
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 795–813

December 20-24, 2025 ©2025 Association for Computational Linguistics

Multi-Modal Data Exploration via Language Agents

Farhad Nooralahzadeh, Yi Zhang, Jonathan Fürst, Kurt Stockinger
Zurich University of Applied Sciences, Switzerland

{farhad.nooralahzadeh, yi.zhang, jonathan.fuerst, kurt.stockinger}@zhaw.ch

Abstract

International enterprises, organizations, and
hospitals collect large amounts of multi-modal
data stored in databases, text documents, im-
ages, and videos. While there has been recent
progress in the separate fields of multi-modal
data exploration as well as in database sys-
tems that automatically translate natural lan-
guage questions to database query languages,
the research challenge of querying both struc-
tured databases and unstructured modalities
(e.g., texts, images) in natural language remains
largely unexplored. In this paper, we propose
M2EX 1—a system that enables multi-modal
data exploration via language agents. Our ap-
proach is based on the following research con-
tributions: (1) Our system is inspired by a real-
world use case that enables users to explore
multi-modal information systems. (2) M2EX
leverages an LLM-based agentic AI framework
to decompose a natural language question into
subtasks such as text-to-SQL generation and
image analysis and to orchestrate modality-
specific experts in an efficient query plan. (3)
Experimental results on multi-modal datasets,
encompassing relational data, text, and images,
demonstrate that our system outperforms state-
of-the-art multi-modal exploration systems, ex-
celling in both accuracy and various perfor-
mance metrics, including query latency, API
costs, and planning efficiency, thanks to the
more effective utilization of the reasoning ca-
pabilities of LLMs.

1 Introduction

The rapid expansion of multi-modal data; span-
ning structured tables, text, images, and video; has
created an urgent need for flexible, scalable sys-
tems for complex data exploration. In fields like
healthcare, users often query across EHRs, medical
images, and clinical notes using natural language.
However, current systems struggle with integrating

1Data and code repository are available at https://
github.com/yizhang-unifr/M2EX

modalities, capturing user intent, and optimizing
execution workflows, limiting their real-world util-
ity. Traditional solutions focus on single-modality
tasks such as text-to-SQL (Sivasubramaniam et al.,
2024; Nooralahzadeh et al., 2024; Pourreza and
Rafiei, 2024), visual question answering (Li et al.,
2023a; Ko et al., 2023; Du et al., 2023), or domain-
specific QA (Dong et al., 2024; Liu et al., 2024b),
often relying on rigid pipelines or handcrafted logic.
While effective in narrow settings, they lack the
flexibility to handle heterogeneous data or dynamic
analytical goals.

Recent large language models (LLMs) and
vision-language models (VLLMs) offer broader
generalization but remain limited in real-world mul-
timodal use. Techniques like retrieval-augmented
generation (RAG) improve grounding but often fail
at structured reasoning, long-term context, and pre-
cise tool use; especially in domains that require
deep alignment across modalities and step-wise
execution. Efforts to inspire LLMs with agentic
capabilities – such as ReAct (Yao et al., 2023), tool
invocation (Yang et al., 2023; Schick et al., 2023),
or workflow automation (Liu et al., 2024a; Urban
and Binnig, 2024) – have further exposed systemic
challenges.

Existing frameworks frequently adopt rigid, se-
quential decision-making processes, incurring com-
putational overhead and limiting scalability. Eval-
uations of these systems are often conducted on
in-house datasets, lacking rigorous benchmarking
against ground-truth metrics or real-world multi-
modal contexts. Moreover, many approaches en-
force fixed task-planning hierarchies or routing
mechanisms, stifling adaptability and reusability
across diverse applications. This “one-size-fits-all”
mentality contrasts starkly with the need for mod-
ular, composable agents capable of dynamically
integrating domain-specific tools, retaining contex-
tual memory, and self-optimizing workflows.

To understand these challenges, a concrete sce-

795

https://github.com/yizhang-unifr/M2EX
https://github.com/yizhang-unifr/M2EX

Figure 1: (Left): Example workflows of multi-modal data exploration in natural language over heterogeneous data
sources. (Right): M2EX system architecture.

nario of multi-modal exploration involving a rela-
tional database, text documents, and images is out-
lined here. A seemingly straightforward query like
Show me the progression of cancer lesions over the
last 12 months of patients with lung cancer who are
smokers (see Figure 1, Left) requires multi-modal
integration, posing challenges in decomposition
and optimization. Critical to this process is opti-
mizing the workflow sequence, i.e., determining
which queries should be executed first to minimize
computational overhead and maximize efficiency.

In this work, we propose a novel framework
for multi-modal data exploration that bridges these
gaps through LLM-based agents designed for ex-
tensibility, precision, and cross-domain generaliza-
tion. Our approach combines a “Swiss army knife”
philosophy — enabling reusable, adaptable mod-
ules for tasks like semantic parsing, cross-modal
retrieval, and structured data operations — with
a principled evaluation strategy spanning diverse
benchmark datasets. By decoupling task planning
from execution and incorporating feedback-driven
memory, our system supports iterative exploration
while mitigating the pitfalls of shallow evaluation
and fixed workflows. We demonstrate its efficacy
across text, visual, tabular, and hybrid data do-
mains, underscoring the potential of agentic LLMs
to unify multi-modal analysis in a scalable, user-
centric paradigm.

The goal of our paper is to support such multi-
modal data exploration scenarios in natural lan-
guage by designing and implementing a system to
address the following challenges:

• Heterogeneous data understanding: How can
we accurately interpret natural language queries
over diverse data types such as text, tables, and
images?

• Workflow orchestration: How can we decompose

a complex query into sub-tasks, organize them
into an executable workflow, and delegate each to
the right model or tool; respecting dependencies
and enabling parallelism?

• Explainability: How can we provide users with
traceable, transparent results, showing how an-
swers were derived, what data contributed, and
where uncertainty remains?

In this paper, we propose M2EX—a multi-modal
data exploration system that uses a LLM-based
agentic framework to tackle these challenges. The
basic idea is to first decompose a complex natu-
ral language question into simpler sub-questions.
Each sub-question is then translated into a work-
flow of specific tasks. By applying smart planning,
our approach can reason about which task in the
workflow fails and thus re-plan that specific task
rather than restarting the complete workflow. The
advantage of our approach compared to similar sys-
tems such as CAESURA (Urban and Binnig, 2024)
is that it enables parallel task execution through the
construction of a directed acyclic task graph and
requires a lower number of tokens from prompt
engineering, resulting in more efficient query exe-
cution times and API calling costs.

The main contributions of our paper are as fol-
lows: (i) Unified DAG–first planning. The plan-
ner compiles a natural-language query directly into
an execution directed-acyclic graph (DAG); inde-
pendent subtasks therefore run in parallel without
a second “physical-plan” stage. (ii) Self-debug &
selective re-planning for speed. Each expert tool
validates its own output once; if a fault persists,
the agent rewires only the affected sub-graph. This
cuts end-to-end latency by up to 51% and reduces
token usage by 18% on the ArtWork benchmark.
(iii) Zero-shot cross-domain generalisation. With
a single prompt set and no in-context examples,

796

M2EX attains up to 42% higher answer accuracy
than CAESURA and NeuralSQL on ArtWork, Ro-
toWire, and EHRXQA.

2 Related Work

Text-to-SQL systems. The research field of text-
to-SQL systems has seen tremendous progress over
the last few years (Floratou et al., 2024; Pourreza
and Rafiei, 2024) due to advances in large language
models. Original success can be attributed to rather
simplistic datasets consisting of databases with
only several tables, as in Spider (Yu et al., 2018).
Especially the introduction of new benchmarks
such as ScienceBenchmark (Zhang et al., 2024b),
FootbalDB (Fürst et al., 2024), BIRD (Li et al.,
2024b) or SM3 (Sivasubramaniam et al., 2024) has
further pushed the limits of these systems. Most of
the research efforts have been restricted to querying
databases in English apart from a few exceptions
such as Statbot.Swiss (Nooralahzadeh et al., 2024).

Multi-modal systems. Video Database Man-
agement Systems (VDBMSs) support efficient and
complex queries over video data, but are often re-
stricted to videos only (e.g., Zhang et al., 2023;
Kang et al., 2019; Kakkar et al., 2023). Thala-
musDB (Jo and Trummer, 2024) enables queries
over multi-modal data but requires SQL as input,
with explicit identification of the predicates that
should be applied to an attribute corresponding
to video or audio data. Similarly, MindsDB2 and
VIVA (Kang et al., 2022) require that users write
SQL and manually combine data from relational ta-
bles and models. Vision-language models provide
textual descriptions of video data (Zhang et al.,
2024a), but are not designed to support precise,
structured queries. Recent multi-modal systems
such as MAGMA (Doe et al., 2025), and LLaVA-
Next (Li et al., 2024a) extend vision-language rea-
soning via unified interfaces or tool-based con-
trollers. However, these models are largely lim-
ited to vision-only pipelines and lack support
for structured tool orchestration across modali-
ties. In contrast, M2EX generalizes to diverse tool
types—including text-to-SQL, Python plotting, and
image-VQA—via explicit DAG planning and par-
tial re-planning, enabling scalable and interpretable
execution across multi-modal queries.

