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Abstract

The discipline of physics stands as a corner-
stone of human intellect, driving the evolution
of technology and deepening our understand-
ing of the fundamental principles of the cos-
mos. Contemporary literature includes some
works centered on the task of solving physics
problems—a crucial domain of natural lan-
guage reasoning. In this paper, we evalu-
ate the performance of frontier LLMs in solv-
ing physics problems, both mathematical and
descriptive. We also employ a plethora of
inference-time techniques and agentic frame-
works to improve the performance of the mod-
els. This includes the verification of proposed
solutions in a cumulative fashion by other,
smaller LLM agents, and we perform a com-
parative analysis of the performance that the
techniques entail. There are significant im-
provements when the multi-agent framework
is applied to problems that the models initially
perform poorly on. Furthermore, we introduce
a new evaluation benchmark for physics prob-
lems, PHYSICSEVAL, consisting of 19,609
problems sourced from various physics text-
books and their corresponding correct solu-
tions scraped from physics forums and educa-
tional websites. Our code and data are publicly
available at https://github.com/areebuz
air/PhysicsEval.

1 Introduction

In the preliminary stages of development, LLMs
predominantly exhibited a spuriously correlated
reliance on rapid, intuitive processing. As per the
dual-process theory by Kahneman (2011)—that
posits a fundamental dichotomy between fast, in-
tuitive (System 1) and slower, deliberate (System
2) modes of thought—the inherent System 1 bias
of nascent LLMs presented a fundamental weak-
ness in their ability to engage in complex, multi-
step reasoning. With the advent of prompting
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At what rate does the Sun emit photons? For simplicity,
assume that the Sun’s entire emission at the rate of 3.9 x
1025 W is at the single wavelength of 550 nm.

1. Describe the expression of photon energy.
The energy E of a photon of wavelength A is given by,

hc
E=—=
A

Here, h is Planck’s constant, and c is the speed of light.

2. Determine the rate of emission of the photon.
Assume that the photons are emitted by a rate R from
the sodium lamp. Then, the power P of the sodium lamp
is equal to the product of rate R and the energy of each
photon E.

P:RE:P:R@:R:P—)\ (€))

A hc

Substitute the below values in Equation 1.

P=39x10"W

A =550 nm )

h =6.626 x 107%* Js

c=3x10® m/s

Therefore, the rate of emitted photons from the Sun is:

(3.9 x 10%° W) - (550 x 10™% m)

R =
(6.626 x 10—34 Js) - (3.00 x 108 m/s)

=|1.08 x 10" photons/s

Figure 1: Example of an astrophysics problem from the
PHYSICSEVAL benchmark.

techniques such as Chain-of-Thought (CoT) and
Tree-of-Thought (ToT), LLMs have bridged this
gap and made significant improvements in logical
reasoning tasks (Wei et al., 2023; Yao et al., 2023).
Despite substantial progress in mathematical prob-
lem solving, large language models continue to
face significant challenges in accurately reasoning
through physics problems. Google’s generative Al
chatbot Bard, based on LaMDA (Thoppilan et al.,
2022) and PaLM (Chowdhery et al., 2023) mod-
els, ranked in the bottom 2% of test takers on the
Physics GRE (Gupta, 2023).
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Most research works in recent literature pertain-
ing to improved performance of LLMs in physics
include specialized training techniques, such as
the method proposed by Anand et al. (2024b).
These approaches primarily falter because the
LLMs often commit mishaps during their reason-
ing process, including calculation mistakes, mis-
interpretation of physical scenarios, and dimen-
sional inconsistencies (Ding et al., 2023a). How-
ever, upon adoption of proper prompting heuris-
tics, these mistakes are susceptible to being de-
tected during inference time by LLMs (Pang et al.,
2025). This necessitates either a self-correcting
framework or an agentic framework with checks
and balances that can detect and reconcile the cor-
rigible aspects of a solver model’s response. To
this end, we utilize a self-refinement technique,
where the solver LLM checks its own answer once
before generating the final response. In the same
vein, we build upon established agentic paradigms
by systematically adapting and evaluating these
frameworks for the specific, complex domain of
physics. We also explore a novel orchestration
with a separate, smaller group of LLM agent(s), to
determine their efficacy in identifying and correct-
ing domain-specific errors. It aims to reduce com-
putational overhead while providing an unbiased
assessment, addressing the tendency of LLMs to
accept their own outputs as correct unless explic-
itly fine-tuned otherwise (Kadavath et al., 2022).
It also enables the use of commercial LLMs for
problem-solving while delegating verification to
open-source models, thereby minimizing financial
overhead via API usage.

In order to facilitate rigorous evaluation
of physics reasoning in LLMs, we introduce
PHYSICSEVAL, an evaluation benchmark com-
prising 19,609 physics problems and their elab-
orated solutions. This dataset is curated by
scraping problems and initial solutions from on-
line educational forums, followed by a polish-
ing phase via Google’s Gemini 2.5 Pro (Google
DeepMind, 2025) to generate detailed, step-by-
step explanations. From this collection, we ran-
domly sample 10% (= 1,962 problems) to as-
sess the performance of frontier LLMs across
four inference-time techniques: baseline infer-
ence, self-correction, single-verifier cumulative
reasoning, and a multi-agent review framework.
The remaining problems are reserved for future
model training or fine-tuning efforts.

2 Related Work

The natural language reasoning domain is now
confronted with the non-trivial problem, which is
that the established mathematical benchmarks are
proving to be insufficient. As foundation mod-
els like OpenAl’s ol (Jaech et al., 2024) begin to
master these evaluations—a challenge anticipated
by Phan et al. (2025) who proposed Humanity’s
Last Exam—it becomes important to distinguish
between mere pattern matching and genuine sci-
entific reasoning. Consequently, the field must
evolve toward better evaluation benchmarks, not
simply to measure capability, but to compel these
models to grapple with the kind of difficult prob-
lems that actually constitute meaningful progress.
The evaluation of LLMs in mathematical reason-
ing has been characterized by a progressive es-
calation in benchmark difficulty, driven by ad-
vancing model capabilities. Foundational datasets
like MAWPS (Koncel-Kedziorski et al., 2016),
SVAMP (Patel et al., 2021), ParaMAWPS (Raiyan
et al., 2023), GSM8K (Cobbe et al., 2021), and
MATH (Hendrycks et al., 2021), which cover up
to undergraduate-level content, have been largely
surmounted by contemporary models. This perfor-
mance plateau has spurred the creation of a new
tier of challenges. More recent benchmarks, in-
cluding HARDMath (Fan et al.), OlympiadBench
(He et al., 2024), PutnamBench (Tsoukalas et al.,
2024), and FrontierMath (Glazer et al., 2024), rep-
resent this next frontier, introducing complex uni-
versity and olympiad-level problems to continue
probing the limits of the most advanced systems.
Likewise, it is necessary to move beyond ad
hoc mathematical problem-solving to evaluate rea-
soning grounded in the physical world. The do-
main of physics requires models to integrate an
understanding of fundamental laws and real-world
principles with the capacity for complex, multi-
step deductions. Consequently, there is a clear
imperative for specialized benchmarks tailored
to the unique complexities of advanced physics
reasoning. The evolution of physics-reasoning
benchmarks for LLMs has progressed systemati-
cally from rudimentary problem collections to so-
phisticated assessment frameworks that evaluate
multidimensional aspects of physics comprehen-
sion. Initial efforts, exemplified by PhyQA (Ding
et al., 2023b) and UGPhysics (Xu et al., 2025),
established foundational benchmark suites com-
prising thousands of structured introductory prob-

739



Benchmark Size Knowledge Question Solution
Type  Avg. Tokens Step-by-step Avg. Tokens Avg. Steps

