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Abstract

Effective tool pre-selection via retrieval is es-
sential for Al agents to select from a vast array
of tools when identifying and planning actions
in the context of complex user queries. Despite
its central role in planning, this aspect remains
underexplored in the literature. Traditional ap-
proaches rely primarily on similarities between
user queries and tool descriptions, which sig-
nificantly limits retrieval accuracy, specifically
when handling multi-step user requests. To
address these limitations, we propose a Knowl-
edge Graph (KG)-based tool retrieval frame-
work that captures the semantic relationships
between tools and their functional dependen-
cies. Our retrieval algorithm leverages ensem-
bles of 1-hop ego tool graphs to model direct
and indirect connections between tools, en-
abling more comprehensive and contextual tool
selection for multi-step tasks. We evaluate our
approach on a synthetically generated internal
dataset across six defined user classes, extend-
ing previous work on coherent dialogue syn-
thesis and tool retrieval benchmarks. Results
demonstrate that our tool graph-based method
achieves 91.85% tool coverage on the micro-
average CompleteRecall metric, compared to
89.26% for re-ranked semantic-lexical hybrid
retrieval, the strongest non-KG baseline in our
experiments. These findings support our hy-
pothesis that the structural information mod-
eled in the graph provides complementary sig-
nals to pure similarity matching, particularly
for queries requiring sequential tool composi-
tion.

1 Introduction

Agentic systems powered by Large Language
(LLMs) or Reasoning Models (LRMs) excel in
planning and scheduling sub-tasks for complex
requests (Kim et al., 2024; Erdogan et al., 2025;
Rawat et al., 2025). While these systems effec-
tively break down tasks into manageable logical
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sequences, evaluations have primarily focused on
controlled settings with limited, well-defined tools
that fit within a model’s context window, such as
web search, a calculator, etc.

Enterprise environments present greater chal-
lenges, with organizations relying on thousands
of specialized tools with complex, often undoc-
umented interdependencies. Conventional re-
trieval methods, particularly vector-based similar-
ity search, frequently miss relevant tools, resulting
in fragmented execution strategies. This limita-
tion is especially critical in general-purpose agentic
planning systems, where both initial and ongoing
tool discovery form the foundation for effective
task decomposition and execution.

Moreover, effective tool discovery is an essen-
tial prerequisite for meaningful task decomposi-
tion: Agents must first identify what capabilities
are available before they can decide how to break
down and solve a complex problem. Despite its
centrality to real-world agentic long-horizon plan-
ning, this aspect remains underexplored in the ex-
isting literature (Huang et al., 2024; Wei et al.,
2025).

We propose a structured semantic representation
of enterprise tools using semi-structured data from
tool descriptions and metadata. This approach
produces a knowledge graph (KG) capturing re-
lationships between tools, entities, and parameters,
enabling better mapping of user queries to rele-
vant tools. Our KG-enhanced retrieval mechanism
uses neighborhood expansion to uncover implicit
connections that traditional retrieval methods miss.

Our contributions are fourfold:

1. We propose a method to extract and model
tool dependencies, facilitating tool trajectory
discovery when explicit dependencies are
missing.

2. We introduce the Ensemble of Ego Graphs
(EEG) algorithm, which uses an ensemble
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of 1-hop ego tool graphs extracted from our
overall tool graph via a hybrid node match-
ing and neighborhood expansion technique to
improve tool retrieval performance.

3. Motivated by an internal analysis of enter-
prise user queries, we define six distinct
query classes in the context of complex user
queries. We present a novel pipeline for
generating multi-step, multi-intent queries
aligned with these classes. Our approach
leverages tool dependency analysis, based on
parameter—parameter relationships and LLM-
inferred return parameter graphs, to identify
feasible tool chains and to ensure the gener-
ated queries are coherent, contextually rele-
vant, and faithful to their intended class.

4. We evaluate the retrieval efficacy of our EEG
algorithm on complex user queries generated
using the above pipeline, using a CompleteRe-
call metric (Zhang et al., 2025) specifically
adapted to our tool retrieval setup, demonstrat-
ing significant improvements over baseline
approaches.

2 Related Work

Recent works have explored the use of tool graphs
for tool retrieval but exhibit notable limitations.

For instance, ControlLLM (Liu et al., 2024b)
requires an adjacency matrix to construct the tool
graph, assuming its structure is defined a priori.
While offering a structured approach for tool selec-
tion and execution, this reliance on pre-specified
connections limits its applicability in automation
scenarios where tool relationships are unknown or
evolving.

ToolNet (Liu et al., 2024a) employs graph-based
iterative tool traversal similar to our approach.
However, its graph construction depends on either
extensive tool-use trajectories from code reposito-
ries and public datasets (unavailable for enterprise
APIs) or LLM-generated trajectories, which fre-
quently contain errors.

COLT (Qu et al., 2024) employs a complex
multi-step, multi-bipartite graph training process
for transductive graph embeddings, but lacks auto-
matic scene inference and clear application paths
for novel queries, limiting its generalization capa-
bilities.

Tool Graph Retriever (Anonymous, 2024) ex-
tracts tool dependencies from documentation to
create a graph. Unlike their approach, our method

doesn’t use a custom dependency identification
model but instead leverages similarities between
parameters and other entities, extracted via Open
Information Extraction, to connect tools in a graph.