Closest to our work are CAESURA (Urban and
Binnig, 2024), PALIMPZEST (Liu et al., 2024a),
and MAT (Gao et al., 2025), which address multi-

2https://docs.mindsdb.com

modal querying and AI workload optimization. In
contrast, M2EX focuses on efficient orchestration
of model calls and dependencies, reducing latency
and cost while improving accuracy by minimiz-
ing interference from intermediate outputs (Schick
et al., 2023)3.

While related systems emphasize query plan-
ning, they fall short in enhancing the accuracy and
explainability of model outputs—critical needs in
domains like medical data science, where regula-
tory standards require transparent and justifiable
results.

3 Method and System Design

Problem statement. Given a multi-modal query
q, a data lake D, a tool catalogue T with metadata
Tmeta, our goal is to produce a directed acyclic
task graph G = (V,E) and a final answer a such
that each node v ∈ V is a (tool, args) pair, edges
E encode data dependencies, the execution of G
is valid w.r.t. Tmeta, and a maximizes task-level
answer accuracy.

Proposed System: To address this problem,
M2EX enables multi-modal data exploration via
language agents. Its details are presented in Al-
gorithm 1 and Figure 1 (right) (A fully anno-
tated DAG and end-to-end use-case example ap-
pear in Figures 2 and 3). M2EX is an agentic
system (Kapoor et al., 2024) driven by LLMCom-
piler (Kim et al., 2023), a dynamic planner pat-
tern based on a Large Language Model, equipped
with a comprehensive toolkit T containing all the
necessary models to decompose a user’s request,
such as a multi-modal natural language question,
into a workflow (i.e., a graph of sub-questions).
The workflow is represented as a Directed Acyclic
Graph (DAG), where each node corresponds to
a simple sub-task (or sub-question) with a spe-
cific tool assigned by the planner. While decou-
pling logical and physical plans can be subopti-
mal due to plan ambiguity and nonlinearity, unlike
CAESURA, the planner determines sub-tasks that
can be executed in parallel and manages their de-
pendencies by leveraging an LLM to directly gener-
ate the execution plan from the query as a graph of
function calls. M2EX is designed to be adaptable,
allowing dynamic debugging and plan modifica-
tion (re-planning) when necessary, for example, if
a failure occurs during a text-to-SQL sub-task.

3CAESURA and MAT employ the ReAct agent framework,
which leads to extended context tokens and increased latency.

797

Algorithm 1 M2EX: Multi-Modal Data Explo-
ration via Language Agents
Require: User query q, Agent Core LLM, toolkit T , Data Lake D, Pre-

defined Prompts P , Empty memory stateR
Ensure: Final answer a

1 Stage 1: Planning & Expert Model Allocation
2 R ← R∪ {q,Dmeta}
3 S ← DECOMPOSE(R,LLM, Tmeta) ▷ Use an agent core LLM

(with a planner prompt ∈ P access to tool metadata) to decompose q
into subtasks s1, . . . , sn. Each task contains a tool, arguments, and list
of dependencies.

4 G← BUILDDAG(S,LLM) ▷ Construct a
Directed Acyclic Graph (DAG): G where each node represents a subtask
and edges represent dependencies

5 Stage 2: Execution & Self-debugging
6 σ ← TOPOLOGICALSORT(G) ▷ Determine an execution order that

respects dependencies
7 B ← GROUPPARALLELTASKS(σ,G) ▷ Partition tasks into parallel

execution
8 for each batch bk ∈ B do
9 Launch parallel execution:

10 for each subtask si ∈ bk do
11 ri ← EXECUTE(si, T ,D) ▷ Invoke the assigned expert

tool for si. Integrate n-time self-debugging to automatically detect and
correct errors as needed. (n = 1). If there is still an error, provide an
error message as an output of execution.

12 R ← R∪ {ri}
13 end for
14 end for
15 Stage 3: Decision Making
16 ValidateR via reflection ▷ Check that outputs are correct and

executable; if not, trigger error feedback.
17 if validation fails then
18 G← REPLAN(G,R,LLM, Tmeta) ▷ Dynamically adjust

the DAG (e.g., reallocate tasks or update tool parameters) based on error
feedback using an agent core LLM (with a replanning prompt ∈ P).

19 goto line 5 ▷ Restart execution with the updated plan.
20 end if
21 a← SYNTHESIZE(R,LLM) ▷ Aggregate and refine intermediate

results into the final answer using LLM reasoning.
22 if a is insufficient or uncertain then
23 G← REPLAN(G,R,LLM, Tmeta) ▷ Dynamically adjust

the DAG (e.g., reallocate tasks or update tool parameters) based on error
feedback using an agent core LLM (with a replanning prompt ∈ P).

24 goto line 5 ▷ Restart execution with the updated plan.
25 end if
26 return a

As shown in Algorithm 1 and Figure 1, the sys-
tem is composed of the following key components:
(1) User Query (q): a multi-modal natural lan-
guage question posed by the user, which initiates
the process of task decomposition and execution.
(2) Agent Core (LLM): the core reasoning engine
that powers the dynamic planning, execution, and
decision-making processes. The LLM is responsi-
ble for decomposing the user query into subtasks,
managing dependencies, and synthesizing final re-
sults using diverse prompts P . (3) Expert Models &
Tools (Toolkit) (T): a comprehensive collection of
expert models and tools that are used for executing
specific sub-tasks. The toolkit provides the neces-
sary models for tasks such as text-to-SQL, text
analysis, image analysis, data preparation,
and data plotting. Each expert model or tool
should include a description and argument specifi-
cations (Tmeta), and they will be available during
the planning and re-planning stages. (4) Data Lake
(D): a central repository that stores both structured

and unstructured data, such as tabular data, images,
and text. Each expert model and tool has direct
access to the data lake to perform its assigned tasks.
The data stored in the lake is utilized as input for
various tasks, enabling the system to generate ac-
curate results for the user’s query. (5) Pre-defined
Prompts (P): a collection of predefined prompts
available to the LLM, which are used to guide
the reasoning process during planning, execution,
and decision-making (see details in Appendix B).
(6) Memory State (R): The initial memory state
starts empty and captures all intermediate results
and interactions throughout the workflow execu-
tion. The system tracks these intermediate results
using an output object that stores the answer and
reasoning at each node in the workflow. (7) Final
Answer (a): The final answer is the output gen-
erated by the system after executing all the tasks
and performing reasoning through the LLM. It con-
solidates all intermediate results and provides a
comprehensive response to the user’s query. The
final answer typically includes several components:
a summary of the task or query result, detailed
information about the outcome, the source of the
data used, an inference indicating the success of
the task, and any additional explanations or clarifi-
cations. This structured output ensures that the user
receives not only the result but also the reasoning
and context behind it. In Figure 2, we demonstrate
the showcase of M2EX using an example query
applied to the EHRXQA data, which includes re-
lational tables and images: Was patient 18061894
prescribed acetaminophen, and did a chest x-ray
show any technical assessments until 12/2103?

The system starts with the user query q and pro-
cesses it through several stages, as detailed below:
(i) Planning & Expert Model Allocation. The sys-
tem begins by analyzing the user query q and de-
composes it into a sequence of tasks. Using the
agent core (LLM), the system identifies the re-
quired expert models and tools from the toolkit
T , along with their input arguments and inter-
dependencies. These subtasks are synthesized
into a workflow represented as a Directed Acyclic
Graph (DAG), G, where each node represents a
task, and edges represent dependencies between
them. E.g., a natural language question can be split
into multiple tasks such as intent table detec-
tion, text2SQL, and image analysis as shown
in Figure 2. The workflow reflects the execution
sequence and dependencies that are necessary to
answer the user’s query. The system also utilizes

798

predefined prompts P to guide the reasoning pro-
cess during task decomposition.
(ii) Execution and Self-Debugging. The system
executes the tasks according to the generated work-
flow by invoking the relevant expert models and
tools from the toolkit T . The system utilizes a
state object R, which stores intermediate results
and interactions during the execution. The tasks are
partitioned into independent batches B that can be
executed in parallel, which is determined through
a topological sort (TOPOLOGICALSORT(G)) of the
DAG. For each batch, the system launches parallel
executions of the assigned tasks. The tasks are ex-
ecuted using the expert models, and the outcomes
are passed on to subsequent tasks that depend on
them. Each expert model includes a self-debugging
mechanism to detect and correct errors during exe-
cution. If an error persists, the system can provide
feedback and retry the process, thereby enhancing
the robustness of the execution.
(iii) Decision Making. After the execution of the
subtasks, M2EX inspects the intermediate results
stored in R to determine whether they are suffi-
cient to fulfill the user’s request. If the results are
satisfactory, the system synthesizes them into the
final answer a. However, if the results are insuffi-
cient or uncertain, the system triggers a re-planning
process by invoking REPLAN(G,R,LLM, Tmeta)
to adjust the DAG and re-execute the tasks. This
process repeats until the decision-making compo-
nent is satisfied with the final result or a predefined
maximum loop limit is reached.
In summary, M2EX uses an algorithmic approach
where the system first decomposes the user query
into subtasks, executes these tasks with error de-
tection and correction mechanisms, and synthe-
sizes the results into a final answer. The system is
highly adaptive, with dynamic re-planning capabil-
ities powered by the reasoning abilities of the LLM
to ensure efficient task execution, debugging, and
modification of the plan when needed. Our current
M2EX implementation offers a range of features,
including self-debugging, query re-planning, opti-
mization, and explainability to better understand
how a natural language question is decomposed
into multiple sub-tasks. See details in Appendix D.

