it particularly well-
suited for coreference resolution in streaming data
or interactive environments where incremental in-
ference is required.

Maverick-s2e is a coreference resolution model
based on the Coarse-to-Fine method (Lee et al.,
2017). This approach consists of two steps: men-
tion extraction and mention-antecedent classifica-
tion. In the mention extraction step, the model iden-
tifies potential mentions in the text that can be part
of a coreference chain. In the next step, the hidden
state corresponding to the start and end tokens of an
antecedent candidate mention is compared to clas-
sify whether it refers to the same entity. Mentions
identified as coreferential are grouped into clus-
ters. This two-step approach improves inference
efficiency by first narrowing down candidate men-
tions before applying a more refined classification,
avoiding the need for computationally expensive
contextual processing.

Maverick-mes follows the same Coarse-to-Fine-
based structure as Maverick-s2e but introduces
a Multi-Expert Scorer instead of a Mention-
Pair Scorer to refine linguistic pattern recogni-
tion. Specifically, it defines six linguistic syn-
chronization categories—PRON-PRON-C, PRON-
PRON-NC, ENT-PRON, MATCH, CONTAINS,
and OTHER—, determines which category a men-
tion belongs to, and computes a score for each
category to form clusters. This approach enhances
coreference resolution by pre-typing linguistic fea-
tures such as pronoun-pronoun agreement, noun
phrase-pronoun relations, and partial inclusion re-
lationships.
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4.2 Comparing Other Discriminative

To comprehensively evaluate the proposed aug-
mented dataset, this study assesses a total of three
discriminative coreference models, including the
Maverick and two additional architectures, thereby
demonstrating the generalizability and practical ap-
plicability of the approach across model variants.
LingMess (Otmazgin et al., 2023) is an encoder-
only model based on Longformer, designed to ef-
ficiently process extended contexts and capture
long-range dependencies through a sparse atten-
tion mechanism optimized for long documents. It
has exhibited strong performance on literary text-
based datasets and serves as a suitable baseline for
evaluating the effect of adjective insertion within
extended contexts.
wl-coref (Dobrovolskii, 2021) is a lightweight
model that predicts word-level links using a
RoBERTa(Zhuang et al., 2021) backbone and sub-
sequently extracts mention spans, adopting a dif-
ferent strategy from the mention-ranking paradigm.
Despite its structural simplicity, it achieves high
accuracy in mention detection and is valued for its
efficiency.

4.3 Evaluation Metric

MUC (Mention-Unicon Cross) (Vilain et al.,
1995) is a metric that evaluates coreference res-
olution based on the precision and recall of coref-
erence links. Calculated by comparing the number
of links between clusters and assessing how accu-
rately the predicted cluster connections align with
the gold standard clusters.
B³ (B-Cubed) (Bagga and Baldwin, 1998) evalu-
ates coreference resolution by measuring the preci-
sion and recall of individual mentions and comput-
ing a weighted average to assess how consistently
each mention is assigned to the correct cluster. A
model achieves a high score only if it excels in both
accurate classification (precision) and error-free re-
trieval (recall) of mentions.
CEAFe (Constrained Entity Alignment F-
Measure) (Luo, 2005) evaluates coreference reso-
lution based on a one-to-one mapping between clus-
ters. If a gold-standard cluster is split into multiple
predicted clusters or merged into a single predicted
cluster, the score penalization is significant.
CoNLL-2012 F1 Score is calculated as the mean
of three F1 scores of above metrics.

The detailed formulas for the evaluation metrics
are provided in Appendix C.

4.4 Setup

We utilized DeBERTa-v3(He et al., 2023) as the
document encoder for the discriminative language
model. DeBERTa improves upon the existing
BERT architecture by introducing a disentangled
attention mechanism and enhances contextual un-
derstanding through an improved lexical embed-
ding method. For optimization, Adafactor (Shazeer
and Stern, 2018) was employed with weight decay
set to 0.01. The number of training epochs was
set to 300, with a learning rate of 3e-4 for the lin-
ear layers and 2e-5 for the pretrained encoder. All
training was conducted on an RTX 4090 GPU with
24GB of VRAM.

