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Abstract

Large Language Models (LLMs) are predomi-
nantly assessed based on their common sense
reasoning, language comprehension, and logi-
cal reasoning abilities. While models trained in
specialized domains like mathematics or cod-
ing have demonstrated remarkable advance-
ments in logical reasoning, there remains a
significant gap in evaluating their code genera-
tion capabilities. Existing benchmark datasets
fall short in pinpointing specific strengths and
weaknesses, impeding targeted enhancements
in models’ reasoning abilities to synthesize
code. To bridge this gap, our paper intro-
duces an innovative, pedagogical benchmark-
ing method that mirrors the evaluation pro-
cesses encountered in academic programming
courses. We introduce CodeEval, a multi-
dimensional benchmark dataset designed to
rigorously evaluate LLMs across 24 distinct
aspects of Python programming. The dataset
covers three proficiency levels—beginner, in-
termediate, and advanced—and includes both
class-based and function-based problem types
with detailed problem specifications and com-
prehensive test suites. To facilitate widespread
adoption, we also developed RunCodeEval,
an open-source execution framework that pro-
vides researchers with a ready-to-use evalua-
tion pipeline for CodeEval. RunCodeEval han-
dles test execution, context setup, and metrics
generation, enabling researchers to quickly ob-
tain detailed insights into model strengths and
weaknesses across complexity levels, problem
types, and programming categories. This com-
bination enables targeted evaluation and guides
improvements in LLMs’ programming profi-
ciencies.

1 Introduction

Large Language Models (LLMs) trained on code
have shown remarkable logical reasoning abilities,
yet current evaluation methods remain limited. Ex-
isting benchmarks assess functional correctness
(Chen et al., 2021; Hendrycks et al., 2021) but

fail to provide detailed insights into models’ spe-
cific strengths and weaknesses, hindering targeted
improvements. Moreover, these benchmarks fo-
cus on individual aspects (complexity, function-
based, or class-based problems) rather than multi-
dimensional evaluation.

We address these gaps with CodeEval, a ped-
agogical benchmark dataset of 602 hand-crafted
Python problems spanning 24 programming cat-
egories across three complexity levels. Our ap-
proach uniquely combines function and class-based
problems with context-aware test cases that en-
able complex evaluation scenarios. To make this
benchmark practically usable, we developed Run-
CodeEval, an execution framework that leverages
CodeEval’s problems and test cases to generate
comprehensive evaluation results. RunCodeEval
handles the complex task of executing LLM solu-
tions against CodeEval’s test suite, providing gran-
ular analysis across problem categories, complexity
levels, and problem types, with partial credit scor-
ing and detailed error analysis for targeted model
improvement.

Our contributions are as follows:
1. Multi-dimensional Evaluation: While existing

benchmarks focus on individual aspects such
as complexity, function-based problems, or
class-based problems, none provide a unified
evaluation across all these dimensions. We
introduce the first benchmark that provides
multi-dimensional assessment of model per-
formance across three levels of complexity
and two distinct problem types (functional
and class-based), covering a broad spectrum
of Python programming concepts.

2. Hand-curated Benchmark: We developed
a novel hand-curated benchmark dataset,
CodeEval, specifically designed to enable tar-
geted analysis of model performance in syn-
thesizing Python code.

3. Open-sourcing CodeEval and RunCodeEval:
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Dataset Focus #
Tasks Languages

Has
test
cases

Granularity Hand-
curated

Has
testing
frame-
work

Input

CodeSearchNet (Husain et al., 2019) Various downstream tasks 2M
Go, Java, JavaScript,
PHP, Python, Ruby

No Function No No -

GCJ (Ullah et al., 2019) Competitional 2.4M C++, C, Python, Java No None No No -

CodeNet (Puri et al., 2021) Various downstream tasks 13M
C++, C, Python,
Java, Ruby, C#

No None No No -

CodeContests (Li et al., 2022) Competitional 13M C++, Python, Java Yes None No No NL + input-output pairs

HumanEval (Chen et al., 2021) Untargeted evaluation 164 Python Yes Function Yes No
NL + Function signature +
input-output pairs

MBPP (Austin et al., 2021) Entry level programming 974 Python Yes Function Yes No NL
MathQA-Python (Amini et al., 2019) Statement-level evaluation 2,985 Python No Statement Yes No NL
APPS (Hendrycks et al., 2021) Competitional 232,421Python Yes None No No NL + input-output pairs
CoderEval (Yu et al., 2024) Competitional 230 Python, Java No Function No No NL + Function signature
ClassEval (Du et al., 2023) Untargeted evaluation 100 Python Yes Class Yes No Class skeleton

CodeEval Targeted evaluation 602 Python Yes
Class +
Function

Yes Yes NL

Table 1: Comparison of Existing Datasets with CodeEval

Characteristic Value

Basic Metrics

Total Problems 602
Programming Categories 24
Total Test Cases 1,471
Average Problems per Category 25.1
Average Tests per Problem 2.4
Average Test Coverage 99.1%

Problem Type Distribution

Function Problems 374 (62.1%)
Class Problems 228 (37.9%)

Complexity Distribution

Beginner 135 (22.4%)
Advanced 264 (43.9%)
Intermediate 203 (33.7%)

Category Distribution

24 categories, 20-48 problems each
(see Table 5 in Appendix A)

Table 2: Statistics of the Codeeval dataset

In addition to the CodeEval dataset, we have
created and open-sourced RunCodeEval, an
execution framework that operationalizes the
CodeEval benchmark which is a non-trivial
task given the complex nature of context-
aware test cases in CodeEval. RunCodeEval
solves this usability challenge by providing
a complete evaluation pipeline that executes
LLM solutions against CodeEval’s compre-
hensive test suite, incorporating partial credit
scoring and context-aware test execution logic.
(Refer to Appendix E for accessing CodeEval
and RunCodeEval)

4. Complete Reproducibility: Complete code
for generating LLM solutions across all 15
evaluated models will be made openly avail-
able to ensure full experimental reproducibil-

ity.

2 Related Datasets

Early code evaluation datasets include
CodeXGLUE (Lu et al., 2021), a compre-
hensive collection covering tasks like clone
detection, code completion, and text-to-code
generation. Large-scale datasets such as GCJ
(Ullah et al., 2019) (2.4M samples, 332 problems),
CodeNet (Puri et al., 2021) (13M samples, 4,053
problems), and CodeContests (Li et al., 2022)
(13,328 competition problems with test cases)
provide extensive code repositories across multiple
programming languages, primarily C++, Python,
and Java.

Code generation benchmarks include Hu-
manEval (Chen et al., 2021) (164 hand-curated
problems with test cases), MBPP (Austin et al.,
2021) (974 entry-level Python functions), and
APPS (Hendrycks et al., 2021) (10,000 problems
across three difficulty levels). Recent specialized
datasets include Codereval (Yu et al., 2024) (230
non-self-contained functions reflecting real-world
dependencies), ClassEval (Du et al., 2023) (class-
based tasks with unique skeleton input style), mHu-
manEval (Raihan et al., 2025) (multilingual exten-
sion of HumanEval with prompts in 204 natural
languages), and LiveCodeBench (Jain et al., 2024)
(continuously updated benchmark from coding con-
tests to prevent contamination). However, these
benchmarks focus on individual evaluation aspects
and lack comprehensive multi-dimensional analy-
sis across problem types, complexity levels, and
programming concepts simultaneously.