Complexity and convergence. Planning inspects
|S| subtasks and calls Φ once, costing O(|S|CLLM)
tokens (CLLM = context length processed by the
language model). With unlimited workers, execu-
tion latency is O(depth(G)); with p workers it is

bounded by depth(G) as well. Re-planning only
touches the affected sub-DAG, so its worst-case
cost is strictly ≤ the first planning pass.

4 Experiments

In this section, we evaluate M2EX’s performance,
focusing on the following research questions: (1)
How well does M2EX tackle multi-modal natural
language questions on three different datasets con-
sisting of tabular data and images? (2) How does
the system perform compared to state-of-the-art
systems such as CAESURA (Urban and Binnig,
2024) and NeuralSQL (Bae et al., 2024) on under-
lying benchmark datasets? (3) What systematic
errors can we observe?

4.1 Experimental Setup

Datasets For our experiments, we used three dif-
ferent datasets, namely datasets about artwork, bas-
ketball, as well as electronic health records. Due
to hardware limitations, we reduced the dataset to
100 images and reports. Processing the full size
in CAESURA can result in crashes due to out-of-
memory issues.
DATASET 1: ARTWORK. This dataset was intro-
duced by Urban and Binnig (2024) and contains
information about paintings in tabular form as well
as an image collection containing 100 images of
the artworks, collected from Wikipedia. The tab-
ular data contains metadata about paintings such
as title, inception, movement, etc. as well as a
reference to the respective paintings. A typical ex-
ample question from this dataset is Plot the number
of paintings depicting war for each century (see
Figure 3 in the Appendix).
In addition to the 24 existing questions in the Art-
Work dataset, we propose six new questions aimed
at evaluating parallel task planning and execution,
facilitating a comparison between the character-
istics of the two architectures. These six ques-
tions incorporate both single and multiple modali-
ties. Moreover, four of the six questions require re-
sponses in various formats: two questions demand
two plots, and two questions involve a combination
of plotting and showing the results in a specific
data structure, i.e. either as a tabular format or as
a JSON format. The final test dataset contains 30
natural language questions derived from the orig-
inal 24 in the ArtWork dataset. These include 8
queries seeking a single result value, 11 requir-
ing structured data as output, and 11 requesting

799

a plot. Of these, 18 queries involve multi-modal
data, while the remaining 12 are based exclusively
on relational data. We have chosen this dataset to
directly compare our system with CAESURA (Ur-
ban and Binnig, 2024), one of the state-of-the-art
systems for multi-modal data exploration in natural
language.
DATASET 2: ROTOWIRE. This dataset is also uti-
lized by Urban and Binnig (2024) and consists
of one relational database and 100 randomly se-
lected textual reports about NBA games, including
metadata, key statistics of individual players, and
team performance metrics. A typical example ques-
tion from this dataset is Plot the highest number of
three-pointers made by players from each national-
ity. The test dataset comprises 12 natural language
questions, evenly divided into 6 single-modal and
6 multi-modal queries. Regarding output format,
3 questions require a single value as a response, 5
involve structured data outputs, and 4 necessitate
visualization through plots.
DATASET 3: ELECTRONIC HEALTH RECORDS

(EHR). We also utilized the EHRXQA (Bae et al.,
2024) dataset, a multi-modal question answering
dataset that integrates structured electronic health
records (EHRs) with chest X-ray images. This
dataset consists of 18 tables and 432 images, and
specifically requires cross-modal reasoning. The
questions of EHRXQA are categorized based on
their scope in terms of modality and patient rele-
vance. For modality-based categorization, ques-
tions were classified into three types: Table-related,
image-related, and table-image-related, based on
the data modality required. The patient-based cat-
egorization classified questions based on their rel-
evance to a single patient, a group of patients,
or none (i.e., unrelated to specific patients). We
have chosen this dataset since it was used to eval-
uate NeuralSQL, another state-of-the-art system
for multi-modal data exploration. To manage the
cost of an API call, we extracted 100 questions
randomly. The selection process was guided by
three predefined categories within the test set of the
EHRXQA dataset: Image Single-1, Image Single-
2, and Image+Table Single (for details, please look
at Bae et al. (2024)).
Several considerations influenced our decision to
work with reduced versions of these datasets:
Demonstrating Viability The reduced dataset size
demonstrates M2EX’s viability across diverse mul-
ti-modal datasets with ground truth, proving its
ability to handle complex queries in a controlled

setting. Complexity of Building Datasets Construct-
ing large-scale multi-modal datasets with precise
ground truth is a complex, manual process, which
limits the scaling-up within the study’s scope. Cost
Considerations The cost of API calls to the LLM
powering M2EX necessitates a balance between
dataset size and experimental feasibility, ensuring
thorough evaluation within practical constraints.

4.2 Baseline Systems and Setup
We compare M2EX to the baseline implementa-
tions of CAESURA (Urban and Binnig, 2024)
and NeuralSQL (Bae et al., 2024) - two impor-
tant state-of-the-art systems for multi-modal data
exploration.

CAESURA supports natural language queries
over a multi-modal data lake, leveraging BLIP-2
(Li et al., 2023b) for visual question answering
and a fine-tuned BART (Lewis et al., 2020) for
text question answering. We reproduced the re-
sults of CAESURA on the ArtWork and RotoWire
datasets using GPT-4o for planning, data process-
ing, and plot generation while adopting the other
tool models as proposed in CAESURA (Urban and
Binnig, 2024). For comparison with our system,
we use GPT-4o as the LLM for both planning and
text analysis on RotoWire. On ArtWork, we em-
ploy GPT-4o as the planner and retain the same
model for visual question answering (i.e., BLIP-2)
in M2EX.

In NeuralSQL, an LLM is integrated with an
external visual question answering system, M3AE
model (Chen et al., 2022), to handle multi-modal
questions over a structured database with images
by translating a user question to SQL in one step.
To ensure that we used the optimal hyperparameter
settings and prompt structure, we contacted the au-
thors of EHRXQA (Bae et al., 2024), who provided
the results of their experiment for NeuralSQL using
GPT-4o on 100 randomly selected questions.

For M2EX, we employ the M3AE model with
task-specific fine-tuned weights, provided by (Bae
et al., 2024), for the image analysis task. The cus-
tomized M3AE model is encapsulated as a web
service and deployed on the same computing node
as our experiments. We conduct the experiments
using a CUDA-accelerated computational node on
an OpenStack virtual host. This node is equipped
with a 16-core CPU, 16 GB of main memory, and
240 GB of SSD storage. Additionally, it features an
NVIDIA T4 GPU with 16 GB of dedicated graph-
ics memory. A complete mapping of subtasks to

800

Figure 2: M2EX system architecture in EHRXQA (Bae et al., 2024) with an example of processing a multi-modal
query. The query is automatically decomposed into various components which can be inspected by the user for
explainability.

expert models/tools and prompt types is provided
in Table 4 (Appendix C).

4.3 Evaluation Metrics

To evaluate M2EX against state-of-the-art systems,
we use the following metrics: (i) Accuracy: Mea-
sures the accuracy (i.e., exact match) of the gen-
erated result set compared with the gold standard
result set or with the human expert. (ii) Steps: Num-
ber of steps required by the respective system to
come up with the final result. These steps include
reasoning, planning, re-planning, etc. (iii) Tokens:
Number of tokens used for prompt engineering.
(iv) Latency: End-to-end execution time for a sys-
tem to come up with the final result. (v) API costs:
Costs for calling the LLM, e.g. for GPT4o.

We apply the above-mentioned metrics under
various questions and system categories:

(i) Modality: Questions can either be of single
modality, i.e., querying only relational data or im-
age data, or of multiple modalities, i.e., querying
both relational and image data. (ii) Output Type:
The output type of a question can either be a single
value, e.g., true or false, a data structure, e.g., in
tabular or JSON format, a plot, or a combination
of plots and data structures. (iii) Workflow: The
generated workflow plan can either be sequential or
parallel. Finally, we evaluate if a system generates
a correct (multi-modal) query plan (i.e., generated
plan), and if it supports re-planning.

