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Abstract

Generation of Artificial Intelligence (Al) texts
in important works has become a common prac-
tice that can be used to misuse and abuse Al at
various levels. Traditional Al detectors often
rely on document-level classification, which
struggles to identify Al content in hybrid or
slightly edited texts designed to avoid detec-
tion, leading to concerns about the model’s ef-
ficiency, which makes it hard to distinguish
between human-written and Al-generated texts.
A sentence-level sequence labeling model pro-
posed to detect transitions between human- and
Al-generated text, leveraging nuanced linguis-
tic signals overlooked by document-level clas-
sifiers. By this method, detecting and segment-
ing Al and human-written text within a sin-
gle document at the token-level granularity is
achieved. Our model combines the state-of-the-
art pre-trained Transformer models, incorpo-
rating Neural Networks (NN) and Conditional
Random Fields (CRF’s). This approach extends
the power of transformers to extract semantic
and syntactic patterns, and the neural network
component to capture enhanced sequence-level
representations, thereby improving the bound-
ary predictions by the CRF layer, which en-
hances sequence recognition and further iden-
tification of the partition between Human- and
Al-generated texts. The evaluation is per-
formed on two publicly available benchmark
datasets containing collaborative human and
Al-generated texts. Our experimental compar-
isons are with zero-shot detectors and the exist-
ing state-of-the-art models, along with rigorous
ablation studies to justify that this approach, in
particular, can accurately detect the spans of
Al texts in a completely collaborative text. All
our source code and the processed datasets are
available in our GitHub repository'.
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Figure 1: Text Segmentation between the Human and
Machine with boundary prediction. The text in Green
is Human written text, and the text in Red is Machine
Generated Text.

1 Introduction

Recent advancements in Large Language Models
(LLMs) (Chang et al., 2024; Annepaka and Pakray,
2025), such as ChatGPT?, Grok?, Gemini*, and
DeepSeek’, have demonstrated exceptional perfor-
mance in Natural Language Processing (NLP) (Pat-
wardhan et al., 2023). These models are capable
of generating highly fluent and realistic human-
like text, significantly enhancing applications such
as text classification (Dogra et al., 2022; Kowsari
et al., 2019), sentiment analysis (Nasukawa and Yi,
2003), machine translation (Stahlberg, 2020), and
question-answering systems (He et al., 2024; Al-

2https: //chatgpt.com/
3ht’cps: //grok.com/
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lam and Haggag, 2012). These foundational mod-
els demonstrate significant potential in addressing
a wide spectrum of NLP tasks, ranging from Nat-
ural Language Understanding (NLU) to Natural
Language Generation (NLG), and even contribut-
ing to the development of Artificial General Intel-
ligence (AGI) (Yang et al., 2024). Al-plagiarism
has been a growing concern in the modern world,
where the distinction between human-generated
and Al-generated work has become increasingly
subtle. Due to the rapid growth of Al-generation
tools and LLLMs, academic integrity and content
originality have become significant challenges. De-
tecting Al generation is a significant challenge for
modern researchers. Traditional plagiarism detec-
tion systems, such as Turnitin, Scribbr, etc., have
fought this. Generally, detection systems such as
the above systems identify plagiarism by using Ma-
chine Learning (ML) algorithms to compare the
user-written text against a vast database of online
content and highlight the parts that closely resem-
ble the existing material; however, this system is
often bypassed using simple techniques like para-
phrasing or restructuring the sentence without al-
tering the core meaning. This is generally due
to the nature of detection methods, where general
detection methods, such as perplexity-based meth-
ods, are geared towards incremental or document-
level modification. This has become a significant
challenge that requires great efforts from NLP re-
searchers worldwide.

To address the above-stated problems, we pro-
pose a novel integration of a pre-trained Trans-
former encoder with Neural Networks and a
Conditional Random Field (CRF) layer, specifi-
cally designed for boundary-aware sentence-level
authorship segmentation.  Unlike prior CRF
pipelines, our architecture introduces dynamic
dropout and hierarchical loss-aware training, tai-
lored to mixed-authorship detection. Unlike tradi-
tional Transformer-CRF pipelines applied to NER
or POS tagging, we adapt this architecture for fine-
grained authorship segmentation, incorporating
sequence-aware regularization and token boundary-
aware loss tailored for mixed-authorship text, a
novel problem space. Our contribution lies in the
hierarchical integration of authorial cues at differ-
ent granularity levels, use of dynamic dropout to
mitigate overfitting to local styles, and a custom-
designed loss that emphasizes boundaries. To our
knowledge, no existing model has applied these
optimizations specifically for sentence-level seg-

mentation in human-Al collaborative texts.

2 Related Work

Based on the evolution of AI models, this mixed
text data is prone to plagiarism and authenticity
issues. There have been works based on the mixed
text data classification by RoFT (Dugan et al.,
2020) created a dynamic benchmark where users
attempted to identify transition points between hu-
man and Al texts. In the follow-up RoFT-ChatGPT
(Kushnareva et al., 2023) adapted SOTA detec-
tors to locate the boundaries and compared the
perplexity-based approaches. The work ‘Towards
Automatic Boundary Detection for Human-Al Col-
laborative Hybrid Essay in Education’ by (Zeng
et al., 2024) introduced a new segmentation ap-
proach that learns distinct human and Al authorship
prototypes within an embedding space, while treat-
ing the boundaries as points of maximum proto-
type distance. SemEval 2024 shared task by (Wang
et al., 2024), in which many participated for the
task of detecting the boundaries, in that Qu and
Meng (2024) (TM-TREK) achieved 1st place in the
human-machine mixed-text detection subtask by re-
framing boundary detection as token classification
and leveraging ensembles of LLMs with segmen-
tation loss. Another work, SeqXGPT (Wang et al.,
2023), introduced a sequence labeling approach
using GPT-style decoder-only models as the core
features.