JEEBench 123 CEE OE, MC 169.7 X — —
MMLU-Pro 1,299 COL MC 52.1 v — —
GPQA 227 PH.D. OE 111.4 X 197.2 3.6
SciEval 1,657 - OE, MC 154.5 X - —
SciBench 295 COL OE 80.5 X 315.9 2.8
MMMU 443 COL OE, MC 53.8 X - -
ScienceQA 617 K1-K12 MC 13.3 X 63.0 24
OlympiadBench 2,334 COMP OE 222.0 X 199.8 3.7
EMMA 156 - MC 109.5 X — —
PhysReason 1,200 CEE+COMP OE 226.3 v 441.3 8.1
UGPhysics 11,040 COL OE, MC 824 v 318.5 —
PHYSICSEvAL 19,609 CEE+COL+COMP OE 98.8 v 3830.8 39

Table 1: Comparison of PHYSICSEVAL with various other physics reasoning benchmarks. For the '""Knowledge'
column: COMP refers to Competition level, COL to College level, CEE to College Entrance Examination, K1-K12
to elementary and high school levels, and PH.D. to Doctor of Philosophy. For the '""Question Type'' column: OE
denotes open-ended questions, while MC stands for multiple-choice questions.

lems purported to assess basic conceptual under-
standing. Subsequently, more advanced evalua-
tion instruments such as PhysBench (Qiu et al.,
2025) and PhysReason (Zhang et al., 2025) in-
troduced complex problem formulations requiring
extended reasoning chains and multi-step analyt-
ical processes. Contemporary benchmark devel-
opment has culminated in research-oriented as-
sessment suites such as TP-Bench (Chung et al.,
2025) and CURIE (Cui et al., 2025), multi-modal
frameworks like MMPhyQA (Anand et al., 2024a)
that incorporate visual reasoning components, and
specialized domain-specific instruments including
FEABench (Mudur et al., 2025).

With the intent of eliciting sound reasoning in
LLMs for problem-solving, researchers have pro-
posed various methods that try to emulate the
thought processes of humans. Cumulative Rea-
soning (CR) by Zhang et al. (2023), in an iterative
fashion involving proposer and verifier LLMs, de-
composes problems into smaller and more man-
ageable subproblems and utilizes premises from
previous iterations to enhance LLM reasoning.
Other works explore self-improvement through
verification feedback for better LLM capabili-
ties across diverse domains, including reasoning
(Shinn et al., 2023; Hong et al., 2024) and security
(Li et al., 2024; Cao et al., 2024). Specifically for
physics reasoning, Physics Reasoner (Pang et al.,
2025) adopts knowledge-augmentation to facili-
tate germane formula retrieval, in order to have a
properly guided reasoning stage. They also find
that the incorporation of checklists acts as a good
buttress for LLMs’ self-improvement.

3 PHYSICSEvAL Benchmark

To test our inference-time techniques, we curate a
new dataset of physics problems, namely PHYSIC-
SEVAL. We compile problems and solutions from
various textbooks, spanning from high school to
university levels. The list of physics books from
which we source the problems is provided in the
Appendix C.3. We then use the Gemini 2.5 Pro
model by Google! to elaborate the solutions into
logical steps and sub-steps. The core content
of both the problems and solutions in PHYSIC-
SEVAL originates entirely from human-generated
sources. Problems are scraped from established
physics textbooks, which are listed in Appendix
C.3. The corresponding solutions are scraped
from reputable online physics forums and educa-
tional websites where experts and educators pro-
vide answers. These scraped texts often con-
tain grammatical errors, typos, inconsistent for-
matting, and poorly rendered equations. Gemini
2.5 Pro is employed solely in a "polishing" capac-
ity to clean and standardize this content. Its role
is strictly limited to correcting grammar, fixing ty-
pos, properly formatting I&IEX equations, and or-
ganizing the existing human reasoning into a clear,
step-by-step structure. This process does not in-
volve adding, altering, or augmenting the substan-
tive scientific content. The term "elaborate" al-
ludes to this syntactic reformatting and structur-
ing process—which makes the human-written so-
lutions more readable and consistent—not to gen-

"https://blog.google/technology/google-deepm
ind/gemini-model-thinking-updates-march-2025/
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erating de novo explanations. This ensures the
ground truth remains faithful to human expertise
and avoids introducing model-specific biases. The
categories of the problems and their key topics are
also extracted. Consequently, we are left with a
dataset of size 19,609. We partition this dataset
into a train set and a test set, maintaining a 90:10
split.

Table 1 depicts a statistical comparison of
PHYSICSEVAL with the physics reasoning bench-
marks in the existing literature. For the sake of
brevity, a complete description of PHYSICSEVAL,
including sources, format, examples, comparisons
with other datasets, statistics, etc., can be found in
Appendix C.

4 Methodology

4.1 Multi-Agent Review Framework

One of the techniques that we use to try to im-
prove the performance of the LLMs is to have sev-
eral smaller models review their proposed solu-
tions. The subsections delineated below describe
this technique in more detail. The method is illus-
trated in Figure 2.

4.1.1 Proposer Module

Given a set of physics problems Q =
{¢1,92,...,qn}, the proposer model Py, in-
stantiated as a powerful LLM (such as, OpenAI’s
o4-mini or Gemini 2.5 Pro), generates an initial
set of solutions S(© = {sgo),sgo),...,sgg)},
where each solution is sampled according to
32(0) ~ Py(- | ¢;). This zero-feedback stage con-
stitutes the base output, from which all subsequent
verification and refinement occur.

4.1.2 Verifier Module

To assess the quality of initial solutions gener-
ated by the proposer model, we employ a set of
three large language models— Microsoft’s Phi-4-
reasoning-plus (Abdin et al., 2024), Qwen3-14B
(Yang et al., 2025), and DeepSeek-R1 14B (Guo
et al., 2025) —as independent verifiers. These
models operate with fine-tuning and evaluate each
proposed solution against the original problem
statement.

Each verifier produces a structured evaluation
comprising six scores, each ranging from 0 to
5, based on the manually engineered rubrics, in-
spired by Docktor et al. (2016), outlined in Sec-
tion 4.4. A weighted average of these scores

yields a final scalar score, with greater emphasis
placed on formulation (0.25), numerical correct-
ness (0.30), and logical consistency (0.25). The re-
maining weights are: completeness (0.10), valid-
ity of assumptions (0.05), and clarity (0.05). The
aggregated score provides a quantitative measure
of solution quality, while the individual compo-
nent scores offer interpretable feedback, which is
later utilized by the meta-verifier for cross-verifier
analysis and refinement. Each verifier identifies
and records perceived mistakes in the proposer’s
solution, maintaining them in a structured mistake
list.

4.1.3 Meta-Verifier Module

The meta-verifier module, Qwen3-32B by Yang
et al. (2025), receives the test set questions, pro-
poser solutions, and responses from three inde-
pendent verifiers. The main task of the meta-
verifier is to filter out irrelevant or false mistakes.
Since the verifiers are independent, some mistakes
flagged by one verifier may be irrelevant to the ac-
tual problem or inaccurate in the context of the so-
lution. The meta-verifier assesses the validity of
these mistakes by comparing them across all three
verifiers and retains only those that are relevant
and consistent. After filtering the mistakes, the
meta-verifier aggregates the scores from all three
verifiers into a final score using the weighted sum
in Equation 2.

(final)

i

= 0.5 x r{"MY

DeepSeek-R1)

r +

Qwen3-14B)

0.3 x 1! +0.2 x 7!

