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Abstract

In this work, we propose DOUBLEDIPPER, a
novel In-Context-Learning method that auto-
matically generates few-shot examples for sev-
eral QA tasks by recycling contexts. Specifi-
cally, given an input context (1-3k tokens) and
a query, we generate additional query-output
pairs from the given context as few-shot exam-
ples, while introducing the context only once.
This ensures that the demonstrations are lever-
aging the same context as the target query while
only adding a small number of tokens to the
prompt. We further enhance each demonstra-
tion by instructing the model to explicitly iden-
tify the relevant paragraphs before the answer,
which improves performance while providing
fine-grained attribution to the answer source.
We apply our method on multiple LLMs and
obtain substantial improvements (+16 absolute
points on average across models) on various
QA datasets. Surprisingly, despite introduc-
ing only single-hop ICL examples, LLMs suc-
cessfully generalize to multi-hop QA using our
approach.

1 Introduction

Long contexts are prevalent in various domains,
ranging from legal documents and scientific articles
to lengthy reports and novels. These may consist of
a single extensive document or multiple passages,
typically retrieved through specific retrieval mech-
anisms (e.g., RAG (Lewis et al., 2020)).

Yet, while Large Language Models (LLMs) have
demonstrated impressive capabilities in a variety
of tasks including answering questions requiring
one or multiple reasoning steps, they often strug-
gle to answer simple questions when faced with
long contexts. Despite substantial engineering ef-
forts (Chen et al., 2023b) to extend the context win-
dow of LLMs to extremely long inputs (32k and
even 1M tokens), these models continue to struggle

*Work done during an internship at Google.

Figure 1: Comparison of traditional In-Context-
Learning (ICL) and our new method. In traditional
ICL (left), each example comprises a possibly lengthy
context, accompanied by a query and an answer, typi-
cally derived from the training dataset. Conversely, our
approach (right) simplifies each example to just a ques-
tion and an answer, both of which are generated directly
from the provided input context.

with much shorter inputs, comprising only a few
thousand tokens, especially when the relevant infor-
mation is buried in the middle of the context (Liu
et al., 2023b) or obscured by numerous irrelevant
details (Levy et al., 2024).

In-Context Learning (ICL) with few-shot exam-
ples may be an appealing solution to enhance LLM
performance in long contexts. However, apply-
ing ICL in real-world scenarios without access to
training data introduces significant challenges. De-
velopers need to maintain a demonstration pool
for retrieving semantically similar demonstrations
to any given query (Liu et al., 2022; Rubin et al.,
2022). Furthermore, ICL adds a substantial token
overhead to the prompt, an issue that becomes even
more pronounced with long-context inputs.

In this work, we introduce a novel method to
enhance the QA performance of LLMs. Our ap-
proach, termed DOUBLEDIPPER, leverages LLMs’
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In-Context Learning capability and is based on two
principles. First, instead of typical ICL, where
each few-shot example is standalone with a sepa-
rate lengthy context and a question-answer (QA)
pair, we propose to recycle the given input con-
text and automatically generate few-shot examples
from this context. Specifically, we randomly select
a few paragraphs from the given input context and
generate QA pairs for each passage. These gen-
erated QAs serve as demonstration examples and
are placed between the input context and the target
input question. Figure 1 illustrates the differences
between the traditional ICL with few-shot exam-
ples and DOUBLEDIPPER. Second, we enhance
each ICL demonstration by explicitly instructing
the model to identify relevant information prior to
generating an answer. We do so because, while
models are typically trained only on the down-
stream QA task and thus learn implicitly to iden-
tify relevant information segments and then rea-
son over these segments to formulate an answer,
our analysis (illustrated in Figure 2) indicates that
identifying relevant information represents a major
performance bottleneck for current models. Explic-
itly identifying relevant passages can be regarded
as a structured Chain of Thought that incentivizes
the model to pinpoint relevant information before
reasoning.