With the rapid advancement of LLMs, collabo-
rative writing between humans and Al has become
increasingly seamless. For instance, previous work
by Buschek et al. (2021) explored the use of GPT-2
to provide phrase-level writing suggestions during
email composition, aiming to support and enhance
human writing. This tells about the growing rele-
vance of detecting and understanding hybrid texts
that combine contributions from both humans and
Al Lee et al. (2022) extended this line of work by
employing the more advanced GPT-3 model to of-
fer sentence-level suggestions in human-Al collab-
orative essay writing. As this type of collaborative
writing between humans and LLMs becomes more
prevalent, it introduces a critical challenge for the
Al text detection field: identifying Al-generated
segments within jointly authored text. Address-
ing this issue, Dugan et al. (2023) reframed the
task of detecting Al text in hybrid documents as a
boundary detection problem, aiming to precisely
locate the transition points between human and
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Al-generated text. The study specifically evalu-
ated human ability to identify boundaries within
hybrid texts containing a single transition point.
Although detection accuracy improved with some
level of training, overall performance remained lim-
ited; participants were only able to correctly iden-
tify the boundary in 23.4% of the cases. Building
upon the work of Dugan et al. (2023), our research
also focuses on boundary detection. However, key
differences include: (1) this work explores auto-
mated methods for identifying boundaries, and (2)
the hybrid texts used in our experiments contain
multiple boundaries.

OUR KEY CONTRIBUTIONS:

1. CRF tagged Transformer Models.
Layer-wise Learning Rate Decay.
Dynamic Dropout.

Sequence Predictions via CRF Decoding.
Xavier Initialization for Weights Stability.
CRF Loss Calculation with Masking.
Multiple Boundary Prediction Flexibility.

NN R

\

3 Dataset Descriptions

In this section, we used two publicly available
datasets: (1) TriBERT from the paper Towards
Automatic Boundary Detection for Human-Al Col-
laborative Hybrid Essay in Education (Zeng et al.,
2024) and (2) M4GT-Bench Task 3: Mixed Human-
Machine Text Detection (Wang et al., 2024).
TriBERT: This dataset contains various mixed au-
thor® sequences such as “H-M”, “M-H”, “H-M-
H”, “M-H-M”, “H-M-H-M-H” and “M-H-M-H-
M, totaling six types, as seen in the Table 10.
MA4GT: This dataset includes only the ChatGPT
and LLaMA reviews as shown in Table 11. It fol-
lows a single pattern, “H Initiated and M Ended”,
and provides word-level boundaries indicating the
exact transition point. The dataset statistics, such
as train, dev, and test splits, can be seen in Table 1.
Further detailed dataset descriptions are given in
Appendix A.

4 Proposed Methodology

The methodology we propose integrates a hierarchi-
cal architecture that combines contextual encoding,
sequential pattern modeling, and prediction to per-
form fine-grained sequence labeling.

6H—Human, M-Machine

Dataset Train Dev Test
TriBERT (Zeng et al., 2024) 12,049 2,527 2,560
M4GT (Wang et al., 2024) 18,245 2,525 11,123

Table 1: Dataset statistics from TriBERT (Zeng et al.,
2024) and M4GT (Wang et al., 2024) showing the num-
ber of instances in train, dev, and test splits.

4.1 Problem Formulation

Given a hybrid text paragraph 7 = (s1,...,Sn),
where sentences s; are human-initiated and
machine-ended or mixed in HM, MH, HMH, MHM,
HMHMH, and MHMHM setting, boundary detec-
tion identifies token-level authorship transitions.
Unlike sentence-level detection, we target sub-
sentence boundaries, using a token sequence VW =
(Wi, ..., wp) to predict Y = (yi1,...,Ym), With
y; = 1 for Al tokens and y; = O for humans. This
supports fine-grained segmentation of human-Al
collaborative text.

4.2 Model Description

The flow of input token sequence processing be-
gins with a pretrained Transformer-based encoder
to produce rich contextual representations, and also
for capturing both local and global dependencies in
the overall sequence. These embeddings are then
passed through a neural network layer, enabling
the model to further refine token-level features
by explicitly modeling sequential patterns in both
forward and backward directions (a bidirectional
mode). The output of the sequential layer is fed into
a linear classification head that projects each token
representation into a distribution over target labels.
To enforce global consistency in the predicted la-
bel sequences and effectively capture dependencies
among adjacent labels, the model employs a Con-
ditional Random Field (CRF) as the final decoding
layer, and the reason for choosing the CRF is dis-
cussed in the following Section 4.3. During train-
ing, the model tries to minimize the negative log-
likelihood of the correct label sequence under the
CREF, while during inference time, it uses Viterbi
decoding to predict or output the most likely se-
quence of labels. While this combined-component
design yields powerful representational capacity, it
also increases the complexity of the model archi-
tecture and creates a chance for overfitting.

Model Optimization: To stabilize the above con-
cerns, several optimization techniques are incorpo-
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rated into the model, those are 1) including Layer-
wise Learning Rate Decay (LLRD) to stabilize fine-
tuning across the layers, 2) Dynamic Dropout to
regularize learning by adapting to training dynam-
ics, and 3) Xavier initialization to ensure controlled
variance propagation in the linear classification
layer. This hybrid-hierarchical architecture with
the optimization techniques allows the model to
leverage deep contextual knowledge, sequential
structure, and label inter-dependencies, making it
particularly suitable for the segmentation of human
and Al texts while considering the spans of the
predicted labels, and it can be said that this model
is well-suited for the structured prediction tasks in
natural language processing. A clear text segmen-
tation and boundary prediction workflow is shown
in Figure 1.

4.3 Why CRFs?

Conditional Random Fields (CRF's) are discrimina-
tive models well suited to prediction tasks, partic-
ularly sequence labeling. Unlike Hidden Markov
Models (HMMs) and Maximum Entropy Markov
Models (MEMMSs), CRFs avoid issues like label
bias by modeling the conditional probability of la-
bel sequences directly.

We employ a standard linear-chain CRF layer
to model inter-label dependencies. For mathemat-
ical formulation, refer Lample et al. (2016). For
a given sequence input z = (x1, z2,...,Z,) and
label sequence y = (y1,¥2, - - ., Yn), CRF defines
the probability as follows:

exp (Z?:l Vi (ye, o, t) + 301 be (e, yesa, -T))
Z(x)

P(y|z) =

(1)

where: 4 (y;,x,t): The score function for

assigning label y; to the t¢-th token in =.

