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Abstract

Language and culture are deeply intertwined,
yet it has been unclear how and where multi-
lingual large language models encode culture.
Here, we build on an established methodology
for identifying language-specific neurons to lo-
calize and isolate culture-specific neurons, care-
fully disentangling their overlap and interaction
with language-specific neurons. To facilitate
our experiments, we introduce MUREL, a cu-
rated dataset of 85.2 million tokens spanning
six different cultures. Our localization and in-
tervention experiments show that LLMs encode
different cultures in distinct neuron populations,
predominantly in upper layers, and that these
culture neurons can be modulated largely in-
dependently of language-specific neurons or
those specific to other cultures. These findings
suggest that cultural knowledge and propensi-
ties in multilingual language models can be se-
lectively isolated and edited, with implications
for fairness, inclusivity, and alignment. Code
and data are available at https://github.
com/namazifard/Culture_Neurons.

1 Introduction

Cultural context underpins human communication,
shaping interpretations, values, and worldviews
that go beyond linguistic surface forms (Kram-
sch, 2014). For example, opinions on morality,
authority, and gender roles can vary dramatically
across cultural groups, even when expressed in the
same language. Recent advances in multilingual
large language models (LLMs) (Team et al., 2025)
have drawn increased attention on their cultural
propensities. Understanding and potentially con-
trolling the cultural propensities of language mod-
els is crucial to ensure cultural fairness, inclusivity,
and alignment (Liu et al., 2025).

Here, we set out to study model internals govern-
ing such cultural propensities. Can we localize a
set of neurons that drives cultural propensities? Is
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Figure 1: Overview of our methodology for identify-
ing pure culture-specific neurons in language models.
We first identify language-specific neurons (L) using
literal, language-focused sentences (left), and culture-
specific neurons (C,,,) using culturally salient phrases
(right). By subtracting the language-specific neuron
set from the culture-specific neuron set, we obtain pure
culture-specific neurons (C,, \ L), which encode cul-
ture independently of language (bottom).

this set of neurons separate from the language asso-
ciated with that culture? Can we intervene on the
model internals to modulate cultural propensities
without any training?

Despite advances in neuron localization and edit-
ing techniques (Dai et al., 2022; Hou et al., 2023;
Li et al., 2023a), isolating pure culture-specific neu-
rons, i.e., those that drive culture but not language,
remains particularly challenging, given their inher-
ent entanglement (Liu et al., 2025; Kramsch, 2014)
and even data on non-linguistic elements of culture
needs to be encoded linguistically when fed into a
language model.

Prior work on localization of language-specific
neurons has revealed that different languages are
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encoded in different areas of the model (Tang et al.,
2024; Zhao et al., 2024). However, these methods
are insufficient for identifying and isolating culture-
specific neurons, due to the expected entanglement
with language and the lack of suitable datasets.

To address these challenges, we develop a
methodology for identifying both culture-specific
and pure culture-specific neurons, by which we
mean those neurons that are specific to a culture
but not specific to the language associated with
that culture. To facilitate this methodology, we
compile a dataset covering different linguistic and
non-linguistic cultural elements.

Our results indicate that, despite the inherent en-
tanglement of language and culture, it is possible
to identify neuron populations more strongly as-
sociated with culture than language. We find that
cultural representations are localized in regions of-
ten distinct from language-encoding neurons, with
different cultures occupying separate neural pop-
ulations. This allows selective modulation of one
culture’s representations largely independently of
other cultures.

In sum, the contributions of this work are:

* We introduce a methodology for identifying
(pure) culture neurons in LLMs (§3).

* We present MUREL, a dataset of 85.2 million
tokens covering six cultures (§4).

* We conduct experiments showing that culture-
specific neurons are largely separable from
language-specific neurons (§5 and 6.1).

* We show that culture neurons can be selec-
tively modulated (§6.2).