5 Results

We evaluate coreference resolution using MUC, B³,
CEAFe, and CoNLL-F1 metrics, each capturing
different aspects of performance. Table 5 summa-
rizes the results across various training settings,
original, fully augmented, and combined datasets.
Table 6 presents the experimental results on the
PreCo dataset to evaluate the generalization ability
of our models on out-of-domain data. In Table 7,
we compare the performance of different discrimi-
native models on the LitBank dataset using three
variations of training data.

5.1 MUC (Link-based Evaluation)

Among the three models, Maverick-incr exhibited
the highest relative improvement in the MUC score,
with an increase of 1.7%. Maverick-incr operates
by sequentially updating cluster structures, making
it sensitive to nuanced changes in the relationships
between mentions. The proposed augmentation
strategy introduces syntactically and semantically
richer expressions, particularly in the form of mod-
ifiers that were previously absent from certain clus-
ters. This qualitative enrichment enables the model
to more readily capture complex cluster relation-
ships that underlie coreference structures. As a
result, Maverick-incr is better able to identify the
correct clusters, leading to an improvement in the
precision of predicted links versus the total number
of links, which is precisely what the MUC met-
ric evaluates. The pronounced gain in the MUC
score thus suggests that Maverick-incr takes greater
advantage of descriptive augmentation, effectively
enhancing its ability to recognize and form accurate
coreference clusters.
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Training set LM Model MUC B³ CEAFe CoNLL-F1

LitBankOriginal
(mean ± std) DeBERTaLarge

Maverickincr 84.8 ± 0.47 71.8 ± 0.90 67.8 ± 0.75 74.8 ± 0.46
Mavericks2e 87.1 ± 0.76 74.5 ± 1.23 65.8 ± 1.35 75.8 ± 1.09
Maverickmes 87.1 ± 0.66 75.4 ± 0.53 67.1 ± 1.19 76.5 ± 0.74

LitBankAugmented_sample
(mean ± std) DeBERTaLarge

Maverickincr 85.1 ± 0.25 71.7 ± 0.94 67.5 ± 0.50 74.8 ± 0.49
Mavericks2e 87.4 ± 0.38 74.7 ± 0.64 66.0 ± 0.94 76.0 ± 0.59
Maverickmes 86.4 ± 0.44 74.7 ± 0.54 65.2 ± 0.76 75.4 ± 0.24

LitBankAugmented
(mean ± std) DeBERTaLarge

Maverickincr 82.5 ± 0.87 67.9 ± 2.58 66.9 ± 3.06 71.6 ± 1.45
Mavericks2e 86.9 ± 0.28 73.8 ± 0.55 63.4 ± 1.25 74.7 ± 0.58
Maverickmes 85.1 ± 0.71 72.5 ± 1.65 62.7 ± 1.82 73.5 ± 1.35

LitBankSynthetic
(mean ± std) DeBERTaLarge

Maverickincr 86.5 ± 0.43 73.8 ± 0.58 69.5 ± 0.63 76.4 ± 0.46
Mavericks2e 87.8 ± 0.66 75.9 ± 1.26 68.7 ± 1.47 77.5 ± 0.87
Maverickmes 87.4 ± 0.55 76.2 ± 0.57 67.6 ± 1.38 77.1 ± 0.79

Table 5: Performance on four evaluation metrics for the Maverick model on the LitBank dataset. Original,
Augmented, and Synthetic represent the mean and standard deviation of results obtained across four random seeds.
Augmented_sample results are computed via 5-fold cross-validation on randomly sampled subsets. For each fold,
we sample 80 documents to match the size of the original training set. The best score for each metric is shown in
bold.

5.2 B³ (Mention-based Evaluation)

The Maverick-incr model demonstrated the great-
est improvement in the B³ metric, with a notable
increase of 2.0%. B³ evaluates the precision and
recall of each individual mention, emphasizing fine-
grained mention-level alignment across predicted
and gold-standard clusters. Incremental models
like Maverick-incr construct clusters by progres-
sively incorporating mentions in sequential order,
making them particularly sensitive to the local co-

Training set LM Model Avg.F1

PreCoOriginal DeBERTaLarge
Mavericks2e 87.4
Maverickmes 87.1

PreCoSynthetic DeBERTaLarge
Mavericks2e 87.9
Maverickmes 87.4

Table 6: Performance of CoNLL-F1 for the Maverick
model on the PreCo dataset, comparing original and
synthetic training sets.

herence and compatibility of mentions. As the aug-
mented data enhances the contextual richness of
each mention, this facilitates more accurate match-
ing and disambiguation. Therefore, the substan-
tial gain in B³ for Maverick-incr reflects its im-
proved ability to accurately include relevant men-
tions within each evolving cluster.