&¢(Yt, Yt+1, x): The score function for the transi-

tion between labels y; and y;11. Z(x): The parti-
tion function, normalizing the probabilities:

Z(z) =

n n—1
> exp (Z?/)f,(yt,z,t) +> ¢t(yt7yt+17f)>

v V() t=1 t=1
2

CRF Score Function: The unnormalized score
S(z,y) for a given sequence y is:

n n—1
S(myy)zz¢t(yt,m,t)+ Z¢t(yt7yt+17m) 3
t=1 t=1

CRFs vs HMMs. Hidden Markov Models
(HMM:s) represent observed data as a sequence of

events, where each observation depends on a hid-
den state in a hidden Markov chain. Compared to
CRFs, HMMs impose more significant constraints,
as each state relies on a fixed set of previous hidden
states, allowing them to capture local context effec-
tively. In contrast, CRFs incorporate both local and
global contexts more comprehensively using fea-
ture functions. For example, the feature function
label the first word as a verb if the sequence ends
with a question mark and this isn’t possible with
HMMs. As a result, CRFs can be more accurate
than HMMs if we define the right feature functions.

CRFs vs MEMMs. MEMM combines HMM
with the Maximum Entropy (log-linear) classifiers.
Unlike generative models like HMMs, MEMMs
are discriminative, but they suffer from the °‘la-
bel bias problem’, where states with fewer out-
going transitions may ignore observations. CRFs
addresses them by modeling joint probability dis-
tributions to capture dependencies between labels
while mitigating bias. This makes CRFs particu-
larly suitable for sentence-level classification tasks.

5 Experiments

Experimental Setup: We conducted all our exper-
iments on an Amazon Web Services (AWS) cloud
server. In the EC2 instance, we initiated an instance
for Accelerated Computing. The specifications are
gb6e.xlarge instance, which provides 3rd generation
AMD EPYC processors (AMD EPYC 7R13), with
a NVIDIA L40S Tensor Core GPU with 48 GB
GPU memory, and 4x vCPU with 150 GiB mem-
ory, and our OS type is Ubuntu Server 24.04 LTS
(HVM).

We conducted our experiments by combining
CREF layer to the sequential models starting from
the Neural Networks to the Transformer models,
where the neural network models we have taken
are Convolutional Neural Network (CNN), Recur-
rent Neural Network (RNN), Long Short-Term
Memory (LSTM), Bidirectional LSTM (BiLSTM),
and Bidirectional Gated Recurrent Unit (BiGRU),
and the transformer models we have taken are the
BERT (Devlin, 2018), DistilBERT (Sanh, 2019),
RoBERTa (Liu, 2019), DeBERTa (He et al., 2020)
and ModernBERT (Warner et al., 2024), and our
proposed architecture is the combination of a Trans-
former, a Neural Network and a CRF layer. We
conducted several combinations of the above mod-
els. As we mentioned, the emergence of CRF
with the prior models HMMs and MEMMs, we

817



experimented with these by replacing the CRF with
HMM and MEMM in the best-performing model
with CRF. All our experiments can be seen in the
Table 3, and the hyperparameters can be seen in
Table 2.

Hyperparameter Value
batch_size 32
epochs 3
gradient_clip 1.0
hidden_dim 512
num_layers 3
num_labels 2
weight_decay le-2
max_len 512 tokens

learning_rate le-6, 5e-6, 1e-5, le-4

Table 2: Hyperparameters

Type Models

Neural Network + CRF CNN, RNN, LSTM, BiLSTM, BiGRU

BERT, DistilBERT, RoBERTa, DeBERTa, ModernBERT

Transformer + NN + CRF  DeBERTa + CNN, DeBERTa + RNN, DeBERTa + LSTM, De-
BERTa + BiLSTM, DeBERTa + BiGRU, BERT + BiGRU, Distil-
BERT + BiGRU, RoBERTa + BiGRU, ModernBERT + BiGRU

T + NN+ HMM/MEMM  DeBERTa + BiGRU + HMM, DeBERTa + BiGRU + MEMM

Table 3: All our experimental combinations with the
Neural Networks and the transformer models, the best
performing models in each setting are highlighted in
Bold.

5.1 Comparisons With SOTA Techniques

We have compared our approach’s best perform-
ing model with the zero-shot training free models
and others with the prior models that were experi-
mented on these datasets previously, and lastly with
the HMM and MEMM models. In total they are:

1. Zero-Shot methods for both M4GT and
TriBERT datasets

(a) FastDetectGPT - ‘falcon-7b-instruct’
(b) FastDetectGPT - ‘gpt-neo-2.7b’

(c) Glimpse - ‘davinci-002°

(d) Glimpse - ‘babbage-002’

(e) Binoculars

2. HMM & MEMM for both M4GT and TriB-
ERT datasets

(a) Best Performing Model” + HMM

"Best Performing Model - This is the model with the CRF
that has the best results in all metrics.

(b) Best Performing Model + MEMM

3. For TriBERT - Zeng et al. (2024)

(a) TriBERT (p=2) - (Zeng et al., 2024)
(b) GigaCheck (DN-DAB-DETR) - (Tol-
stykh et al., 2024)

4. For M4GT - Wang et al. (2024)

(a) Longformer - (Wang et al., 2024)
(b) DeBERTa-V3 - (Wang et al., 2024)
(c) TM-TREK - (Qu and Meng, 2024)
(d) Alpom - (Qu and Meng, 2024)

(e) USTC-BUPT - (Guo et al., 2024)

5.2 Zero-Shot Methods

As mentioned above, we have utilized the zero-shot
models for both datasets. The zero-shot models are:
1) Fast-DetectGPT (Bao et al., 2023; Mitchell
et al., 2023), with two variations: (a) falcon-
7b/falcon-7b-instruct, where falcon-7b is used
as the sampling model and falcon-7b-instruct
as the scoring model, and (b) gpt-neo-2.7b, where
the same model is used as both the sampling and
scoring models. Fast-DetectGPT is built to de-
tect Al-generated text by giving the perturbing
samples and evaluating the text’s likelihood under
different model prompts, which makes the model
highly adaptable when combined with different
Language Models. 2) Glimpse (Bao et al., 2023),
with two additional variations: (a) davinci-002 and
(b) babbage-002, where each model is used solely
as a scoring model. Glimpse works on the princi-
ple of uncertainty-guided token perturbation, where
this methods makes the model effective at identify-
ing unnatural patterns in text. 3) The final detector
is Binoculars (Hans et al.), which performs fine-
grained Al detection by comparing representations
between base- and instruction-tuned language mod-
els. To adapt these zero-shot methods for sentence-
level segmentation, we apply them individually to
each sentence using standardized prompts and ag-
gregate the outputs.