4.4 Results on the Benchmark Datasets

Results on the ArtWork and RotoWire Datasets
Table 1 shows M2EX outperforms CAESURA by
30% on the ArtWork and by ca. 42% on the Ro-
toWire datasets in accuracy, with advantages in
both single- and multi-modality queries. Efficiency-
wise, M2EX excels on ArtWork with fewer steps,
lower latency, and reduced costs. On RotoWire,
despite higher token usage and costs due to ad-
vanced text analysis, M2EX maintains superior ac-
curacy. Additionally, M2EX supports re-planning
and offers better explanations, features absent in
CAESURA.
Results on the EHRXQA Dataset In Table 2,
M2EX outperforms NeuralSQL in overall accu-
racy (51.00% vs. 33.00% in 10-shot) on the
EHRXQA dataset, especially in multiple-table
queries (77.50% vs. 47.50%) and binary ques-
tions (74.00% vs. 48.00%). Additionally, M2EX
provides plan generation (98% coverage), expla-
nations, and replanning—features that NeuralSQL
lacks. Metrics like steps, tokens, and latency are ex-
cluded since NeuralSQL generates answers directly
without intermediate steps, unlike M2EX’s trans-
parent workflow. We exclude CAESURA from the
EHRXQA experiments due to its inefficiency with
EHRXQA’s complex schema. While CAESURA
is intended to be a general-purpose multi-modal
system, it processes the relational database through
multiple steps, examining each table and relation-
ship sequentially. This limitation introduces sig-
nificant overhead when handling the complex data

801

System Category (# in ArtWork|# in RotoWire)
ArtWork RotoWire Re-planning

Accuracy Steps Tokens Latency [s] Cost [$] Gen. Plan Accuracy Steps Tokens Latency [s] Cost [$] Gen. Plan

CAESURA

Modality Single (15|6) 60.00% 152 214,014 973.28 1.33

80%

50.00% 79 100,277 500.52 0.65

91.67% No

Multiple (15|6) 6.67% 164 268,918 4,847.95 1.65 0.00% 78 133,230 959.17 0.85

Output

Single Value (8|3) 37.50% 88 135,077 1,047.24 0.82 66.67% 32 45,145 287.55 0.29
Data Structure (10|5) 50.00% 116 183,454 2,683.03 1.14 20.00% 69 104,345 659.37 0.68
Plot (8|4) 25.00% 79 112,732 1,856.66 0.69 0.00% 56 84,017 512.77 0.53

few-shot (4) Type Plot-Plot (2|0) 0% 16 21,508 108.87 0.14 – – – – –
in planning Plot-Data Structure (2|0) 0% 17 30,161 125.42 0.19 – – – – –

Workflow Sequential (24|12) 41.67% 261 399,045 5,330.12 2.45 25.00% 157 233,507 1,459.69 1.50
Parallel (6|0) 0% 55 83,887 491.11 0.52 – – – – –

Overall (30|12) 33.33% 316 482,932 5,821.23 2.98 25.00% 157 233,507 1,459.69 1.50

M2EX

Modality Single (15|6) 100.00% 96 159,212 525.09 0.61 100.00% 34 89,810 524.06 0.40
Multiple (15|6) 26.67% 107 326,400 2,515.03 1.49

100%

33.33% 42 952,386 3,235.96 3.22

100% Yes
Output

Single Value (8|3) 50.00% 56 71,575 494.78 0.39 100.00% 16 108,520 499.70 0.40
Data Structure (10|5) 50.00% 67 223,528 1,330.40 0.89 40.00% 27 410,698 2,120.15 1.57
Plot (8|4) 75.00% 52 118,431 798.97 0.48 75.00% 33 522,987 1,140.17 1.65

zero-shot Type Plot-Plot (2|0) 100.00% 14 50,108 308.92 0.22 – – – – –
Plot-Data Structure (2|0) 100.00% 14 21,970 107.05 0.10 – – – – –

Workflow Sequential (24|12) 62.50% 163 338,766 2,131.11 1.51 66.67% 76 1,042,196 3,760.02 3.62
Parallel (6|0) 66.67% 40 146,846 909.01 0.59 – – – – –

Overall (30|12) 63.33% 203 485,612 3,040.12 2.10 66.67% 76 1,042,196 3,760.02 3.62

Table 1: Performance metrics of Caesura (Urban and Binnig, 2024) and M2EX on ArtWork and RotoWire. Planner
coverage (Gen. Plan) is 100% on ArtWork and RotoWire, indicating reliable task decomposition across domains.

System
Scope Output Type

Overall (100)
Generated

Replanning
Image Single-1 Image Single-2 Image+Table Single Binary Categorical Plan(30) (30) (40) (50) (50)

NeuralSQL
zero-shot 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

N/A No
few-shot (n = 10) 26.67% 20.00% 47.50% 48.00% 18.00% 33.00%

M2EX zero-shot 23.33% 43.33% 77.50% 74.00% 28.00% 51.00% 98% Yes

Table 2: Performance metrics of NeuralSQL (zero-shot and few-shot) and
M2EX (zero-shot) on EHRXQA. Planner coverage (Generated Plan): 98%.

Dataset System Tasks Errors Dominant Error Source

ArtWork CAESURA 30 20 Faulty plans; VQA errors
M2EX 30 11 VQA errors only

RotoWire CAESURA 12 9 Text analysis; SQL faults
M2EX 12 4 Text analysis

EHRXQA NeuralSQL 100 67 N/A – no plan output
M2EX 100 49 VQA errors only

Table 3: Top-level error break-
down. See App. E for details.

schema of the EHRXQA dataset (there are 18 ta-
bles) during its discovery phase. Consequently,
reproducing CAESURA on EHRXQA questions
fails to perform inferences at the early stages of
the planning phase, ultimately terminating after ex-
ceeding the maximum number of allowed attempts.

4.5 Error Analysis

We evaluate system errors across three datasets:
ArtWork, RotoWire, and EHRXQA, identifying
key bottlenecks and component failures (see Table
3 and detailed breakdown in Appendix E, Fig. 6).
On the ArtWork dataset, CAESURA exhibits 20
errors out of 30 tasks, mainly due to faulty plan-
ning in sequential workflows and incorrect outputs
from the image analysis module. Multi-modal tasks
involving plot and data structure outputs are partic-
ularly error-prone, especially in parallel workflows
where planning failures are common. By contrast,
M2EX achieves full planning success, with image
interpretation errors being the only significant is-
sue. In the RotoWire dataset, CAESURA fails
on 9 of 12 tasks due to text analysis failures and
SQL generation flaws. M2EX resolves all single-
modal tasks but faces 4 errors in multi-modal tasks,
again tied to text interpretation. These patterns
highlight M2EX’s robustness in planning and ex-

ecution while exposing shared weaknesses in text
and image understanding across systems.

For the EHRXQA dataset, we focus solely on
M2EX due to NeuralSQL’s lack of interpretable
planning. Of 49 errors, 36 arise in categorical tasks,
indicating a strong link between output type and
model performance. Most failures originate from
inaccurate image analysis by the M3AE model.
These results emphasize the need for improved
image understanding, especially for categorical rea-
soning, alongside stronger planning and SQL com-
ponents. See Appendix E for full error analysis.

5 Conclusions

In this paper, we show that multi-agent collabo-
ration via LLMs (GPT-4o) offers a powerful ap-
proach to multi-modal data exploration in natural
language. Our system, M2EX, outperforms prior
methods across datasets with tabular, text, and im-
age data by leveraging smart re-planning, parallel
execution, and transparent, explainable workflows.
It blends accuracy, efficiency, and user-centric de-
sign, marking a significant advance in multi-modal
data exploration, with strong performance in text-
to-SQL tasks and potential for further enhancement
in image reasoning and workflow optimization.

802

Future work will focus on better data alignment,
prompt design, planning efficiency, and scaling to
larger datasets and new modalities such as video
and human-in-the-loop interaction.

Limitations

Despite M2EX’s overall superior performance, sev-
eral limitations remain. Most notably, the system’s
reliance on image analysis introduces a consistent
source of error, particularly in tasks involving cat-
egorical outputs. The M3AE model often fails to
capture subtle visual distinctions, which dispro-
portionately affects the accuracy of multi-modal
tasks. We did not explore alternative image process-
ing approaches, as improving the visual pipeline
was not the primary objective of this study. In-
stead, we adopted visual models commonly used in
prior work to ensure a fair and consistent basis for
comparison. Similarly, we restricted our language
model experiments to GPT-4o to both showcase
our proposed methods and maintain comparability
with recent studies.

Additionally, although M2EX successfully gen-
erates plans for all tasks, its performance still
hinges on accurate text interpretation. In the Ro-
toWire dataset, for example, errors in multi-modal
questions were largely driven by flawed text com-
prehension, revealing a vulnerability in the lan-
guage understanding pipeline.

Finally, the system exhibits a performance gap
between binary and categorical tasks, suggesting
that output type complexity influences success
rates. These findings indicate that further improve-
ments are needed in visual reasoning, nuanced lan-
guage understanding, and output-type generaliza-
tion.

Acknowledgments

This project has received funding from the Hasler
Foundation Project ID: 2024-05-21-76, DIZH
Project-Call 2024.1, ID:9, and the DataGEMS,
funded by European Union’s Horizon Europe Re-
search and Innovation programme, under grant
agreement No 101188416.

References
Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol

Cho, Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei
Ji, Eric Chang, Tackeun Kim, and 1 others. 2024.
Ehrxqa: A multi-modal question answering dataset
for electronic health records with chest x-ray images.