Our approach also shares some similarities with
ToolFlow (Wang et al., 2025b), which builds tool
dependency graphs from documentation as well,
but applies them to conversation generation rather
than retrieval purposes. Building on the work
presented in this paper, we further extended the
methodology to synthetically generate complex,
multi-step business queries in scenarios where out-
put parameters are not available. This extension
enables a more rigorous evaluation of the proposed
graph-based retrieval mechanism.

Graph RAG-Tool Fusion (Lumer et al., 2025),
developed concurrently with our work, similarly
combines vector retrieval with knowledge graph
traversal but differs in two key ways: First, unlike
their method that relies on synthetic tool graphs
with well-defined dependencies suited to depth-
first search, our approach semi-automatically con-
verts real enterprise tools into graph representa-
tions, requiring only minimal manual input to tune
prompts for accurate LLM interpretation of tool
metadata and to define domain-specific ontologies
and entity types that ensure semantic consistency
during graph construction. Second, we identify
ego-graph entry nodes using multiple vector rep-
resentations rather than limiting ourselves to only
semantic embeddings, making our method more
practical for enterprise environments.

Another related approach incorporates tool
knowledge directly into model parameters through
training or fine-tuning, including multi-label clas-
sifiers (Moon et al., 2024) and LLMs (Wang et al.,
2025a). However, these parameter-based meth-
ods are inadequate for dynamic enterprise environ-
ments with large, frequently changing tool ecosys-
tems. For a comprehensive review of such ap-
proaches and their limitations, we refer readers to
recent surveys like (Qu et al., 2025).

In summary, our approach combines automatic
tool graph construction with multi-vector graph-
retrieval mechanisms in a novel way, offering su-
perior adaptability to dynamic enterprise environ-
ments compared to existing methods that either
rely on synthetic graphs, lack contextual under-
standing, or cannot scale with frequently changing
tool ecosystems.
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3 Methodology

3.1 System Overview

Our proposed pipeline for tool retrieval is struc-
tured into two principal stages: an offline phase for
building a structured Knowledge Graph (KG) from
semi-structured tool documentation and metadata,
and an online phase for retrieving relevant tools in
response to user requests.

Triple Graph Database
Population
To

ol ledge Graph

e fros Top Relevant Tools
hoing: Re-ranking 1.ToolA
Dsighborhooy Module 2.Tool B
Expansion 2o

Figure 1: Tool Construction and Retrieval Pipeline

As illustrated in Figure 1, the offline phase be-
gins with the ingestion of semi-structured tool
documentation, which is processed by a triple ex-
traction module to identify the relevant relational
triples. Since naive extraction can result in an
explosion of irrelevant or noisy triples, we guide
the process using a pre-defined ontology that con-
strains and informs the extraction. The extracted
triples are then passed through a triple canonicaliza-
tion stage to ensure structural consistency and re-
move redundancies. The resulting canonical triples
are used to populate a graph database, which in-
stantiates the KG used for retrieval.

In the online phase, when a user query is re-
ceived, our KG-based retrieval algorithm combines
semantic query-tool node matching and textual
query-entity node matching to identify entry points
in the tool graph. One-hop neighborhood expan-
sion then enriches the candidate tool set, followed
by re-ranking to return the most relevant tools.
The following subsections provide more details
on these steps.

3.2 Knowledge Graph Construction

Table 1 introduces an example tool and its meta-
data, which we use as a running example through-
out the methodology section.

To facilitate accurate and scalable retrieval of
enterprise tools and their metadata, we construct
a KG that captures both semantic and relational
structures. This section details the four core com-
ponents of our KG construction pipeline: ontology
definition, triple extraction, triple canonicalization,
and graph population. Our full graph construction

algorithm in pseudo code is presented in Algorithm
1.

3.2.1 Ontology Definition

To guide the extraction process and maintain a
focused, manageable graph structure, we employ a
predefined ontology tailored to our domain. This
ontology defines:

* Entity Types: A restricted set of meaning-
ful categories such as tool, parameter, line
of business, business object, capability, and
department.

* Predicate Types: A curated list of rela-
tionships (e.g., has_parameter, used_by, as-
signed_to, related_to, contains) that are rele-
vant for retrieval and downstream reasoning
tasks.

These types are directly aligned with the struc-
ture of enterprise task management tools. For in-
stance, for the sample tool from Table 1, we derive:

* Entity:
— fype: tool
— name: Send Task Deadline Reminder

to Team Members

* Predicate-object pairs, such as:

— has_parameter: priority_filter
— has_department: operations

By constraining both entity and relation types,
we reduce graph noise, prevent combinatorial
growth, and ensure that extracted triples directly
support the system’s use-cases. The prompt which
provides this guidance to the triple extraction LLM
is shared in Figure 6.

3.2.2 Triple Extraction

We extract structured semantic knowledge from
semi-structured text sources by identifying rela-
tional triples of the form (subject, predicate, ob-
Jject). Each triple encodes a factual assertion about
an entity and its relationship to another entity.

* Subject: The source entity (e.g., a fool).

e Predicate: The

has_parameter).

relationship  (e.g.,

* Object: The target entity or value (e.g., dead-
line_range).

To automate this process at scale, we leverage
GPT-40! for natural language understanding and

"https://platform.openai.com/docs/models/gpt-40
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Tool Title

Send Task Deadline Reminder to Team Members

Description Sends an automated email reminder to team members responsible for tasks nearing their
deadline.
Parameters Name Description Type
priority_filter Filters for high-priority tasks requir- enum [High,
ing immediate attention. Medium, Low]

recipient_list

Email addresses of team members

list<user_email>

assigned to tasks, extracted from
task_list_upcoming_deadlines.