By generating few-shot demonstrations from
various sections of the input context while in-
structing the model to identify relevant passages,
DOUBLEDIPPER encourages the model to develop
deeper reading comprehension skills specific to
the given input evidence. This, in turn, allows the
model to answer subsequent queries with higher
accuracy. DOUBLEDIPPER presents several advan-
tages. First, recycling the same context for ICL
demonstrations ensures that the few-shot examples
refer to the exact same domain as the input ques-
tion, thus obviating the need for external retrieval
of similar demonstrations. Also, in terms of ef-
ficiency, since each example does not include its
own input context, our method adds to the orig-
inal prompt a minimal number of tokens, result-
ing in a substantially cheaper inference than tra-
ditional ICL. Finally, DOUBLEDIPPER generates
answers with attribution to relevant paragraphs, im-
proving the model’s lookup ability and offering
transparency, which substantially simplifies human
evaluation (Menick et al., 2022; Gao et al., 2023;
Liu et al., 2023a; Slobodkin et al., 2024).

We applied DOUBLEDIPPER to 12 LLMs, both

Figure 2: Performance of Gemini Flash on a sample of
the Lost-in-the-middle dataset (Liu et al., 2023b). The
X-axis is the position of the relevant passage in the con-
text. The baseline (blue line) displays a U-shaped curve,
performing well only when the relevant passage is at
the beginning or end of the input. The oracle (orange
line) shows significant performance gain when the rele-
vant passage ID is provided in the prompt, showing that
the identification of supporting evidence(s) is a major
challenge. DOUBLEDIPPER (our method, green line)
flattens this U-shaped trend.

commercial (Gemini Pro, Nano, Flash (Reid et al.,
2024); GPT-4 (Achiam et al., 2023)) and open-
source ranging from 2B to 70B parameters (Llama
3.1 (Dubey et al., 2024); Mistral (Jiang et al.,
2023); Mixtral (Jiang et al., 2024); Gemma, (Riv-
iere et al., 2024)). We evaluate our method on
7 QA datasets, including common multi-hop QA
datasets. Our experiments demonstrate that with
only 3 self-generated few-shot examples, DOU-
BLEDIPPER consistently outperforms the baseline
on our evaluation set by 16 absolute points on aver-
age across models. In addition, for some models,
DOUBLEDIPPER enhances the robustness to the
position of the relevant information within the text.
Interestingly, while our few-shot examples focus on
single-paragraph answers, DOUBLEDIPPER gener-
alizes well to multi-hop QAs and where the answer
requires information from multiple passages.

2 Background

Challenges in Long Context for Language Mod-
eling. LLMs have been well-documented to strug-
gle when input length grows (An et al., 2023),
and especially when it exceeds input lengths seen
during training (Anil et al., 2022). Various meth-
ods have been proposed to advance long-context
capabilities: Architectural, e.g., to augment the
embedding layer to cleverly extrapolate to unseen
lengths (Vaswani et al., 2017; Press et al., 2021;
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Caciularu et al., 2022; Tan et al., 2024); via data,
e.g., to incorporate longer inputs and more chal-
lenging long-context scenarios into training (Chen
et al., 2024b; He et al., 2024; Chen et al., 2024a);
via attention intervention (Hsieh et al., 2024) or
by considering question likelihood as a signal for
prompt reordering (Liu et al., 2024b). However,
this challenging problem stubbornly remains in
competitive models (Liu et al., 2023b; Bishop et al.,
2024; Levy et al., 2024). In contrast to the above
methods, DOUBLEDIPPER is a simple method that
does not involve training or architectural changes.

Many benchmarks targetting long-context have
been proposed, such as Scrolls and Zero-
Scrolls (Shaham et al., 2022, 2023), Loogle (Li
et al., 2023), LongBench (Bai et al., 2023b), L-
Eval (An et al., 2024), inter alia. The problem of
designing informative and reliable benchmarks in
long-context is an an active, ever-changing area of
research (Goldman et al., 2024; Yen et al., 2024).
We describe the most relevant evaluation bench-
marks used in this work in Section 4.

In-Context Learning In-context Learning (ICL)
consists of adding demonstrations to the prompt
in order to steer or improve model behavior (Min
et al., 2022). These demonstrations are either hand-
crafted (Song et al., 2022), or retrieved from a large
set of training examples (Liu et al., 2022; Rubin
et al., 2022; Paranjape et al., 2023). While ICL
provides a flexible approach to learn new tasks
without updating parameters (Brown et al., 2020b;
an Luo et al., 2024), applying ICL in real-world
scenarios is challenging notably because there is
no available training data for each user query.