2 Related Work

Recent work on multilingual language models has
primarily focused on linguistic capabilities (Liang
et al., 2022; Srivastava et al., 2023; Ahuja et al.,
2023). More recently, research has shifted toward
assessing cultural competence, including culturally
salient elements such as norms (Ziems et al., 2023),
values (Moore et al., 2024), and worldviews (Mush-
taq et al., 2025). Some studies have examined
cultural knowledge within a monocultural setting
(Miiller-Eberstein et al., 2025), while a growing
body of work investigates multicultural evaluations,
exploring cultural phenomena across languages and
societies (Yin et al., 2022; Fung et al., 2023; Huang
et al., 2025). Recent efforts have extended this
research to vision-language models, evaluating cul-
tural understanding within monocultural and mul-

ticultural contexts (Alwajih et al., 2024; Romero
et al., 2024; Vayani et al., 2025; Nayak et al., 2024).

Despite these advances, existing evaluations are
predominantly behavioral, leaving open critical
questions about how cultural knowledge is inter-
nally encoded in multilingual models.

In parallel, mechanistic interpretability research
has sought to uncover how LLMs encode informa-
tion at the neuron level. These studies have suc-
cessfully identified neurons or populations of neu-
rons corresponding to specific capabilities, such as
knowledge storage (Dai et al., 2022), safety align-
ment (Chen et al., 2024), and confidence estimation
(Stolfo et al., 2024). Recent work has further ex-
plored specialized neurons in multilingual models,
discovering neurons encoding language identity or
linguistic features (Tang et al., 2024; Zhao et al.,
2024; Kojima et al., 2024), with similar findings
for vision-language models (Huo et al., 2024).

However, while these advances have deepened
our understanding of language models’ representa-
tions of linguistic and semantic information, they
have not addressed the neural encoding of cultural
knowledge independent of linguistic identity. This
paper addresses this gap by introducing a system-
atic methodology for studying culture-specific neu-
rons, providing new insights into the cultural repre-
sentations in language models.

3 Identifying Culture Neurons

Our goal is to identify and isolate culture-specific
neurons within multilingual LLMs. To disentan-
gle language and culture, we develop a systematic
approach to distinguish neuron populations that re-
spond specifically to cultural inputs, independently
of linguistic features. This requires first identifying
language-specific and culture-specific neurons, and
then applying set operations to isolate pure culture
neurons, as described below.

3.1 Background: Identification of
Language-Specific Neurons

We first locate language-specific neurons as the
basis for disentangling linguistic and cultural fac-
tors. We adopt the language activation probability
entropy (LAPE) method (Tang et al., 2024), which
effectively detects language-localized regions in
multilingual LLMs. We briefly recapitulate their
approach, as it forms the foundation for our identi-
fication of culture-specific neurons.

Modern LLMs are built on autoregressive trans-
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former architectures (Vaswani et al., 2017) with
multi-head self-attention (MHA) and feed-forward
networks (FFNs). Let A denote the output of the
MHA module in the ¢-th layer, computed using the
previous layer’s hidden states and trainable param-
eters, and act_fn(-) denotes the activation function.
The FFN output b’ € R% in a GLU variant is:

! = (act_fn(R'W) @ R'W) . W,

where W9 W) € Ré1xd2 and W) € Rezxr
are learnable parameters. In LAPE, a neuron is
defined as the linear transformation of a single col-
umn in Wgz) followed by the application of the
non-linear activation function. Thus, each FFN
module contains ds neurons.

LAPE identifies neurons with systematically dif-
ferent activation probabilities across languages. For

neuron j in layer £ and language k:
p]Zj =E [H(act_fn(izewgz))j > 0) ‘ language k:} ,

where I(-) is the indicator function. The activa-

tion probability is empirically estimated by the

likelihood that the neuron’s activation value ex-

ceeds zero. The probabilities across all languages

L yield a distribution pyj = (g ;s -+ Pf j» - Dy ;)»
k

which is normalized: p/F. piijk/ The
' J DnerPi;
entropy of this distribution is: LAPE,; =

— D ker pgfj log pgfj Neurons with low LAPE are

highly language-specific. We define language-
specific neurons as those in the bottom 1% of
LAPE, requiring that at least one language has an
activation probability above a specified threshold.
In practice, we follow Tang et al. (2024) by us-
ing balanced corpora per language and computing
LAPE scores, yielding a sparse set L, for each
language k.