Table 1: Sample tool with its metadata.

relation extraction. The model is prompted with
domain-specific instructions to identify and extract
accurate and relevant triples from textual descrip-
tions. For example, for the tool in Table 1, we
could extract the following triples:

® (Task, categorized_by, Priority Level)

¢ (Automated Reminder, Task

Deadline)

triggered_by,

While some variations in entity or relation phras-
ing remain, LLLM-based extraction mitigates many
of the weaknesses of traditional approaches (e.g.,
rigid pattern-matching, limited semantic general-
ization) as shown in recent surveys of relation ex-
traction using large language models (Diaz-Garcia
and Lopez, 2025; Xu et al., 2024). Residual incon-
sistencies are addressed through a triple canonical-
ization step, which we describe next.

3.2.3 Triple Canonicalization

To enhance consistency and reduce redundancy in
the KG, we perform normalization on both enti-
ties and predicates. This process involves two key
steps:

* Entity Normalization: We unify different sur-
face forms of the same entity into a single
canonical representation. For instance, "Sup-

plier”, "supplier”, and "suppliers" are all nor-
malized to a single canonical node "supplier".

* Predicate Normalization: Semantically equiv-
alent predicates are consolidated under a uni-
fied relation. For example, "works at", "em-
ployed by", and "works for" are normalized to

a single canonical predicate "employed_by".

This canonicalization step enhances graph qual-
ity by avoiding duplicate nodes and edges, which
simplifies querying and downstream analysis.

23 Monospaced text denotes function names in definitions

and API calls; bold text marks language keywords; italics
mark variables, parameters, and arguments.

Algorithm 1 Knowledge Graph Construction®

Require: Tool documentation and metadata D, ontology O,
domain-specific Open Information Extraction prompt P

Ensure: Knowledge Graph KG

I: KG < initialize empty graph

2: for all tool_doc in D do

3: triples <— EXTRACTTRIPLES(tool_doc, O)

4 canonical_triples <+ CANONICALIZE(triples)

5 for all (s, p, 0) in canonical_triples do

6: ADDNODE(K G, s, metadata)

7 ADDNODE(K G, o, metadata)

8: ADDEDGE(KG, s, p, 0)

9: return KG

10: function EXTRACTTRIPLES(doc, O)
11: return LLM(doc, prompt=P, constrained_by=0)

3.2.4 Graph Population

Once the canonical triples are prepared, they are
used to populate a graph database. Each node
in the graph is enriched with structured metadata,
including "name", "id", "type", etc.

3.3 Ego Graph Retrieval

To retrieve the most relevant tools in response to
a single or multi-step user query, we employ a
custom ego-graph retrieval algorithm, described in
Algorithm 2, which consists of three main stages:

3.3.1 Entry Point Identification in the Tool
Graph

* Semantic Query-Node Matching: We
embed the user query using OpenAl’s
text-3-embedding-large embedding
model and compute semantic similarity with
all nodes in the graph. The top-10 most se-
mantically similar nodes are selected as can-
didate entry points, ensuring alignment based
on meaning.

* Textual Entity-Node Matching: We perform
unigram, bigram, and trigram matching be-
tween the user query and the text associated
with nodes in the graph. Any matching nodes

906



Algorithm 2 Ego Graph Tool Retrieval®

Require: User query (), Knowledge Graph K, embedding
model M, reranker model R
Ensure: Ranked list of relevant tools 7'
1: entrySem < MATCHBYSEMANTICSIM(Q, KG, M)
2: entryText < MATCHBYTEXTUALSIM(Q, KQG)
3: entryNodes < entrySem U entryText
4: candidateTools < ()
5: for all node in entry N odes do
6.
7
8
9

egoGraph <— ONEHOPNEIGHBORS (K G, node)
tools < EXTRACTTOOLNODES(egoGraph)
: candidateT ools < candidateT ools U tools
. rankedTools + RERANK(candidateT ools, Q, R)
10: return TopPK (rankedT ools, k = 10)

11: function MATCHBYSEMANTICSIM(Q, KG, M)
12: scoredNodes <— EMBEDDINGSIM(Q, KG, M)
13: return TOPK (embeddingM atches, k = 10)

14: function MATCHBYTEXTUALSIM(Q, KG)
15: return NODESWITHEXACTNGRAMMATCH(Q,
KG, n_max = 3)

16: function RERANK(tools, @, R)

17: scoredTools + [ ]

18: for all tool in tools do

19: score < RERANKER(Q, tool, R)

20: Append (tool, score) to scoredT ools

21: return tools sorted in descending order by score

are also considered as entry points, capturing
more direct keyword-based connections.

3.3.2 One-Hop Neighborhood Expansion for
Tool Candidate Set Enrichment

After identifying entry points, we execute a one-
hop neighborhood expansion around each identi-
fied node, constructing an ensemble of ego tool
graphs as previously described. This expansion
process enriches our candidate set by incorporating
all tool nodes directly connected to the entry points,
thereby revealing contextually relevant tools that
might otherwise remain undiscovered.