5.3 HMM and MEMM

Training follows a two-stage process. The neu-
ral front-end (Transformer+NN) is trained conven-
tionally using a token-level negative log-likelihood
(cross-entropy) loss. This fine-tunes the net-
work to produce meaningful emission probabili-
ties. The HMM itself, implemented using hmm-
learn.GaussianHMM is trained in an unsupervised
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manner. It is fitted on the sequence of emission
probability vectors generated from the first training
batch. This step learns the initial state probabilities
and the state transition matrix (A) based on the
data’s sequential patterns, as well as the parame-
ters for the Gaussian emission model (B). During
inference, the trained neural front-end generates
emission probabilities for a given text sequence.
The fitted HMM then uses the Viterbi algorithm
(hmm.predict()) to find the most likely sequence of
hidden states (labels) that could have generated the
observed emission probabilities.

The MEMM'’s effectiveness is from its ability
to use rich, overlapping features. For each to-
ken t in a sequence, we construct a feature vector
by concatenating: The training: The MEMM'’s
LR classifier is trained on-the-fly within each
training batch to learn the conditional probability
P(yt|yi—1, obeservations;). This classifier learns
to predict the current label based on the rich fea-
ture vector described above. Concurrently, the neu-
ral front-end is trained using a weighted negative
log-likelihood loss to optimize the quality of the
emission probabilities it generates. Decoding is
performed using a greedy, step-by-step approach.
For the first token, the prediction is based only on
the observation features. For every subsequent to-
ken t, the feature vector is constructed using the
observation at t and the label predicted for token
t-1. The trained logistic regression model then pre-
dicts the label for token t, and this process repeats
for the entire sequence. This approach allows the
model to leverage local label dependencies, which
is the core principle of an MEMM.

5.4 Existing SOTA Models

TriBERT model that is proposed by Zeng et al.
(2024), is a boundary detection model that uses a
tri-branch structure for identifying human and Al
segments in hybrid essays. GigaCheck (Tolstykh
et al., 2024) uses a DeNoising - Dynamic Anchor
Box - DEtection TRansformer (DN-DAB-DETR)
architecture designed to detect LLM-generated text
using dense attention and boundary-aware features.
M4GT (Wang et al., 2024) benchmarked a vari-
ety of detectors, including Longformer, which uses
long-range attention to identify stylistic shifts and
DeBERTa-V3, a strong pretrained model adapted
for segment-wise detection, TM-TREK (Qu and
Meng, 2024), which uses LLMs with a temporal-
aware retrieval strategy, Alpom (Shirnin et al.,
2024) includes prompt engineering and contrastive

learning, and the last one, USTC-BUPT (Guo et al.,
2024), enhances detection by aligning domain ad-
versarial learning with LLM-derived features.

6 Evaluation Metrics

The evaluation metrics were considered separately
for each of the datasets. For the TriBERT dataset,
we utilized the same metrics that were given in the
paper by Zeng et al. (2024) which is the F1 score.
The authors of the paper (Zeng et al., 2024) consid-
ered two things a) Lo,k and b) Ly, which give
top-K boundaries detected by the model’s algo-
rithm, and the number of ground-truth boundaries
respectively, and the value of K is set to 3 in their
analysis. The F1 score is then determined using the
following formula:

’LtopK N LGt’

F1IQK =2 ————
| Liopic | + | Latl

4)
For the M4GT dataset, the authors mentioned the
Mean Absolute Error (MAE) of the actual bound-
ary y; and the predicted boundary §; as the main
metric and n as total boundary pairs, so we have
taken the same as for the comparison purpose.

1 n
MAE = — » |yi — Ui (5)
- ; | |
Besides these official metrics, we also computed
standard evaluation metrics such as Accuracy, Pre-
cision, Recall, F1-Score, Matthews correlation co-
efficient (MCC), and Cohen’s Kappa score. These
metrics are computed based on the token-level pre-
diction, as the spans or boundaries are determined
by the binary labels (0-‘human’ or 1-‘AI’) of token
sequences. Each token in the dataset is labeled as
0 or 1 for the CRF computation during the training,
and during the inference, these labels will be pre-
dicted using the Viterbi algorithm of the CREF, such
that these are computed whether the prediction is
0 or 1. The Viterbi algorithm finds the sequence ¥
with the maximum score as in Equation 6 and the
recursive formulation used in the Viterbi algorithm
is showed in the below Equation 7.

y = arg max S(zx, 6
§ = arg max (z,y) (©6)

0t (yt) = }/Tzi?; [0t—1(ye—1) + e (ye—1,yt, ®) + i (ye, z,t)] (D

where s(x, y) is the CRF score function which can
be seen in the Equation 3, §;(y;) is the maximum
score of sequences ending in y; at position ¢.

819



7 Results Analysis

We conclude that our method overcame not only
the results of the existing zero-shot methods but
also the models that were previously experimented
on these datasets. We hypothesize that our model’s
superior performance is due to its explicit modeling
of inter-sentence transitions using neural networks
in between, which captures stylistic changes more
effectively than token-level detectors. Zero-shot
methods underperformed in comparison to our pro-
posed model, indicating limited reliability when
applied in real-world hybrid texts. On the M4GT
dataset, our best-performing model (DeBERTa +
BiGRU + CRF with all optimizations) achieved
a MAE of 8.47, substantially outperforming the
best-performing zero-shot method, which recorded
an MAE of 42.37. While some prior supervised
models (DeBERTa-V3) reported competitive re-
sults (MAE of 15.55), our model still demonstrates
a significant margin of improvement. Conversely,
in the TriBERT dataset, a few zero-shot detectors
such as FastDetectGPT (falcon-7b-instruct)
and Binoculars showed comparatively stronger per-
formance, achieving an average F'1QK of 0.608
and outperforming several prior supervised base-
lines. Nevertheless, our proposed model consis-
tently outperformed all baselines, including both
zero-shot and prior supervised models, across vary-
ing author-mixture types. Comprehensive results
for M4GT and TriBERT comparisons are provided
in Tables 4 and 5, respectively.