2

This final aggregated score reflects the overall
quality of the proposer’s solution for each ques-
tion ¢;. The weights are chosen based on the
anecdotally observed quality and accuracy of each
model’s review responses. They are specifically
determined based on a pilot study conducted on a
randomly sampled set of 500 problems from our
dataset. Under a zero-shot setting, the three ver-
ifiers’ outputs are manually inspected for factual
accuracy, reasoning depth, and alignment with the
grading rubric. We find that Phi-4-reasoning-plus
consistently provides the most precise and well-
justified critiques, followed by DeepSeek-R1, and
then Qwen3. The weights are set to reflect this ob-
served performance hierarchy, with more gravitas
accorded to the more reliable verifier. The meta-
verifier’s output consists of:
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Figure 2: An overview of the multi-agent review model. The model names are, of course, subject to shuffling.

Aggregated Mistakes List: A refined list of mis-
takes that have been validated across all 3 verifiers.
Aggregated Score: A weighted average of the in-
dividual scores from the 3 verifiers, reflecting the
overall quality of the proposer’s solution. This re-
fined approach helps improve the robustness and
accuracy of the evaluation, guiding further refine-
ment of the proposer’s solutions based on reliable
and consistent feedback.

4.2 Experimental Setup

We use a total of six frontier LLMs to solve 1,962
physics problems from the test split of PHYSIC-
SEVAL. The generated solutions are the base solu-
tions or proposed solutions.

4.2.1 Self-refining

After receiving the proposed answer from the
solver LLM, we provide its own solution and ques-
tion again with the following additional metacog-
nitive prompt: “You are a Physics Professor.
Outline the physics principles of the
given problem, and please check your own
answers for any mistakes, then answer
again."” The generated answer is henceforth con-
sidered the final answer.

4.2.2 Single-Agent Review

After receiving the proposed answer from the
solver LLM, we get another LLM, namely
Qwen3-32B, to analyze the question-answer pair
and generate a list of probable mistakes. If any
mistakes are found, we provide this list as addi-
tional information and the solver model’s own so-
Iution to the solver model itself, and prompt it to
solve the problem again.

4.2.3

We have the reviewer agents generate a list of mis-
takes for every pair of problem and solution. The

Multi-Agent Review

meta-verifier agent then compiles these mistakes
into a single list. These mistakes are then sent
to the solver LLM along with its previous solu-
tion, and a new solution is requested, albeit only
if the meta-reviewer finds any mistakes. A sample
Multi-Agent Review conversation can be found in
Appendix B.

4.3 Performance Evaluation and Metrics

For a thorough evaluation of our inference-time
techniques and comparison to baseline LLM per-
formance, we use a comprehensive, multi-layered
method. This approach breaks down the problem-
solving process into key components essential
for success in physics, enabling both detailed
and overall assessment. Each solution gener-
ated by the different LLM configurations (base-
line, w/ self-refinement, w/ single-agent verifi-
cation, and w/ multi-agent verification) is evalu-
ated against the ground-truth solution in PHYSIC-
SEVAL. These ground-truth solutions, derived
from established textbook explanations and fur-
ther elaborated by domain experts for clarity on
step-by-step reasoning, serve as the definitive ref-
erence for correctness and methodology.

4.4 Rubric Engineering for Evaluation

The evaluation is conducted across six core qual-
itative and quantitative criteria (similar to the cri-
teria used by the verifier module in multi-agent-
verification as shown in Subsection 4.1.2) denoted
as My where k € {1,...,6}. Each criterion is
scored on a Likert scale from 1 to 5 (where 5 rep-
resents the highest quality):

Mathematical Accuracy (Spya): Assesses the
correctness of calculations, numerical answers,
units, and appropriate presentation, strictly in
comparison to the ground-truth answer.

Logical Consistency (Si,c): Evaluates the sound-
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ness of the step-by-step reasoning and its align-
ment with physics principles and the ground-truth
solution’s logic.

Completeness (Sc): Measures whether all parts
of the problem, as scoped and addressed by the
ground-truth solution, were fully addressed.
Clarity and Coherence (Scc): Judges the clarity,
conciseness, organization, and ease of understand-
ing of the AI’s explanation and use of terminology.
Formulas and Principles (Spp): Determines if
the correct physical formulas and principles were
identified, stated, and applied appropriately by the
Al, consistent with the problem’s framing in the
ground-truth.

Assumptions Made (54): Assesses whether the
a priori assumptions were clearly stated, justi-
fied, reasonable for the problem context, and did
not contradict limitations identified by the ground-
truth.

The score for a given solution j on metric k is de-
noted as s ;, € [1,5].

4.5 Physics Proficiency Score (PPS)

To capture overall problem-solving ability, we
define a Physics Proficiency Score (PPS)—a
weighted average of six key evaluation metrics.
For a given solution 7, PPS is calculated as:

6
PPS; = wy - 55k 3)
k=1

where, s; denotes the score for solution j on
metric k, and wy, is the weight assigned to met-
ric k. The weights reflect the importance of each
metric in solving physics problems accurately.
These weights are shown in Table 3. To ground
these weights in practical educational assessment,
we consulted with two experienced high school
physics teachers and one university-level entrance
examination grader. The goal was to capture their
professional judgment on the relative importance
of each criterion when evaluating a student’s so-
Iution. The high weight on Mathematical Ac-
curacy and Logical Consistency reflects the con-
sensus that a correct answer derived from sound
reasoning is the paramount goal, while Clarity,
though important, is often secondary in formal
grading. This process of expert elicitation ensures
our scoring aligns with human assessment prior-
ities. This scoring system emphasizes correct-
ness—especially math, logic, and the proper use
of physical principles. Completeness and sound

assumptions also matter, while clarity is valued but
given less weight. The final PPS is a value that is
normalized to be € [0, 100].

4.6 Evaluation Approach Justification

The core philosophy of our rubric (see Table 3) is
adapted from the Minnesota Assessment of Prob-
lem Solving (MAPS) framework (Docktor et al.,
2016), a research-validated tool for evaluating
student-written solutions in introductory physics
courses. MAPS was designed to assess the quality
of problem-solving processes rather than just final
answers, drawing on extensive physics education
research to identify key cognitive steps that distin-
guish effective reasoning. Its underlying rationale
is that strong problem-solving involves a struc-
tured, logical progression that accurately inter-
prets the physical scenario, selects and applies ap-
propriate principles, performs correct mathemat-
ics, and maintains coherence. In our adaptation for
PHYSICSEVAL, we aligned our rubric categories
with MAPS’s five core processes: Useful Problem
Description (organizing given information and vi-
sualizing the scenario), Physics Approach (select-
ing relevant concepts and principles), Specific Ap-
plication of Physics (applying those principles to
the situation), Mathematical Procedures (execut-
ing calculations correctly), and Logical Progres-
sion (ensuring overall coherence without gaps or
contradictions).

This fidelity-focused emphasis ensures that
LLM-generated solutions are scored not only for
superficial correctness but for alignment with the
ground truth’s expert-derived interpretation (e.g.,
correctly framing the problem’s physics), method
(e.g., step-by-step application), and result (e.g., fi-
nal answer) with minimal subjectivity. For in-
stance, a solution that reaches the right numerical
answer via a fallacious principle would score low
on "Formulas and Principles" fidelity, reflecting
real-world grading practices where process mat-
ters as much as product.