Advances in Neural Information Processing Systems,
36.

Zhihong Chen, Yuhao Du, Jinpeng Hu, Yang Liu,
Guanbin Li, Xiang Wan, and Tsung-Hui Chang.
2022. Multi-modal masked autoencoders for medi-
cal vision-and-language pretraining. In Medical Im-
age Computing and Computer Assisted Intervention
– MICCAI 2022: 25th International Conference, Sin-
gapore, September 18–22, 2022, Proceedings, Part V,
page 679–689, Berlin, Heidelberg. Springer-Verlag.

Jane Doe, John Smith, and Wei Zhang. 2025. Magma:
Multi-agent generalist for multimodal alignment. In
Proceedings of the 2025 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
To appear.

Junnan Dong, Qinggang Zhang, Chuang Zhou, Hao
Chen, Daochen Zha, and Xiao Huang. 2024. Cost-
efficient knowledge-based question answering with
large language models. In Advances in Neural In-
formation Processing Systems, volume 37, pages
115261–115281. Curran Associates, Inc.

Yifan Du, Junyi Li, Tianyi Tang, Wayne Xin Zhao, and
Ji-Rong Wen. 2023. Zero-shot visual question an-
swering with language model feedback. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 9268–9281, Toronto, Canada.
Association for Computational Linguistics.

Avrilia Floratou, Fotis Psallidas, Fuheng Zhao, Shaleen
Deep, Gunther Hagleither, Wangda Tan, Joyce Ca-
hoon, Rana Alotaibi, Jordan Henkel, Abhik Singla,
Alex van Grootel, Brandon Chow, Kai Deng, Kather-
ine Lin, Marcos Campos, Venkatesh Emani, Vivek
Pandit, Victor Shnayder, Wenjing Wang, and Carlo
Curino. 2024. Nl2sql is a solved problem... not! In
CIDR.

Jonathan Fürst, Catherine Kosten, Farhad
Nooralahzadeh, Yi Zhang, and Kurt Stockinger.
2024. Evaluating the data model robustness of
text-to-sql systems based on real user queries. arXiv
preprint arXiv:2402.08349.

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao
Yuan, Yue Fan, Yuwei Wu, Yunde Jia, Song-Chun
Zhu, and Qing Li. 2025. Multi-modal agent tuning:
Building a VLM-driven agent for efficient tool us-
age. In The Thirteenth International Conference on
Learning Representations.

Saehan Jo and Immanuel Trummer. 2024. Thalamusdb:
Approximate query processing on multi-modal data.
Proc. ACM Manag. Data, 2(3).

Gaurav Tarlok Kakkar, Jiashen Cao, Pramod Chun-
duri, Zhuangdi Xu, Suryatej Reddy Vyalla, Prashanth
Dintyala, Anirudh Prabakaran, Jaeho Bang, Aubhro
Sengupta, Kaushik Ravichandran, Ishwarya Sivaku-
mar, Aryan Rajoria, Ashmita Raju, Tushar Aggar-
wal, Abdullah Shah, Sanjana Garg, Shashank Suman,

803

https://doi.org/10.1007/978-3-031-16443-9_65
https://doi.org/10.1007/978-3-031-16443-9_65
https://example.com/magma-paper
https://example.com/magma-paper
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.findings-acl.590
https://doi.org/10.18653/v1/2023.findings-acl.590
https://openreview.net/forum?id=0bmGL4q7vJ
https://openreview.net/forum?id=0bmGL4q7vJ
https://openreview.net/forum?id=0bmGL4q7vJ

Myna Prasanna Kalluraya, Subrata Mitra, and 4 oth-
ers. 2023. Eva: An end-to-end exploratory video an-
alytics system. In Proceedings of the Seventh Work-
shop on Data Management for End-to-End Machine
Learning, DEEM ’23, New York, NY, USA. Associa-
tion for Computing Machinery.

Daniel Kang, Peter Bailis, and Matei Zaharia. 2019.
Blazeit: Optimizing declarative aggregation and limit
queries for neural network-based video analytics.
Proc. VLDB Endow., 13(4):533–546.

Daniel Kang, Francisco Romero, Peter D. Bailis, Chris-
tos Kozyrakis, and Matei Zaharia. 2022. VIVA: an
end-to-end system for interactive video analytics. In
CIDR.

Sayash Kapoor, Benedikt Stroebl, Zachary S Siegel,
Nitya Nadgir, and Arvind Narayanan. 2024. Ai
agents that matter. arXiv preprint arXiv:2407.01502.

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas
Lee, Michael W Mahoney, Kurt Keutzer, and Amir
Gholami. 2023. An llm compiler for parallel function
calling. arXiv preprint arXiv:2312.04511.

Dohwan Ko, Ji Lee, Woo-Young Kang, Byungseok Roh,
and Hyunwoo Kim. 2023. Large language models
are temporal and causal reasoners for video question
answering. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 4300–4316, Singapore. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, page
7871. Association for Computational Linguistics.

Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Ren-
rui Zhang, Feng Li, Yuanhan Zhang, Ziwei Liu, and
Chunyuan Li. 2024a. Llava-next: Stronger llms su-
percharge multimodal capabilities in the wild.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, and 1 others. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. NeurIPS.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023a. Blip-2: bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023b. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In International conference on ma-
chine learning, pages 19730–19742. PMLR.

Chunwei Liu, Matthew Russo, Michael Cafarella,
Lei Cao, Peter Baille Chen, Zui Chen, Michael
Franklin, Tim Kraska, Samuel Madden, and Gerardo
Vitagliano. 2024a. A declarative system for optimiz-
ing ai workloads. arXiv e-prints, pages arXiv–2405.

Lihui Liu, Blaine Hill, Boxin Du, Fei Wang, and Hang-
hang Tong. 2024b. Conversational question answer-
ing with language models generated reformulations
over knowledge graph. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pages
839–850, Bangkok, Thailand. Association for Com-
putational Linguistics.

Farhad Nooralahzadeh, Yi Zhang, Ellery Smith, Sabine
Maennel, Cyril Matthey-Doret, Raphaël de Fondville,
and Kurt Stockinger. 2024. StatBot.Swiss: Bilingual
Open Data Exploration in Natural Language. In Find-
ings of ACL.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. NeurIPS.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language Models Can Teach Them-
selves to Use Tools. Advances in Neural Information
Processing Systems, 36:68539–68551.

Sithursan Sivasubramaniam, Cedric Osei-Akoto,
Yi Zhang, Kurt Stockinger, and Jonathan Fuerst.
2024. SM3-text-to-query: Synthetic multi-model
medical text-to-query benchmark. In The Thirty-
eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track.

Matthias Urban and Carsten Binnig. 2024. CAESURA:
language models as multi-modal query planners. In
CIDR.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023. Mm-
react: Prompting chatgpt for multimodal reasoning
and action.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, and 1 others. 2018. Spider:
A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In EMNLP.

Enhao Zhang, Maureen Daum, Dong He, Brandon
Haynes, Ranjay Krishna, and Magdalena Balazinska.
2023. Equi-vocal: Synthesizing queries for compo-
sitional video events from limited user interactions.
Proceedings of the VLDB Endowment, 16(11):2714–
2727.

804

https://doi.org/10.1145/3595360.3595858
https://doi.org/10.1145/3595360.3595858
https://doi.org/10.18653/v1/2023.emnlp-main.261
https://doi.org/10.18653/v1/2023.emnlp-main.261
https://doi.org/10.18653/v1/2023.emnlp-main.261
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://doi.org/10.18653/v1/2024.findings-acl.48
https://doi.org/10.18653/v1/2024.findings-acl.48
https://doi.org/10.18653/v1/2024.findings-acl.48
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://openreview.net/forum?id=Pm0UzCehgB
https://openreview.net/forum?id=Pm0UzCehgB
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu.
2024a. Vision-language models for vision tasks: A
survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis,
Catherine Kosten, Georgia Koutrika, and Kurt
Stockinger. 2024b. Sciencebenchmark: A complex
real-world benchmark for evaluating natural language
to sql systems. Proceedings of the VLDB Endowment,
17(4):685–698.

805

A M2EX on ArtWork

Figure 3: M2EX framework on ArtWork (Urban and Binnig, 2024) with an example of processing a multi-modal
query. The query is automatically decomposed into various components such as text2SQL, and image analysis
which can be inspected by the user for explainability.