3.2 Identification of Culture-Specific Neurons

Similarly, we define Culture Activation Probability
Entropy (CAPE) by evaluating activation probabili-
ties over culturally distinct inputs. For culture m,
the activation probability for neuron j in layer / is
defined as:

(IZL]- =E ]I(act_fn(ilewge))j > 0) ‘ culture m} ,

We normalize and compute entropy as with LAPE,

and define culture-specific neurons C,, as those
with CAPE below the threshold 7.

C, = {v € N| CAPE(v) < Teurt}

3.3 Disentangling Culture from Language

To disentangle language and culture, we apply set
operations at the neuron level. Let N denote the set
of all FFN neurons in a given model. For each lan-
guage k, we identify a subset Ly C N of language-
specific neurons using the LAPE method (§3.1).
Similarly, for each culture m, we define the set
C,n C N of culture-specific neurons (§3.2).

We assume that there is some overlap between
language and culture neurons. To isolate pure
culture-specific neurons for culture m and its as-
sociated language k, we define: P,,, = C,, \ L
as the set of neurons specific to culture m that
are not language-specific. Some neurons may re-
spond to both language and culture, which we de-
fine as compound language-and-culture neurons
Ly N C,,. This framework partitions neuron space
into language, culture, compound, and generic com-
ponents.

3.4 Interventions

We assess the functional roles of these neuron sub-
sets by systematically deactivating (zeroing out)
their activations during inference.

Deactivating neuron subpopulations: Given a
set of neurons X — where X € {LLy, C,,,, Pp,, LgN
Cpm}, representing language-specific, culture-
specific, pure-culture, and compound neurons, re-
spectively — we set all activations in X to zero.

Random neuron ablation: As a control, we
select and deactivate a size-matched amount of
random neurons to ensure observed effects are not
due to neuron count alone.

4 MUREL: A Multicultural Resource for
Evaluating Language Models

To support our neuron analysis, we introduce
MUREL (MUlticultural Resource for Evaluating
Language Models), a comprehensive dataset col-
lection spanning culturally diverse text resources.
MUREL is constructed from public sources and
systematically organized according to the taxon-
omy proposed by Liu et al. (2025), enabling broad
coverage of ideational, linguistic, and social dimen-
sions for targeted analysis of culture-specific and
linguistic phenomena. In total, MUREL comprises
69 datasets spanning six cultural groups, contain-
ing an average of 14.2 million tokens per culture
(see Appendix A for detailed statistics).
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4.1 Dataset Organization

We categorize the datasets into three primary
branches, as defined by Liu et al. (2025): (i)
Ideational Elements, covering abstract cultural
concepts and knowledge; (ii) Linguistic Elements,
focusing on intra-linguistic variations and com-
municative styles; and (iii) Social Elements, en-
compassing factors related to human interactions
and demographic attributes. An overview of the
datasets along these dimensions is described below.

Ideational Elements comprise concepts, knowl-
edge, values, norms, morals, and artifacts.
Concepts are salient, lexicalized ideas representing
either culturally unique objects or figurative expres-
sions, for which we use data on metaphors (Kabra
etal., 2023), proverbs and sayings (Liu et al., 2024),
idioms (Stap et al., 2024; Khoshtab et al., 2025),
and ironies (Casola et al., 2024). Knowledge:
Culture-specific factual and common-sense infor-
mation is covered through cultural probing datasets
(Bhatt and Diaz, 2024), multiple-choice QA bench-
marks (Wang et al., 2024), and knowledge bases
capturing cultural knowledge (Koto et al., 2024).