The evaluation metrics like Accuracy, Precision,
Recall, F1-Score, MCC, and Kappa’s scores are
really high, scoring around 98% and 91% of ac-
curacy in the TriBERT dataset and the M4GT
dataset, respectively, which can be seen in the Ta-
bles 12 and 13. These results might initially sug-
gest excellent model performance and say that the
model is highly effective at distinguishing between
human-written and Al-generated collaborative text.
However, these traditional metrics primarily reflect
token-level or word-level classification, meaning
they only assess whether a single word is correctly
labeled or not among the binary labels (0 and 1). In
automatic boundary detection, these metrics cannot
assess to capture the border structural coherence
and make the correct segmentation. In contrast, the
main evaluation considered by the authors involves
identifying the correct segmentation of the human
and Al parts, which are better and task-relevant cri-
teria. This segmentation-based evaluation provides

Type Model MAE
Glimpse (babbage-002) 78.84
Glimpse (davinci-002) 72.63
FastDetectGPT (gpt-neo-2.7b) 75.19
Zero-shot
FastDetectGPT (falcon-7b-instruct) 48.91
Binoculars 42.37
Binoculars (Sliding Window) 39.55

Longformer (Wang et al., 2024) 22.12 (21.54)
USTC-BUPT (Guo et al., 2024) 19.91 (17.70)

Prior Works Alpom (Shirnin et al., 2024) 16.42 (15.94)
TM-TREK (Qu and Meng, 2024) 15.03 (15.68)
DeBERTa-V3 (Wang et al., 2024) 16.08 (15.55)
DeBERTa + BiGRU + MEMM 26.73
HMM & MEMM
DeBERTa + BiGRU + HMM 22.19
Ours” - (DeBERTa + BiLSTM + CRF) 13.95
Proposed .
Ours’ - (DeBERTa + BiGRU + CRF) 8.47

Table 4: Comparison on the M4GT (Wang et al., 2024)
dataset with both the zero-shot methods and the prior
models that utilized this dataset. The best results are
marked in bold and * denotes the model with all op-
timizations and best hyperparameters. The one in the
brackets ‘()’ are the reported values in the respective
papers.

a clearer picture of how well the model understands
distinct regions of authorship within a collabora-
tive text, offering a more appropriate measure of
performance for this work. We conclude that the
Transformers model has long-range dependencies
and lacks explicit span modeling. By adding Neural
Network and CRF layers, we align local contex-
tual cues with structured transitions, enabling more
accurate detection of authorship shifts.

Type Model Bry=1  Bry=2 Bry=3 All
Glimpse (babbage-002) 0.194 0256 0303 0251
Glimpse (davinci-002) 0.427 0.506 0.564 0.499
FastDetectGPT (gpt-neo-2.7b) 0.253 0.317 0.362 0.310
Zero-shot
FastDetectGPT (falcon-7b-instruct) 0.482 0.553 0.619 0.551
Binoculars 0517 0624 0683  0.608
Binoculars (Sliding Window) 0534 0641 0702 0.625
Prior Works TriBERT (p=2) (Zeng et al., 2024) 0.455 0.692 0.622 0.575
Reported GigaCheck (Tolstykh et al., 2024) 0444 0693 0801  0.646
Prior Works THBERT (p=2) (Zeng et al., 2024) 0428 0671 0594  0.564
Reproduced GigaCheck (Tolstykh et al., 2024) 0472 0715 0826 0671
DeBERTa + BiGRU + MEMM 0562 0717 0754 0677
HMM & MEMM
DeBERTa + BiGRU + HMM 0593 0749 0787 0710
Ours’ - (DeBERTa + BiILSTM + CRF) ~ 0.612 0734 0817  0.721

Proposed .
Ours - (DeBERTa + BiGRU + CRF) 0.695 0.846 0.878 0.806

Table 5: Comparison on the TriBERT (Zeng et al., 2024)
dataset with the zero-shot methods, the prior model that
utilized this dataset and and the HMM & MEMM mod-
els, the best ones are marked in bold and * denotes the
model with all optimizations and best hyperparameters.
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8 Ablation Study

We mentioned that our approach model is too com-
plex due to its hybrid-hierarchical component ar-
chitecture. To reduce the complexity while main-
taining the performance good, we used techniques,
1) Layer-wise Learning Rate Decay (LLRD), 2)
Dynamic Dropout, and 3) Xavier initialization of
weights. To check the usability of these techniques,
we went on an ablation by including one-on-one,
and finally, all techniques were added. An overview
of the significance of these techniques is given be-
low.

1. Significance of these techniques:

(a) Xavier Initialization is used in the fully
connected layer to ensure stable weight
initialization.

(b) In LLRD, earlier layers of the trans-

former (embeddings and encoder layers)

have lower learning rates, while the later
encoder layers, NN, FC, and CRF layers,
have progressively larger learning rates.

(LR: 1e-6 — 5e-6 — le-5 — le-4)

Dynamic Dropout changes the dropout

rate based on the layer depth or training

progression, significantly ensuring an op-
timal balance between regularization and
learning capacity.

)

Other than these techniques, we also mentioned the
usage of HMM and MEMM instead of CRF, for
that, we built the model with the same configuration
as CRF model with the HMM® and MEMM”.

We did this ablation for only the Best Performing
model, which is the TNC-DBGC*'° model with
all the optimization techniques and the best hy-
perparameters.