More closely related to our work, a few recent
studies propose to prompt LLMs for automatically
generating in-context demonstrations for various
short context tasks. For instance, Kim et al., 2022
focus on sentence classification tasks and prompt
LLMs to generate full demonstrations conditioned
on a label (e.g., “write a negative review”) and
(Chen et al., 2023a; Yasunaga et al., 2024; Li et al.,
2024) generate relevant exemplars to the query for
reasoning problems. While effective for reason-
ing tasks with short contexts, these methods are
not directly applicable to long-context scenarios
because LLMs would need to generate not just a
question and an answer, but also an entire long
context for each demonstration, which is both com-
putationally expensive and prone to hallucination.
DOUBLEDIPPER addresses these challenges by in-

troducing a novel and efficient strategy: rather than
generating entirely new contexts, it recycles the in-
put context and generates only the question-answer
(QA) pairs needed as demonstrations.

3 DOUBLEDIPPER

Given an input text C composed of n paragraphs
C = {p1, p2, ..., pn} and a question q, the goal is to
generate the answer a and identify the set(s) of para-
graphs that support the answer S = {s1, ..., sk}.
The number of the supporting paragraphs is not
known in advance and can be one or more.

The core principles of DOUBLEDIPPER involve:
(1) recycling the input context to automatically gen-
erate few-shot examples, and (2) “teaching” the
model via in-context learning (ICL) to explicitly
pinpoint the supporting paragraphs before generat-
ing the answer.

Figure 3 illustrates DOUBLEDIPPER. Starting
with the input paragraphs C, we initially select k
paragraphs at random (e.g., paragraphs 15, 5, and
17, for k := 3). For each chosen paragraph, we
prompt the model to formulate a question that per-
tains to the specific paragraph, accompanied by an
appropriate answer (for further details on prompt
specifications, refer to Appendix B). Each gener-
ated QA pair is directly associated with its origin
paragraph, enabling us to assemble the following
structured in-context demonstration, shown as the
DOUBLEDIPPER block in Figure 3:

Question : qi

Evidence : pi

Answer : ai

Here, pi indicates the index of the paragraph
associated with the QA pair (qi, ai). Given
a context C and a test question q, we com-
pile a list of generated demonstrations Ddemo =
(q1, p1, a1, . . . , qk, pk, ak) to predict the output
y ∼ pθ(y | C,Ddemo , q) where the output y is
the concatenation of one or more indices of the
supporting paragraph(s) S and the answer a.

Unlike traditional few shot examples that instruct
the model about a specific task, DOUBLEDIPPER

aims to coach the model on how to “handle” the in-
put context. This is achieved by guiding the model
to explicitly localize relevant information before
generating the answer. Also, by randomly sam-
pling multiple paragraphs from the input, DOU-
BLEDIPPER guarantees that the ICL demonstra-
tions involve reading different parts of the context,
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Instructions: […]

[0]: The Parc botanique de Neuvic (6 hectares) is a botanical garden located in Neuvic-Sur-L'Isle […]

[5] Santa Cruz de las Flores is the name of a town located south of Tlajomulco de Zuñiga, in the state of Jalisco, 
Mexico. It has been called Xochitlan, meaning "Place of Flowers" 
[6]: Graft-De Rijp is a former municipality in the Netherlands, in the province of North Holland. 

[15]: The Jardin Botanique de l'Université de Strasbourg (3.5 hectares) is a botanical garden at 28 rue Goethe, 
Strasbourg, Bas-Rhin, Alsace, France. It is open daily without charge.

[17]: Marquette is an unincorporated community in [...], located on Illinois Route 29, east of De Pue.
[18]: The capital and seat of the provincial government is Haarlem, and the province's largest city is the 
Netherlands' capital Amsterdam. The King's Commissioner of North Holland is Johan Remkes, serving since 2010.