Values represent beliefs and behavioral stan-
dards prioritized differently across cultural groups.
To capture these, we combine established resources
such as the Pew Global Attitudes Survey (PEW)!,
World Values Survey (WVS)2, Political Com-
pass Test (PCT)?, and Hofstede’s Cultural Dimen-
sions (Hofstede, 1984). Additionally, we consider
recent NLP datasets specifically developed to as-
sess the alignment and manifestation of cultural
values in large language models (Cao et al., 2023;
Pistilli et al., 2024; Lee et al., 2024a).

Norms and Morals are sets of culture-dependent
principles governing acceptable behaviors and judg-
ments. To cover this area, we utilize existing norm
banks (Dwivedi et al., 2023; CH-Wang et al., 2023;
Fung et al., 2023). Additionally, we incorporate
datasets that employ direct querying of language
models on ethical and normative issues (Yuan et al.,
2024; Yu et al., 2024).

Artifacts include culturally significant products
of human creativity such as literature, poetry, mu-
sic, films, and memes. Our compilation incorpo-
rates datasets covering literary texts, fairy tales,
and poetry, designed explicitly for cultural analysis
and cross-cultural adaptation (Yang et al., 2019;

"https://www.pewresearch.org/
https://www.worldvaluessurvey.org/
‘https://www.politicalcompass.org/

771

Chakrabarty et al., 2021; Schmidt et al., 2021).

Linguistic Elements cover dialects, styles, regis-
ters, and genres. Dialects are systematic linguistic
variants influenced by regional, national, or socio-
cultural factors.

To encompass dialectal diversity, our compila-
tion integrates datasets designed for dialect identifi-
cation and analysis (Malmasi and Zampieri, 2017;
Ciobanu et al., 2018) as well as resources focus-
ing on translations between dialects and standard
languages (Pliiss et al., 2023; Kuparinen et al.,
2023). Styles, Registers, Genres include linguis-
tic variations shaped by situational context, com-
municative goals, and societal norms. Our com-
pilation incorporates datasets designed to evalu-
ate style and register in NLP tasks, focusing on
aspects such as formality (Nadejde et al., 2022),
politeness (Srinivasan and Choi, 2022; Havaldar
et al., 2023), slang (Sun and Xu, 2022), and genre-
specific language, including news reporting and
storytelling.

Social Elements cover relationships, con-
text, communicative goals, and demographics.
Relationship addresses how communication varies
according to interpersonal and societal connec-
tions, such as family roles or social hierarchies.
Our collection includes datasets that explicitly
account for culture-specific relationship terms
and interaction dynamics (Zhan et al., 2024),
ensuring nuanced modeling of communication
styles sensitive to relationship contexts.

Context refers to the linguistic and extra-
linguistic settings shaping communication, such
as situational, historical, or non-verbal cues. To
comprehensively address contextual variation, our
dataset compilation includes resources emphasiz-
ing both textual contexts and broader frames of
reference (Hovy et al., 2020; Chakrabarty et al.,
2022a; Zhan et al., 2023; Ziems et al., 2023).

Communicative Goals cover culturally distinct
purposes behind language use, including indirect
versus direct communication styles in refusal, re-
quests, and apologies. We incorporate resources
tailored to evaluating these pragmatic variations,
supporting tasks that require understanding shaped
communicative intents and their linguistic expres-
sions (Emelin et al., 2021; Li et al., 2023b; Zhan
et al., 2024).

Demographics reflect characteristics of individ-
vals and groups, such as age, income, educa-
tional level, or ethnicity, which influence commu-
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nication patterns. Our dataset selection includes
demographic-focused datasets that facilitate explo-
ration of how sociodemographic attributes impact
linguistic usage and perception (Voigt et al., 2018;
Hovy et al., 2020; Santy et al., 2023).

