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Abstract

Large language models (LLMs) can suggest
missing elements from items listed in a prompt,
which can be used for list completion or similar
item recommendation. However, their perfor-
mance degrades when they are exposed to too
many items, as they start to suggest items al-
ready included in the input list. This occurs at
around 100 items for mid-2024 flagship LLMs.
We evaluate this phenomenon on both synthetic
problems (e.g., finding missing numbers in a
given range of shuffled integers) and realistic
movie recommendation scenarios. We refer
to this issue as attention overflow, as avoiding
repetition requires attending to all items simul-
taneously. Although iterative loops can miti-
gate this problem, their costs increase with the
repetition rate, affecting the language models’
ability to derive novelty from lengthy inputs.

1 Introduction

Large language models (LLMs) boast ever-growing
context windows, enabling new potential applica-
tions. However, the theoretical context length is
not a sufficient indication of a model’s real perfor-
mance with a given input size (Liu et al., 2024).
Multiple benchmarks have been proposed to stress-
test the actual ability of language models to reason
over long contexts. These tasks either involve pure
retrieval or a form of reasoning requiring the iden-
tification of a few relevant portions from a large
context.

We question the effective context window of
language models from an opposing angle: asking
them to provide the only relevant elements that are
not in a large input. We formulate this as a miss-
ing item prediction task. Missing item prediction
has multiple applications, notably in conversational
recommendation, where users can provide a list of
items (e.g. movies) they liked and ask for new sug-
gestions. This task involves a form of inductive
reasoning, in contrast to the deductive reasoning

typically explored in long context stress tests. More
importantly, it requires comparing a representation
to the whole input, and we notice that this is diffi-
cult for current LLMs, which leads to the prediction
of items already in the input (repetition).

Missing item prediction is also relevant when
models are asked to generate long lists. We ob-
served repetitions in this scenario!, but we focus on
the movie recommendation use case, where users
provide the movies they have watched, and we also
create synthetic examples, notably number ranges
with a missing element. We quantify the repetition
phenomenon with existing off-the-shelf language
models and investigate whether fine-tuning can eas-
ily address this problem. The created datasets are
publicly available?.

2 Related work

Repetitions in language modeling We study a
form of repetitions, a well-identified problem in
language models (Keskar et al., 2019), which can
sometimes lead to text degeneration, where models
repeat the same token indefinitely (Fu et al., 2021).
Repetition penalties were proposed to alleviate this
issue (Keskar et al., 2019), but they operate at the
token level and cannot scale to large contexts where
all tokens are already represented. Repetitions also
exist in more subtle ways, as Chiang and Lee (2024)
showed that chain-of-thought reasoning contains
redundant content.

LLM context length stress tests Our work is
also related to context window stress testing and
language modeling-based recommendation. Previ-
ous work has studied the ability of attention mech-
anisms to identify what is present in long contexts,
but not what is missing. The Long-Range Arena
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Figure 1: Zero-shot test accuracy and repetition rate with increasing itemset sizes.

(Tay et al., 2021) provides the first systematic analy-
sis of the long-range processing capabilities of text
encoders, focusing primarily on algorithmic reason-
ing and retrieval tasks. BABILong (Kuratov et al.,
2024) uses bAbi reasoning tasks (Weston et al.,
2016) and interleaves relevant text with irrelevant
input. FlenQA (Levy et al., 2024) applies a similar
process to the RuleTaker (Clark et al., 2020) de-
ductive logical reasoning task. Ruler (Hsieh et al.,
2024) uses simple algorithmic/retrieval tasks.

Concurrent work by Fu et al. (2025) introduces
AbsenceBench, which also investigates the diffi-
culty LLMs face with missing information. How-
ever, their task formulation is distinct: they provide
the model with both an original document and a
modified version, asking it to identify the removed
elements. This frames the problem as a direct com-
parison or "diffing" task. In contrast, our miss-
ing item prediction task requires an inductive leap
where the model must generate a novel item while
verifying its absence from a single provided context.
While both studies diagnose a failure in exhaustive
reasoning, they approach it from complementary
angles: AbsenceBench from explicit comparison
and our work from constrained generation.

Recommendation with LLMs Our study is also
related to LLM usage for collaborative filtering
(Sileo et al., 2022), where users enumerate a list
of items to communicate their tastes. LLMs can
also be used in content-based recommendations,
where users explicitly mention what they are look-
ing for (Wu et al., 2023). Here, we do not ad-
dress the fine-grained relevance of the recommen-
dations (providing an item that users do not already
know). Repetition is also related to the novelty
metric in recommender systems evaluation (Vargas
and Castells, 2011).