To address these gaps, we developed CodeEval, a
novel benchmarking dataset that surpasses existing
benchmarks in several key ways:
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Model Overall Complexity Problem Type
Score Beginner Intermediate Advanced Function Class

gpt-4.1-2025-04-14 90.5± 2.1 93.8± 3.5 94.7± 2.4 82.8± 4.8 91.4± 2.5 89.0± 3.8
o3-mini-2025-01-31 89.5± 2.3 92.1± 3.8 93.3± 2.8 82.7± 4.9 90.9± 2.6 87.1± 4.2
Qwen/Qwen3-235B-A22B-Instruct-2507 88.9± 2.3 93.8± 3.2 93.2± 2.7 80.1± 5.1 90.1± 2.7 87.1± 4.1
o4-mini-2025-04-16 88.0± 2.4 94.0± 3.4 92.7± 2.9 78.1± 5.4 91.6± 2.5 82.2± 4.7
claude-sonnet-4-20250514 86.8± 2.5 94.1± 3.6 91.5± 3.1 76.0± 5.6 88.6± 3.0 83.9± 4.6
meta-llama/Llama-4-Maverick-17B-128E-Instruct 86.5± 2.5 92.5± 4.1 87.6± 3.8 81.3± 4.9 88.9± 2.9 82.7± 4.7
command-a-03-2025 85.9± 2.5 91.3± 4.2 89.0± 3.4 78.4± 5.2 87.1± 3.0 84.0± 4.5
claude-opus-4-20250514 84.7± 2.7 93.8± 3.5 88.1± 3.7 74.2± 5.6 88.6± 2.9 78.4± 5.1
grok-2-vision-1212 83.3± 2.8 93.1± 3.7 85.5± 4.0 73.8± 5.8 87.8± 3.0 75.8± 5.3
meta-llama/Llama-4-Scout-17B-16E-Instruct 82.8± 2.8 94.4± 3.2 84.0± 4.2 73.5± 5.6 86.7± 3.1 76.5± 5.3
gemini-2.0-flash 80.8± 3.0 92.1± 3.9 83.6± 4.3 69.6± 6.0 83.4± 3.5 76.5± 5.4
gpt-3.5-turbo 80.0± 3.0 89.1± 4.7 83.1± 4.2 69.9± 6.0 82.7± 3.5 75.6± 5.4
Qwen/Qwen3-4B 74.0± 3.3 89.9± 4.5 77.5± 4.7 58.9± 6.4 79.3± 3.7 65.2± 6.0
command-r-08-2024 54.5± 3.9 58.8± 8.1 61.0± 5.7 43.0± 6.6 47.5± 4.9 65.9± 5.9
command-r-plus-08-2024 21.1± 3.2 12.6± 5.6 26.0± 5.2 20.3± 5.5 3.3± 1.8 50.2± 6.4

Table 3: Comprehensive Model Performance on CodeEval Benchmark. Overall accuracy scores (%) with 95%
confidence intervals across 15 state-of-the-art LLMs, broken down by complexity levels (beginner, intermediate,
advanced) and problem types (Function vs Class-based). See Appendix D for model information.

1. Hand-Curated Quality: CodeEval consists
of 602 carefully hand-crafted problems to en-
sure high quality and pedagogical value. Un-
like datasets automatically scraped from on-
line sources, each problem in CodeEval is
deliberately designed to test specific program-
ming concepts with comprehensive context-
aware test coverage, clear problem statements,
and canonical solutions.

2. Multi-dimensional Evaluation: CodeEval
includes both function-based and class-based
problems across three complexity levels, of-
fering a balanced evaluation of models’ ability
to synthesize diverse code structures. Unlike
existing benchmarks, CodeEval is the first to
provide multi-dimensional coverage across all
three dimensions of evaluation.

3. Conceptual Coverage: CodeEval explicitly
targets specific Python concepts, such as data
structures, recursion, and asynchronous pro-
gramming, offering clarity on what is being
tested. This level of detail is often missing in
other datasets.

4. Targeted Evaluation: CodeEval enables
granular performance analysis by breaking
down scores across problem complexity,
types, and conceptual areas. This approach,
termed Targeted Evaluation, is not possible
with current benchmarks.

5. Bias Mitigation: Unlike many datasets de-
rived from public GitHub repositories, which
risk overlapping with LLM training data and
introducing evaluation bias, CodeEval is dis-

tributed solely via a permanent DOI link (Ap-
pendix G). This eliminates the need for ex-
pensive data decontamination procedures (Li
et al., 2023; Gunasekar et al., 2023).

With these features, CodeEval sets a new standard
for code generation benchmarks by offering a com-
prehensive and unbiased framework for targeted
evaluation of Large Language Models. A summary
of existing benchmark datasets and their compari-
son with CodeEval is shown in Table 1.

3 Methods

3.1 CodeEval

CodeEval comprises 602 hand-crafted problems
across 24 Python programming categories (Table
6) based on pedagogical foundations (Ramalho,
2015) and supplemented with the authors’ profes-
sional expertise in Python. Problems span three
complexity levels—beginner, intermediate, and ad-
vanced—validated statistically by correlating with
model performance data. The dataset includes
both function and class problem types, enabling
multi-dimensional evaluation of coding capabili-
ties. Each problem includes canonical solutions
and rigorous test cases. Example problems are
shown in Figure 1 and dataset statistics are pro-
vided in Table 2.

Curator Qualifications The 602 problems were
hand-crafted by the authors, who possess exten-
sive qualifications: (1) PhD-level Computer Sci-
ence expertise with specialization in software en-
gineering and programming languages, (2) 10-20
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Figure 1: Exemplary problems from CodeEval benchmark dataset. The first problem is of type class and it has three
test cases each with a context-assertion pair. The second problem is of type function with three test cases each with
a context-assertion pair. Note the usages of cls or func which point to the respective class or function entry-points.
The examples also show how context-aware test cases allow for complex definitions of test cases supporting both
function and class based problems.
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years of professional software development expe-
rience, particularly in Python programming, (3)
Academic research and teaching experience in pro-
gramming courses and software engineering, espe-
cially in Python. This combination of deep theo-
retical knowledge and substantial practical expe-
rience ensures both pedagogical validity and real-
world relevance. Each problem underwent multiple
rounds of internal review for correctness, clarity,
and educational value.

Complexity Level Validation To ensure the ro-
bustness and reproducibility of our complexity cat-
egorization, we employed a systematic validation
approach based on statistical analysis of empiri-
cal model performance. Each problem’s complex-
ity level was assigned based on the conceptual
complexity of required Python constructs, drawing
from pedagogical principles and academic curric-
ula. We statistically validated these assignments us-
ing model performance data from 15 diverse LLMs
(Table 4). Our analysis reveals a strong negative
correlation between complexity level and model
performance (r = −0.324, p < 0.05 overall; mean
individual model correlation r = −0.829± 0.394),
confirming that our pedagogically-motivated diffi-
culty levels correspond to empirical performance
differences. Paired t-tests demonstrate signifi-
cant performance drops between complexity levels
(Level 2→3: t = 13.45, p < 0.001), with large
effect sizes (Cohen’s d = 0.790 for Level 1→3)
indicating substantial practical significance. This
dual validation approach—expert judgment con-
firmed by empirical evidence—ensures that our
complexity levels provide reliable and meaning-
ful difficulty discrimination across diverse model
capabilities.

Context-aware Test Cases To address the chal-
lenge of comprehensive testing, particularly for
class-based problems, we introduced context-aware
test cases. As shown in Figure 1, each test case
pairs an optional context with an assertion. This
enables sophisticated test scenarios—for instance,
Test Case 2 in Example 2 tests exception handling
by setting up an empty list context before assert-
ing a StopIteration error, which traditional one-line
assertions cannot capture. The context-aware test
cases in CodeEval have achieved an average test
coverage of 99.1%. A more detailed test coverage
information is provided in Table 7 of Appendix A.

For simpler test cases that involved basic Python

types such as int, float, bool, str, list, tuple, set, and
dict, we used the type-aware mutation technique
to extend such test cases to address the test inade-
quacy problem pointed out by (Liu et al., 2023).

3.2 RunCodeEval

The intricate nature of context-aware test cases in
CodeEval presents a usability challenge for devel-
oping an evaluation pipeline. To facilitate broader
adoption and provide a standard operational imple-
mentation, we developed RunCodeEval, an open-
source execution framework that offers a ready-to-
use evaluation solution for CodeEval. RunCodeE-
val demonstrates how to effectively utilize CodeE-
val’s context-aware test cases and provides vali-
dated implementations for test execution, metrics
computation, and comprehensive reporting. Figure
2 provides a detailed breakdown of the framework’s
architecture and workflow.

High-Level Overview As shown in Figure 2,
RunCodeEval serves as the execution engine for
the CodeEval benchmark. It processes input files
in JSONL format containing LLM-generated solu-
tions, executes these solutions against CodeEval’s
comprehensive test suite, and generates detailed
evaluation reports. This automated pipeline trans-
forms CodeEval’s raw problems and test cases into
actionable performance insights, including:

1. Total scores across all problems,
2. Scores by complexity levels,
3. Scores by problem types,
4. Scores by categories, and
5. Detailed error reporting, covering issues

such as NameError, SyntaxError, TimeoutEr-
ror, NoCompletionError, and general Error,
whose definitions are provided in Table 10.

Software Architecture RunCodeEval opera-
tionalizes the CodeEval benchmark by executing
LLM solutions against the dataset’s comprehensive
test suite. Each problem in CodeEval includes mul-
tiple test cases with optional context and assertions
(see Figure 1). RunCodeEval’s execution engine
transforms these static test definitions into dynamic
evaluation processes. As illustrated in Figure 2b,
the framework follows these steps:

1. Problem Type Identification: The system first
determines whether the problem requires a
function-level or class-level implementation.