4.2 Language Selection

For our study, we selected six typologically and
geographically diverse languages: English (en),
German (de), Danish (da), Chinese (z/h), Russian
(ru), and Persian (fa). The selection was guided
by three criteria: (a) geographical diversity, cov-
ering Western Europe, East Asia, Eastern Europe,
and the Middle East; (b) linguistic typology, in-
cluding the Germanic, Slavic, Indo-Iranian, and
Sino-Tibetan language families; and (c) resource
availability, spanning both high-resource (e.g., En-
glish) and lower-resource (e.g., Danish) languages.
This diversity enables us to assess the robustness of
neuron detection methods across a broad spectrum
of linguistic and cultural contexts, enhancing the
generalizability of our findings beyond any single
language, culture, or region.

4.3 Dataset Preparation

To ensure that each dataset was suitable for detect-
ing culture-specific neurons, we performed targeted
adaptation and reformatting for several datasets.
While some datasets could be directly integrated
in their original format, others required modifica-
tion to better align with our experimental setup and
enabling finer-grained cultural analysis.

For example, we transformed original World Val-
ues Survey (WVS) probes into textual statements
that explicitly encode cultural nuances. Original
survey items, such as, “Familie ist [MASK] in
meinem Leben” with possible responses “wichtig”
or “unwichtig” were converted into complete state-
ments (e.g., Familie ist wichtig in meinem Leben).
Such transformations allow us to treat each re-
sponse as an independent cultural assertion and
standardize inputs while preserving cultural infor-
mation.

5 Experimental Setup

Our goal is to systematically identify pure culture-
specific neurons that respond specifically to cul-
tural information, independent of language, within
multilingual LLMs. We proceed as follows:

We first apply the language activation probabil-
ity entropy (LAPE) method (§3.1) to Wikipedia

corpora*. For each language k, we use 100 million
tokens to robustly capture neuron activation pat-
terns across diverse linguistic contexts, following
established methodology (Tang et al., 2024).

Next, we apply the culture activation probabil-
ity entropy (CAPE) method (§3.2) to our MUREL
dataset, using 10 million tokens per culture m.
Note that for each culture m, CAPE is computed
over the union of texts sampled from all three
MUREL branches, i.e., the individual branches
are not considered as separate CAPE targets. For
evaluation, we use a separate, balanced held-out
set of 100,000 tokens per culture, ensuring reliable
measurement of neuron specificity.

Following prior work (Tang et al., 2024), we
select the lowest 1% of neurons by entropy as
language- and culture-specific neurons for LAPE
and CAPE, respectively. We use 1% for sparsity
and comparability. Prior studies found stable trends
across cutoffs ranging from 1 to 10%, and our pre-
experiments were consistent with these findings.

To disentangle the effects of language and cul-
ture, we categorize identified neurons as (1) Pure
culture-specific neurons: neurons that respond
strongly to culture m but are not language-specific;
and (2) Compound language-and-culture neurons,
which respond to both language k£ and culture m.

We conduct our experiments using four
transformer-based pretrained language mod-
els, including Llama-2-7b (Touvron et al.,
2023), Llama-3.1-8b (Grattafiori et al.,
2024), Qwen2.5-7b (Yang et al., 2025), and
Gemma-3-12b (Team et al., 2025).

All models except Llama-2 are multilingual;
Llama-2 is included as a monolingual baseline to
test how our methodology generalizes beyond mul-
tilingual settings. Additional details for each model
are provided in Appendix B.

6 Results

We first report neuron identification and distribu-
tion, then run intervention experiments to assess
functional roles.

6.1 Neuron Identification and Distribution

Neuron Counts and Distributions Language-
and culture-specific neurons were selected from all
FEN layers based on the lowest activation entropy
values. Figure 2 shows the number of language-

*https://huggingface.co/datasets/
wikimedia/wikipedia
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Figure 2: Total language, culture, and pure culture neurons per language and model. The total number of identified
neurons is 3,523 for Llama-2-7b, 4,588 for Llama-3.1-8b, 1,004 for Qwen2.5-7b, and 7,373 for Gemma-3-12b.

specific, culture-specific, and pure culture-specific
neurons identified across the four evaluated models
for each tested language and culture.