3 Missing item prediction

We formalize the task of missing item prediction as
follows: Given a set X (randomly shuffled) of N
elements, guess the element y that is missing in X.
This is technically an induction task that can be un-
derdetermined but we can construct relatively easy
X, y pairs with easily identifiable itemsets S (num-
bers from 0 to 1024, letters, chemical elements...)
and randomly removing one element y from S to
get X. We can use two evaluation metrics:

Accuracy the rate at which a language model
returns the expected missing element.
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Figure 2: Llama-3-8B-Instruct Accuracy on various itemsets with increasing itemset sizes, without any fine-tuning

(a) and after fine-tuning on the numbers itemset.

Repetition rate the rate at which a language
model returns an element that is already in X.

Repetitions are always mistakes. For easily iden-
tifiable sets, ideal behavior is perfect accuracy and
no repetition. But even in cases where the structure
of § is under-determined, language models per-
forming missing item prediction should not repeat
elements from X.

To construct an example of the missing item
prediction task, we select an itemset S, select a
random element ¥, and present a scrambled version
of X = &\ {y} in a prompt explicitly asking the
model to guess a missing element. We provide the
following itemsets:

Movies We select a user from the MovieLens 1M
dataset who watched more than 2048 movies.

Numbers Numbers in numerical form (1...1024).
We exclude set extrema from the choice of y for
numerical itemsets.

Numbers-english We use the same numbers but

converted in English using the num2word library>.

An example with the Numbers itemset of size 8

Shttps://github.com/savoirfairelinux/num2words

is QUESTION: Find the missing element in 5, 7, 1,
3, 6,8 4. ANSWER: 2.

4 Experiments

We use the same prompt template for all models:

Guess the missing item from this list: {X}.
Directly answer with only one item. Item for-
mat should match the list format. Provide no
explanation. Answer format: "{item}."

To construct this prompt template, we iterated on
Llama-3-8B-Instruct with the numbers itemset val-
idation data until we obtained a satisfactory output
format. We normalize the outputs with punctua-
tion removal and lowercasing to compute repetition
rate and accuracy, and perform exact matches to
compute accuracy and repetition rate.

We use powers of 2 starting from 16 as itemset
sizes. This ensures that there are enough items to
guess the itemset structure. We generate 200 train
examples and 100/100 validation test examples per
itemset size and itemset type.
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4.1 Zero-shot evaluation

We evaluate off-the-shelf instruction-tuned lan-
guage models via OpenRouter API. We evaluate
Llama3-Instruct 8B and 70B, Gemini 1.5 Flash
and Pro, GPT-40, and Claude 3.5 Sonnet with the
default hyperparameters.

Figure 1 shows the evolution of Accuracy and
Repetition metrics with different itemsets sizes for
numeric numbers and movies missing item predic-
tion tasks. Most language models solve the missing
number prediction task with relatively high accu-
racy with less than 128 items. Increasing model
size improves accuracy, as Gemini Pro and Llama-
3-70B outperform their smaller counterparts. How-
ever, the repetition rates shoot up and the accuracy
decreases in all models after 256 items.

We cannot interpret the low accuracy of the
movie item prediction tasks as a failure because
the models can predict relevant movies that are not
y. However, we can interpret the growing repe-
tition rate as a failure, which can frustrate users
who could expect better recommendations as they
provide more examples, which limits the accuracy
of conversational recommender systems that do not
filter their output to prevent repetitions.

4.2 Fine-tuning

We now investigate whether fine-tuning can easily
address this issue. We fine-tune Llama-3 Instruct
8B using Unsloth default configuration # (4bit quan-
tization, LORA (Dettmers et al., 2024) with dimen-
sion 16, 1 epoch with a learning rate of 2e-4). We
fine-tune on 500 numeric items of size below 256
and evaluate on the test set in-domain and out-of-
domain. Figure 2 shows that fine-tuning improves
missing item prediction on in-domain data, but
does not generalize to larger itemsets nor to differ-
ent domains, which might indicate a limit of current
attention architectures that may not be solved with
data only.

4.3 Contrastive evaluation

We also evaluated the ability of LLama-3-8B-
Instruct to tell whether an element is present or not
in the list by randomly sampling either the missing
element or a random element from a prompt.

4https ://colab.research.google.com/drive/
135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing

{X}. Is "{item}" in the previous list? Pro-
vide no explanation, directly answer with only
"Yes." or "No."