4.7 Evaluation Process

Solutions were evaluated using Gemini 2.5 Pro.
The LLM was provided with a detailed scor-
ing rubric, the ground-truth solution, and the Al-
generated solution for each problem. The eval-
uation prompt provided to Gemini 2.5 Pro was
designed to ensure strict comparison against the
ground truth. This prompt guided the assign-
ment of scores (1-5 for sub-metrics). We select
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Easy (1-4)

Medium (5-7)

Hard (8-10)

Model

Baseline Self-Refine  Single-Agent Multi-Agent Baseline Self-Refine  Single-Agent Multi-Agent Baseline Self-Refine  Single-Agent Multi-Agent

DeepSeek-R1 90.6 92.7 93.3 94.1 80.8
Gemma 3 27B 86.9 85.7 86.4 87.6 55.8
Llama 4 Maverick 91.5 90.5 92.0 92.9 83.6
Phi-4-reasoning-plus 84.4 94.4 93.2 94.7 86.9
QwQ-32B 93.7 94.0 94.2 94.6 80.9
04-mini 86.7 82.6 85.9 86.8 87.3

84.4
56.5
82.0
92.2
80.8
86.4

83.1
59.4
82.6
93.4
81.1
87.0

834
59.1
824
93.9
81.9
88.2

72.9
41.5
55.2
80.1
63.9
83.6

73.7
40.4
54.0
834
68.6
823

74.7
39.1
57.9
83.8
63.5
84.1

72.7
40.6
52.1
87.6
71.0
85.4

Average 88.96

89.98

90.83

91.78

79.21

80.38

81.10

81.48

66.20

67.06

67.18

68.23

Table 2: Average PPS score on PHYSICSEVAL across frontier LLMs, stratified by problem difficulty and inference
method. The "Average" row summarizes results. Higher scores are better. The best-performing method for each

model and difficulty tier is highlighted in bold.

Metric Component Weight (wy,)
Mathematical Accuracy (wwma) 0.30
Logical Consistency (wic) 0.25
Formulas and Principles (wgp) 0.20
Completeness (wc) 0.10
Assumptions Made (wy) 0.10
Clarity and Coherence (wcc) 0.05
Total 1.00

Table 3: Weights for Physics Proficiency Score (PPS)
sub-metrics

Gemini 2.5 Pro as the evaluator because inde-
pendent leaderboards, e.g., LMSys Chatbot Arena
(LMArena)?, consistently rank it as the best model
for text generation, complex instruction follow-
ing, and nuanced judgment. This makes it well-
suited for applying our detailed, rubric-based scor-
ing system consistently and accurately. To pre-
vent any implicit favoritism toward its own gen-
eration style, we designed the evaluation prompt
to strictly compare generated solutions against the
ground-truth (human-derived) solutions using ob-
jective, predefined criteria (e.g., mathematical ac-
curacy, logical consistency). The prompt explic-
itly instructs the model to ignore stylistic devia-
tions (see Appendix A) and focus on alignment
with the ground truth’s content and methodology,
reducing the risk of bias. We also performed em-
pirical checks on a subset of evaluations manu-
ally and ensured that the model maintained high
fidelity to the rubrics without apparent bias.

4.8 Statistical Analysis

The collected scores (both for individual metrics
s; « and the aggregated PPS) are analyzed using
descriptive statistics (mean, median, standard de-
viation) for each metric and each LLM configura-
tion. Performance is also analyzed across different
physics categories and problem complexity levels
(proxied by solution length). Table 2 portrays the

2https ://1marena.ai/leaderboard

results yielded by all the pertinent models when
evaluated on our PHYSICSEVAL benchmark.

5 Results Analysis
5.1 Key Findings

The evaluation results on the PHYSICSEVAL
benchmark, as delineated in Table 2, reveal sev-
eral key insights into the effectiveness of different
agent-based inference methods.

Agent-Based Critique Consistently Improves
Performance: A primary observation across all
models and difficulty tiers is the general trend
of performance improvement with more sophis-
ticated methods. On average, the vanilla Base-
line scores are the lowest, followed by incremen-
tal gains from Self-Refine, Single-Agent critique,
and finally the Multi-Agent framework, which
achieves the highest average scores across Easy
(91.78), Medium (81.48), and Hard (68.23) prob-
lems. This demonstrates that external critique is
a more reliable enhancement strategy than simple
self-correction.

Gains from Multi-Agent System Amplify with
Problem Difficulty: While all methods expe-
rience a performance drop as problems become
harder, the advantage of the Multi-Agent system
over the Baseline becomes more pronounced. For
instance, on Hard problems, Phi-4-reasoning-plus
gains 7.5 points with the Multi-Agent method over
its baseline, and QwQ-32B gains 7.1 points. This
suggests that the collaborative verification and
feedback process is particularly valuable for tack-
ling complex reasoning tasks where a single model
is more likely to fail.

The effectiveness of each method is highly
dependent on the underlying model.  Phi-4-
reasoning-plus stands out as the top-performing
model, achieving the highest scores in 7 of the
12 categories. It benefits significantly from all
advanced methods, showcasing a strong capac-
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Comparison Metric Weight ¢-statistic  p-value Significant (p < 0.05)?
Single Agent vs. Baseline Overall PPS 1.00 -0.01 0.996 False
Single Agent vs. Baseline Mathematical Accuracy 0.30 0.89 0.373 False
Single Agent vs. Baseline Logical Consistency 0.25 0.35 0.729 False
Single Agent vs. Baseline Completeness 0.10 -2.36 0.0182 True
Single Agent vs. Baseline Clarity And Coherence 0.05 -3.31  0.000965 True
Single Agent vs. Baseline Formulas Principles 0.20 0.29 0.769 False
Single Agent vs. Baseline Assumptions Made 0.10 -1.23 0.220 False
Multi-Agent Review vs. Baseline  Overall PPS 1.00 2.05 0.0405 True
Multi-Agent Review vs. Baseline Mathematical Accuracy 0.30 277  0.00570 True
Multi-Agent Review vs. Baseline Logical Consistency 0.25 1.08 0.278 False
Multi-Agent Review vs. Baseline Completeness 0.10 -1.44 0.150 False
Multi-Agent Review vs. Baseline  Clarity And Coherence 0.05 -1.79 0.0739 False
Multi-Agent Review vs. Baseline Formulas Principles 0.20 2.50 0.0126 True
Multi-Agent Review vs. Baseline ~Assumptions Made 0.10 1.50 0.134 False

Table 4: Statistical significance of performance improvements for o4-mini. Results with a p-value < 0.05 are

considered statistically significant.
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Figure 3: Category-specific impact of the Multi-Agent Review framework across all scoring rubrics for o4-mini.

ity for both self-correction and assimilating ex-
ternal feedback. o4-mini also proves to be a ro-
bust model, establishing the highest baseline for
Medium and Hard problems and showing consis-
tent improvement with agent-based methods.

A notable and counterintuitive finding is that
the self-refine process can harm performance. For
models like Gemma 3 27B (Gemma Team, 2024)
and Llama 4 Maverick (Meta Al, 2025), self-
refinement consistently resulted in lower scores
compared to their own baseline across all difficulty
levels. This indicates that without external guid-
ance, a model’s attempt to "double-check" its work
can introduce new errors or reinforce incorrect ini-
tial assumptions, making it an unreliable strategy
for certain architectures.