According to the above Tables 6 and 7, which
present a detailed ablation study on the effects of
inclusion and exclusion optimization techniques
alongside traditional probabilistic sequence models
such as HMMs and MEMMs, it shows that the in-
volvement of these optimization strategies plays a
very crucial role in enhancing model performance.
These clearly show the necessity for the model’s
progressive improvement in performance when op-
timization techniques are sequentially applied to
the base TNC-DBGC model.

SDBGH - DeBERTa + BiGRU + HMM

*DBGM - DeBERTa + BiGRU + MEMM

OTNC-DBGC: Transformer + Neural Network + CRF -
DeBERTa + BiGRU + CRF

821

Model MAE
DBGM 26.73
DBGH’ 22.19

" INCDBGC 1985
+ Dynamic Dropout 16.42
+ Xavier Initialization 12.76
+LLRD 10.03

" £ All(INC-DBGC") 847

Table 6: Ablation study on the M4GT dataset with the
HMMs and MEMMs and the inclusion and exclusion
of the optimization techniques.

Model Bry=1 Bry=2  Bry=3 All
DBGM* 0.562 0.717 0.754 0.677
DBGH* 0.593 0.749 0.787 0.710
CINC-DBGC 0625 0775 0812 0737
+ Dynamic Dropout 0.645 0.798 0.838 0.760
+ Xavier Initialization 0.670 0.821 0.867 0.786
+LLRD 0.681 0.835 0.871 0.795
" +AI(INC-DBGC’)  0.695 0846 0878 0806

Table 7: Ablation study on the TriBERT dataset with
the HMMs and MEMM and the inclusion and exclusion
of the optimization techniques.

In the Table 6, which focuses on the M4GT
dataset, we can observe a significant difference
in the MAE between the models TNC-DBGC and
All (TNC-DBGC") from 19.85 to 8.47, respectively.
This nearly 60% reduction in MAE underscores the
effectiveness and necessity of these enhancements
in refining the model’s segmentation accuracy.

In such a way, Table 7, which presents the TriB-
ERT dataset, follows the same trend as in M4GT
dataset, where the TNC-DBGC alone has given a
overall result of 0.737, however upon the incremen-
tal addition of these optimization techniques have
given us the value of 0.806 in the fully optimized
TNC-DBGC" configuration.

Our current ablation study focuses on the opti-
mization techniques, which we believe are critical
to our model’s performance. To further justify our
architectural choices, we conducted an additional
experiment where we replaced the CRF layer with
a simple token-level softmax classifier on top of
the DeBERTa+BiGRU encoder. This resulted in a
significant performance drop: On M4GT, the MAE
increased from 8.47 to 14.21, and on TriBERT, the
overall F1 @K score dropped from 0.806 to 0.743.
This says that CRF layer’s ability to model depen-



dencies between adjacent labels is crucial for pre-
dicting coherent authorship spans and accurately
identifying boundaries. We will add a brief discus-
sion of this finding to the Ablation Study section to
further justify our choice of the CRF component.

8.1 Multiple Random seeds for statistical
significance

We have re-run our best-performing model (Ours*
—DeBERTa+ BiGRU + CRF) Seeds: 42, 123,
1024, 2025, and 8888.

Seed Prposed Model
42 8.61

123 8.49

1024 8.28

2025 8.52

8888 8.45
Mean =+ Std 8.47 £+ 0.15

Table 8: Random seed with our proposed model Ours *
—DeBERTa+ BiGRU+CRF on the M4GT dataset.

Seed Bry=1 Bry=2 Bry=3 All

42 0.688 0.839 0.869 0.798
123 0.697 0.845 0.876 0.805
1024 0.704 0.854 0.886 0.815
2025 0.693 0.844 0.873 0.803
8888 0.694 0.847 0.884 0.809

Mean £ Std  0.695 & 0.006 0.846 + 0.005 0.878 + 0.007  0.806 =+ 0.009

Table 9: Random seed with our proposed model Ours
—DeBERTa + BiGRU + CRF on the TriBERT
dataset.

9 Conclusion and Future Work

The widespread availability of LLMs has intro-
duced significant challenges across multiple do-
mains, where controlling the inappropriate or un-
intended use of these models has become increas-
ingly difficult. To overcome these problems, in
this paper, we propose an approach to segment the
human and Al spans in a collaboratively written
text. Our approach uses a hybrid component archi-
tecture that combines 1) Transformers, 2) Neural
Networks, and 3) CRF. For the justification to prove
our model performs better than existing ones, we
evaluated our method on two Human-AlI collabora-
tive text datasets: 1) TriBERT and 2) M4GT, and
achieved state-of-the-art results on all of them, and
compared the results with zero-shot approaches

that include FastDetectGPT, Glimpse, and Binocu-
lars, and also performed the experimentation with
HMMs and MEMMs.

As a future work, we wanted to enhance our
model by incorporating style features, such as lex-
ical diversity or syntactic complexity, to improve
boundary detection even under adversarial condi-
tions, syntactical or semantical ones. Exploring
multi-task learning to jointly predict authorship
and boundary points may further improve the per-
formance. Additionally, evaluating the model on
diverse datasets with various Al-generated texts
and testing its generalizability across languages
could broaden its applicability.

10 Limitations

Although our models and methodologies achieved
promising results, a key limitation is the lack of
robustness against both syntactic and semantic ad-
versarial attacks. The model has not been explic-
itly trained or tested on adversarial samples, which
could potentially manipulate linguistic structures or
semantics to mislead sequence labeling. Address-
ing these challenges in future work could signifi-
cantly enhance model reliability and generalization
in real-world applications.
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A Details on Datasets

Table 10 tells about the TriBERT (Zeng et al., 2024)
Hybrid Mixed Text Dataset statistics, which details
the distribution of academic essays with 1, 2, or 3
human-AlI authorship boundaries. It includes met-
rics such as essay counts (/7,136 total), average
words (287.6) and sentences (/3.7) per essay, av-
erage lengths of Al-generated (22.2 words) and
human-written (22.4 words) sentences, and at last
the proportion of Al-generated sentences (65.3%).
Table 11 gives an overview about the M4GT Bound-
ary Identification Dataset (Wang et al., 2024),
which includes the PeerRead and OUTFOX sub-
sets. PeerRead includes 5,676 samples each for
ChatGPT and LLaMA-2 models (7B, 13B, 70B),
split into train (3,649), dev (505), and test (/,522)
sets, with an additional 5, /89 samples for LLaMA-
2-7B*. OUTFOX provides 1,000 test samples each
for GPT-4 and LLaMA-2 variants.