2. Direct Execution: The evaluator creates an
isolated execution namespace and directly ex-
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Figure 2: Schematic representation of the RunCodeEval framework. (a) Provides a high-level overview of the
framework. (b) Zooms in on the software architecture, detailing its key components. (c) Further focuses on the test
execution pipeline, a critical element of the RunCodeEval framework.

ecutes the candidate solution code within a
controlled environment.

3. Test Execution and Scoring: For each test
case, the system executes the optional context
setup, runs the assertion against the solution,
and tracks pass/fail results. The framework
computes the functional correctness score
based on the percentage of passed tests.

Test Execution and Partial Credit Scoring The
execution logic for running test cases is imple-
mented through a direct Python execution approach.
As outlined in Figure 2, for each test case, the sys-
tem:

1. Creates an isolated execution namespace to
prevent interference between tests,

2. Executes the context setup code (if defined in
the CodeEval dataset),

3. Runs the assertion against the solution imple-
mentation,

4. Records a pass/fail result with detailed error
information when failures occur.

RunCodeEval is equipped to assign partial credit
to solutions that are not fully correct. It calculates
the functional correctness score by determining the
percentage of successfully passed test cases for a
given problem. For example, if a solution passes 7
out of 10 test cases, the resulting score is 0.7. The
framework includes timeout protection (60 seconds
per solution) to handle infinite loops and resource-
intensive code. Once all solutions in the dataset are
evaluated, a final comprehensive report is generated
summarizing the results across multiple dimensions
including category, complexity level, and problem
type.

4 Result

To demonstrate the efficacy of our benchmarking
approach, we used RunCodeEval to execute LLM
solutions against the comprehensive CodeEval test
suite, evaluating 15 popular large language models
(Table 13) whose scores are shown in Table 3. Run-
CodeEval processed CodeEval’s 602 programming
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problems across 24 distinct Python programming
categories, executing test cases and computing per-
formance metrics across three complexity levels.

4.1 Overall Performance
The evaluated models demonstrated a wide range
of capabilities, with overall scores ranging from
21.1% to 90.5%. The top-performing model,
GPT-4.1 (2025-04-14), achieved 90.5% accuracy
(± 2.1%), while the lowest-performing model,
Command-R-Plus (08-2024), achieved only 21.1%
(± 3.2%). This 69.4 percentage point spread high-
lights the discriminative power of the CodeEval
benchmark in differentiating model capabilities.

Based on performance patterns, we identified
three distinct tiers of models:

• Tier 1 (>88% accuracy): GPT-4.1, O3-Mini,
Qwen3-235B, and O4-Mini, characterized by
strong performance across all categories with
confidence intervals indicating robust and re-
liable performance.

• Tier 2 (82-87% accuracy): Claude Sonnet-4,
Meta Llama-4-Maverick, Command-A, and
Claude Opus-4, showing good overall per-
formance with some category-specific weak-
nesses.

• Tier 3 (<82% accuracy): The remaining
models, exhibiting significant performance
gaps and higher variability across problem
categories.

4.2 Performance by Complexity Level
The CodeEval dataset’s three complexity levels
effectively differentiated model capabilities. As
shown in Table 3, all models exhibited consistent
performance degradation as complexity increased:

• Level 1 (Beginner): Models achieved 89-94%
accuracy, with Meta Llama-4-Scout achieving
the highest score at 94.4% (± 3.2%). The nar-
row performance range at this level suggests
that most modern LLMs handle basic Python
constructs competently.

• Level 2 (Intermediate): Performance ranged
from 61.0% to 94.7%, with GPT-4.1 leading
at 94.7% (± 2.4%). This level showed clear
differentiation between model tiers, with Tier
1 models maintaining >90% accuracy while
lower-tier models dropped below 85%.

• Level 3 (Advanced): The most discrimina-
tive level, with scores ranging from 20.3%
to 82.8%. GPT-4.1 maintained the lead with
82.8% (± 4.8%), while even strong models

showed significant performance drops. The
average performance decrease from Level 1 to
Level 3 was approximately 15-20 percentage
points across all models.

Analysis Statistic Value

Overall Complexity-
Performance Correla-
tion

r −0.324

Correlation Signifi-
cance

p 0.025

Mean Individual
Model Correlation

r̄ −0.829± 0.394

Level 1 vs 2 Difference t 1.833
Level 1 vs 2 Signifi-
cance

p 0.067

Level 2 vs 3 Difference t 13.448
Level 2 vs 3 Signifi-
cance

p < 0.001

Effect Size (L1 vs L2) d 0.150
Effect Size (L2 vs L3) d 0.722
Effect Size (L1 vs L3) d 0.790

Table 4: Statistical Validation of Complexity Levels.
r = Pearson correlation coefficient, t = t-statistic, p =
significance level, d = Cohen’s d effect size.

4.3 Performance by Problem Type

The dataset’s division between function-based and
class-based problems revealed interesting patterns
in model capabilities:

• Function Problems: Models generally per-
formed better on function-based problems,
with scores ranging from 3.3% to 91.6%. The
top performers (O4-Mini at 91.6% ± 2.5%
and GPT-4.1 at 91.4% ± 2.5%) demonstrated
strong procedural programming capabilities.

• Class Problems: Object-oriented problems
proved more challenging, with scores rang-
ing from 50.2% to 89.0%. GPT-4.1 led with
89.0% (± 3.8%), but most models showed
a 5-10 percentage point drop compared to
their function problem performance. No-
tably, Command-R-08-2024 exhibited an un-
usual pattern, performing better on class prob-
lems (65.9% ± 5.9%) than function problems
(47.5% ± 4.9%).

4.4 Category-Specific Performance Analysis

Analysis of performance across the 24 program-
ming categories revealed both universal strengths
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and weaknesses among the evaluated models. Com-
prehensive category-level results for all 15 mod-
els are provided in Tables 8 and 9. Key find-
ings include: (1) fundamental concepts like ran-
dom module operations and primitive data types
achieved consistently high performance (>95% av-
erage) across all models; (2) advanced features
such as concurrency and design patterns emerged
as the most challenging categories (60-70% aver-
age), effectively differentiating model capabilities.
Detailed category-by-category analysis is provided
in Appendix B.

4.5 Error Analysis
Beyond correctness scores, we analyzed the types
and patterns of errors produced by each model.
The error analysis revealed significant variation in
failure modes, with error rates ranging from 6.0%
(GPT-4.1) to 76.1% (Command-R-Plus). Runtime
and logic errors dominated (12.4% average), while
syntax errors remained relatively rare (1.8% aver-
age), suggesting that modern LLMs have largely
mastered Python syntax but struggle with semantic
correctness. Notably, error rates showed strong pos-
itive correlation with problem complexity, validat-
ing the benchmark’s difficulty progression. Com-
prehensive error analysis including breakdown by
error type, complexity level, and problem type is
presented in Appendix C.

4.6 Statistical Reliability
All results are reported with 95% confidence in-
tervals calculated using the normal approximation
for proportions. The consistent sample size of 602
problems per model ensures statistical significance
for all reported differences. The narrow confidence
intervals (typically ± 2-6%) indicate reliable per-
formance estimates, with wider intervals only ap-
pearing for the most challenging problem subsets
where variance naturally increases.

4.7 Key Findings
Our evaluation reveals several important insights:

1. Clear Performance Stratification: The
CodeEval benchmark successfully differen-
tiates models into distinct performance tiers,
providing a reliable metric for comparing code
generation capabilities.

2. Complexity Sensitivity: The three-level com-
plexity system effectively captures the degra-
dation in model performance as problems be-
come more challenging, with Level 3 prob-

lems serving as particularly strong discrimina-
tors.

3. Systematic Weaknesses: All models, regard-
less of overall performance, struggled with
concurrency and advanced object-oriented
concepts, suggesting areas for improvement
in code-focused language model training.

4. Robust Evaluation: The combination of
CodeEval’s high problem count (602), diverse
categories (24), and multiple complexity lev-
els, executed through RunCodeEval’s compre-
hensive analysis pipeline, provides a robust as-
sessment of code generation capabilities that
goes beyond simple accuracy metrics.

These results demonstrate that CodeEval pro-
vides a rigorous, pedagogically-grounded bench-
mark for evaluating code generation capabilities
in large language models, with sufficient granular-
ity to identify specific strengths and weaknesses
across different programming concepts and com-
plexity levels. RunCodeEval facilitates this evalua-
tion by providing a ready-to-use execution frame-
work whose implementation is non-trivial given the
complexity of context-aware test cases in CodeE-
val.