Several notable patterns emerge: First, the de-
gree of neuron specialization varies not only by
model but also across languages and cultures, re-
flecting distinct representational demands.

Second, lower-resource languages such as Per-
sian and Danish show higher counts of both
language-specific and culture-specific neurons
compared to resource-rich languages like English.
This aligns with prior work (Tang et al., 2024),
suggesting that multilingual models allocate more
representational capacity to underrepresented lan-
guages to capture richer linguistic and cultural nu-
ances.

Third, although we explicitly target exactly 1%
of the neurons within FFN layers for both language-
and culture-specific sets, we observe a slight dis-
crepancy in the total neuron counts. This minor
discrepancy arises naturally because some neurons
simultaneously encode multiple languages or cul-
tures, resulting in overlapping neuron sets.

Crucially, a substantial proportion (on average
56.7%) of culture-specific neurons are categorized
as pure culture-specific, indicating they encode cul-
tural representations largely independent of linguis-
tic identity. This suggests that much of the cultural
information within multilingual LLMs is neurally

Languag
Culture
Pure Culture

(a) Llama-2-7b

Language
Culture
Pure Culture

Layer

(b) Llama-3.1-8b

Figure 3: Layer-wise distribution of language-, culture-,
and pure culture-specific neurons for models. Layer-
wise distribution per language is shown in Figure 13.

localized to specific populations of neurons that are,
to a considerable degree, separable from language
processing.

Neuron Distribution across Layers. We next
examine how neuron types are distributed across
model layers. As shown in Figure 3, models tend to
concentrate language- and culture-specific neurons
in the upper layers. In Llama-2-7b, a monolingual
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Figure 4: Impact of ablating four neuron subsets on our
MUREL test set in Llama-2-7b. Each cell (¢, j) shows
perplexity (PPL) change on culture 5 when ablating
neurons of language or culture .

model, we observe a secondary peak in the bottom
layers, resulting in a bimodal distribution consis-
tent with previous findings (Tang et al., 2024; Zhao
et al., 2024). This may reflect a dual specialization,
with early layers capturing lower-level linguistic
patterns and top layers encoding higher-level se-
mantics. By contrast, multilingual models (e.g.
Llama-3.1-8b) show a more pronounced concentra-
tion of both neuron types exclusively in the upper
layers, suggesting a more hierarchical organization
of semantic information. Notably, pure culture-
specific neurons follow a similar pattern but are
comparatively sparser across layers.

6.2 Intervention Experiments

To assess the functional roles of identified neuron
subpopulations, we conduct ablation experiments
by zeroing out: (a) language-specific, (b) culture-
specific, (c) pure culture-specific, (d) compound
language-and-culture, and (e) randomly selected
neurons. We then measure the resulting change in
model perplexity on the MUREL dataset.

Figure 5 illustrates perplexity changes in the
Llama-3.1-8b model after these interventions; diag-
onal entries reflect effects within the corresponding
language or culture, while off-diagonal entries in-
dicate cross-linguistic or cross-cultural impact.

Ablating culture-specific neurons yields the

(c) Language N Culture (d) Language

Figure 5: Impact of ablating four neuron subsets on our
MUREL test set in Llama-3.1-8b. Each cell (i, j) shows
the perplexity (PPL) change on culture j when ablating
neurons of language or culture 7.

en{ 004 008 0.07 0.06 0.04 007 en{ 007 005 0.06 0.03 0.02 0.04

(c) Language N Culture (d) Language

Figure 6: Impact of ablating four neuron subsets on our
MUREL test set in Qwen2.5-7b. Each cell (, j) shows
perplexity (PPL) change on culture ;7 when ablating
neurons of language or culture :.

largest increase in perplexity for culturally relevant
data, confirming their critical role. Pure culture-
specific neurons cause the second-largest perplexity
increase, and accounts for about 76.3% of the to-
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Figure 7: Impact of ablating four neuron subsets on
our MUREL test set in Gemma-3-12b. Each cell (3, j)
shows perplexity (PPL) change on culture j when ablat-
ing neurons of language or culture ;.

tal effect from ablating all culture-specific neurons.
This shows that a large share of cultural knowledge
in LLMs is encoded in neurons that are largely
independent of language processing.