5.3 CEAFe (One-to-One Cluster Alignment)

CEAFe showed its highest improvement of 2.9%
in the Maverick-s2e model. This metric computes
similarity based on optimal one-to-one alignments
between predicted and ground-truth clusters, re-
warding holistic cluster-level accuracy. The start-
to-end architecture of Maverick-s2e evaluates all
mention pairs within a document and directly mod-

els their likelihood of belonging to the same cluster,
which aligns well with the cluster-level perspective
of CEAFe. The augmentation of descriptive modi-
fiers appears to support this model in distinguishing
between ambiguous or overlapping mention sets,
ultimately leading to more accurate global clus-
ter structures. This suggests that the augmented
input not only improves local decisions but also
enhances the model’s capacity to form cluster as-
signments that reflect the ground-truth structures
more faithfully.

Training set LM Model Avg.F1
LitBankOriginal

LongformerBase LingMess
59.0

LitBankAugmented 59.9
LitBankSynthetic 60.1
LitBankOriginal

RoBERTaLarge wl-coref
63.5

LitBankAugmented 63.3
LitBankSynthetic 66.3
LitBankOriginal

DeBERTLarge Mavericks2e

76.3
LitBankAugmented 76.5
LitBankSynthetic 78.0

Table 7: Comparison between Discriminative model on
LitBank in terms of CoNLL-F1 Score.

5.4 Performance on General Purpose Data

PreCo is a dataset that differs from LitBank in
both structure and domain, and serves as a com-
parative setting to evaluate whether the adjective
insertion-based augmentation technique proposed
in this study generalizes across diverse linguistic
environments. According to the results presented
in Table 6, both Maverick-s2e and Maverick-mes
exhibit a slight improvement in performance when
trained on the augmented PreCo dataset, as mea-
sured by CoNLL-F1. Although the magnitude of
the improvement is modest, the consistency ob-
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served across both models provides meaningful
evidence supporting the generalizability of the pro-
posed augmentation technique. Moreover, while
PreCo tends to emphasize explicit mention links
during training, the insertion of modifiers appears
to guide the model toward learning complementary
semantic cues. This suggests that the augmentation
strategy remains effective even in domains with
relatively low structural variability.

5.5 Evaluation on Additional Models

Table 7 presents results from additional exper-
iments conducted on two models, LingMess,
which is based on Longformer, and wl-coref,
a lightweight model using RoBERTa, to assess
whether the proposed augmentation method gen-
eralizes beyond the Maverick. Both models ex-
hibit performance improvements when trained on
the augmented PreCo dataset, as measured by the
CoNLL-F1 metric. Notably, wl-coref achieves a
2.8% gain. These findings suggest that the modifier
insertion-based augmentation technique is effec-
tive across diverse model architectures, including
those with fixed-length input handling and simpli-
fied linking mechanisms.

5.6 Semantic Data Validation

We conduct follow-up analyses to ensure that the
augmented data is not biased toward specific syn-
tactic patterns or semantic categories, and that
it preserves the expressive diversity and logical
consistency necessary for effective model train-
ing. First, to assess whether the original mean-
ing is preserved after modifier insertion, we ap-
ply a natural language inference (NLI) model to
determine the logical relationship between each
original sentence and its augmented counterpart.
Cases classified as “entailment” or “neutral” are
treated as meaning-preserving. Additionally, to ver-
ify that the augmented data is not structurally or
semantically concentrated around specific patterns,
we visualize the distribution of sentence embed-
dings using dimensionality reduction techniques,
including PCA, t-SNE, and UMAP. These analyses
confirm that the augmented sentences are broadly
and evenly distributed across the embedding space,
without clustering around particular expressions or
semantic classes. Full results and visualizations are
provided in Appendix D.