4.8 Reproducibility

To ensure full reproducibility, we provide compre-
hensive documentation for reproducing both evalu-
ation results using RunCodeEval and LLM solution
generation using documented model specifications,
prompting strategies, and generation parameters
(Appendix F).

5 Conclusion

We presented CodeEval, a pedagogically-grounded
benchmark dataset of 602 hand-curated high qual-
ity Python problems spanning 24 programming cat-
egories with comprehensive test suites (99.1% cov-
erage). CodeEval’s detailed problem specifications
and context-aware test cases enable researchers to
conduct targeted evaluation across three complex-
ity levels, two problem types and 24 different cat-
egories. To facilitate adoption, we also developed
RunCodeEval, an execution framework that pro-
vides a complete evaluation pipeline for CodeEval,
automatically generating fine-grained performance
metrics with partial credit scoring. Our evalua-
tion of 15 state-of-the-art LLMs revealed consistent
performance degradation with increasing complex-
ity (validated statistically, Cohen’s d = 0.790) and
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universal struggles with advanced concepts like
concurrency. CodeEval’s comprehensive design
enables researchers to gain actionable insights for
targeted improvements in LLM code generation
capabilities.

6 Limitations

CodeEval problems are designed to be self-
contained, and when dependencies are required,
they are limited to Python’s standard library. Third-
party libraries are intentionally excluded to ensure a
focus on fundamental language constructs and algo-
rithmic reasoning, rather than ecosystem-specific
tooling. This design choice enables controlled and
consistent evaluation across models, which is cen-
tral to our evaluation goals.

While CodeEval does not assess model perfor-
mance on scenarios involving popular frameworks
(e.g., NumPy, Django, TensorFlow) or complex
dependency management, we do not believe this
limits real-world relevance. Many developers and
researchers care deeply about how well LLMs un-
derstand foundational programming semantics, as
this forms the bedrock of reliable system behavior.
Our evaluation captures this effectively, as demon-
strated by the wide performance range across mod-
els (90.5% to 21.1%) and strong complexity-based
separation (Cohen’s d = 0.790). This design choice
prioritizes fundamental programming concepts and
algorithmic thinking, which are essential for assess-
ing core code generation capabilities.
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Appendices

A Dataset Composition and Quality

This appendix provides comprehensive details
about the CodeEval dataset composition, category
definitions, and quality metrics that supplement the
main dataset description.

Category Problems

operator overloading 48 (8.0%)
pythonic classes 36 (6.0%)
generators_and_iterators 34 (5.6%)
design_pattern 33 (5.5%)
object identity 29 (4.8%)
compound data types 27 (4.5%)
composition 27 (4.5%)
http_web 26 (4.3%)
datetime_module 24 (4.0%)
dataclass 24 (4.0%)
functional programming 24 (4.0%)
primitive data types 23 (3.8%)
concurrency 22 (3.7%)
data structure 22 (3.7%)
logging_module 21 (3.5%)
random module 21 (3.5%)
decorator 21 (3.5%)
function argument 20 (3.3%)
pathlib_module 20 (3.3%)
inheritance 20 (3.3%)
typing 20 (3.3%)
sorting and slicing 20 (3.3%)
file_formats 20 (3.3%)
error handling 20 (3.3%)

Table 5: Problem Distribution by Category in CodeEval

A.1 Dataset Statistics and Distribution

Table 2 presents the statistical overview of the
CodeEval dataset, including basic metrics, problem
type distribution, and complexity level distribution.
For detailed category-level statistics, Table 5 shows
the complete breakdown of problems across all 24
programming categories. The dataset demonstrates
balanced representation with category sizes rang-
ing from 20 to 48 problems, ensuring sufficient
statistical power for meaningful evaluation.

A.2 Category Definitions and Scope

Table 6 provides detailed definitions for all 24 pro-
gramming categories evaluated in CodeEval. Each
category represents a distinct area of Python pro-
gramming knowledge, from fundamental concepts
like primitive data types to advanced features like
concurrency and design patterns. These categories
were selected based on pedagogical importance.
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Problem Categories Concept Areas

composition Object composition and delegation patterns
compound data types Dictionary, List, Set, and Tuple operations
concurrency Multi-threading and multi-processing
data structure Selection of efficient data structures for different problem types
dataclass Creation and usage of Python dataclasses
datetime module Date and time manipulation using datetime module
decorator Function and class decorators
design pattern Factory method, dependency injection, singleton, and other design

patterns
error handling Error handling with try, except, else, and finally
file formats Reading and writing various file formats (JSON, CSV, XML, etc.)
function argument Passing arguments in Python functions (*args, **kwargs)
functional programming Lambda functions, functools, map, filter, and reduce
generators and iterators Creation and usage of generators and iterators
http web HTTP requests, web APIs, and URL handling
inheritance Inheritance in Object-Oriented Programming
logging module Logging configuration and usage
object identity Object references, deep/shallow copy, and identity
operator overloading Defining and using magic methods for operators
pathlib module File system path operations using pathlib
primitive data types String, float, integer, and boolean data types
pythonic classes Pythonic class design patterns and special methods
random module Random number generation and sampling
sorting and slicing Sorting and slicing for efficient data retrieval
typing Type hints, annotations, and duck typing

Table 6: Categories of problems in CodeEval and their evaluated concept areas in Python programming language.

A.3 Test Coverage Quality Metrics
Table 7 presents comprehensive test coverage statis-
tics for the CodeEval dataset. The analysis shows
exceptionally high coverage, with an average of
99.1% across all 602 problems. This high cov-
erage ensures that the evaluation accurately cap-
tures model performance on the intended program-
ming concepts. The coverage analysis includes
both overall statistics and category-specific break-
downs, demonstrating consistent quality across all
programming categories.

B Performance by Problem Categories

This appendix provides detailed analysis of model
performance across all 24 programming categories
in the CodeEval dataset. The comprehensive results
are presented in Tables 8 and 9, which together
cover all 15 evaluated models across the complete
category spectrum.

B.1 Performance Patterns by Category
Strongest Categories: Random module opera-
tions, sorting and slicing, and primitive data types
showed consistently high performance across all

models, with many achieving perfect or near-
perfect scores. These categories represent fun-
damental programming concepts that are well-
represented in training data. The low coefficient
of variation (CV < 10%) for these categories indi-
cates consistent performance across all evaluated
models.

Most Challenging Categories: Concurrency,
design patterns, and operator overloading emerged
as the most discriminative categories. Even top-tier
models showed significant performance drops in
these areas, with concurrency problems averaging
60-70% accuracy across all models. These cate-
gories exhibited the highest coefficient of variation
(CV > 30%), effectively differentiating model ca-
pabilities. The challenges in these areas require
deep understanding of advanced Python concepts
and complex programming paradigms.

B.2 Category-Level Insights

Fundamental Concepts: Categories like primitive
data types, sorting and slicing, and random module
operations consistently achieved >90% accuracy
across most models, suggesting these concepts are
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Characteristic Value

Basic Metrics

Average Test Coverage 99.1%
Coverage Range 71.4% – 100.0%

Coverage Distribution

Excellent (≥90%) 577 (95.8%)
Good (70–89%) 25 (4.2%)
Fair (50–69%) 0 (0.0%)
Poor (<50%) 0 (0.0%)

Coverage by Category

composition 100.0%
compound_data_types 100.0%
dataclass 100.0%
decorator 100.0%
function_argument 100.0%
functional_programming 100.0%
object_identity 100.0%
random_module 100.0%
typing 100.0%
sorting_and_slicing 99.6%
pythonic_classes 99.4%
generators_and_iterators 99.3%
error_handling 99.2%
design_pattern 99.0%
primitive_data_types 98.9%
concurrency 98.8%
data_structure 98.8%
datetime_module 98.8%
logging_module 98.5%
file_formats 98.3%
http_web 98.3%
pathlib_module 97.9%
operator_overloading 97.6%
inheritance 96.4%

Table 7: Test Coverage Statistics of CodeEval’s Test
Suite

well-captured in training data.

Object-Oriented Programming: Categories in-
volving inheritance, pythonic classes, and dataclass
showed moderate performance variation (70-95%),
with top-tier models demonstrating superior under-
standing of Python’s object-oriented paradigms.

Advanced Features: Concurrency, decorator
patterns, and operator overloading proved most
challenging, with even GPT-4.1 achieving only 73-
88% accuracy in these areas, highlighting the com-
plexity of advanced Python programming concepts.

Standard Library: Performance on modules
like datetime, pathlib, and logging showed wide
variation (13-99%), suggesting that familiarity with
specific library APIs varies significantly across
models and may depend on training data repre-
sentation.