3.3.3 Re-Ranking Retrieved Tools

The 1lama-3.2-nv-rerankqga-1b-v2* re-
ranking model is used to re-rank the initially re-
trieved set of tools. The model takes as input the
user query and each retrieved tool and outputs a rel-
evance score for each. We retain the rop-10 tools
with the highest scores as the final output for a
given user query.

An end-to-end example, along with a sample graph
snippet, is provided in Appendix under section A.

*https://build.nvidia.com/nvidia/llama-3_
2-nv-rerankqa- 1b-v2/modelcard

4 Dataset Generation

To evaluate our graph-based method, we require
a tool retrieval benchmark suitable for enterprise
use. Existing tool use benchmarks do not meet all
these requirements, necessitating a custom dataset,
cp. Table 2.

4.1 User Query Classification in Enterprise
Task-Oriented Systems

Based on the requirements of our enterprise-
oriented dialogue system, we have identified a tax-
onomy of query classes that reflect the diversity
and complexity of real-world user requests. These
classes help in understanding the structure, depen-
dencies, and execution strategies required for accu-
rate query interpretation and response generation.
The classification is as follows:

* Single-Intent Queries involve only a single
request with no additional steps, conditions,
or dependencies, requiring direct execution.

* Multi-Intent Queries contain multiple inde-
pendent requests that can be processed in any
order or in parallel, with no logical dependen-
cies between actions.

» Explicit Multi-Step Queries include multi-
ple actions where dependencies between steps
are clearly stated in the query, requiring strict
execution order.

* Implicit Multi-Step Queries contain multi-
ple actions where dependencies are implied
rather than explicitly stated. The system must
infer missing steps and their sequence before
executing the main task.

* Conditional Multi-Step Queries explicitly
state a condition that must be met before exe-
cuting some of the actions involved.

* Information Retrieval + Multi-Intent
Queries combine general knowledge inquiry
with personalized action, including both
broad information requests and targeted in-
structions

An example for each type can be found in Table 3.

4.2 Synthetic Multi-Step Query Generation

We introduce a structured Query Generation
Pipeline covering all the aforementioned query
types. This pipeline comprises three key com-
ponents—Path Identification, Query Genera-
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Ours ToolLinkOS ToolSandbox ToolBench ToolBank ToolRet
(Lumer et al., 2025) (Lu et al., 2025) (Qin et al., 2023) (Moon et al., 2024) (Shi et al., 2025)

Number of Tools 177 573 34 16,464 3,168 43,000
Number of Queries 503 1,569 1,032 126,486 163,000 7,600
Tool Dependencies v v v X X X
KG Schema v v X X X X
Complex Query Types v X X X X X
Business Tools v X X X X X

Table 2: Comparison of our proposed business query dataset with other tool retrieval benchmarks.

tion, and Query Validation—that collectively syn-
thesize realistic and semantically grounded user
queries spanning the various user query classes.

4.2.1 Path Identification

This stage constructs meaningful tool chains by
modeling both semantic and functional relation-
ships using graph-based techniques. Specifically,
we construct two graph structures to support di-
verse multi-step execution paths:

¢ P-P Graph Construction: Inspired by
ToolFlow (Wang et al., 2025b), this graph
captures semantic proximity between tools
based on cosine similarity of input parameter
embeddings. Each node corresponds to a tool,
and edges are established when similarity ex-
ceeds a predefined threshold, suggesting po-
tential sequential usage or shared functional
behavior. This structure enables efficient ex-
ploration of tool compositions for multi-step
planning.

* Inferred R-P Graph Construction: We em-
ploy the 03-mini? reasoning model to in-
fer plausible output parameters for individ-
ual tools. These outputs are matched to
tools accepting them as inputs, forming di-
rected output-to-input edges annotated with
confidence scores. Each tool sequence is
passed through a validation step where we
use o3-mini to reason where each gener-
ated sequence is valid. This graph reveals
latent dependencies across tools, allowing for
the construction of semantically valid but pre-
viously undocumented multi-tool flows.

Together, these graph structures enable robust path
exploration for generating logically coherent multi-
step queries.

>https://openai.com/index/openai-03-mini/

4.2.2 Query Generation

Once valid tool sequences are identified, the
pipeline synthesizes realistic user queries aligned
with execution paths and class-specific semantics:

* Generates grammatically well-formed queries
for each tool path.

* Adapts structure and phrasing to match one
of six predefined user query classes, ensuring
linguistic clarity and categorical separation.

* Instantiates abstract parameters with realistic
sample values for contextual relevance.

* Promotes query diversity by varying linguistic
style and avoiding repetitive formulations.

This step transforms tool logic into realistic lan-
guage patterns, enabling robust evaluation of re-
trieval systems under multi-step user query condi-
tions.

4.2.3 Query Validation

To ensure fidelity and structural correctness, the
generated queries undergo systematic validation:

* Class Validation: Verifies that each query is
properly classified according to its structural
and semantic attributes.

* Logical Sequence Verification: Verifies that
the tools used in a multi-step query are con-
textually compatible and collectively resolve
the intended task. It checks whether each
tool’s input and output logically align, pre-
serving semantic coherence across the entire
sequence.

* Error Detection: Identifies anomalies such
as repeated tool references, incomplete re-
quests, or incompatible parameter logic; such
queries are flagged for exclusion.

These checks ensure the integrity of the synthetic
dataset, enabling reliable evaluation of tool re-
trieval frameworks.
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Detailed example prompts for R-P graph con-
struction, query creation and validation are shared
in Figures 7-9 in Appendix C.