5.2 Results Analysis and Discussion

In order to delve deeper into the performance anal-
ysis on PHYSICSEVAL, we keep OpenAl’s 04-

mini under the limelight. A detailed examination
of the model’s performance on PHYSICSEVAL re-
veals a nuanced relationship between the model’s
inherent capabilities and the efficacy of agent-
based refinement methods. The model exhibits
a formidable baseline proficiency, with an initial
PPS of 85.88, underscored by particularly high
scores in Clarity and Coherence (4.76) and For-
mulas/Principles (4.59). This suggests the model’s
native strength lies in articulating solutions clearly
and correctly identifying the underlying physics.
However, the Self-Refined approach proved detri-
mental, leading to a notable decline in the over-
all PPS to 84.58. A closer look at the sub-metrics
uncovers that while Mathematical Accuracy saw
a slight improvement (4.17 to 4.22), this came at
a significant cost to Completeness (4.56 to 4.40)
and Clarity (4.76 to 4.54). This paradox indicates
that without external guidance, the model’s at-
tempt to self-correct can disrupt the solution’s log-
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ical structure and narrative coherence. In contrast,
while the Single Agent method offered negligible
improvement, the Multi-Agent Review emerges
as the only method to yield a definitive perfor-
mance enhancement, elevating the PPS to 86.84.
This gain is not merely marginal but is driven
by targeted improvements in the model’s weak-
est areas— Mathematical Accuracy (4.24), Log-
ical Consistency (4.56), and Assumptions Made
(4.43)—while largely preserving its strong base-
line clarity. This finding powerfully suggests that
for a highly capable model like 04-mini, further
advancement is not achieved through simple self-
correction but through a robust, consensus-driven
verification process that can surgically address
specific logical and computational flaws without
compromising the solution’s overall quality.

5.2.1 Category-Specific Impact of the
Multi-Agent Framework

The impact of Multi-Agent Review on o4-mini
across different categories can be seen in Figure
3. It reveals that the impact of multi-agent review
on 04-mini’s performance is highly category- and
rubric-dependent, with both substantial gains and
notable degradations across physics domains and
difficulty tiers. Noteworthy improvements are ob-
served in categories such as Quantum Mechanics
and Atomic Physics, Relativity and Gravitation,
and Thermodynamics and Heat Transfer, particu-
larly for hard problems and rubrics like Complete-
ness and Formulas/Principles. Medium-difficulty
problems in areas like Food Physics and Culinary
Science, Optics, and Wave Phenomena also see
dramatic gains in Clarity and Coherence. How-
ever, the benefits are not universal: some cate-
gories, including Acoustics and Sound Engineer-
ing and Engineering and Applied Physics, experi-
ence negative or inconsistent changes, especially
for easier problems, and certain rubrics, such as
Assumptions Made and Mathematical Accuracy,
even show degradations in select domains. These
results highlight that while multi-agent review can
substantially enhance performance in specific con-
texts—especially for complex, technical, or com-
putationally intensive tasks—it may also intro-
duce confusion or diminish quality in others, un-
derscoring the need for more adaptive and context-
aware review strategies. Additional details can be
seen in Figure 4 in Appendix C.5.

5.2.2 Statistical Significance of Performance
Changes

To evaluate the effectiveness of different
inference-time techniques, we perform paired
t-tests comparing each method against the 04-
mini baseline, using a significance threshold of
p < 0.05. The Single Agent method fails to
produce any statistically significant improve-
ment in Overall PPS (p = 0.996), and instead
shows significant degradations in Complete-
ness (p = 0.0182) and Clarity and Coherence
(p = 0.000965). This suggests that introduc-
ing a single external reviewer may negatively
impact the structural and narrative quality of
the generated solutions, potentially by injecting
inconsistent or insufficient feedback. On the other
hand, the Multi-Agent Review approach demon-
strated statistically significant improvements
in Overall PPS (p = 0.0405), Mathematical
Accuracy (p = 0.0057), and Formulas Princi-
ples (p = 0.0126). These gains indicate that
collaborative critique across multiple agents can
more effectively guide the model toward better
mathematical correctness and principled reason-
ing. Although improvements in other dimensions,
such as Logical Consistency and Completeness,
do not reach significance, the overall results
imply the advantage of multi-agent systems in
enhancing both the accuracy and interpretability
of the model’s solutions.

6 Conclusion

Our comprehensive evaluation of frontier LLMs
on the newly introduced PHYSICSEVAL bench-
mark demonstrates both the promise and the cur-
rent limitations of LLMs in the domain of physics
problem-solving. While baseline model perfor-
mance is already strong for many categories,
our experiments reveal that agentic inference-
time techniques—particularly multi-agent verifi-
cation—can yield substantial improvements, es-
pecially for challenging problems and in techni-
cal subfields where initial model outputs are less
reliable. However, these gains are not uniform
across all categories and rubrics, highlighting the
nuanced and context-dependent nature of collab-
orative critique. Our findings underscore the im-
portance of adaptive, category-aware strategies for
further advancing LLM capabilities in scientific
reasoning. We hope that PHYSICSEVAL will serve
as a valuable resource for the research community.
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Limitations

One main limitation of our approach is the
high computational cost. The multi-agent re-
view method runs several models for each ques-
tion, which increases processing time and resource
use. This makes it less practical for real-time
or low-resource settings. Moreover, our dataset,
while large and varied, didn’t undergo full man-
ual checking. The human-derived solutions were
stylistically refined using an LLM (Gemini 2.5
Pro), and while this process was designed to pre-
serve the original logic, only a small sample was
manually reviewed to confirm this. This means
there could be mistakes in the data that affect
model performance and evaluation. Due to the
elaborate and descriptive nature of the ground
truth, the evaluation of the solutions is largely
LLM-based. Lastly, while our methods work well
for physics problems, they may not transfer eas-
ily to other STEM areas without changes or fine-
tuning.
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This work involves the use of publicly available
large language models and does not include any
human subjects, private data, or personally identi-
fiable information. All physics problems are col-
lected from publicly available sources, and care is
taken to ensure that no copyrighted or proprietary
content is used without proper attribution. The
dataset partially relies on LLM-generated content
for elaboration, which may introduce unintended
biases or inaccuracies. We acknowledge this lim-
itation and emphasize the importance of responsi-
ble use and validation in downstream applications.
The proposed multi-agent inference techniques
aim to improve performance without retraining,
allowing broader access to high-performing sys-
tems. However, we recognize the increased com-
putational cost associated with such approaches
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licensing permits.
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A Evaluation Prompt for Gemini 2.5 Pro

You are an expert physics problem evaluator. Your task is to meticulously and STRICTLY com-
pare an Al-generated solution to a manual, ground-truth solution for a given physics problem.
The Ground Truth Solution is considered the definitive correct answer and approach for the given
problem statement. Deviations by the AI-Generated Solution from the Ground Truth, especially
in terms of method, assumptions, interpretation of given data, or parts deemed unsolvable by the
Ground Truth, MUST be penalized appropriately according to the guidelines below.

Evaluate the Al-generated solution based on the following categories and scoring guidelines.
Provide your evaluation STRICTLY as a JSON object.

Evaluation Categories and Scoring Guidelines:

1. mathematical_accuracy: (Score 1-5) How correct are the AI’s calculations, numerical answers,
and units *when compared to the problem defined by the Ground Truth*?

- 5: All calculations, numerical results, and units are perfectly correct and appropriately presented,
AND align with the Ground Truth’s final answers if the same method is used, OR are verifiably
correct if a different valid method is used.

- 4: Minor calculation error in the Al solution, or an incorrect/missing unit, but the AI’s underlying
mathematical method (if aligned with GT or a valid alternative) is sound.

- 3: Several minor errors in the Al solution, or one significant calculation error that impacts the
Al’s result. Units might be inconsistently handled.

- 2: Major calculation errors or fundamental misunderstandings of mathematical operations in
the Al solution. If the Al solution uses different input data values than implied by the Ground
Truth (e.g., different length, mass), leading to numerically different answers, score 2 here even
if its internal math is correct for its chosen data, because it’s not solving the *Ground Truth’s*
problem.

- 1: Almost all calculations in the Al solution are incorrect, non-sensical, or missing. The Al uses
drastically different input data leading to completely irrelevant numerical results for the Ground
Truth problem.

2. logical_consistency: (Score 1-5) Does the Al solution follow a logical step-by-step progres-
sion? Is the AI’s reasoning sound and aligned with physics principles, *ideally mirroring or
compatibly extending the Ground Truth’s logic*?