C Error Analysis

This appendix provides a comprehensive analysis
of errors encountered during the evaluation of 15
large language models on the CodeEval benchmark.
Tables 11 and 12 present detailed error statistics
across multiple dimensions. The definitions of the
error type is shown in Table 10

C.1 Overall Error Patterns

The error analysis reveals significant variation in
failure rates across models, ranging from 6.0%
(GPT-4.1) to 76.1% (Command-R-Plus). This 70
percentage point spread in error rates demonstrates
the benchmark’s ability to differentiate model ro-
bustness in addition to correctness. The average
error rate across all models was 16.8%, indicat-
ing that while modern LLMs have made substan-
tial progress in code generation, reliable error-free
code synthesis remains challenging.

C.2 Error Analysis by Complexity

Error rates show a clear progression with problem
complexity:

• Level 1 (Beginner): Error rates range from
8.1% to 87.4%, with most high-performing
models maintaining error rates below 15%.
The wide range suggests that even basic prob-
lems can expose fundamental limitations in
some models.

• Level 2 (Intermediate): Error rates increase
to 8.0%-75.0%, with the median around 20%.
The increased variance at this level effectively
differentiates model capabilities in handling
moderately complex programming tasks.

• Level 3 (Advanced): Error rates span 20.7%-
80.3%, with even top-tier models showing er-
ror rates above 20%. This demonstrates the
challenge of generating correct code for com-
plex programming scenarios.

The consistent increase in error rates with com-
plexity validates the benchmark’s difficulty progres-
sion and highlights that advanced problems remain
challenging even for state-of-the-art models.

C.3 Error Analysis by Problem Type

The analysis reveals interesting patterns between
function and class-based problems:
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Category gpt-4.1-
2025-04-14

o3-mini-
2025-01-31

Qwen3-
235B

o4-mini-
2025-04-16

sonnet-4 Llama-4-
Maverick-
17B

command-
a-03-2025

opus-4

composition 92.6± 10.1 92.6± 10.1 85.2± 13.7 70.4± 17.6 92.6± 10.1 74.1± 16.8 88.9± 12.1 63.0± 18.6
compound data types 87.0± 12.4 88.9± 10.9 88.9± 10.9 88.9± 12.1 83.3± 13.8 85.2± 13.7 80.9± 13.2 87.0± 12.4
concurrency 73.9± 16.6 77.3± 16.7 73.9± 17.5 75.0± 16.8 65.2± 18.9 67.8± 17.4 65.9± 17.8 60.6± 17.0
data structure 88.6± 12.8 88.6± 12.8 88.6± 12.8 90.9± 12.3 88.6± 12.8 95.5± 6.1 88.6± 11.0 90.9± 12.3
dataclass 93.8± 9.0 87.5± 13.5 91.7± 11.3 87.5± 12.2 91.7± 9.6 79.2± 16.6 89.6± 11.8 91.7± 9.6
datetime_module 98.6± 2.7 94.4± 8.5 97.2± 5.4 95.8± 4.5 83.3± 15.2 91.7± 11.3 97.6± 4.7 83.3± 15.2
decorator 88.1± 13.4 88.1± 13.4 84.1± 13.8 88.1± 13.4 72.2± 18.5 86.5± 13.5 84.9± 14.2 81.0± 15.8
design_pattern 78.8± 13.5 81.8± 12.7 69.7± 15.3 80.3± 13.4 75.8± 14.2 73.7± 14.4 71.2± 14.8 67.7± 15.4
error handling 84.2± 11.0 90.0± 9.0 86.7± 10.5 86.7± 10.5 90.0± 9.0 91.7± 9.0 86.7± 10.5 86.7± 10.5
file_formats 97.5± 4.9 92.5± 8.0 97.5± 4.9 97.5± 4.9 95.0± 9.8 92.5± 10.7 100.0± 0.0 92.5± 10.7
function argument 95.8± 5.7 90.8± 11.0 91.7± 9.0 90.8± 11.0 91.7± 9.0 71.3± 16.8 79.2± 15.3 81.7± 15.2
functional programming 93.8± 9.0 93.8± 9.0 97.9± 4.1 93.8± 9.0 93.8± 9.0 93.8± 9.0 88.9± 10.3 93.8± 9.0
generators_and_iterators 94.6± 6.6 91.2± 8.7 89.7± 9.9 91.2± 8.7 91.2± 8.7 94.1± 6.9 97.5± 3.4 97.1± 4.0
http_web 95.6± 5.2 99.2± 1.5 98.0± 2.9 99.2± 1.5 89.2± 11.1 86.2± 12.6 89.0± 11.3 86.2± 13.0
inheritance 90.0± 11.5 85.0± 14.4 85.0± 14.4 85.0± 14.4 87.5± 12.1 92.5± 10.7 80.0± 16.5 85.0± 12.5
logging_module 79.4± 14.9 75.6± 15.2 79.4± 13.0 85.2± 11.1 70.5± 19.6 89.4± 10.5 82.2± 15.2 75.2± 18.5
object identity 94.2± 8.0 96.5± 6.8 90.8± 10.2 96.5± 6.8 94.2± 8.0 90.8± 10.2 82.8± 14.0 94.2± 8.0
operator overloading 81.2± 11.2 72.9± 12.7 82.3± 10.7 65.6± 13.4 78.1± 11.6 74.0± 12.4 70.1± 12.6 78.1± 11.6
pathlib_module 86.7± 12.9 86.7± 12.9 81.7± 13.0 86.7± 12.0 75.0± 18.3 81.7± 13.0 73.3± 16.8 68.3± 19.8
primitive data types 95.7± 5.9 93.5± 9.4 95.7± 5.9 97.8± 4.3 97.8± 4.3 97.8± 4.3 95.7± 5.9 97.8± 4.3
pythonic classes 95.8± 6.0 95.8± 6.0 93.1± 8.0 90.3± 9.4 91.7± 9.2 89.6± 9.4 94.4± 7.6 87.5± 9.9
random module 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 95.2± 9.3 100.0± 0.0
sorting and slicing 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 98.8± 2.5 98.8± 2.5 100.0± 0.0
typing 95.0± 6.7 98.8± 2.5 98.3± 3.3 97.5± 4.9 92.5± 10.7 98.3± 3.3 95.0± 6.7 92.5± 10.7

Table 8: Model Performance by Programming Category for Top-Performing Models. Results show accuracy
percentages with 95% confidence intervals across 24 Python programming categories for the highest-performing 8
models. See Appendix D for model information.

Category grok-2-
vision-1212

Llama-4-
Scout-17B

gemini-2.0-
flash

gpt-3.5-
turbo

Qwen3-4B command-
r-08-2024

command-
r-plus-08-
2024

composition 59.3± 18.9 59.3± 18.9 77.8± 16.0 88.9± 12.1 51.9± 19.2 74.1± 16.8 44.4± 19.1
compound data types 83.3± 13.8 85.2± 12.6 87.0± 12.4 79.0± 14.3 79.6± 15.0 40.7± 18.9 0.0± 0.0
concurrency 65.9± 19.8 60.2± 17.6 60.6± 20.5 67.4± 16.7 35.2± 15.6 33.0± 19.2 4.5± 8.9
data structure 84.1± 13.5 90.9± 10.5 86.4± 13.2 84.1± 13.5 88.6± 11.0 25.0± 18.0 0.0± 0.0
dataclass 91.0± 9.4 84.7± 13.6 91.7± 9.6 81.9± 14.7 72.9± 17.7 65.3± 18.1 41.7± 20.1
datetime_module 83.3± 15.2 92.0± 10.8 72.2± 16.5 76.7± 16.4 71.2± 17.5 12.8± 13.5 0.0± 0.0
decorator 69.0± 19.7 81.8± 15.6 61.1± 20.3 65.9± 19.7 63.5± 20.6 19.1± 17.2 0.0± 0.0
design_pattern 67.2± 15.1 60.6± 16.4 69.7± 15.3 63.6± 16.1 56.6± 16.4 37.4± 16.0 21.2± 14.2
error handling 87.5± 9.7 89.2± 9.9 79.2± 13.6 82.5± 11.0 79.2± 13.6 60.8± 17.0 17.5± 16.3
file_formats 95.0± 9.8 82.5± 16.3 75.0± 19.5 80.0± 18.0 77.5± 16.6 57.5± 21.7 5.0± 9.8
function argument 91.7± 9.0 81.7± 15.2 83.3± 11.6 85.0± 12.7 72.5± 18.2 60.0± 19.7 5.0± 9.8
functional programming 93.2± 9.0 92.7± 9.1 91.0± 10.2 92.7± 9.1 89.6± 10.6 66.7± 19.3 0.0± 0.0
generators_and_iterators 98.5± 2.9 98.5± 2.9 91.2± 8.7 89.7± 9.1 91.2± 8.7 57.4± 16.6 27.9± 15.0
http_web 90.0± 9.9 92.3± 8.7 82.3± 13.5 85.9± 13.2 68.5± 15.5 82.6± 13.1 0.0± 0.0
inheritance 65.0± 20.2 82.5± 14.7 85.0± 14.4 67.5± 19.2 62.5± 20.0 47.5± 21.9 37.5± 21.2
logging_module 68.9± 19.4 82.7± 13.2 61.0± 21.0 69.8± 18.8 62.2± 19.7 18.1± 15.3 0.0± 0.0
object identity 90.8± 10.2 87.4± 11.9 89.7± 10.3 82.8± 14.0 86.2± 12.8 62.1± 18.0 34.5± 17.6
operator overloading 74.8± 11.9 67.5± 13.1 65.6± 13.4 61.5± 13.8 54.5± 14.0 64.9± 13.3 69.1± 12.9
pathlib_module 75.0± 18.3 71.7± 18.5 61.7± 21.3 71.7± 19.7 56.7± 21.8 10.0± 13.5 0.0± 0.0
primitive data types 95.7± 5.9 97.8± 4.3 97.8± 4.3 89.1± 12.3 93.5± 9.4 80.4± 16.0 13.0± 14.1
pythonic classes 88.9± 9.7 87.5± 10.6 91.7± 9.2 90.7± 8.4 85.8± 10.9 91.0± 9.2 75.8± 13.7
random module 95.2± 9.3 87.3± 13.9 89.3± 12.9 90.5± 12.9 100.0± 0.0 82.5± 16.0 0.0± 0.0
sorting and slicing 98.8± 2.5 96.2± 5.4 98.8± 2.5 96.2± 5.4 100.0± 0.0 61.2± 20.9 0.0± 0.0
typing 93.3± 10.2 93.3± 10.2 95.0± 9.8 90.0± 11.5 92.1± 7.4 55.0± 22.4 5.0± 9.8