Crucially, off-diagonal (cross-linguistic and
cross-cultural) effects remain consistently minimal,
indicating that ablations mainly impact the targeted
language or culture. Random neuron ablation has
a negligible effect (Figure 8), further emphasizing
that the functional roles of identified neuron groups
are not due to chance. These patterns hold across
all evaluated models, with only minor variation.

7 Discussion and Conclusion

We show that culture-specific neurons—and espe-
cially pure culture-specific neurons, which encode
cultural knowledge independently of linguistic rep-
resentations — play a substantial role in shaping
model predictions for culturally nuanced content.
Although pure culture-specific neurons constitute
only about 56.7% of culture-related neurons, their
ablation disproportionately increases perplexity, un-
derscoring their functional importance. These re-
sults indicate that multilingual language models
organize cultural knowledge into specialized neu-
ral populations, separable from linguistic encoding.
Notably, both language- and culture-specific neu-
rons predominantly reside in upper layers, consis-

Figure 8: Perplexity changes after randomly ablating
neurons in Llama-3.1-8b. Number of ablated neurons
per culture matches the average identified per culture.

tent with hierarchical theories of semantic represen-
tation. Thus, our work enhances our understanding
of how multilingual models internally represent
complex cultural and semantic information.

This work advances our understanding of how
cultural information is represented within multi-
lingual language models. Our approach offers a
framework for probing the interplay between cul-
tural and linguistic signals in model internals, and
facilitates future work on representational structure,
identity modeling, or culturally grounded evalua-
tion. Our findings suggest that, like language, cul-
ture can be meaningfully localized and examined
as a distinct component of model representations.
Notably, we did not find any “generic” culture neu-
rons shared across all cultures, i.e., ﬂm P, = 0,
indicating that cultural representations are highly
specific.

Conclusion We have introduced a methodology
to identify and isolate culture neurons in multilin-
gual language models. To facilitate our analyses,
we have compiled MUREL, a large and culturally
diverse resource. Our results show that cultural
knowledge concentrates in specialized neuron pop-
ulations predominantly localized in upper layers of
multilingual language models and that pure culture
neurons play a substantial functional role. Ablation
experiments demonstrate that each culture is en-
coded in distinct neural populations with minimal
cross-cultural interference.

We invite future research on (i) broadening cov-
erage to additional cultures, languages, and models,
(i1) extending localization to attention heads where
the present study focuses on the feedforward mod-
ules, and (iii) testing sufficiency via activation scal-
ing and steering, as well as evaluating intervention
effects on downstream tasks.
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8 Limitations

While our study provides new insights into the neu-
ral localization of culture in multilingual language
models, several limitations remain. First, our anal-
ysis is restricted to a small set of open-source mod-
els and may not generalize to larger or proprietary
LLMs with different architectures or training data.
Second, our methodology for identifying culture
neurons relies on entropy-based metrics and dataset
sampling choices, which may limit our ability to
detect more distributed or context-dependent repre-
sentations. Third, although the MUREL dataset is
diverse, it covers only six cultures, potentially omit-
ting important cultural phenomena found in other
regions or language families. Finally, our evalu-
ation focuses on neuron ablation and perplexity;
future work should include more comprehensive
behavioral and downstream assessments to better
understand the practical impact of these neurons.