Query Type Example

Multi-Intent

Can you show me the hire
date of my manager, John,
and then tell me which

department he belongs to?

Explicit Multi-Step Can you show me the
details of my expense with
report ID R1234 and then
update the transaction
amount to 500 with the

currency code USD?

Implicit Multi-Step I need to adjust the
transaction amount of my
expense with report ID

R1234 to 500.

If the transaction date of
my expense with report ID
R1234 is before
2022-01-01, update the
transaction amount to 500.

Conditional Multi-Step

Information Retrieval +

Multi-Intent What’s the current stock

status? Also, adjust the
product allocation profiles
based on the stock
information.

Table 3: Representative Synthetic Queries Generated
for Each Query Class

4.3 Analysis of Generated Query Types

Distribution of Queries by Query Category

s
& &
& e

& &

R
3 & S
& ¢ & &
§ o

Query Category

Figure 2: Query Distribution across identified query
classes

As a key outcome of our proposed pipeline, we
generate a diverse set of synthetic queries spanning
across five complex query classes. We analyze the
distribution of these queries and provide qualita-
tive examples to showcase how the pipeline cap-
tures the structural and semantic characteristics of
real-world enterprise queries. As seen in Figure 2,
we categorized utterances into six distinct query

classes based on intent category. The single-intent
category consists of real user queries sampled from
production logs. The examples for the remain-
ing query classes were synthetically generated us-
ing the method explained above to closely match
this empirical distribution. Detailed examples for
queries generated for each query type are present in
Table 3. This approach ensures our dataset reflects
realistic usage patterns while enabling scalable cov-
erage of more complex query types.

5 Experimental Results

5.1 Experimental Setup

We constructed our graph database using an in-
ternal dataset comprising semi-structured informa-
tion extracted from several hundred enterprise tools
within a large software platform. This dataset in-
cludes detailed descriptions, parameter specifica-
tions, and associated metadata, serving as the foun-
dational data for the graph construction described
in Section 3.2.

To evaluate our system, we employed a sepa-
rate dataset of synthetic user queries generated
through the pipeline outlined in Section 4.2. These
queries were created by selecting targeted subsets
of tools, formulating logical reasoning paths, and
designing multi-step task-oriented queries. Each
query was subsequently refined through a combi-
nation of automated validation and manual review
to ensure high fidelity and practical alignment with
real-world enterprise use cases.

5.2 Evaluation Metrics

We evaluate retrieval performance using the Com-
pleteRecall metric, defined formally as:

) " 1(Recall@k(q) = 1.0)
q€Q

1
CompleteRecall 1]
where () is the evaluation query set and 1 is an indi-
cator function that returns 1 if Recall @k for a given
query q is exactly 1.0—meaning all required tools
for that query are present within the top-k retrieved
items, with &k being the selected rank cutoff. This
metric is tailored to planning systems where task
breakdown depends on retrieving a complete set of
expected tools. A comparable notion of complete

recall has been used in prior work in the context of
table retrieval (Zhang et al., 2025).
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5.3 Retrieval Results and Analysis

To evaluate retrieval effectiveness, we compared
four approaches: semantic retrieval, lexical re-
trieval (Okapi BM25°), hybrid retrieval, as well as
our proposed KG-based retrieval method. Table 4
summarizes the CompleteRecall metric across all
four approaches broken down by query type as
well as aggregated averages. Comparable graph-
based baselines are not available because no exist-
ing work provides enterprise-grade tools or real-
world enterprise setups of this kind. As a result,
direct empirical comparison is not feasible.

Semantic retrieval using dense vector embed-
dings to capture the similarity between queries and
tool descriptions achieved a micro-average Com-
pleteRecall of 59.84% at k = 3, 73.96% at k = 5,
and 85.69% at k = 10, but struggled with nuanced
queries requiring deeper contextual understanding.

For lexical retrieval, we evaluated Okapi
BM25 with three tokenization strategies: simple
whitespace split, regex-based tokenization using
(\b\w+\Db), and SpaCy lemmatization’. These
were tested across two input types—tool descrip-
tion only, and description plus title. Including titles
generally improved performance, with regex-based
tokenization achieving micro-average CompleteRe-
call of 48.31% at k = 3, 61.63% at k = 5, and
76.54% at k = 10 on the combined input.

Our hybrid baseline combines the top-10
results from both semantic and lexical re-
trieval approaches, and re-ranks them using
llama-3.2-nv-rerankga—-lb-v2.  This
strategy achieves micro-average CompleteRecall
of 62.43% atk = 3, 78.93% at k = 5, and 89.26%
at k = 10, outperforming the standalone methods.

Micro-Average Complete Recall@k Performance Across All Methods

—e— semantic
lexical

| —e— hybrid

—e— graph

CompleteRecall@k
° ° ° o
& g & &

°
[}

0.4

Cutoff k

Figure 3: CompleteRecall @k micro-averages for each
retrieval method

Shttps://pypi.org/project/rank-bm25/
https://spacy.io/api/lemmatizer

Our knowledge graph-based approach signifi-
cantly outperformed all other methods, achieving
micro-average CompleteRecall scores of 70.58%
atk =3,79.13% at k = 5, and 91.85% at k = 10,
as shown in Figure 3. Figure 4 highlights the most
significant gains in complete recall within the con-
ditional multi-step and implicit multi-step query
categories. Appendix B provides further insights
into our observations. We attribute these improve-
ments to the KG’s ability to explicitly model se-
mantic relationships among tools, enabling context-
aware retrieval and revealing connections through
shared functionalities and data dependencies.