Table 9: Model Performance by Programming Category for Remaining Models. Results show accuracy percentages
with 95% confidence intervals across 24 Python programming categories for the remaining 7 evaluated models. See
Appendix D for model information.

875



Error Type Definition

NameError The generated code has un-
defined reference commonly
caused by missing import
statements

SyntaxError The generated code has syntax
error

TimeoutError The generated code runtime
exceeded 60 seconds

NoCompletionError The model did not generate
any code in its completion

Error All other errors fall within this
category

Table 10: Definitions of error types captured by Run-
CodeEval software framework.

• Function Problems: Generally show higher
error rates (12.0%-96.8%), suggesting that
functional programming tasks may have more
edge cases or require more precise implemen-
tations.

• Class Problems: Display more moderate er-
ror rates (14.5%-51.3%), though with higher
variance. Notably, some models that per-
formed poorly overall (e.g., Command-R mod-
els) showed relatively better performance on
class problems, suggesting different architec-
tural strengths.

C.4 Error Type Distribution
Table 12 reveals the distribution of specific error
types:

• Runtime/Logic Errors ("Other Errors"):
Dominate the error landscape, accounting for
12.4% of all failures on average. These errors
indicate that models can generate syntactically
correct code that fails during execution, high-
lighting the challenge of semantic correctness.

• Syntax Errors: Relatively rare (1.8% aver-
age), with some models achieving near-zero
syntax error rates. However, certain models
(e.g., Gemini-2.0-Flash at 7.3%) show higher
rates, suggesting variations in syntactic under-
standing.

• NoCompletionError: Primarily affects
Command-R models (12.6%-15.8%), indicat-
ing generation failures or truncation issues
specific to certain model architectures.

• NameError and TimeoutError: Minimal
occurrence (<0.5% average), suggesting that
undefined variable usage and infinite loops are
well-handled by most modern LLMs.

C.5 Key Insights from Error Analysis

1. Error Rate as a Quality Metric: Beyond
accuracy scores, error rates provide crucial
insights into model reliability. The best-
performing models maintain low error rates
(<10%) while achieving high accuracy.

2. Complexity-Error Correlation: The strong
positive correlation between problem com-
plexity and error rates validates the bench-
mark’s design and suggests that complex prob-
lems effectively stress-test model capabilities.

3. Model-Specific Patterns: Different models
exhibit characteristic error patterns. For in-
stance, Claude models show higher syntax
error rates, while Command-R models strug-
gle with completion, suggesting architectural
differences in handling code generation tasks.

4. Runtime Errors Predominate: The domi-
nance of runtime/logic errors over syntax er-
rors indicates that modern LLMs have largely
mastered Python syntax but struggle with se-
mantic correctness and edge case handling.

These error patterns provide valuable insights for
both model developers and users, highlighting spe-
cific areas where current code generation models
need improvement and helping users understand
the types of failures to expect when deploying these
models in practice.

D Evaluated Models Information

Table 13 provides comprehensive information
about all 15 large language models evaluated in this
study, including model specifications, providers,
and reference URLs for additional details.

E Accessing CodeEval and RunCodeEval

The CodeEval dataset is provided in JSONL
format, where each line represents a single
dataset instance in JSON structure. The keys,
along with their corresponding value definitions
and data types, are listed in Table 14. The
dataset metadata, available in Croissant format
(Akhtar et al., 2024), can be accessed at https:
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Model Overall Complexity Problem Type
Error Rate Beginner Intermediate Advanced Function Class

gpt-4.1-(04-14) 6.0± 1.9 10.4± 5.3 8.0± 3.3 22.7± 5.8 12.8± 3.4 14.5± 4.6
Qwen3-235B 6.6± 2.0 10.4± 5.3 10.6± 3.8 24.6± 5.9 14.4± 3.6 16.7± 4.9
o3-mini-(01-31) 7.1± 2.1 12.6± 5.7 9.1± 3.5 20.7± 5.6 12.8± 3.4 15.4± 4.7
Llama-4-Maverick-17B 7.5± 2.1 9.6± 5.1 15.5± 4.4 25.1± 6.0 15.5± 3.7 20.6± 5.3
o4-mini-(04-16) 7.8± 2.2 9.6± 5.1 10.2± 3.7 26.1± 6.1 12.0± 3.3 21.1± 5.3
command-a-03-2025 8.8± 2.3 12.6± 5.7 15.2± 4.4 27.6± 6.2 17.9± 3.9 20.2± 5.2
claude-sonnet-4 9.1± 2.3 8.1± 4.8 11.0± 3.8 27.6± 6.2 14.4± 3.6 18.4± 5.1
Llama-4-Scout-17B 10.1± 2.4 9.6± 5.1 20.1± 4.9 33.0± 6.5 18.4± 3.9 28.1± 5.8
grok-2-vision-1212 11.3± 2.5 10.4± 5.3 18.6± 4.7 30.0± 6.3 16.0± 3.7 28.1± 5.8
claude-opus-4 11.3± 2.5 8.9± 4.9 14.4± 4.3 31.0± 6.4 15.2± 3.7 24.6± 5.6
gemini-2.0-flash 13.6± 2.7 11.9± 5.6 19.3± 4.8 34.5± 6.5 21.1± 4.1 25.4± 5.7
gpt-3.5-turbo 14.6± 2.8 14.8± 6.1 21.2± 4.9 35.5± 6.6 22.7± 4.3 27.6± 5.8
Qwen3-4B 21.3± 3.3 14.8± 6.1 27.7± 5.4 46.8± 6.9 27.0± 4.5 38.2± 6.3
command-r-08-2024 41.4± 3.9 43.7± 8.4 42.8± 6.0 60.1± 6.7 55.1± 5.0 38.6± 6.3
command-r-plus-08-2024 76.1± 3.4 87.4± 5.7 75.0± 5.2 80.3± 5.5 96.8± 1.8 51.3± 6.5

Table 11: Comprehensive Error Analysis Across Models. Error rates (%) with 95% confidence intervals broken
down by overall performance, complexity levels (Beginner, Intermediate, Advanced), and problem types (Function
vs Class). See Appendix D for model information.