5.7 Discussion

In Table 5, the average-augmented dataset was con-
structed by randomly sampling examples from the
augmented pool. This allows us to isolate and eval-
uate the impact of augmentation itself.

Interestingly, the performance of models trained
on the augmented data alone is slightly lower than
those trained on the original data. This is due to
the adversarial filtering process, which retained
more challenging examples (e.g., adjectival modi-
fiers of proper nouns) and filtered out easier ones
(e.g., adjectives added to common nouns). De-
spite containing only these harder cases, the aug-
mented dataset achieves performance comparable
to the original, demonstrating the robustness of the
proposed augmentation approach. Finally, the syn-
thetic dataset, which includes all types of examples,
achieves the best overall performance, confirming
that the full augmentation strategy is effective in
improving coreference resolution models. Cross-
validation is not applied to the synthetic dataset.
Similar to the augmentation setting, sampling a
subset of the data may lead to training that overfits
specific augmented examples. This undermines the
intended purpose of augmentation, namely promot-
ing diversity and generalizability. To mitigate this
issue, all augmented examples are integrated and
used collectively during training.

6 Conclusion

We propose a benchmark dataset for coreference
resolution that integrates challenging descriptive
phrases through a prompting-based adversarial fil-
tering pipeline. This approach combines few-shot
prompting using GPT-4o-mini with adversarial fil-
tering to generate linguistically diverse and un-
derrepresented patterns. Contextually appropri-
ate phrases are inserted through interaction with a
discriminative language model and validated via
human evaluation, resulting in a high-quality syn-
thetic dataset.

Experimental results demonstrate consistent per-
formance improvements across all evaluation met-
rics, with CoNLL-F1 gains of up to 1.7% on the
LitBank dataset. Notably, similar improvements
are observed on the PreCo dataset, highlighting the
generalizability of the proposed approach across
domains. Model-specific strengths are also identi-
fied: Maverick-incr yields the highest gain in B³,
while Maverick-s2e performs best on CEAFe. Fur-
thermore, additional models, including wl-coref
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and LingMess, also benefit from the synthetic
data, confirming the robustness of the augmenta-
tion method across diverse model architectures.

In summary, the proposed pipeline enhances
both the accuracy and generalization capacity of
coreference models by reducing their dependence
on overly simplistic patterns and promoting linguis-
tic diversity. Future work will focus on scaling up
augmentation with more varied descriptive phrases,
broader part-of-speech coverage, and extensions to
multilingual corpora and other NLP tasks.

Limitations

Limitations in human evaluation arise due to re-
source constraints. While manual assessment plays
a critical role in ensuring data quality, the involve-
ment of only three annotators limits the generaliz-
ability of the findings. Similarly, for the large-scale
PreCo dataset, only a subset is augmented due to
limited annotation capacity.

In addition, due to constraints in our experimen-
tal setup, we were unable to include the Maverick-
incr model in the PreCo experiments. Although
structurally comparable to the other Maverick vari-
ants, the incremental clustering architecture of
Maverick-incr requires sequential state updates dur-
ing inference, resulting in higher computational
and memory costs. These resource demands cre-
ated a bottleneck that prevented scaling to the full
PreCo dataset within our infrastructure, thereby
limiting the completeness of our cross-model eval-
uation.

Future work may address these limitations by in-
creasing the number of human evaluators for more
reliable qualitative assessment and by optimizing
the augmentation ratio to enhance linguistic diver-
sity and dataset balance.

Despite these constraints, the proposed dataset
and augmentation pipeline represent a meaningful
contribution to improving both linguistic diversity
and model robustness in coreference resolution.
They also offer valuable insights for the develop-
ment of more sophisticated NLP models.
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A Prompt Template for Adversarial
Filtering

When using GPT-4o-mini to augment descriptive
phrases, it is essential to identify coreference men-
tions in a given sentence and add modifiers only to
those mentions. In doing so, the following consider-
ations should be taken into account when selecting
modifiers:

• Avoid repeating the same modifier within a
sentence.

• Do not use overly generic modifiers.

• Modifiers should not alter the original mean-
ing of the sentence.