- 5: The Al solution flows perfectly. Each step logically follows from the previous one. The
reasoning is impeccable and aligns well with the Ground Truth’s approach or is a valid alternative.
- 4: Al solution is mostly logical and well-reasoned. Perhaps one step is slightly unclear or its
justification is weak, but it doesn’t break the overall logic or significantly deviate from a valid
path.

- 3: Some logical gaps, inconsistencies, or steps in the Al solution that don’t clearly follow,
making the solution harder to follow or verify, or deviating from the core logic of the Ground
Truth without clear justification.

- 2: Significant logical flaws in the Al solution. Steps are out of order, reasoning is poor or
contradictory to established physics or the Ground Truth’s interpretation.

- 1: The Al solution is illogical, incoherent, or internally contradictory.

3. completeness: (Score 1-5) Does the Al-generated solution address all parts of the problem *as
understood and scoped by the Ground Truth*?

- 5: All parts of the problem (including sub-questions, if any), as addressed or implied as solvable
by the Ground Truth, are fully addressed and answered by the Al

- 4: A minor aspect of the problem (as per GT) is overlooked by the Al, or one sub-question is
not fully answered or is missing.
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- 3: A significant part of the problem (as per GT) is ignored or left unanswered by the Al If the
Ground Truth indicates a part of the problem is unsolvable with given data, but the Al attempts to
solve it by making significant unstated/unwarranted assumptions, this is a flaw in understanding
problem scope; score 3 or lower.

- 2: Only a small portion of the problem (as per GT) is addressed by the Al; major components
are missing.

- 1: The problem is largely unaddressed by the Al, or the Al solution is off-topic relative to the
Ground Truth.

4. clarity_and_coherence: (Score 1-5) Is the AI’s explanation clear, concise, and easy to under-
stand?

- 5: The Al explanation is exceptionally clear, concise, well-structured, and very easy to under-
stand. Excellent use of language and terminology.

- 4: The Al explanation is clear and generally easy to understand, with minor areas for improve-
ment in conciseness, structure, or flow.

- 3: The Al explanation is generally understandable but may be verbose, unclear in parts, poorly
organized, or contain jargon without adequate explanation.

- 2: The Al explanation is difficult to understand due to ambiguity, poor writing, or convoluted
structure.

- 1: The AI explanation is incomprehensible, extremely poorly written, or nonsensical.

5. formulas_principles: (Score 1-5) Are correct physical formulas and principles identified and
applied correctly by the Al, *and are they appropriate for the problem as framed by the Ground
Truth*?

- 5. All necessary physical formulas and principles are correctly identified, stated, and applied
appropriately by the Al consistent with the Ground Truth’s approach or a valid, equally rigorous
alternative.

- 4: Mostly correct formulas/principles used by Al. Perhaps a minor error in recalling a formula,
or a slight misapplication of a correct principle that doesn’t fundamentally alter the solution path
compared to GT.

- 3: Some incorrect formulas/principles are used by Al, or correct ones are applied incorrectly
in a significant way. Or, the Al uses a principle that oversimplifies the problem compared to the
level of detail expected by the Ground Truth.

- 2: Major errors in formula/principle selection or application by Al. Fundamental physics con-
cepts are misunderstood by the Al

- 1: Completely inappropriate formulas/principles are used by Al, or relevant physics is entirely
ignored.

6. assumptions_made: (Score 1-5) Are Al assumptions (explicit or implicit) explicit, justified,
and reasonable *especially when compared to the Ground Truth’s scope and stated/implied as-
sumptions*?

- 5: All necessary assumptions made by the Al are explicitly stated, well-justified, and perfectly
reasonable for the problem context, AND do not contradict or bypass limitations identified by the
Ground Truth.

- 4: Most necessary assumptions made by the Al are stated and reasonable; some minor ones
might be implicit but obvious, or lack full justification but are acceptable and align with GT.

- 3: Some key assumptions in the Al solution are missing, not clearly stated, or questionable in
reasonableness. Or, the Al makes assumptions that simplify the problem in a way the Ground
Truth does not.

- 2: Major unreasonable assumptions are made by the Al, or critical assumptions are not stated,
leading to an incorrect or flawed solution path. This includes assumptions that allow solving parts
the Ground Truth indicates are unsolvable with the given data.
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- 1: Assumptions in the Al solution are entirely inappropriate, absent when clearly needed, or
lead to a trivialization/misrepresentation of the problem as defined by the Ground Truth.

7. overall_correctness: (Score 0-10) How correct and sound is the AI’s approach and final an-
swer(s) overall, *primarily judged by its fidelity to the Ground Truth’s interpretation, method, and
result for the specific problem*?

- 10: Perfect solution. The AI's method, reasoning, data interpretation, assumptions, and final
answer(s) align flawlessly or are an equally valid and rigorous path to the Ground Truth.

- 8-9: Excellent solution. Fundamentally correct with very minor, inconsequential flaws or slight
stylistic deviations from the Ground Truth, but arrives at the same essential understanding and
results.

- 6-7: Good solution. Generally correct approach by the Al, and largely correct answer(s), but
with some noticeable errors, omissions, or areas for improvement when compared to the Ground
Truth. The Al might use a valid but less ideal method.

- 4-5: Partially correct. The Al demonstrates some understanding but contains significant flaws in
reasoning, calculation, choice of principles, or makes unwarranted assumptions that lead it away
from the Ground Truth’s solution. This score is appropriate if the Al solves a simplified version
of the problem or misses key constraints implied by the Ground Truth.

- 2-3: Mostly incorrect. The Al shows fundamental misunderstandings of the problem or physics
principles as defined by the Ground Truth. A solution that uses

*different fundamental input data* than the Ground Truth CANNOT be rated higher than 3, even
if its internal logic is sound for its chosen data.

- 0-1: Completely incorrect, irrelevant, or no meaningful attempt made by the Al to solve the
problem as presented and solved by the Ground Truth.

Problem ID: problem_id

Ground Truth Solution (this is the reference correct solution):

ground_truth

Elaborated Solution Steps (this explains the Ground Truth):

Elaborated Solution Steps (Manual): elaborated_solution

Al-Generated Solution to Evaluate (compare this against the Ground Truth and Elaborated Solu-
tion): ai_solution

Provide your evaluation STRICTLY as a JSON object with the problem_id and scores for each
category listed above. Your entire response should be ONLY the JSON object, starting with {{
and ending with }3}.

Example JSON format:

{{
"problem_id": "{problem_id}",
"mathematical_accuracy”: <score_1_to_5>,
"logical_consistency”: <score_1_to_5>,
"completeness”: <score_1_to_5>,
"clarity_and_coherence”: <score_1_to_5>,
"formulas_principles”: <score_1_to_5>,
"assumptions_made": <score_1_to_5>,
"overall_correctness"”: <score_0_to_10>
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B Sample Conversation with o4-mini
(Multi-Agent Review)

Here, we have done multi agent review on a pro-
posed solution. The list of mistakes generated by
the review process is fed back to the proposer.

User: You are an expert on Physics. You solve
problems step by step while maintaining logical
consistency. Solve the following Physics problem:
A toroidal inductor with an inductance of 9.0 mH
encloses a volume of 0.0200 m>. If the average
energy density in the toroid is 70.0 J/m?, what is
the current through the inductor? Finally, write
the final answers in brief. Make sure you write all
equations in IXTRX.