Model SyntaxError NameError TimeoutError NoCompletionError Other Errors

gpt-4.1-(04-14) 0.00± 0.32 0.5± 0.6 0.00± 0.32 0.00± 0.32 16.1± 2.9
Qwen3-235B 0.00± 0.32 2.1± 1.2 0.00± 0.32 0.00± 0.32 14.5± 2.8
o3-mini-(01-31) 0.00± 0.32 0.4± 0.6 0.00± 0.32 0.00± 0.32 16.2± 3.0
Llama-4-Maverick-17B 2.2± 1.2 0.00± 0.32 0.00± 0.32 0.00± 0.32 14.4± 2.8
o4-mini-(04-16) 0.00± 0.32 0.00± 0.32 0.00± 0.32 0.4± 0.6 16.3± 3.0
command-a-03-2025 0.3± 0.5 0.3± 0.5 0.00± 0.32 0.00± 0.32 16.0± 2.9
claude-sonnet-4 5.1± 1.8 0.6± 0.7 0.00± 0.32 0.00± 0.32 10.9± 2.5
Llama-4-Scout-17B 0.3± 0.5 0.00± 0.32 0.00± 0.32 0.00± 0.32 16.3± 3.0
grok-2-vision-1212 3.7± 1.5 0.5± 0.6 0.00± 0.32 0.00± 0.32 12.5± 2.6
claude-opus-4 4.9± 1.7 0.5± 0.6 0.00± 0.32 0.00± 0.32 11.2± 2.5
gemini-2.0-flash 7.3± 2.1 0.2± 0.5 0.00± 0.32 0.00± 0.32 9.1± 2.3
gpt-3.5-turbo 2.3± 1.2 0.6± 0.7 0.00± 0.32 0.00± 0.32 13.8± 2.8
Qwen3-4B 1.3± 1.0 1.0± 0.9 0.00± 0.32 0.00± 0.32 14.3± 2.8
command-r-08-2024 0.07± 0.38 0.07± 0.38 0.00± 0.32 12.6± 2.7 3.9± 1.6
command-r-plus-08-2024 0.00± 0.32 0.00± 0.32 0.00± 0.32 15.8± 2.9 0.8± 0.8

Table 12: Error Type Distribution Across Models. Error rates broken down by specific error types (%) with
95% confidence intervals, including SyntaxError, NameError, TimeoutError, NoCompletionError, and Other
runtime/logic errors. See Appendix D for model information.
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Model Name Provider Release Date Model Type Reference

gpt-4.1-2025-04-14 OpenAI Apr 2025 Commercial
API

(OpenAI, 2024)

o3-mini-2025-01-31 OpenAI Jan 2025 Commercial
API

(OpenAI, 2024)

o4-mini-2025-04-16 OpenAI Apr 2025 Commercial
API

(OpenAI, 2024)

claude-sonnet-4-20250514 Anthropic May 2025 Commercial
API

(Anthropic, 2024)

claude-opus-4-20250514 Anthropic May 2025 Commercial
API

(Anthropic, 2024)

gpt-3.5-turbo OpenAI Mar 2023 Commercial
API

(OpenAI, 2024)

Qwen/Qwen3-235B-A22B-
Instruct-2507

Alibaba Cloud Jul 2025 Open Source (Alibaba Cloud, 2024)

Qwen/Qwen3-4B Alibaba Cloud 2025 Open Source (Alibaba Cloud, 2024)

meta-llama/Llama-4-
Maverick-17B-128E-
Instruct

Meta 2025 Open Source (Meta, 2024)

meta-llama/Llama-4-Scout-
17B-16E-Instruct

Meta 2025 Open Source (Meta, 2024)

command-a-03-2025 Cohere Mar 2025 Commercial
API

(Cohere, 2024)

command-r-08-2024 Cohere Aug 2024 Commercial
API

(Cohere, 2024)

command-r-plus-08-2024 Cohere Aug 2024 Commercial
API

(Cohere, 2024)

grok-2-vision-1212 xAI Dec 2024 Commercial
API

(xAI, 2024)

gemini-2.0-flash Google 2024 Commercial
API

(Google, 2024)

Table 13: Comprehensive Information for Evaluated Large Language Models. All models were accessed via their
respective APIs or platforms during the evaluation period (2024-2025).

Keys Value Data type

task_id Unique problem identifier String
problem Natural language description of the problem String
topic The category of the problem String
object The problem type - function or class String
name the name of the function or class that is an entry-point to the model generated code String
canonical_solution The canonical solution to the problem String
tests the test cases to get functional correctness score String
complexity The complexity tier of the problem - 1, 2 or 3 representing beginner, intermediate or advanced Integer

Table 14: Data Format of CodeEval dataset
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//github.com/dannybrahman/runcodeeval/
blob/main/dataset/croissant.json. The
dataset files can be read using any general-
purpose programming language. The
RunCodeEval software framework is avail-
able in the GitHub repository at https:
//github.com/dannybrahman/runcodeeval.
While the CodeEval dataset can be directly
downloaded from its permanent DOI link at
https://doi.org/10.5281/zenodo.17495202,
we also provide a script in the RunCodeEval
repository to facilitate programmatic access.

F Reproduciblity of the experiments

We provide comprehensive reproducibility support
for both the evaluation results and the underlying
LLM solutions presented in this paper.

F.1 Reproducing Evaluation Results

The evaluation results presented in this paper can
be reproduced using the RunCodeEval software
framework, which is freely and publicly avail-
able at Github repository https://github.com/
dannybrahman/runcodeeval. RunCodeEval pro-
vides deterministic evaluation with fixed random
seeds and consistent test execution environments,
ensuring reproducible metrics across different sys-
tems.

F.2 Reproducing LLM Solutions

To facilitate complete reproducibility, we provide
detailed information for regenerating the LLM
solutions whose code is also freely and openly
available at the RunCodeEval’s GitHub repos-
itory – https://github.com/dannybrahman/
runcodeeval/tree/main/llm_solutions:

• Model Specifications: All evaluated mod-
els are publicly available through their re-
spective APIs or platforms (OpenAI, An-
thropic, Google, Cohere, Meta, Mistral, xAI,
DeepSeek, Qwen). Model version identifiers
are provided in Table 13.

• Prompting Strategy: We used a consistent
prompting approach across all models, provid-
ing the problem description from CodeEval
and requesting a complete Python solution.
No few-shot examples or chain-of-thought
prompting was used to ensure fair compar-
ison.

• Generation Parameters: For consistent re-
sults, we used default values for parame-
ters unless otherwise specified by the model
provider. The associated code with this paper
(which will also be freely and openly avail-
able) has details on generation parameters.

• Solution Collection: The repository code in-
cludes scripts and configurations for collect-
ing solutions from all 15 evaluated models,
including API endpoints, authentication setup,
rate limiting configurations and generation pa-
rameters.

F.3 Reproducibility Considerations
While we provide comprehensive reproduction
guidance, researchers should note that:

1. LLM API responses may vary slightly due to
model updates or infrastructure changes, even
with deterministic settings.

2. Some models may have been updated or dep-
recated since our evaluation; we recommend
using the specific model versions listed in Ta-
ble 13.

3. API access and pricing may vary by provider
and user account status.

Complete reproduction instructions, including
detailed setup guides and example commands, are
provided in the repository documentation.

G CodeEval Datasheet

In this section, we provide datasheet (Gebru et al.,
2021) of the CodeEval dataset published with a per-
manent doi https://doi.org/10.5281/zenodo.
17495202

G.1 Motivation
1. For what purpose was the dataset created?

Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please
provide a description.
The dataset was created to enable evalua-
tion of code understanding or reasoning ca-
pabilities of Large Language Models (LLMs)
trained on code. Currently, no benchmark
dataset exists that allows for targeted im-
provements of LLMs - this gap is fulfilled by
CodeEval. Moreover, the current benchmark
datasets are incomprehensive as they focus
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on individual aspects of evaluation such as
complexity, function-based problems or class-
based problems.

2. Who created the dataset (e.g., which team, re-
search group) and on behalf of which entity
(e.g., company, institution, organization)?
The dataset was primarily created by Danny
Brahman (PhD student at University of Den-
ver) in collaboration with his advisor Dr. Mo-
hammad Mahoor (Professor of Computer Sci-
ence Department at University of Denver).

3. Who funded the creation of the dataset? If
there is an associated grant, please provide the
name of the grantor and the grant name and
number
The work was not funded by any grant.

4. Any other comment?
No.

G.2 Composition

1. What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types
of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes
and edges)? Please provide a description.
Each instance of the dataset represents a natu-
ral language description of a Python problem,
the problem’s solution code in Python, one
of the 24 categories the problem belongs to,
the complexity level of problem (beginner, in-
termediate, advanced), and the test cases for
evaluating functional correctness of a model
generated code for this problem.

2. How many instances are there in total (of each
type, if appropriate)?
There are a total of 602 instances distributed
among 24 categories.