Complete Recall@10 by Query Category

Figure 4: CompleteRecall@ [0 for each query type

Some examples of its effectiveness:

* A query involving "budget planning" and
"project timelines" retrieved interconnected
tools such as financial forecasters and
scheduling applications based on their shared
association with time-based planning.

* Tools related to "user onboarding" were re-
trieved as a group due to common entities
such as authentication, documentation, and
workflow setup, facilitating the discovery of a
complete on-boarding toolkit.

These findings demonstrate that the proposed
KG-based retrieval architecture enables more ac-
curate and complete tool discovery, particularly in
enterprise task planning environments that demand
coordinated multi-tool workflows.

6 Limitations

While our approach improves tool retrieval per-
formance for several complex query types, it has
notable limitations. First, its effectiveness depends
heavily on the quality and completeness of the
underlying knowledge graph. Errors in triple ex-
traction or missing tool relationships can consid-
erably weaken results and create a lower bound
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Query Category Lexical Semantic Hybrid Graph

@3 @5 @10 @3 @5 @10 @3 @5 @10 @3 @5 @10
conditional-multi-step 42.50 52.50 67.50 55.00 67.50 83.75 58.75 76.25 86.25 58.75 72.50 92.50
explicit-multi-step 43.24 58.56 79.28 71.17 84.68 93.69 71.17 90.09 95.50 77.48 85.59 98.20
implicit-multi-step 25.68 36.49 54.05 25.68 43.24 60.81 3243 51.35 67.57 37.84 47.30 71.62
ir-multi-intent 39.74 57.69 76.92 47.44 66.67 83.33 52.56 74.36 91.03 62.82 74.36 87.18
multi-intent 63.53 81.18 90.59 69.41 87.06 95.29 69.41 85.88 98.82 90.59 94.12 98.82
single-intent 76.00 82.67 88.00 84.00 88.00 92.00 85.33 89.33 92.00 90.67 96.00 98.67
Micro-Average 48.31 61.63 76.54 59.84 73.96 85.69 62.43 78.93 89.26 70.58 79.13 91.85

Table 4: CompleteRecall@{3, 5, 10} (%) across query categories and retrieval methods. Best @{3, 5, 10} score

per row is highlighted in bold.

on achievable performance, since inaccuracies in
the extraction phase may propagate through later
stages. Second, the framework may be less robust
in domains with highly heterogeneous or sparsely
described tools, reducing node-matching accuracy.

Surprisingly, for certain complex query types,
traditional semantic and lexical-semantic hybrid
retrieval methods outperformed our graph-based
approach. This suggests that the additional struc-
tural complexity may not always provide benefits
and warrants further investigation into when graph-
based methods are most advantageous.

Finally, while we demonstrate strong results in
our enterprise task domain, broader evaluation is
needed to assess generalization across different
domains and tool ecosystems.

7 Conclusion and Future Work

The task of efficiently exploring available tools,
which is crucial for effective task decomposition
during agentic planning, remains challenging for
LLM-powered systems, particularly in enterprise
environments with numerous tools that have com-
plex and often undocumented interdependencies.
Our research was guided by the hypothesis that
explicitly modeling these relationships in a graph
structure would enhance tool retrieval effective-
ness. To address the scarcity of complex queries
in existing datasets, we propose a synthetic query
generation pipeline that models tool dependencies
through parameter-level connections, enabling the
generation of realistic, multi-step queries.

We present a systematic approach to transform
enterprise tools into a coherent graph representa-
tion and introduc a novel Ensemble of Ego-Graphs
(EEG) retrieval framework that outperforms tradi-
tional baselines. Our results as shown in Table 4
support our hypothesis and establish a promising
direction for improving tool retrieval in complex
enterprise environments.

Future research directions addressing some of
the shortcomings we have identified include:

* Implementing a triple validation step to im-
prove the quality of graph connections

* Adding additional dimensions to our dataset
to go beyond the current defined classes and
better capture the real-world variability and
messiness of user queries.

* Making our dataset publicly available

* Exploring graph embedding techniques to
complement our EEG retrieval algorithm

* Developing methods to incorporate tool re-
sponse information to enhance the tool
graph’s utility

 Evaluating and optimizing graph-retrieval la-
tency to make it comparable with current re-
trieval mechanisms

* Introducing query augmentation strategies
to inject realistic linguistic variability, such
as ambiguity, underspecification, and incom-
plete phrasing to improve generalizability to
real-world enterprise queries

* Incorporating inter-annotator agreement mea-
sures (e.g., Cohen’s Kappa) to evaluate con-
sistency among experts and between experts
and the automated validation pipeline to
strengthen the reliability of evaluation out-
comes

Through these efforts, we aim to further advance
tool retrieval capabilities for enterprise applica-
tions.

8 GenAl Usage Disclosure

We employed ChatGPT and Claude to assist in
rephrasing certain sections of the paper for im-
proved clarity. All core content, including research
design, data analysis, and result interpretation, was
conducted without the aid of generative Al tools.
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A Complete Example

User Query: Show me the details of all purchase
order items with ‘pending’ status.