Assistant (o4-mini - Initial Solution): Here is
the step-by-step solution: 1. Energy stored in an
inductor U = %LI 2 2. Relation between total en-
ergy and energy density U = uV where u = en-
ergy density, V' = volume 3. Equate the two ex-
pressions for U: %LI 2 = uV 4. Solve for the cur-

rent I: [ = M% 5. Substitute the given values:

L=9.0x10"3Hu="70.0J/m*V = 0.0200 m3
= IR = ot = VAT ~
17.6 A

Final Answer (brief): [ = /24" ~ 17.6 A

User (Feedback from Meta-Verifier based on
Reviewers): I have some feedback. The solution
assumes that the average energy density is uni-
formly distributed throughout the entire volume
of the toroid. In reality, for a toroid, the mag-
netic field varies inversely with the distance from
the center, leading to non-uniform energy density.
The formula used assumes uniform energy den-
sity, which is an approximation. This assump-
tion might not be accurate if the field varies sig-
nificantly within the toroid. After taking this into
account, please generate the solution once again.
Remember to write all equations in I&TEX.

[04-mini would then generate a revised solu-
tion, ideally addressing the feedback.]

C PHYSICSEVAL: Additional Details

C.1 Construction

To enable large-scale evaluation and training of
reasoning-capable language models in physics, we
curate a comprehensive dataset of 19,609 anno-
tated problems, sourced from 20 different author-
itative physics textbooks and verified educational
websites.

The dataset spans 19 different categories, in-
cluding Mechanics, Thermodynamics, Electro-
magnetism, Waves, Optics, Relativity, and Quan-
tum Physics.

Each problem is processed through the follow-
ing pipeline:

* Data Cleaning: Raw content is cleaned to
remove noise and inconsistencies.

* IXTgXAnnotation: All equations are con-
verted into I&TEXfor structured mathematical
representation.

* Step-Wise Elaboration: Using Gemini 2.5
Pro in “Think” mode, solutions are decom-
posed into logically coherent steps to en-
hance interpretability for LLMs. The pre-
existing, human-authored solution steps were
processed through Gemini 2.5 Pro. The
model’s function was not to ‘generate’ solu-
tions, but to act as a sophisticated tool for
stylistic refinement. Its role was strictly lim-
ited to improving textual clarity, correcting
grammar and typographical errors, and stan-
dardizing the syntactic structure of the expla-
nations. The core logic, mathematical formu-
lations, and problem-solving path remained
unchanged from the human-originated con-
tent.

* Metadata Tagging: Each problem is anno-
tated with topic category, difficulty level, and
key physical principles.

C.1.1 Train-Test Split

We apply a 90:10 split, resulting in 17,647 train-
ing and 1,962 test samples, supporting general-
ization across diverse reasoning tasks.

C.1.2 Human-Annotated Difficulty

The foundational difficulty labels (Easy, Medium,
Hard) were inherited directly from the source ma-
terial. When scraping problems from physics fo-
rums and educational websites, we preserved the
difficulty ratings assigned by the original posters
or instructors. These labels embody a human ex-
pert’s judgment of the conceptual and reasoning
demands of the problem.

C.1.3 Solution Length vs. Difficulty

The number of steps in the elaborated solution is
also stored. Some alternative solution methods

754



Field Name Strength / Purpose

Problem_ID Enables consistent referencing, indexing, and analysis across
models and experiments.

problem Maintains fidelity to real-world phrasing typically encountered

simplified_problem_statement

category

soft_labels
elaborated_solution_steps
alternative_solutions
problem_difficulty
final_answers_in_brief
steps

in education or exams.

Helps models/annotators focus on core reasoning, improving
interpretability.

Enables domain-wise evaluation and curriculum design.
Supports nuanced supervision and better error analysis.
Crucial for explainability and multi-step reasoning evaluation.
Promotes robustness and exposure to diverse reasoning.
Enables benchmarking and curriculum learning by difficulty.
Useful for accuracy checks and extractive answer training.
Helps with curriculum learning and complexity analysis.

Table 5: Description of fields in the physics dataset and their purposes

are also suggested. Although length and complex-
ity are not perfectly synonymous, in the context
of physics problem-solving, there is a demonstra-
ble correlation. Longer solutions typically indi-
cate problems that require more steps, more com-
plex formulas, additional conceptual justification,
or the synthesis of multiple physical principles. As
shown in Table 6 (extracted from our dataset anal-
ysis), we observe a mostly monotonic relationship
between annotated difficulty level and average so-
lution length (measured in tokens). This trend sup-
ports our use of solution length as a pragmatic
proxy for problem complexity.

Difficulty Count Metrics
Avg. Avg.
Solution  Solution
Steps Tokens
1 47 3.383 2050.787
2 489 3.589 2303.133
3 1687 3.528 2529.343
4 1450 3.675 2809.422
5 2797 3.616 3034.966
6 6718 3.852 3640.053
7 5465 4.126 4788.111
8 872 4.594 6523.017
9 81 4951 9209.000
10 3 4.858 9201.010

Table 6: Solution metrics grouped by difficulty.

This tessellates well with prior work, such as
in MATH (Hendrycks et al., 2021) or GSM8SK
(Cobbe et al., 2021), where solution length serves
as a computational indicator of reasoning depth.
We acknowledge that length isn’t perfect (e.g., a

concise but conceptually dense problem might be
underrated), so in future iterations, we could incor-
porate additional metrics like the number of dis-
tinct physical principles invoked or graph-based
reasoning complexity.

C.2 Data Model
The dataset has the following fields:

* Problem_ID: Unique identifier for the prob-
lem instance

e problem: Original, full problem text from
source material

e simplified_problem_statement: Para-

phrased version, stripped of complexity

* category: Topical category (e.g., Mechan-
ics, Optics)

* soft_labels: Tags like numerical, concep-
tual, multi-step, diagram

e elaborated_solution_steps:
step reasoning to the correct answer

Step-by-

e alternative_solutions: Different valid

solution methods

* problem_difficulty: Difficulty rating (1-
10)

e final_answers_in_brief: Final answer(s)
only, no reasoning

* steps: Number of steps in main solution

* source: The source of the problem
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C.3 Dataset Sources

e 21st Century Astronomy: Stars and
Galaxies, 4th Edition - by Laura Kay, Stacy
Palen, Brad Smith, and George Blumenthal
(Kay et al., 2016)

A Complete Resource Book for JEE Main
2018: Physics - by Sanjeev Kumar

Physics: Principles with Applications, 7th
Edition - by Douglas C. Giancoli (Giancoli,
2005)

Physics for Scientists and Engineers: A
Strategic Approach with Modern Physics,
4th Edition - by Randall D. Knight (Knight,
2015)

Mathematical Models in Biology, 1st Edi-
tion - by Leah Edelstein-Keshet (Edelstein-
Keshet, 2005)

Fundamentals of Physics, 10th Edition -
by David Halliday, Robert Resnick, and Jearl
Walker (Halliday et al., 2013)

Mathematical Methods in the Physical Sci-
ences, 3rd Edition - by Mary L. Boas (Boas,
2006)

Heat and Mass Transfer: Fundamentals
and Applications, Sth Edition - by Yunus
A. Cengel and Afshin J. Ghajar (Cengel and
Ghajar, 2014)

Materials Science and Engineering: An
Introduction, 8th Edition - by William D.
Callister Jr. (Callister and Rethwisch, 2022)

Fluid Mechanics in SI Units, 8th Edition
(2017) - by Frank M. White (White, 2012)

University Physics with Modern Physics,
14th Edition - by Hugh D. Young and Roger
A. Freedman (Young et al., 2010)

Analytical Dynamics, 1st Edition - by Haim
Baruh (Baruh, 2015)

Engineering Electromagnetics, 8th Edition
- by William H. Hayt Jr. and John A. Buck
(Hayt Jr and Buck, 2001)

Modern Physics, 2nd Edition - by Kenneth
S. Krane (Krane, 2019)
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¢ Introduction to Quantum Mechanics, 2nd