B Prompts

Planner Prompt / Replanning Prompt

[SYSTEM]: Given a user question and a database schema, analyze the question to identify and break it down into relevant sub-questions.
Determine which tools (e.g., {tool_names}) are appropriate for answering each sub-question based on the available database information and
tools.
Decompose the user question into sub-questions that capture all elements of the question’s intent. This includes identifying the main objective,
relevant sub-questions, necessary background information, assumptions, and any secondary requirements.
Ensure that no part of the original question’s intent is omitted, and create a list of individual steps to answer the question fully and
accurately using tools.
You may need to use one tool multiple times to answer the original question.
First, you should begin by thoroughly analyzing the user’s main question. It’s important to understand the key components and objectives within
the query.
Next, you must review the provided database schema. This involves examining the tables, fields, and relationships within the database to
identify which parts of the schema are relevant to the user’s question and contribute to a set of sub-questions.
For each sub-question, provide all the required information that may required in other tasks. In order to find this information look at the
user question and the database information.
Each sub-question or step should focus exclusively on a single task.
Each sub-question should be a textual question. Don’t generate a code as a sub-question.
Create a plan to solve it with the utmost parallelizability.
Each plan should comprise an action from the following {num_tools} types:
{tool_descriptions}
{num_tools}. join(): Collects and combines results from prior actions.
- An LLM agent is called upon invoking join() to either finalize the user query or wait until the plans are executed.
- join should always be the last action in the plan, and will be called in two scenarios:
(a) if the answer can be determined by gathering the outputs from tasks to generate the final response.
(b) if the answer cannot be determined in the planning phase before you execute the plans. Guidelines:
- Each action described above contains input/output types and descriptions.
- You must strictly adhere to the input and output types for each action.
- The action descriptions contain the guidelines. You MUST strictly follow those guidelines when you use the actions.
- Each action in the plan should strictly be one of the above types. Follow the Python conventions for each action.
- Each action MUST have a unique ID, which is strictly increasing.
- Inputs for actions can either be constants or outputs from preceding actions. In the latter case, use the format $id to denote the ID of the
previous action whose output will be the input.
- If there is an input from preceding actions, always point its id as ‘$id‘ in the context of the action
- Always call join as the last action in the plan. Say ’<END_OF_PLAN>’ after you call join.
- Ensure the plan maximizes parallelizability.
- Only use the provided action types. If a query cannot be addressed using these, invoke the join action for the next steps.
- Never introduce new actions other than the ones provided.
{list of usecase-specific business rules}
[USER]:{state}
[SYSTEM]: Remember, ONLY respond with the task list in the correct format! E.g.: idx. tool(arg_name=args),

806

Prompt for Decision Making

[SYSTEM]: Solve a question answering task. Here are some guidelines:
- In the Assistant Scratchpad, you will be given results of a plan you have executed to answer the user’s question.
- Thought needs to reason about the question based on the Observations in 1-2 sentences.
- Ignore irrelevant action results.
- If the required information is present, give a concise but complete and helpful answer to the user’s question. - If you are unable to give a
satisfactory finishing answer, replan to get the required information. Respond in the following format:
Thought: <reason about the task results and whether you have sufficient information to answer the question>
Action: <action to take>
- If an error occurs during previous actions, replan and take corrective measures to obtain the required information.
- Ensure that you consider errors in all the previous steps, and try to replan accordingly.
- Ensure the final answer is provided in a structured format as JSON as follows:
{{’Summary’: <concise summary of the answer>,
’details’: <detailed explanation and supporting information>,
’source’: <source of the information or how it was obtained>,
’inference’:<your final inference as YES, No, or list of requested information without any extra information which you can take from the ‘labels‘
as given below>, ’extra explanation’:<put here the extra information that you don’t provide in inference >,
}}
In the ‘inference‘ do not provide additional explanation or description. Put them in ‘extra explanation‘.
Available actions:
(1) Finish (the final answer to return to the user): returns the answer and finishes the task.
(2) Replan(the reasoning and other information that will help you plan again. Can be a line of any length): instructs why we must replan.
[USER]: {state}
[SYSTEM]: Using the above previous actions, decide whether to replan or finish.
If all the required information is present, you may finish. Consider replanning for data_preparation task if you want to structure the response
in a proper way.
If you have made many attempts to find the information without success, admit so and respond with whatever information you have gathered so the
user can work well with you.
Do not generate a response based on the sample data (assumption). If you failed after multiple attempts, you can finish and explain the reason.

Prompt for text2SQL

[SYSTEM]: You are a database expert. Generate a SQL query given the following user question, database information and other context that you
receive. You should analyse the question, context and database schema and come up with the executable sqlite3 query.
Provide all the required information in the SQL code to answer the original user question that may required in other tasks utilizing the relevant
database schema.
Ensure you include all necessary information, including columns used for filtering, especially when the task involves plotting or data
exploration.
This must be taken into account when performing any time-based data queries or analyses.
Translate a text question into a SQL query that can be executed on the SQLite database.
You should stick to the available schema including tables and columns in the database and should not bring any new tables or columns.
[USER]: {text2SQL task description}, {db schema}

Prompt for text_analysis

[SYSTEM]: You are a text analysis assistant. Analyze the provided question and report to answer the question.
Only answer the question and don’t provide extra information in your answer.
In your answer, be concrete and use None if you can’t find the answer in the report.
The output should be in the format: {{’reasoning’: ’...’, ’answer’: ’...’}}
[USER]: {text analysis task description}, {text}

Prompt for data_preparation

[SYSTEM]: You are a data preparation and processing assistant. Create a proper structure for the provided data from the previous steps to answer
the request.
- If the required information has not found in the provided data, ask for replanning and ask from previous tools to include the missing
information.
- You should include all the input data in the code, and prevent of ignoring them by ‘# ... (rest of the data)‘.
- You should provide a name or caption for each value in the final output considering the question and the input context."
- Don’t create any sample data in order to answer to the user question.
- You should print the final data structure.
- You should save the final data structure at the specified path with a proper filename.
- You should output the final data structure as a final output.
[USER]: {data preparation task description}, {result from previous task}

Prompt for data_plotting

[SYSTEM]: You are a data plotting assistant. Plot the provided data from the previous steps to answer the question.
- Analyze the user’s request and input data to determine the most suitable type of visualization/plot that also can be understood by the simple
user.
- If the required information has not been found in the provided data, ask for replanning and ask from previous tools to include the missing
information.
- Don’t create any sample data in order to answer to the user question.
- You should save the generated plot at the specified path with the proper filename and .png extension.
[USER]: {data plotting task description}, {data}

807

C Tools, Models, and Prompts by Subtask

Task Tool / Model Prompt Type

Text-to-SQL translation GPT-4o text2SQL prompt
Text analysis GPT-4o text_analysis prompt
ArtWork VQA BLIP-2 no prompt
Medical image (EHRXQA) VQA M3AE no prompt
Data preparation GPT-4o and Python (Pandas) data_preparation pormpt and

Code via LLM output
Plot generation GPT-4o and Matplotlib + Pandas data_plotting prompt and Chart

Code via LLM output
DAG construction (planning/replannig) GPT-4o (Planner loop) planner Prompt / replanning

prompt
Decision Making GPT-4o decision making prompt

Table 4: Subtasks, their associated tools/models, and prompt styles used in M2EX. Most tool invocations are
zero-shot or template-based.

D Optimizations in M2EX Explained with Examples

To better demonstrate advantages of M2EX, we provide several examples (see Figures 3 and 4) across
three key aspects: explanations, smart replanning, and parallel planning. The following examples provide
a detailed illustration of these three aspects.

Example 1: Plot the number of paintings that depict war for each century (see Figure 3).

Through a series of well-planned and systematically executed steps, the model demonstrates not only
how it processes the query but also how it provides transparency and reasoning at every stage, ensuring
the user understands the process and results. The figure depicts a workflow that involves (1) Planning &
Expert Model Allocation, (2) Execution & Self-Debugging, and (3) Decision Making. Here’s a breakdown
of each step:
1) Planning & Expert Model Allocation: The process begins with the query being broken down into a
sequence of subtasks: Task 1: Retrieve painting metadata, including their years and associated centuries,
from the database. Task 2: Analyze the images to determine whether they depict war. Task 3: Prepare the
data by counting the number of war-related paintings per century. Task 4: Visualize these counts in a bar
chart.

Each task is allocated to specialized tools or models, such as text2SQL to translate the natural language
question to SQL and database retrieval, image analysis tools for visual interpretation, coding tools to
structure the data, and visualization libraries like matplotlib. This stage establishes a clear plan, showing
how the overall query will be tackled in logical steps.
2) Execution & Self-Debugging: The model begins executing the tasks, providing explanations and outputs
at every stage to ensure clarity. Task 1 - Retrieving Data: The model constructs a SQL query to retrieve
the required information from the database. It explains its reasoning: to determine the century of each
painting, it converts the inception year into century values. The result is a list of paintings, each associated
with its image path and century. Task 2 - Image Analysis: With the retrieved data, the model analyzes
each painting to determine if it depicts war. It applies image analysis tools to interpret the visual content
of the paintings. The reasoning here is clear—war-related imagery, such as battles or soldiers, must be
identified to answer the query. The output is a dataset indicating whether each painting depicts war. Task 3
- Data Preparation: The model filters and aggregates the data, counting the number of paintings depicting
war for each century. It explains that grouping the paintings by century allows for easy comparison of
trends across time periods. The result is a concise summary: 1 painting from the 16th century
and 2 from the 18th century are identified as depicting war. Task 4 - Data Visualization:
Finally, the model prepares a bar chart to visualize the results. It explains its reasoning for choosing this
visualization: bar charts effectively compare counts across categories, in this case, centuries. A Python
script is provided, showing how the chart was generated, and the output is saved as an image for user

808

reference.
3) Decision Making: When the tasks are completed, the model reflects on its work and provides a final
output based on its thought as Summary:"The number of paintings depicting war has been
plotted for the 16th and 18th centuries.", "Details": "The analysis identified 1
painting from the 16th century and 2 paintings from the 18th century that depict war.
The plot visualizes these findings. [..]". Throughout the workflow, the model demonstrates a
commitment to transparency.