Target Tools:

query purchase order item,
read purchase order item

Entity-Node Matches:

purchase order item,
purchase order

Top Relevant Tools Identified:

read purchase order item,

query purchase order item,

show sale order query item,

read purchase requisition item,
query purchase order header,
read purchase order definition,
query purchase requisition item,

detail,

show sale order read header,
read purchase requisition
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Figure 5: Subgraph to help illustrate the example in
Appendix A

B CompleteRecall@10 per Query
Category

Figure 4 shows a histogram comparing the Com-
pleteRecall@ 10 performance of each retrieval sys-
tem across different query categories.

* For conditional multi-step, explicit multi-step,
and implicit multi-step queries, the graph tool
retrieval system performs best, indicating that
the extracted triples effectively capture tool
dependencies within the graph, enabling more
accurate semantic reasoning and retrieval.
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* For multi-intent, the graph model performs
on par with the hybrid model.

* For information retrieval multi-intent queries,
the graph model performs under-par when
compared with the hybrid model.

* These results highlight that the graph model is
especially effective for queries with implicit
or complex dependencies that are not explic-
itly modeled, demonstrating the advantage
of structured graph representations in captur-
ing hidden relationships that improve retrieval
performance.



Prompts

You are a top-tier natural language understanding expert, skilled in
extracting triplets for Knowledge Graph construction.

Objective: Extract structured triplets (head-relationship-tail) from the
given text to build a knowledge graph. The input is a scenario description
from a digital assistant framework.

Instructions:

1. Read the provided text carefully.

2. Extract triplets in the format: { "head": ee., "tail": coop
"relationship": v }.

- head: the main entity or concept performing an action or being described.
— relationship: the action or relation connecting the head to the tail.

- tail: the entity or concept receiving the action or being related.

3. Include default triplets based on specific patterns:

— has_line_of_ business: between the scenario title and line of business.

- has_entity: between the scenario title and entities in the text.
- has_parameter: Dbetween the scenario title and listed parameters.
4. Also capture other relevant relationships, such as: contains,

related_to, used_for, has_attribute, associated_with, managed_by, part_of,
required_for, depends_on, produces, receives_from, involved_in, reports_to,
responsible_for, affects, includes.

Important Note: For every "head" and "tail" entity in the triplets, include
an additional has_entity triplet linking it to the scenario title.

5. Output must be a valid JSON dictionary with this structure (and no extra
text) :

{
"relationships": [
{"head": "...", "tail": "...", "relationship": "..."},

}

6. Example:

Text: "The scenario titled ’'Error Reporting’ pertains to the Line of
Business ’'Finance’. The scenario description entails: 'As a user, I want to
see a report of the top rejection errors for invoices.’ The parameters are:
error_id, resolved_number."

Output:
{
"relationships": [
{"head": "Error Reporting", "tail": "Finance",
"relationship": "has_line_of_business"},
{"head": "Error Reporting", "tail": "User", "relationship": "has_entity"},
{"head": "Error Reporting", "tail": "Report",
"relationship": "has_entity"},
{"head": "Error Reporting", "tail": "Rejection error",
"relationship": "has_entity"},
{"head": "Invoice", "tail": "Rejection error", "relationship": "contains"},
{"head": "Report", "tail": "User", "relationship": "generated_for"},
{"head": "Error Reporting", "tail": "error_id",
"relationship": "has_parameter"},
{"head": "Error Reporting", "tail": "resolved_number",
"relationship": "has_parameter"}
]
}
7. Strict rules: - Do not duplicate triplets. - Do not allow "head"
and "tail" to be identical. - The scenario title may only appear in
has_line_of_business, has_entity, and has_parameter triplets. - Break

complex sentences into simpler ideas to ensure accurate extraction. -
Maintain consistent naming of entities and relationships.

Follow the above instructions exactly, and output only a valid JSON
dictionary.

Figure 6: Prompt for domain-specific ontology-guided triple extraction from scenario descriptions.
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System Prompt:

You are an expert reasoning agent tasked with identifying output parameters
in a business scenario.

You will be provided with: (1) a scenario name and description, (2) a list
of input parameters and their descriptions, (3) a fixed list of available
parameters, which are the only candidates you may choose from as outputs.
Your Task: Determine which (if any) of the available parameters are likely
to be outputs--meaning they are generated, updated, or returned as a result
of executing the scenario.

- Pay specific attention to the parameter descriptions when choosing a likely
output.

— You may include up to 3 parameters.

— Only choose parameters that have strong logical support based on the
scenario and inputs.

— If there is no clear evidence, return an empty list: [1.

- Do not guess or assume without justification--precision is more important
than recall.

Scoring Criteria: For each selected parameter, provide a confidence score
between 0 and 1, based on the following:

— Relevance: How directly the parameter aligns with the business goal or
result described in the scenario.

— Causality: Whether the parameter is clearly generated or changed as a
consequence of executing the scenario.

— Clarity: Whether the scenario description explicitly or implicitly implies
this parameter is affected or produced.

— Typical Usage: Whether this parameter is commonly used as an output in
similar scenarios or business processes.

Scoring scale:

0.90-0.99: Very strong evidence —-- directly and explicitly implied as an
output; all four dimensions clearly supported.

0.70-0.89: Strong inference -- not explicitly stated but logically follows
from the scenario and typical practices.

0.50-0.69: Weak or partial evidence -- some contextual hints or common
patterns suggest it, but not clearly supported.