9 Potential Risks

This research analyzes the internal representations
of multilingual language models and introduces
MUREL, a culturally diverse evaluation dataset.
All data used are derived from publicly available
and properly credited resources. No private, sen-
sitive, or personally identifiable information was
included. While identifying culture-specific neu-
rons may help increase transparency and cultural
awareness in language models, it also raises the
risk of model manipulation or the reinforcement of
cultural stereotypes if misused. Our methodology
is intended to advance understanding and fairness
in multilingual NLP, not to entrench or amplify
cultural biases.
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Figure 9: Categorization of cultural data resources in MUREL, with representative references for each category.
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A Datasets

We compiled the MUREL dataset, consisting of
69 culturally diverse corpora spanning 6 cultures,
with a total of 85.2 million Gemma-3 tokens. All
datasets used in this study are publicly available
and were used in accordance with their respective
open licenses for research purposes only. Table 1
reports the total number of tokens per culture. Fig-
ure 9 shows the systematic organization and pro-
vides references to all source datasets.

EN DE DA ZH RU FA
14,262 19,891 11,383 16,511 12,405 10,769

Table 1: Total number of tokens per culture in MUREL
(in thousands).

B Models

For our investigation, we select four transformer-
based language models.

B.1 Llama2

Llama 23 is a 7-billion-parameter decoder-only
transformer model developed by Meta. It consists
of 32 layers and 352,256 neurons. It was trained
on a corpus comprising approximately 2 trillion
tokens of publicly available online data. While
Llama 2 supports text generation in English and
27 other languages, its training data is predomi-
nantly English, which may affect performance in
less-represented languages.

B.2 Llama 3.1

Llama 3.1° is an 8-billion-parameter multilingual
model from Meta, with 32 layers and 458,752 neu-
rons. It was trained on diverse text corpora. The
model consists of stacked transformer layers, each
comprising self-attention and feedforward MLP
components. Llama 3.1 is optimized for compu-
tational efficiency and supports a wide range of
languages, making it a strong candidate for evalu-
ating multilingual transfer performance.

B.3 Gemma3

Gemma 37 is a 12-billion-parameter transformer-
based model developed by Google, with 48 layers

Shttps://huggingface.co/meta—1lama/
Llama-2-7b

*https://huggingface.co/meta-1lama/
Llama-3.1-8B

"https://huggingface.co/google/
gemma—-3-12b-pt

and 737,280 neurons. It is part of the Gemma fam-
ily of lightweight, open models built from the same
research and technology used to create Gemini.
Gemma 3 models are multimodal and have a large,
128K context window, multilingual support in over
140 languages, and are available in more sizes than
previous versions.

B.4 Qwen 2.5

Qwen 2.5% is a 7-billion-parameter decoder-only
transformer model developed by Alibaba Cloud,
comprising 28 layers and 100,352 neurons. The
Qwen2.5-7B model was trained on a substantial
corpus of 18 trillion tokens, significantly expanding
upon the 7 trillion tokens used in its predecessor,
Qwen2. The model supports over 29 languages,
making it a robust choice for multilingual applica-
tions.

Figure 10: Perplexity changes after randomly ablating
neurons in Llama-2-7b. Number of ablated neurons per
culture matches the average identified per culture.

Figure 11: Perplexity changes after randomly ablating
neurons in Qwen2.5-7b. Number of ablated neurons per
culture matches the average identified per culture.

C Additional Random Ablations

Figures 10, 11, and 12 show the random ablations
for Llama-2-7b, Qwen2.5-7b, and Gemma-3-12b,
respectively.

$https://huggingface.co/Qwen/Qwen?.
5-7B
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Figure 12: Perplexity changes after randomly ablating
neurons in Gemma-3-12b. Number of ablated neurons
per culture matches the average identified per culture.

D Computational Infrastructure

All experiments, including neuron activation analy-
sis and ablation interventions, were conducted us-
ing pretrained models without any additional train-
ing or fine-tuning. Computations were performed
on a single NVIDIA V100 GPU per experiment.
Across all models, the total computational budget
did not exceed 280 GPU hours.
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Figure 13: Layer-wise distribution of language, culture, and pure culture neurons for each language, visualized for
(a) Llama-2-7b and (b) Llama-3.1-8b.
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