The first issue arises from repeating the same
word, which can make the sentence structure awk-
ward and potentially grammatically incorrect. Nev-
ertheless, we excluded repeated modifiers during
human evaluation to maintain naturalness. The sec-
ond issue is that overly generic modifiers fail to
contribute meaningfully to identifying coreference
mentions, contradicting the purpose of our aug-
mentation strategy. To address this, we instructed
annotators to select contextually relevant modifiers
derived from the given sentence that do not com-
promise its original meaning. Detailed prompts for
modifier generation are provided in Table 8.

B Human Evaluation Criteria for
Augmented Data

The Human evaluation criteria are provided in Ta-
ble 9.

C Equations of Evaluation Metric

C.1 MUC (Mention-Unicon Cross)

MUCPrecision =
TP

TP + FP

MUCRecall =
TP

TP + FN

MUCF1 = 2 · MUCPrecision ·MUCRecall

MUCPrecision +MUCRecall

• TP (True Positives): Correctly predicted links
in coreference clusters.

• FP (False Positives): Predicted links that do
not exist in the gold standard clusters.

• FN (False Negatives): Links that exist in the
gold standard clusters but are missing in the
predictions.

C.2 B³ (B-Cubed)

B3
Precision =

1

N

N∑

i=1

|Ci ∩Gi|2
|Ci|

B3
Recall =

1

N

N∑

i=1

|Ci ∩Gi|2
|Gi|

B3
F1 = 2 · B3

Precision ·B3
Recall

B3
Precision +B3

Recall

• Ci: Predicted cluster containing the i-th men-
tion.

• Gi: Gold cluster containing the i-th mention.

• N : Total number of mentions.

• |Ci ∩ Gi|: Number of mentions shared be-
tween the predicted and gold clusters.

C.3 CEAFe (Constrained Entity Alignment
F-Measure)

Similarity(C,G) =
∑

(c,g)∈OptimalMatch

ϕ(c, g)

CEAFePrecision =
Similarity(C,G)

|C|

CEAFeRecall =
Similarity(C,G)

|G|

CEAFeF1 = 2 · Precision ·Recall

Precision+Recall

ϕ(c, g) =
2 · |c ∩ g|
|c|+ |g|

• C: Set of predicted clusters.

• G: Set of gold clusters.

• |C|: Number of predicted clusters.

• |G|: Number of gold clusters.

• ϕ(c, g): Similarity between a predicted cluster
c and a gold cluster g.

C.4 CoNLL-2012 F1 Score

F1Score =
MUCF1 +B3

F1 + CEAFeF1

3
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Instructions:
You will be given a sentence in OntoNotes format along with a coreference cluster and its offsets. Your task is to
add several adjectives that aligns with the given coreference term. The adjective must be placed immediately before
the term within the sentence.
Guidelines:
1. Identify the words in the sentence that correspond to each offset.
2. Updated Coreference Offsets should be calculated step by step.
3. For each remaining term (starting from the second), add several adjectives immediately before the term if it adds
meaningful context.
4. Never add articles (‘the’, ‘a’), only adjective.
5. Ensure the adjective does not change the sentence’s original meaning.
6. Avoid repeating the same word multiple times in sequence.
7. Use adjectives that are contextually relevant and meaningful. Avoid using too general adjectives like ‘good’,
‘bad’, ‘nice’, or nonsensical combinations.
8. Adjectives should enrich the meaning or add useful information without making the description redundant or
awkward.
9. If no suitable adjective can be added without disrupting the meaning or creating redundancy, do not add an
adjective at all.
10. NEVER VIOLATE THE OUTPUT TEMPLATE.
Input:
- Sentence: ontonotes_sentence
- Coreference Offsets: offsets
- Coreference Words: words
Output Format:
1. Updated Coreference Words : The modified OntoNotes format sentence with adjectives added.
Example:
Input:
- Sentence: [‘Barack’, ‘Obama’, ‘is’, ‘traveling’, ‘to’, ‘Rome’, ‘.’, ‘The’, ‘city’, ‘is’, ‘sunny’, ‘and’, ‘the’, ‘president’,
‘plans’, ‘to’, ‘visit’, ‘its’, ‘most’, ‘important’, ‘attractions’]
- Coreference Offsets: [[5, 5], [7, 8], [17, 17]]
- Coreference Words: [[‘Rome’], [‘The’, ‘city’], [‘its’]]
Correct Output:
1. Updated Coreference Words : [[‘Rome’], [‘The’, ‘picturesque’, ‘city’], [‘its’]]
Explanation:
- ‘picturesque’ was added to ‘city’ to enrich the description without altering the intended meaning.
- No adjective was added to ‘Rome’ or ‘its’ as it was unnecessary.