Figure 3 shows the evolution of accuracy with
growing itemset sizes. Llama-3-8B-Instruct main-
tains 75% accuracy below 1024 items®. This shows
that once the item is explicitly present in the query,
the model is much better at identifying it. These
results are lower than the Needle in a Haystack
evaluation scores of Llama-3 (Zhang et al., 2024),
which is due to the high similarity between items.
This suggests that context-length stress testing is
harder when many prompt elements are similar to
each other, which makes existing (Kuratov et al.,
2024) problem lengthening strategies too easy to
circumvent.

1.09
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0.8

Contrastivet accuracy
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Figure 3: Zero-shot contrastive accuracy with Lllama-3-
8B-Instruct on the Numbers itemset.

S Analysis

To solve the missing item prediction problem, a
model must generate a plausible candidate and ver-
ify its absence from the input list. Our contrastive
experiments show that verifying a single item is
much easier than generating a novel one. We hy-
pothesize an attention overflow: as the list grows,
the mechanism for verifying absence against all
items simultaneously becomes overloaded. We vi-
sualize this with the contrastive task (Appendix A).
When an item is present, attention focuses on it.
When absent, attention diffuses across the input, as
if searching for a match. This supports the idea that
generating a novel item requires a distributed verifi-
cation that fails with long lists, causing repetitions.
This issue appears fundamental, affecting models
with standard (8k) and extended context windows
alike, pointing to an architectural bottleneck in han-
dling exhaustive, non-local comparisons rather than
a side-effect of context extension techniques.

3All examples fit in the 8K context window of Llama 3.
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6 Conclusion

We introduce a new missing item prediction dataset
and show that repetitions occur in plausible rec-
ommendation tasks and synthetic list completion.
Our findings highlight a limitation in the ability of
current LLMs to check for exhaustivenessss. Our
examples show that language models can repeat
context elements when asked to produce novel con-
tent from a long list, with issues arising from as
few as a hundred items. This contrasts with other
long-context benchmarks, where failures appear at
much larger scales. We attribute this to an atten-
tion overflow, where the model fails to compare a
generated candidate against all input items simulta-
neously. While in-model solutions are challenging,
a practical mitigation could involve offloading veri-
fication to an external code interpreter. Our dataset
is publicly available to support future work on this
problem.

Limitations

Our study has several limitations. The range of
itemsets and models could be expanded for broader
generalizability. Our fine-tuning experiments were
limited, and more systematic prompt engineering
might yield different results. We also lack a human
baseline for comparison; however, the task’s diffi-
culty for unaided humans would strongly depend
on factors such as time and available tools. The
movie recommendation task simplifies real-world
scenarios. While we provide initial evidence from
attention visualizations (Appendix A), a more gran-
ular analysis of specific heads and layers is needed.
Addressing these limitations would provide a more
comprehensive understanding of the attention over-
flow phenomenon.
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A Attention Visualization

To better understand the attention overflow phenomenon, we visualize the heads-wise averaged attention
from the input item tokens to the final answer tokens during the contrastive evaluation task with Qwen
3 4B (Yang et al., 2025), which we chose because of its small size. We change the prompt to force the
attention scan to occur within a single token. The prompt in Section 4.3 has multiple tokens between the
set and the queried token, so that the computation can be distributed over multiple steps, which makes it
much harder to visualize the attention in an interpretable manner.

You will receive a set S followed by a number N. Directly output Yes if N is in S, and No if not. S:
{set}. N: {word}

Figure 4 shows the attention patterns for lists of 100 and 99 numbers:

Normalized attention from final token to set elements

0.0

Element in set

(a) Attention when the queried item (thirty-nine) is present in the input list. Attention is sharply focused on the correct item.

Normalized attention from final token to set elements

0.0

Element in set

(b) Attention when the queried item (sixty-one) is absent from the input list. Attention is diffuse, spreading across multiple
locations as the model searches for the item. This distributed search is more complex and prone to failure than focused retrieval.

Figure 4: Average attention from input list tokens to the answer token ("Yes" or "No") in the contrastive task. We
exclude boundary elements from the visualization as they naturally attract more attention. We also exclude first and
last layers from the visualization.

As shown, when the item is present (Figure 4a), the model’s attention is highly localized to that specific
item in context. However, when the item is absent (Figure 4b), attention becomes diffuse and spreads
out over many items in the list. This suggests that the model is performing a broad, less efficient search
across the context. We hypothesize that the generative task (finding the missing item) requires this diffuse,
all-items-at-once verification, which becomes intractable as the list size increases, leading to overflow and
repetition.
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