Boundaries All
1 2 3
Hybrid essay 7488 6429 3219 17136
Words per essay 275.3 279.5 332.6 287.6
Sentences per essay 12.9 13.4 16.1 13.7
Avg len of Al-gen sent 22.7 21.8 21.7 222

Avg len of human-written sent 22.7 22.6 212 224

Ratio of Al-gen sent per essay ~ 67.4%  588%  732%  65.3%

Table 10: TriBERT Hybrid Mixed text Dataset statistics
by (Zeng et al., 2024)

B Other Experimental Results

As mentioned above, other than the main evalua-
tion metrics, we have also computed the Accuracy,
Precision, Recall, F1-Score, MCC, and Cohen’s

Domain Generator Train  Dev Test Total
ChatGPT 3,649 505 1,522 5,676
LLaMA-2-7B* 3,649 505 1,035 5,189

PeerRead LLaMA-2-7B 3,649 505 1,522 5,676
LLaMA-2-13B 3,649 505 1,522 5,676
LLaMA-2-70B 3,649 505 1,522 5,676
GPT+4 - - 1,000 1,000

OUTFOX LLaMA-2-7B - - 1,000 1,000
LLaMA-2-13B - - 1,000 1,000
LLaMA-2-70B - - 1,000 1,000

Table 11: M4GT Boundary identification data based on
GPT and LLaMA-2 series (Wang et al., 2024).

Kappa score for both datasets. All best model in
each setting are highlighted in bold. According to
the metrics, in NN_CRF setting, the BiIGRU_CRF
model has the highest scores among the other mod-
els. In Transformer_CRF setting, DeBERTa_CRF
model got the highest accuracy with 97.82%. Fi-
nally, among the Transformer_NN_CRF setting,
the model DeBERTa_BiGRU_CRF has the high-
est scores in all the metrics and outperforms all
the models, including the zero-shot and the models
that were previously tested on. The results of these
metrics can be seen in the Tables 12 and 13.

According to figures 2, 5, 4, it is certain that the
increase in the combination of number of blocks
in a model leads to have high values in the eval-
uation metrics and were able to outperform the
other models with their previous setting. In con-
clusion, the results from the TriBERT Dataset are
quite high, and the results on the MAGT dataset are
comparatively low. This shows that the robustness
of the data is higher in the M4GT dataset, where
a model cannot easily predict the boundary in the
MA4GT dataset and can predict easily in the TriB-
ERT dataset. The results comparison plot for both
datasets can be seen in Figure 3.
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Dataset  Type Model Accuracy  Precision Recall Fl-score MCC  Kappa

CNN_CRF 94.72 94.72 94.72 94.69 88.28 88.22

RNN_CRF 93.7 93.68 93.7 93.66 85.98 85.92
NN_CRF LSTM_CRF 93.25 93.23 93.25 93.2 84.97 84.9
BiLSTM_CRF 94.42 94.41 94.42 94.39 87.61 87.55

BiGRU_CRF 95.09 95.1 95.09 95.06 89.1 89.04

BERT_CRF 94.66 94.86 94.66 94.57 88.15 87.76

DistilBERT_CRF 94.54 94.62 94.54 94.47 87.8 87.57

Transformer_CRF RoBERTa_CRF 95.08 95.19 95.01 94.92 88.65 88.37
AAAIL ModernBERT_CRF 95.56 95.54 95.56 95.54 89.92 89.9

DeBERTa_CRF 97.82 97.87 97.82 97.8 95.18 95.09

DeBERTa_CNN_CRF 98.15 98.18 98.15 98.14 95.91 95.86

DeBERTa_RNN_CRF 97.83 97.88 97.83 97.82 95.22 95.13

DeBERTa_LSTM_CRF 98.02 98.05 98.02 98 95.62 95.55

DeBERTa_BiLSTM_CRF 98.28 98.3 98.28 98.27 96.2 96.16

Transformer_NN_CRF DeBERTa_BiGRU_CRF 98.66 98.66 98.66 98.66 97.02 97.02

BERT_BiGRU_CRF 95.65 95.78 95.65 95.6 90.35 90.09

DistilBERT_BiGRU_CRF 95.2 95.43 95.2 95.12 89.49 88.99

RoBERTa_BiGRU_CRF 95.27 95.52 95.27 95.18 89.41 88.95

ModernBERT_BiGRU_CRF  97.58 97.57 97.58 97.57 94.51 94.49

Table 12: Conventional metrics results table that included the metrics Accuracy, Precision, Recall, F1-Score, MCC
and Kappa score on the AAAI-TriBERT dataset by Zeng et al. (2024).

Dataset  Type Model Accuracy  Precision  Recall Fl-score = MCC  Kappa
CNN_CRF 74.72 74.71 72.68 72.68 41.98 39.18
RNN_CRF 68.19 66.95 68.19 67.11 27.45 26.98
NN_CRF LSTM_CRF 68.64 67.4 68.64 67.62 28.39 27.87
BiLSTM_CRF 87.35 85.42 85.35 84.96 67.43 66.67
BiGRU_CRF 87.79 87.73 87.79 87.75 73.24 73.22
BERT_CRF 86.2 86.2 85.63 85.63 69.67 68.04
DistilBERT_CRF 89.04 89.14 89.04 88.83 75.82 75.32
Transformer_CRF RoBERTa_CRF 86.66 87.61 86.66 86.05 70.94 68.96
MAGT ModernBERT_CRF 85.76 86.48 85.14 85.14 68.71 66.94
DeBERTa_CRF 91.41 91.75 91.46 91.22 81.28 80.57
DeBERTa_CNN_CRF 91.13 91.5 91.77 90.92 80.65 79.92
DeBERTa_RNN_CRF 91.5 91.5 91.5 91.32 81.43 80.82
DeBERTa_LSTM_CRF 90.78 90.78 91.03 90.57 79.8 79.15
DeBERTa_BiLSTM_CRF 91.64 91.81 91.81 91.49 81.68 81.22
Transformer_NN_CRF DeBERTa_BiGRU_CRF 91.82 91.99 91.67 91.67 82.08 81.62
BERT_BiGRU_CRF 85.88 85.88 86.49 85.3 68.9 67.31
DistilBERT_BiGRU_CRF 87.78 87.78 88.3 87.36 73.21 71.94
RoBERTa_BiGRU_CRF 87.18 87.18 87.97 86.65 72.02 70.31
ModernBERT _BiGRU_CRF  86.79 86.79 87.33 86.3 70.96 70.57