Table 8: A sample prompt for adversarial filtering.

Case Criteria Original Sentence Augmented Sentence Explanation

High-Quality
(Best)

The sentence must be
grammatically correct
while incorporating de-
scriptive phrases that
are semantically rele-
vant to the coreferential
clusters.

"The man went to
the store."

"The diligent man
went to the store."

A contextually rel-
evant descriptive
phrase, ‘diligent,’
was added before the
coreferential word
‘man’.

Unacceptable
(Worst)

The augmented de-
scriptive phrases are
either grammatically
incorrect or not suit-
able for coreference
clusters.

"My name is Jim." "My name is enchant-
ing Jim."

The descriptive phrase
‘enchanting’ is inap-
propriate, making it
difficult to establish
a coreference cluster
with ‘Jim’.

Acceptable
but Se-
mantically
Misaligned
(Weird)

The sentence is gram-
matically correct, but
the descriptive phrases
or synonyms used as
a replacement are se-
mantically inappropri-
ate for the coreferential
clusters.

"The cat jumped
onto the couch."

"The shiny feline
jumped onto the
couch."

The adjective ‘shiny’
is contextually in-
appropriate for the
coreferential word
‘cat,’ and the orig-
inal term has been
replaced with its
synonym ‘feline.’

Table 9: Examples of coreference-based sentence augmentations categorized by quality.
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Figure 2: Entailment Prediction Distribution
of LitBank Augmented Dataset

D Augmented Data Quality Analysis

To verify whether our augmented data is con-
structed in a balanced and unbiased manner, we
conducted a series of qualitative analyses, includ-
ing NLI label distribution and dimensionality re-
duction techniques such as PCA, t-SNE and UMAP.
These analyses serve to confirm the semantic sound-
ness and class distribution of the generated exam-
ples beyond numerical performance scores.

D.1 NLI Label Distribution
To verify whether the inserted adjectival phrases al-
tered the original meaning, we employed a Natural
Language Inference (NLI) model, which classifies
the relationship between a premise and a hypothesis
into entailment (logical consistency), contradiction
(logical conflict), or neutral (independence). In our
setting, the original sentence served as the premise
and the augmented one as the hypothesis.

We regarded entailment and neutral as accept-
able, indicating meaning preservation or harmless
addition, while contradiction signified semantic in-
consistency and led to data exclusion.

As shown in Figure 2, the label distribution con-
sisted of 130 entailment and 194 neutral cases, with
no contradictions, demonstrating that the augmen-
tation maintains logical coherence and avoids se-
mantic noise.

D.2 PCA Projection
The PCA projection of entailment(green) and neu-
tral(blue) embeddings shows that both categories
are evenly distributed across the first two princi-
pal components, without strong clustering or skew.
The dispersion of points suggests that the model
does not encode a dominant pattern for one class
over the other in the embedding space. This rein-
forces the idea that the augmentation process pro-
duced a balanced representation between the two

Figure 3: PCA Projection of Entailment and
Neutral Sentence Embeddings of LitBank
Augmented Dataset

Figure 4: t-SNE Visualization of Entailment
and Neutral Sentence Embeddings of Lit-
Bank Augmented Dataset

classes. The analysis results are shown in Figure
3.

D.3 t-SNE Visualizations

The t-SNE visualizations also demonstrate well-
distributed embeddings of entailment(green) and
neutral(blue) examples. While there is no sharp
boundary between the classes, the fact that the
points are broadly and evenly scattered implies that
the data captures diverse linguistic and semantic ex-
pressions across both classes without introducing
structural bias. These findings support the con-
clusion that the augmentation method preserved
semantic variety and avoided overfitting to narrow
templates. The analysis results are shown in Figure
4.