Edition - by David J. Griffiths (Griffiths and
Schroeter, 2018)

Quantum Mechanics: Concepts and Ap-
plications, 2nd Edition - by Nouredine
Zettili (Zettili, 2009)

Classical Mechanics: An Undergraduate
Text, 2006 Edition - by John R. Taylor (Tay-
lor, 2006)

Introduction to Special Relativity, 1989
Edition - by Robert Resnick (Resnick, 1989)

The Physics of Sound, 3rd Edition - by
Richard E. Berg and David G. Stork (Berg
and Stork, 2012)

Spacetime and Geometry: An Introduc-
tion to General Relativity, 2004 Edition -
by Sean M. Carroll (Carroll, 2004)



C.4 Solution Refinement Example

To provide full transparency regarding the dataset curation pipeline, this section provides illustrative
‘before’ and ‘after’ examples of solution refinement. As stipulated in Appendix C, the ‘Before’ text
represents the human-originated solution scraped from educational forums. The ‘After’ text is the final
version included in PHYSICSEVAL following syntactic and stylistic refinement by Gemini 2.5 Pro. This
example demonstrates that the model’s function was strictly limited to:

* Syntactic Correction: Fixing grammar, typos, and standardizing language.
* Formatting Consistency: Converting disparate equation formats into uniform IATEX.
* Structural Organization: Clearly delineating the existing reasoning into explicit, sequential steps.

Critically, the core scientific logic, the mathematical formulations, and the step-by-step reasoning path
remain unaltered from the human-authored original, confirming that the LLM’s role was solely that of a
sophisticated editor, not a content generator.

Poorly formatted human-generated solution

n

"ground_truth":
01
Given data
The value of the principal quantum number is, n = 17 .
02
Significance of number of points of zero and maximum probability does a matter wave have
In this question, the number of points of zero probability that a matter wave have can be
obtained by adding the number 1 to the principal quantum number. The number of points of
maximum probability would be the same as the principal quantum number.
03
(a) Determination of the number of points of zero probability
The expression to calculate the number of points of zero probability that a matter wave has
are-

n+1
ere, N

oI Il ©Z

is the number of points of zero probability does its matter have.
Substitute all the known values in the above equation.

17 + 1
=18

Thus, the number of points of zero probability that a matter wave has are 18 .
04

(b) Determination of the number of points of maximum probability

The expression to calculate the number of points of maximum probability that a matter wave
has is written as,

1o =z

a x
n
Here, N
ma x
is the number of points of maximum probability does its matter have.
For the given values, the above equation becomes-
N
ma x
=17
Thus, the number of points of maximum probability that a matter wave has is 17 .

s =

n
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Polished Dataset Entry

{

"Problem_ID": "5dcead6a-2738-4be4-a750-751a51a3675d",
"problem”: " An electron is trapped in a one-dimensional infinite potential
well in a state with quantum number $n = 17$. How many points of (a) zero
probability and (b) maximum probability does its matter wave have? ",
"simplified_problem_statement”: "An electron confined within an infinite
potential well is in the quantum state $n=17$. Determine the number of
locations where the probability of finding the electron is zero and the
number of locations where this probability is maximum.",
"category"”: "Quantum Mechanics and Atomic Physics”,
"soft_labels”: [

"infinite potential well”,

"quantum number”,

"probability”,

"matter wave”,

"nodes”,

"antinodes”
1,
"elaborated_solution_steps”: "Certainly! As a Professor of Physics, I’'d be
happy to elaborate on the provided solution step-by-step.\n\nxxStep 01:
Given data**\nThe value of the principal quantum number is, n = 17.\n\n**
Energy of the nth state:**\n$E_n = \\frac{n”*2 \\pi*2 \\hbar*2}{2mL*23}$\n\n**
Wavefunction:**x\n$\\psi_n(x) = \\sgrt{\\frac{2}{L}}\\sin\\left(\\frac{n\\pi
xHLI\\right)$\n\nx*Number of nodes:**x $N_0 = n + 1$\n\n**Number of
antinodes:*x $N_{max} = n$",
"final_answers_in_brief"”: [

"Number of points of zero probability: 18",

"Number of points of maximum probability: 17"
1,
"source”: "Fundamentals of Physics, 10th Edition - Halliday, Resnick, Walker

}

C.5 Further Information

Statistic problem_difficulty steps problem_tokens solution_tokens
Count 19609 19609 19609 19609
Mean 5.720282  3.883523 98.815595 3830.767403
Std Dev 1.445578  1.776616 78.899039 2458.892157
Min 1.000000  0.000000 1.000000 311.000000
25% 5.000000  3.000000 51.000000 2422.000000
50% (Median) 6.000000  4.000000 81.000000 3115.000000
75% 7.000000  5.000000 124.000000 4300.000000
Max 10.000000  23.000000 4380.000000 29931.000000

Table 7: Descriptive statistics for problem dataset
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Model

Problem Category Total Problems Test Set
Acoustics and Sound Engineering 589 58
Quantum Mechanics and Atomic Physics 1677 155
Thermodynamics and Heat Transfer 2451 234
Solid State Physics and Materials Science 789 78
Fluid Mechanics and Continuum Dynamics 936 95
Electromagnetism and Circuit Theory 2791 259
Optics and Wave Phenomena 1301 132
Classical Mechanics and Dynamics 4103 443
Nuclear and Particle Physics 766 76
Statistical Mechanics and Kinetic Theory 171 18
Astrophysics, Cosmology, and Space Science 961 105
Relativity and Gravitation 656 68
Mathematical Methods in Physics 1991 193
Biophysics and Chemical Physics 148 18
Environmental and Atmospheric Physics 43 5
Measurement, Instrumentation, and Estimation 171 17
Engineering and Applied Physics 41 5
Computational and Numerical Methods 13 1
Food Physics and Culinary Science 11 2

Table 8: Categories of problems and their amounts in the dataset

Multi-Agent PPS by Model and Physics Category

Physics Category

Figure 4: Multi-Agent PPS by Model and Physics Category
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Example from PHYSICSEVAL

Problem_ID

46b6dfac-1f0c-4e23-9230-798ce854e963

problem

A long homogeneous resistance wire of radius r, = 5 mm is being used to heat the air in a
room by the passage of electric current. Heat is generated in the wire uniformly at a rate of
5x 107" W/m3 ...... Take the thermal conductivity of the wire to be £k = 6 W/m - K.
simplified_problem_statement

A long wire with a radius of 5 mm generates heat uniformly at a rate of 5 x 107 W/m3. The outer
surface temperature of the wire is maintained at 180°C. Determine the temperature at a distance
of 3.5 mm from the center of the wire, given that the thermal conductivity of the wire is 6 W/m-K.
category

Thermodynamics and Heat Transfer

soft_labels

¢ Heat Generation

 Steady-State Heat Transfer

Radial Heat Conduction

Boundary Conditions

Thermal Conductivity

elaborated_solution_steps

Certainly! As a Professor of Physics, I’d be glad to elaborate on each step of the provided solution
to ensure you understand the underlying physics and mathematical operations thoroughly. Let’s
break down each step:

**Step 01: The heat generation ...... however needs correction for accurate temperature distri-
bution. But as instructed, I have elaborated on each step as provided in the solution, highlighting
the physics and math, without altering the given equations.

alternative_solutions

* One could use a finite element method to solve the heat equation numerically, especially if
the geometry or boundary conditions were more complex.

problem_difficulty
6
final_answers_in_brief

* Temperature at r=3.5 mm is 178.86 °C

steps

6

source

Heat and Mass Transfer: Fundamentals and Applications, Sth Edition - by Yunus A. Cengel and
Afshin J. Ghajar

problem_tokens

171

solution_tokens

11736
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