Table 13: Conventional metrics results table that included the metrics Accuracy, Precision, Recall, F1-Score, MCC,
and Kappa score on the M4GT dataset by Wang et al. (2024).
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Pair Plot of Selected Metrics for AAAI Dataset
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Figure 2: Precision vs Recall plots for TriBERT and
MA4GT datasets.

Figure 4: Pair plots for TriBERT and M4GT datasets.
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Figure 5: Box plots for TriBERT and M4GT datasets.

826



C Loss Plots

Our model includes the CRF layers such that
the loss during the training of the model is the
CREF loss, where CREF tries to maximize the log-
likelihood of the correct label sequence. Such that
the loss at the first epochs would be very high, and
upon predicting the token-label correctly, the loss
would eventually decrease. The numerical values
during the training of the models on two datasets
can be seen in the Tables 14, 15. A better visualiza-
tion of the decrease over the training epochs can be
seen in the Figures 6, 7, and 8.
The CREF loss is mathematically expressed as:

Lorr = —log Py | x) 3)

where: P(y | ) is the conditional probability and
is given in the equation 1. This is further expanded
as follows when Equation 1 is substituted above:

Lorr = —(S(z,y) —log Z(x)) ©)

Where: S(x,y) is the sum of the transition scores
and emission scores of the CRF model, and the
equation is 3. log Z(x) is the log of the partition
function Z(x) and the Equation is 2. The loss
minimization reflects the CRF’s ability to capture
dependencies between labels, improving boundary
detection accuracy over epochs.

Loss vs. Epoch for AAAI Dataset - Type: NN_CRF

100

Py

Loss vs. Epoch for MAGT Dataset - Type: NN_CRF

Figure 6: Loss curves for neural network with CRF
models on TriBERT and M4GT datasets.

Loss vs. Epoch for AAAI Dataset - Type: Transformer_CRF

Loss vs. Epoch for MAGT Dataset - Type: Transformer CRF

Model
e BERT_CRF
DiStiBERT_CRF
% —o FOBERTa_CRF
—o ModerBERT_CRF
—o~ DeBERTe_CRF

Figure 7: Loss curves for transformer with CRF models
on TriBERT and M4GT datasets.

Loss vs. Epoch for AAAI Dataset - Type: Transformer NN_CRF

Loss vs. Epoch for MAGT Dataset - Type: Transformer_NN_CRF

vodel
—o- DeBERTa_CNN_CRF
DeBERTa_RNN_CRF

ROBERTa_BIGRU_(
ModemBERT_BIGRU_CRF

Figure 8: Loss curves for transformer and neural
network with CRF models on TriBERT and M4GT
datasets.
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Dataset  Type Model Epoch1 Epoch2 Epoch3

CNN_CRF 108.47 29.12 11.37
RNN_CRF 81.48 22.04 12.04
NN_CRF LSTM_CRF 83.72 24.01 13.31
BiLSTM_CRF 74.07 20.59 10.34
BiGRU_CRF 69.06 17.09 7.43
BERT_CRF 88.66 24.38 15.64
DistilBERT_CRF 88.87 30.14 21
Transformer_CRF RoBERTa_CRF 121.99 34.52 19.91
AAAT ModernBERT_CRF 149.1 52.66 32.03
DeBERTa_CRF 66.56 9.12 4.58
DeBERTa_CNN_CRF 39.26 7.44 3.96
DeBERTa_RNN_CRF 49.14 8.4 4.31
DeBERTa_LSTM_CRF 43.11 7.8 4
DeBERTa_BiLSTM_CRF  41.81 7.95 4.08
Transformer_NN_CRF DeBERTa_BiGRU_CRF 42.66 7.14 3.64
BERT_BiGRU_CRF 55.67 14.82 7.1
DistilBERT_BiGRU_CRF 76.88 24.36 14.42
RoBERTa_BiGRU_CRF 89.3 19.94 10.53
ModernBERT_BiGRU_CRF  96.41 19.19 6.34

Table 14: Model Loss Across Epochs during training of the model on the TriBERT dataset.

Dataset  Type Model Epoch1 Epoch2 Epoch3
CNN_CRF 86.87 21.98 13.54
RNN_CRF 91.48 25.37 17.69
NN_CRF LSTM_CRF 82.05 21.32 14.26
BiLSTM_CRF 79.45 16.73 10.07
BiGRU_CRF 69.33 15.56 8.8
BERT_CRF 97.62 40.48 31.62
DistilBERT_CRF 87.06 42.58 3345
Transformer_CRF RoBERTa_CRF 75.9 33.37 24.44
MAGT ModernBERT_CRF 91.7 38.93 30.14
DeBERTa_CRF 79.49 23.48 16.13
DeBERTa_CNN_CRF 65 22.81 16.13
DeBERTa_RNN_CRF 67.69 23.83 17.02
DeBERTa_LSTM_CRF 64.3 23.04 16.31
DeBERTa_BiLSTM_CRF 61.3 22.54 16.02
Transformer_NN_CRF DeBERTa_BiGRU_CRF 69.57 24.73 17.25
BERT_BiGRU_CRF 77.28 31.3 23.15
DistilBERT_BiGRU_CRF 80.68 34.65 26.05
RoBERTa_BiGRU_CRF 76.46 29.38 21.87
ModernBERT_BiGRU_CRF 79.57 34.59 27.01

Table 15: Model Loss Across Epochs during training of the model on the M4GT dataset
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