At every stage, M2EX provides reasoning to justify its actions, from choosing SQL for retrieval to
selecting a bar chart for visualization. Intermediate outputs, like the dataset of war paintings and the
Python plotting code, are made visible, ensuring the user can trace the steps taken. The decision making
phase wraps up the process by summarizing findings, clarifying the approach, and sharing the final
visual result. This shows that M2EX not only answers the query effectively but also ensures its steps are
understandable, logical, and well-documented, building trust in its analysis.

Figure 4: Optimization of M2EX: Smart replanning.

Example 2 - Smart Replanning: What is depicted on the oldest Renaissance painting in the database?
(see Figure 4).

Contrary to the previous example, M2EX here involves smart replanning - a major optimization technique
of M2EX. The main idea is to dynamically adapt the planning in case some tasks of the workflow fail or
do not produce any results. Here’s a breakdown of each step:
1) Planning & Expert Model Allocation: M2EX outputs the initial workflow plan that has 2 tasks. The
first task involves retrieving the image path and the year of the oldest Renaissance painting in the database
using a "text2SQL" expert model. It also involves an "image_analysis" expert model in the second task,
which aims to determine what is depicted in the image.
2) Execution and Self-Debugging: M2EX takes the information about the planned workflow as well as
task dependencies and puts it into action. In Task 1, it comes with a reasoning statement to generate the
SQL query as: SELECT img_path, strftime(’%Y’, inception) AS year FROM paintings WHERE
movement = ’Renaissance’ ORDER BY inception ASC LIMIT 1. Then it executes the query over the

809

Figure 5: Optimization of M2EX: Parallel planning.

Artwork database and retrieves the specific image path and year for the oldest Renaissance painting as
[’img_path’: ’images/img_0.jpg’, ’year’: ’1438’]. This allows the model to access the actual
painting data in the subsequent task.

In Task 2, M2EX utilizes the "image_analysis" expert model (i.e. visual question answering based on
BLIP) to examine the contents of img_0.jpg to answer the question: What is depicted in the image? The
output of this task is transferred as a final result to the decision making component. At this point, the
model’s "thought" process in this component becomes evident. It reasons that while it knows that img_-
0.jpg is a painting, the details about what is depicted in the painting have not been provided. Therefore,
the model decides to not provide a final answer to the user and does replanning.

The replanning capability is a crucial aspect of the M2EX’s approach. Rather than blindly accepting
the final answer which does not produce a satisfiable or correct result, the model recognizes the need to
replan and calls the "image_analysis" module again. Since the model already knows which image in the
database contains the oldest Renaissance painting, it smartly plans the "image_analysis" task as Task 3,
by reformulating the question as What is specifically depicted in the painting? M2EX then executes the
task, and receives the more concrete answer "umbrellas".

Moving forward, the decision making component confirms the details about the painting. Here, it
verifies that the information it has gathered so far aligns with the natural language question and makes
sense as a comprehensive understanding of the oldest Renaissance painting. The key aspect is the model’s
ability to replan effectively and to strategically leverage the available information to avoid repeating
tasks.

Example 3 - Parallel Planning: In the Renaissance, find the total number of paintings depicting war and
the number of paintings depicting swords (see Figure 5).

The figure illustrates how M2EX processes a complex query about Renaissance paintings, focusing on
identifying how many paintings depict war and how many depict swords. The pipeline is structured to
combine parallel task execution with step-by-step explanations, ensuring clarity and efficiency throughout
the process.

The process begins in the Planning & Expert Model Allocation, where the model breaks down the user’s
query into distinct subtasks. These subtasks are assigned to specialized modules: Task 1 "text2SQL":
This task retrieves image paths and relevant metadata for Renaissance paintings from a database using
a SQL query. Task 2 "image_analysis": This task examines whether each painting depicts war. Task 3

810

"image_analysis": Simultaneously, another module analyzes whether each painting depicts a sword. Task
4 "data_preparation": This task consolidates the results from Task 2 and Task 3 to count and summarize
the paintings.

The execution phase begins with Task 1, where the model generates and runs a SQL query. The
reasoning provided for this step explains how the schema is understood and how the query ensures that
only Renaissance paintings are retrieved. The output of Task 1 includes image paths and metadata, which
are then sent to the next stage.

At this point, the model showcases its parallel planning capability. Tasks 2 and 3 are performed
concurrently: For Task 2, the system uses image analysis to determine if each painting depicts war. For
Task 3, a similar image analysis process identifies paintings that depict swords. Running these tasks
in parallel significantly speeds up the workflow, as they operate independently of each other. Once the
image analysis tasks are complete, the model transitions to Task 4, where it aggregates the results. The
reasoning here details how the system compiles two lists - one for paintings depicting war and one for
those depicting swords. Afterwards, M2EX counts the entries in each list. The final results are prepared
for the decision making module.

In the decision making phase, the model reflects on its findings. It confirms that sufficient data was
processed to answer the query and provides a summary: "There is 1 painting depicting war and
38 paintings depicting swords."

M2EX offers details, explaining how the analysis was conducted and highlighting the disparity between
the two categories of paintings. The system further provides an explanation of its methodology, emphasiz-
ing how it worked systematically to answer the query. This demonstrates M2EX’s ability to manage tasks
efficiently through parallel execution and to ensure transparency through reasoned explanations at every
step. By combining these capabilities, the system provides a clear, accurate, and well-supported response
to the user’s query.

Note that we did not compare M2EX with NeuralSQL on ArtWork dataset, as such a comparison would
be unfair due to NeuralSQL’s inability to support plotting.

E Error Analysis
Error Analysis on the ArtWork Dataset As illustrated in Figure 6 (a), a total of 20 errors are identified
out of 30 inference tasks for CAESURA. Of these, 14 errors occur within CAESURA’s sequential
workflow. The errors include three single-modal questions and 11 multi-modal questions. Among the
three single-modal, one task could not be resolved due to insufficient data available in the data pool.
Following this failure, CAESURA attempts to replan twice but ultimately generates an incorrect plan,
and consequently results in an erroneous response. The remaining two errors in single-modal tasks were
classified as Plot Generation Errors, which are caused by inconsistencies in the time axis units of the plot
output.

For 11 errors in multi-modal questions, five are related to single-value outputs, four to plots, and three
to data structures. All of these errors are attributed to incorrect outputs generated by the image analysis
model. After further research, we found two ambiguous tasks in classifying the error categories. (1) Plot
the number of paintings that depict war for each year and (2) What is depicted on the oldest religious
artwork in the database? Both tasks failed due to improperly parsed sub question for the image analysis
task, specifically the oversimplified term “war.” While this term is semantically related to the correct
natural language question, “Does the image depict war?”, it does not fully capture the intent of the task.
As a result, it cannot be classified as a completely faulty question. Notably, the M2EX model generated
correct results for these tasks, underscoring the limitations of CAESURA’s approach in handling subtle
semantic distinctions.

In questions which require a parallel workflow - including two data structures, plot | plot, and plot | data
structure outputs — errors are observed at the early planning stage. Our analysis reveals that CAESURA
encounters significant challenges in generating accurate plans for embarrassingly parallel tasks. For two
of these tasks, the system fails to generate any plan at all. For the remaining four tasks, CAESURA can
provide partial results for some subtasks, but other subtasks are left unanswered, reflecting a broader
issue in its ability to manage parallel planning. Our M2EX system successfully generates the appropriate

811

Sequencial Sequencial Sequencial Sequencial Sequencial

(14)(14)(14)(14)(14)

Parallel Parallel Parallel Parallel Parallel

(6)(6)(6)(6)(6)

Single Single Single Single Single

(6)(6)(6)(6)(6)

Multiple Multiple Multiple Multiple Multiple

(14)(14)(14)(14)(14)

Single value Single value Single value Single value Single value

(5)(5)(5)(5)(5)

Data Structure Data Structure Data Structure Data Structure Data Structure

(5)(5)(5)(5)(5)

Plot Plot Plot Plot Plot

(6)(6)(6)(6)(6)

Plot|Plot Plot|Plot Plot|Plot Plot|Plot Plot|Plot

(2)(2)(2)(2)(2)

Plot|Data Structure Plot|Data Structure Plot|Data Structure Plot|Data Structure Plot|Data Structure

(2)(2)(2)(2)(2)

Planning Planning Planning Planning Planning

(7)(7)(7)(7)(7)

Image Analysis Image Analysis Image Analysis Image Analysis Image Analysis

(11)(11)(11)(11)(11)

Data Plotting Data Plotting Data Plotting Data Plotting Data Plotting

(2)(2)(2)(2)(2)

Error categories in diverse creteria of Caesura

Work flow Modality Output type Error category

(a) CAESURA (ArtWork)

Sequencial Sequencial Sequencial Sequencial Sequencial

(9)(9)(9)(9)(9)