3. Does the dataset contain all possible instances
or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a
sample, then what is the larger set? Is the sam-
ple representative of the larger set (e.g., geo-
graphic coverage)? If so, please describe how
this representativeness was validated/verified.
If it is not representative of the larger set,
please describe why not (e.g., to cover a more
diverse range of instances, because instances

were withheld or unavailable).
The dataset does not contain all possible in-
stances as it is impossible to capture all prob-
lems that can be written in self-contained
Python code. However, the 602 instances in
CodeEval dataset is diversified enough to be
a good representative of a benchmark dataset
to evaluate LLMs understandability of Python
programming language.

4. What data does each instance consist of?
“Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a
description
Each instance of the dataset consists of a
text formatted in JSON. The JSON text con-
sists of a natural language description of a
Python problem, the problem’s solution code
in Python, one of the 24 categories the prob-
lem belongs to, the complexity level of prob-
lem (beginner, intermediate, advanced), and
the test cases for evaluating functional cor-
rectness of a model generated code for this
problem.

5. Is there a label or target associated with each
instance? If so, please provide a description.
No.

6. Is any information missing from individual
instances? If so, please provide a description,
explaining why this information is missing
(e.g., because it was unavailable). This does
not include intentionally removed information,
but might include, e.g., redacted text.
No.

7. Are relationships between individual in-
stances made explicit (e.g., users’ movie rat-
ings, social network links)? If so, please de-
scribe how these relationships are made ex-
plicit.
The instances of the dataset are independent
of each other.

8. Are there recommended data splits (e.g., train-
ing, development/validation, testing)? If so,
please provide a description of these splits,
explaining the rationale behind them.
The dataset is a benchmarking dataset and the
entirety of the dataset is indended to be used
as a test set for evaluation of LLMs trained on
code.
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9. Are there any errors, sources of noise, or re-
dundancies in the dataset? If so, please pro-
vide a description.
N/A.

10. Is the dataset self-contained, or does it link to
or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links
to or relies on external resources, a) are there
guarantees that they will exist, and remain con-
stant, over time; b) are there official archival
versions of the complete dataset (i.e., includ-
ing the external resources as they existed at
the time the dataset was created); c) are there
any restrictions (e.g., licenses, fees) associ-
ated with any of the external resources that
might apply to a future user? Please provide
descriptions of all external resources and any
restrictions associated with them, as well as
links or other access points, as appropriate.
Yes, the dataset is self-contained.

11. Does the dataset contain data that might be
considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor– patient
confidentiality, data that includes the content
of individuals’ non-public communications)?
If so, please provide a description
No.

12. Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety? If
so, please describe why.
No.

G.3 Collection Process

1. How was the data associated with each in-
stance acquired? Was the data directly observ-
able (e.g., raw text, movie ratings), reported
by subjects (e.g., survey responses), or indi-
rectly inferred/derived from other data (e.g.,
part-of-speech tags, model-based guesses for
age or language)? If data was reported by sub-
jects or indirectly inferred/derived from other
data, was the data validated/verified? If so,
please describe how.
Each instance of the dataset were hand-
curated by the authors.

2. What mechanisms or procedures were used to
collect the data (e.g., hardware apparatus or

sensor, manual human curation, software pro-
gram, software API)? How were these mecha-
nisms or procedures validated?
N/A.

3. If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., deter-
ministic, probabilistic with specific sampling
probabilities)?
N/A.

4. Who was involved in the data collection pro-
cess (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g.,
how much were crowdworkers paid)?
Dataset development was done by the authors.

5. Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the instances
(e.g., recent crawl of old news articles)? If
not, please describe the timeframe in which
the data associated with the instances was cre-
ated.
The dataset was developed between Nov 2023
- July 2025.

6. Were any ethical review processes conducted
(e.g., by an institutional review board)? If so,
please provide a description of these review
processes, including the outcomes, as well as
a link or other access point to any supporting
documentation.
No.

G.4 Data Preprocessing
1. Was any preprocessing/cleaning/labeling of

the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging,
SIFT feature extraction, removal of instances,
processing of missing values)? If so, please
provide a description. If not, you may skip
the remainder of the questions in this section.
The labeling of the dataset into problem cate-
gories and complexity levels was performed
directly by the authors. Category assignment
followed pedagogical foundations (primarily
Ramalho’s Fluent Python) supplemented with
the authors’ professional expertise in Python.
Complexity levels were assigned based on
pedagogical principles and conceptual diffi-
culty of required Python constructs. These as-
signments were then empirically validated us-
ing performance data from 15 diverse LLMs,
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which confirmed strong negative correlation
between complexity level and model perfor-
mance (overall: r = –0.324, p < 0.05; mean
individual model: r = –0.829 ± 0.394) and sta-
tistically significant performance differences
between levels (Cohen’s d = 0.790).

2. Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so,
please provide a link or other access point
to the “raw” data.
The raw data is saved in local computer and is
not shared as we don’t anticipate any usages
of it.

3. Is the software used to preprocess/clean/label
the instances available? If so, please provide
a link or other access point.
N/A. The intended use of CodeEval does not
require pre-processing, labeling or cleaning.

4. Any other comments
None.

G.5 Uses
1. Has the dataset been used for any tasks al-

ready? If so, please provide a description
The dataset has not been used for any task
other than what is studied in the paper.

2. Is there a repository that links to any or all
papers or systems that use the dataset? If so,
please provide a link or other access point.
N/A.

3. What (other) tasks could the dataset be used
for?
The dataset in its current form cannot be used
for any other task. However, the dataset can be
augmented by research communities to evalu-
ate code-trained LLMs on several other tasks
such as Code Clone Detection, Code Quality
Assessment among others.

4. Is there anything about the composition of the
dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact
future uses? For example, is there anything
that a dataset consumer might need to know
to avoid uses that could result in unfair treat-
ment of individuals or groups (e.g., stereotyp-
ing, quality of service issues) or other risks or
harms (e.g., legal risks, financial harms)? If

so, please provide a description. Is there any-
thing a dataset consumer could do to mitigate
these risks or harms?
No.

5. Are there tasks for which the dataset should
not be used? If so, please provide a descrip-
tion.
No.

6. Any other comments?
None.

G.6 Distribution

1. Will the dataset be distributed to third par-
ties outside of the entity (e.g., company, insti-
tution, organization) on behalf of which the
dataset was created? If so, please provide a
description.
Yes, the dataset is freely and publicly available
and accessible.

2. How will the dataset be distributed? (e.g.,
tarball on website, API, GitHub; does the data
have a DOI and is it archived redundantly?)
The doi of the dataset is https://doi.org/
10.5281/zenodo.17495202.

3. When will the dataset be distributed?
The dataset is distributed as of November
2025 in its first version 1.0.0.

4. Will the dataset be distributed under a copy-
right or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?
If so, please describe this license and/or ToU,
and provide a link or other access point to, or
otherwise reproduce, any relevant licensing
terms or ToU, as well as any fees associated
with these restrictions.
The dataset is licensed under CC BY license.

5. Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances? If so, please describe these
restrictions, and provide a link or other access
point to, or otherwise reproduce, any relevant
licensing terms, as well as any fees associated
with these restrictions.
No.

6. Do any export controls or other regulatory re-
strictions apply to the dataset or to individual
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instances? If so, please describe these restric-
tions, and provide a link or other access point
to, or otherwise reproduce, any supporting
documentation
No.

7. Any other comments?
None.

G.7 Maintenance

1. Who will be supporting/hosting/maintaining
the dataset?
The dataset is being maintained by the Com-
puter Vision and Social Robotics Laboratory
of the University of Denver.

2. How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?
The manager of the dataset can be reached at
danny.brahman@du.edu.

3. Is there an erratum? If so, please provide a
link or other access point.
Currently, there is no erratum. If errors are
encountered, the dataset will be updated with
a new version whose links will be provided
at in the Github repository https://github.
com/dannybrahman/runcodeeval.

4. Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete in-
stances)? If so, please describe how often,
by whom, and how updates will be communi-
cated to dataset consumers (e.g., mailing list,
GitHub)?
Same as above.

5. If the dataset relates to people, are there appli-
cable limits on the retention of the data asso-
ciated with the instances (e.g., were the indi-
viduals in question told that their data would
be retained for a fixed period of time and then
deleted)? If so, please describe these limits
and explain how they will be enforced.
N/A.

6. Will older versions of the dataset continue to
supported/hosted/maintained?
Yes.

7. If others want to extend/augment/build
on/contribute to the dataset, is there a mecha-
nism for them to do so? If so, please provide

a description. Will these contributions be val-
idated/verified? If so, please describe how.
If not, why not? Is there a process for com-
municating/distributing these contributions to
dataset consumers? If so, please provide a
description.
Extending the dataset will simply involve
adding more unique problems and their cor-
responding test cases along with a canonical
solution code.

8. Any other comments?
None.
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