D.4 UMAP Representation

The UMAP representation further confirms the
even distribution of entailment(green) and neu-
tral(blue) embeddings. Similar to the t-SNE vi-
sualizations, the UMAP plot does not show a strict
boundary between the two classes, but rather a
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Figure 5: UMAP Visualization of Entailment and
Neutral Sentence Embeddings of LitBank Aug-
mented Dataset

Figure 6: Distribution of inserted modifiers over
WordNet supersense categories used during data
augmentation

smooth and overlapping layout. This indicates that
the semantic space is well-structured and that the
data reflects a wide range of sentence-level vari-
ations. The consistent dispersion across the em-
bedding space suggests that the augmentation pro-
cess did not introduce artificial clusters or distor-
tions. The analysis results are shown in Figure 5.
In summary, the visual and distributional analy-
ses validate that the augmented dataset is logically
sound, semantically rich, and free from major bi-
ases, thus providing a strong foundation for down-
stream model training.

D.5 Supersense Category Analysis

To further analyze the linguistic variety introduced
by the augmentation, we categorized the inserted
adjectival phrases using supersense labels based on
the categorization scheme proposed by the Word-
Net Domains project (Tsvetkov et al., 2014; Fell-
baum, 1998). Figure 6 shows the distribution of to-
ken categories. The majority of the added modifiers
fall under PERCEPTION, FEELING, and QUAN-
TITY, suggesting that the augmentation effectively
introduces human-centric and descriptive features,

which are common in literary texts and beneficial
for enhancing coreference resolution in such do-
mains.

E Case Examples of Augmented
Sentences

To further illustrate the distinctions among the three
quality tiers (BEST, WEIRD, and WORST), we pro-
vide representative examples from the augmented
dataset. Each case demonstrates how modifiers
were added to coreferential mentions under dif-
ferent linguistic conditions—ranging from gram-
matically and semantically sound augmentations
to those exhibiting structural or semantic irregular-
ities.

Discussion
The examples above highlight distinct linguistic
behaviors across the three categories:

• Best: Adjectives are contextually relevant,
grammatically placed, and preserve the
original meaning (“majestic church”, “pic-
turesque valley”).

• Weird: Sentences remain syntactically cor-
rect but exhibit semantic exaggeration or con-
text drift (“resplendent temple”, “formidable
sovereign”).

• Worst: Contain structural or grammatical
inconsistencies such as offset misalignment
or inappropriate modifier insertion (“Spin-
ney picturesque Park”, “James handsome
Bond”).

These distinctions were used in our human eval-
uation and adversarial filtering pipeline to ensure
quality control and to guide subsequent model fine-
tuning.
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Case Type Original Sentence Augmented Sentence
Best "The man went to the store." "The diligent man went to the store."

"You will perceive that our friendship has been a
quiet affair."

"You will perceive that our friendship has been a
harmonious quiet affair."

"He traveled to England for the first time." "He traveled to the beautiful England for the first
time."

"The church stood on the hill." "The majestic church stood on the hill."
"They walked through the valley." "They walked through the picturesque valley."

Weird "The cat jumped onto the couch." "The shiny feline jumped onto the couch."
"At that date, Mahmoud crossed India and entered
the temple."

"At that date, Mahmoud crossed India and entered
the resplendent sumptuous temple."

"He was honored by the queen." "He was honored by the formidable sovereign."
"The army advanced into the city." "The resilient military advanced into the city."
"The man’s limbs were weak." "The resilient man’s limbs were weak."

Worst "My name is Jim." "My name is enchanting Jim."
"From Nuttall, the railway ran to Spinney Park." "From Nuttall, the railway ran to Spinney pic-

turesque Park."
"New mines were sunk across the valley." "New, new mines were sunk across the valley."
"Successful Chicago brokers built their company." "Successful the thriving Chicago brokers built their

company."
"James Bond walked into the room." "James handsome Bond walked into the room."

Table 10: Representative examples of the three quality tiers in augmented data: BEST, WEIRD, and WORST. The
BEST cases exhibit grammatical and semantic precision; WEIRD cases remain grammatically valid but semantically
misaligned or exaggerated; WORST cases contain grammatical or structural errors.
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