< 0.50: Do not include —-- insufficient support or speculative.

Output Format: Respond only with a JSON array, with no markdown, no
headings, and no surrounding text. Each item must match the structure below
and correspond exactly to entries in available_params.

Example:
[
{
"parameter_name": "string (must match exactly from available_params)",
"parameter_id": "string (must match exactly from available_params)",
"confidence_score": float (0 to 1),
"reasoning": "Short explanation (1-2 sentences max) ."
}
]
Notes:
— Only select from the list: {available_params}.
— Return [] if no likely output parameters.
User Prompt:
Scenario ID: {scenario_descriptions|['scenario_id'][1i]}
Scenario Name: {scenario_descriptions|['joule_scenario_title_std'][i]}
Scenario Description: {scenario_descriptions|'scenario_description'][i]}
']

(1]}

Input Parameter Descriptions: {scenario_descriptions|['Parameter_Info

Figure 7: Prompt for identifying likely output parameters in business scenarios with confidence scoring.
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You are an intelligent query generation agent whose goal is to generate user
queries using the logical function paths provided to you.

Here are the logical function paths:{query_generator_input}

Here are the different classes of user queries that have to be generated
using these paths:

1. Explicit Multi-Step User Queries

— Include multiple actions where each step explicitly depends on the
completion of the previous one.

- Require a strict execution order, ensuring prior steps are processed before
moving forward. Often use sequence-based phrasing such as "Show me X, then
do Y."

Example: "Show me Jan’s information and send him a spot award with a budget
based on his career level."

2. Implicit Multi-Step User Queries

— Contain multiple actions, but the dependency between steps is implied
rather than explicitly stated. The system must infer missing steps before
executing the main task.

— User queries belonging to this class must not include sequencing phrases

(e.g., "Do this, then do that"), conjunctions like "and" or "also" for
distinct tasks, or conditional constructions (e.g., "If X happens, then do
le) .

Example: "Send an email reminder to all suppliers invited to the Sapphire
event." (Determining the list of invited suppliers is implicit.)

3. Conditional Multi-Step User Queries

— Depend on a condition being met before executing an action. Often use
phrasing like "If X happens, do Y" or "Only if A is true, execute B."

— Require logical decision-making to ensure the correct steps are triggered.
Example: "Show me items related to GL 1234 if the account balance exceeds
S1M."

4. Multi-Intent User Queries

— Contain multiple independent requests that can be processed in any order or
in parallel, with no logical dependencies between actions.

Example: "Show my direct reports and display the weather forecast."

5. 1Information Retrieval + Multi-Intent User Queries

— Combine a general knowledge inquiry with a personalized action. The
informational query pertains to rules, definitions, or external facts, while

the personal request focuses on user-specific data or tasks. Typically
structured with both a broad question and a targeted action.

Example: "What is a spot award? Also, show me mine."

Instructions:

- Review the given logical path, including all functions, their purpose,
descriptions, and input parameters.

— Generate one natural-sounding user query for each of the five classes based
on the logical path.

— Ensure each query clearly reflects the intent of its respective class.

- Sound fluid, conversational, and human-like —-- avoid robotic or overly
formal phrasing.

- Avoid internal domain-specific terminology and do not reuse exact words or
phrases from function descriptions.

— Use realistic, fake values for at least one function’s input parameters

(e.g. "location": "Chicago", "amount": 200) in the utterances.
— Make each query sound like something a real user might say in a relevant
context.

— Verify that each user query distinctly and accurately reflects the intended
class, ensuring no overlap or confusion between the different user intents.
Output Instructions:

— Provide the final output strictly in this format: {format_instructions}

— Do not include extra text like "json" or "output" in the response.

Figure 8: Prompt for generating user queries across various multi-step classes using structured functional paths.
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System Prompt:

You are an expert in scenario analysis and workflow planning. Your task

is to evaluate whether a sequence of two scenarios is valid based on their
ability to follow one another in a logical, functional, and operational
manner.

Each scenario includes a unique ID, a title, and a description of the actions
or behaviors involved. The first scenario must be completed before the
second one can logically occur, and the actions in the second scenario must
be a valid continuation or follow-up to the first.

The scenarios must be part of a multi-step process, where the first scenario
sets up a necessary context or action that the second can build upon. The
scenarios cannot have distinct or unrelated intents. The second scenario
must build upon the result or state created by the first. If the two
scenarios are unrelated or do not form a cohesive multi-step action, the
sequence should be considered invalid.

You will receive a list of two scenarios. Your task is to determine whether
the second scenario can validly follow the first scenario in a multi-step
process, based on the logical flow and dependencies between them.

Return Format: Provide a valid JSON dictionary with the following fields:

{
"from_scenario_id": "string",
"to_scenario_id": "string",
"is_valid": true or false,
"explanation": "Short rationale with example use case."

}

Notes:

— You must only select from this list of available parameters:
{available_params}

— Return an empty list (‘'[]') if there are no likely output parameters.

User Prompt:
Scenario ID: {scenario_descriptions|[’scenario_id’]J[i]}

Scenario Name: {scenario_descriptions|[’ joule_scenario_title_std’][i]}
Scenario Description: {scenario_descriptions|[’scenario_description’][i]}
Input Parameter Descriptions: ({scenario_descriptions[’Parameter_Info’][i]}

Figure 9: Prompt for validating multi-step scenario transitions using structured logical analysis.
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