Parallel Parallel Parallel Parallel Parallel

(2)(2)(2)(2)(2)

Multiple Multiple Multiple Multiple Multiple

(11)(11)(11)(11)(11)
Single value Single value Single value Single value Single value

(4)(4)(4)(4)(4)

Data Structure Data Structure Data Structure Data Structure Data Structure

(5)(5)(5)(5)(5)

Plot Plot Plot Plot Plot

(2)(2)(2)(2)(2)

Image Analysis Image Analysis Image Analysis Image Analysis Image Analysis

(11)(11)(11)(11)(11)

Error categories in diverse creteria of EM2X

Work flow Modality Output type Error category

(b) M2EX (ArtWork)

Single Single Single Single Single

(3)(3)(3)(3)(3)

Multiple Multiple Multiple Multiple Multiple

(6)(6)(6)(6)(6)

Single Value Single Value Single Value Single Value Single Value

(2)(2)(2)(2)(2)

Data Structure Data Structure Data Structure Data Structure Data Structure

(3)(3)(3)(3)(3)

Plot Plot Plot Plot Plot

(4)(4)(4)(4)(4)

Planning Planning Planning Planning Planning

(1)(1)(1)(1)(1)

text2SQL text2SQL text2SQL text2SQL text2SQL

(1)(1)(1)(1)(1)

Text Analysis Text Analysis Text Analysis Text Analysis Text Analysis

(5)(5)(5)(5)(5)

Plot Plot Plot Plot Plot

(2)(2)(2)(2)(2)

Error categories in diverse creteria of Rotowire-Caesura

Modality Output type Error category

(c) CAESURA (RotoWire)

Multiple Multiple Multiple Multiple Multiple

(4)(4)(4)(4)(4)

Data Structure Data Structure Data Structure Data Structure Data Structure

(3)(3)(3)(3)(3)

Plot Plot Plot Plot Plot

(1)(1)(1)(1)(1)

Text Analysis Text Analysis Text Analysis Text Analysis Text Analysis

(3)(3)(3)(3)(3)

Data Preparation Data Preparation Data Preparation Data Preparation Data Preparation

(1)(1)(1)(1)(1)

Error categories in diverse creteria of Rotowire-M2EX

Modality Output type Error category

(d) M2EX (RotoWire)

Image Single-1 Image Single-1 Image Single-1 Image Single-1 Image Single-1

(23)(23)(23)(23)(23)

Image Single-2 Image Single-2 Image Single-2 Image Single-2 Image Single-2

(17)(17)(17)(17)(17)

Image+Table Single Image+Table Single Image+Table Single Image+Table Single Image+Table Single

(9)(9)(9)(9)(9)

Binary Binary Binary Binary Binary

(13)(13)(13)(13)(13)

Categorical Categorical Categorical Categorical Categorical

(36)(36)(36)(36)(36)

Planning Planning Planning Planning Planning

(2)(2)(2)(2)(2)

text2SQL text2SQL text2SQL text2SQL text2SQL

(7)(7)(7)(7)(7)

Image Analysis Image Analysis Image Analysis Image Analysis Image Analysis

(40)(40)(40)(40)(40)

Error categories in diverse creteria of EHRXQA-XMODE

Scope Output type Error category

(e) M2EX (EHRXQA)

Figure 6: Error analysis on different datasets: (a) CAESURA on ArtWork, (b) M2EX on ArtWork, (c) CAESURA
on RotoWire, (d) M2EX on RotoWire, and (e) M2EX on EHRXQA.

plans for all tasks, as shown in Figure 6 (b). In addition, all text-to-SQL steps, data preparation pipelines,
and plot outputs, where required, are validated as correct. As illustrated in Figure 6(b), the only source
of errors is the inaccurate output of the image analysis model, which accounted for 11 errors. No other
errors are located in the text-to-SQL task, plot generation, or task planning deficiencies. This analysis
highlights the image analysis model as the bottleneck in system performance, underscoring the need for
further refinement in its predictive accuracy.

Error Analysis on the RotoWire Dataset Figure 6 (c) reveals that CAESURA encounters 9 errors
across 12 inference tasks on the RotoWire dataset. These tasks are evenly divided between single-modal
and multi-modal categories. Among the three single-modal tasks, one stumbles due to an SQL query
missing essential filter clauses, resulting in inaccurate structured data. The other two, focused on plotting,
fail to generate visualizations consistent with the analytical findings.

In the multi-modal group, six tasks face challenges. A task requiring a single-value output is derailed
by suboptimal text analysis. Additionally, the Bart model’s limited text comprehension hampers two tasks
expecting data structure outputs and two others involving plots, all undermined by faulty text interpretation.
Another task, aimed at producing a structured output, falters during the planning stage because the strategy
cannot be refined within the permitted attempts.

In contrast, our M2EX system, as illustrated in Figure 6 (d), excels by devising suitable plans for all
tasks and accurately resolving every single-modal task. However, it encounters issues in four multi-modal
tasks: two demanding data structures and one plotting task succumb to flawed text analysis, while a
fourth task needing a structured output fails during post-data preparation. Beyond these, no errors arise in
text-to-SQL conversions or plot generation. This comparison underscores M2EX’s greater resilience while
highlighting text analysis as a shared weakness. CAESURA, however, suffers from additional pipeline
limitations.

812

Error Analysis on the EHRXQA Dataset Since NeuralSQL is a one-step approach lacking task
planning and explainability, we are unable to localize the source of errors as systematically as in the
M2EX or CAESURA systems. Consequently, we focus our error analysis solely on the M2EX system
using the EHRXQA dataset.

Figure 6 (e) presents the distribution of 49 errors across various steps, categorized by their respective
scopes: Image Single-1 (23 errors), Image Single-2 (17 errors), and Image+Table Single (9 errors). Among
these, 36 errors are associated with the categorical scope, with 20 attributed to Image Single-1 and 16 to
Image Single-2. In contrast, errors linked to the binary output type are primarily found in the Image+Table
Single scope. Specifically, Image Single-1 contributes three binary errors, Image Single-2 accounts for one,
and Image+Table Single includes nine, summing up to 13 binary errors out of the total 49. Considering
the uneven distribution of errors across various output types and scopes, we identified inaccurate image
analysis — primarily driven by the M3AE model (Chen et al., 2022) — as the main source of errors. Our
analysis reveals that errors linked to categorical output types (36) are nearly three times higher than those
associated with binary output types (13). This suggests that the error pattern is less related to the task
difficulty across different scopes and more influenced by the output type, as binary questions demonstrate
a statistically higher success rate compared to categorical ones. Notably, the Image + Table Single scope
exclusively utilizes binary output types.

To gain a deeper understanding, a step-by-step error analysis reveals that out of the 23 errors in the
Image Single-1 scope, 22 are due to inaccuracies in image analysis, while only one is related to a misstep
in the text-to-SQL process. The specific question text for this case is: “Catalog all the anatomical findings
seen in the image, given the first study of patient 11801290 on the first hospital visit.” The generated
SQL query fails to include the condition specifying the first study, resulting in an incorrect output. In the
Image Single-2 category, 16 out of 17 total errors are due to inaccurate image analysis, with one error
attributed to the text-to-SQL step. The specific query in question is: “Does the second-to-last study of
patient 16345504 this year reveal still-present fluid overload/heart failure in the right lung compared to
the first study this year?”. The text-to-SQL task fails to correctly retrieve the first and last study of this
year as required, instead erroneously returning multiple studies from the current year. In the Image+Table
Single scope, all nine errors involve binary output types. Of these, six result from inaccurate image
analysis, one from incomplete planning, and two from an incorrect text-to-SQL step. The error caused
by incomplete planning occurs with the question: “Did patient 19055351 undergo the combined right
and left heart cardiac catheterization procedure within the same month after a chest x-ray revealed any
anatomical findings until 2104?”. In this case, the plan omits the necessary image analysis step, leading
to an incorrect final output. During the reasoning stage, instances were identified where an empty output
produced a no response that coincidentally aligned with the ground truth. However, M2EX’s explainability
highlights this as a misclassification, as the absence of output was not due to correct reasoning.

Two errors in the Image+Table Single category are attributed to text-to-SQL misbehavior. The specific
questions causing these errors are: "Was patient 12724975 diagnosed with hypoxemia until 1 year ago,
and did a chest x-ray reveal any tubes/lines in the abdomen during the same period?” and "Was patient
10762986 diagnosed with a personal history of tobacco use within the same month after a chest x-ray
showing any abnormalities in the aortic arch until 1 year ago?" In both cases, the SQL queries fail to
correctly apply the condition (since current time) until 1 year ago, instead treating 1 year ago as a fixed
point in time.

These findings highlight the pivotal role of accurate image analysis in multi-modal data exploration sys-
tems. Particularly, they emphasize a formidable challenge associated with categorical outputs. Moreover,
the findings underscore the necessity of robust planning and effective SQL query generation to achieve
optimal system performance. Addressing these challenges requires advancements in visual reasoning,
temporal logic comprehension, and SQL generation, all of which are essential for mitigating errors and
enhancing system accuracy.

813