See below a few examples:
Question: Is there an admission fee for the Jardin botanique de l'Université de Strasbourg?
Evidence: [15]
Answer: No, it is open daily without charge.
Question: What is the name of the town located south of Tlajomulco de Zuñiga?
Evidence: [5]
Answer: Santa Cruz de las Flores
Question: What is the name of the community that is west of Marquette?
Evidence: [17]
Answer: De Pue

Who was in charge of the state where Graft-De Rijp is located?
Evidence: [6, 18]
Answer: Johan Remkes
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Figure 3: Example of DOUBLEDIPPER applied to the MuSique dataset. Given 20 passages as input, DOUBLEDIPPER
randomly selects 3 passages (specifically passages 15, 5, 17) and automatically generates a question-pair for each
one. As each QA is associated with its respective paragraph, we form the demonstrations to instruct the model to
identify the relevant passage(s) and the correct answer.

allowing the model to better comprehend the in-
put text. Beyond improving the performance of
the QA task, instructing the model to provide the
supporting paragraphs offers transparency and sub-
stantially eases human evaluation.

DOUBLEDIPPER offers several advantages.
First, as each example in the demonstration consists
only of a question, an answer and the ID of relevant
passage, the number of added tokens due to the ex-
tra demonstrations is minimal (5%), leading to a
low additional cost and computation compared to
the traditional In-Context-Learning. Furthermore,
by reusing the same context to generate demon-
strations, our approach guarantees that all few shot
examples are derived from the exact same domain
as the input query (Rubin et al., 2022).

4 Experiments

Datasets We apply our method to various
datasets, each presenting its own domain-specific
challenges. We selected these datasets because the
supporting paragraphs are also annotated. Overall
our evaluation set includes 5.5K instances, with
statistics of each dataset given in Table 1.

The Lost-in-the-middle dataset (Liu et al.,

Dataset # Instances Avg. # tokens

Lost-in-the-middle 2,500 2,815
FLenQA 1,500 3,225
HotpotQA 500 1,646
2Wiki 500 1,222
MuSiQue 500 2,549

Table 1: Evaluation datasets in our experiments. The
average number of tokens is computed according to
Gemma’s tokenization of the vanilla prompt.

2023b) includes examples from NaturalQuestions-
Open (Kwiatkowski et al., 2019). Each instance
consists of twenty Wikipedia passages, with only
one passage containing the answer to the query.
The remaining passages are distractors that are lex-
ically similar but do not contain the answer. To
assess the robustness of LLMs to the position of
relevant information, Liu et al. (2023b) evaluated
cases where the relevant passage appeared in posi-
tions 1, 5, 10, 15, and 20. Following their method-
ology, we sampled 500 instances for each position,
resulting in a total of 2,500 instances.

FLenQA (Levy et al., 2024) is a benchmark
that includes simple questions with answers of ei-
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ther “True” or “False” based on two key sentences.
FLenQA includes three subtasks. The first subtask
is MonoRel, where each instance asks whether a
transitive relation between two entities holds based
on the context (e.g., "Is X younger than Y?" based
on the sentences "X is younger than Z" and "Z is
younger than Y"). The second subtask, PIR, in-
volves one key sentence indicating that a person
is in a specific room and another key sentence de-
scribing a property of this room. The question
asks whether the person is in a room with the de-
scribed property. The final subtask is SRT, based
on RuleTaker (Clark et al., 2020). Each instance
consists of a logical rule, two sentences each intro-
ducing a fact, and a question over the rule and facts.
For each subtask, FLenQA includes contexts with
varying lengths, from 50 to 3,000 tokens, by simply
adding irrelevant text, demonstrating consistent per-
formance degradation with increased input length.
In our experiments, we sampled 250 instances for
each subtask with input lengths of 2,000 and 3,000
tokens, leading to a total of 1,500 instances.

In addition, we evaluate our method on com-
mon multi-hop QA benchmarks. We sampled
500 instances from HotPotQA (Yang et al., 2018),
2Wiki (Ho et al., 2020), and MuSiQue (Trivedi
et al., 2021). In all these datasets, the input text
includes multiple passages, and models need to per-
form at least two steps of reasoning over different
passages in order to answer the question.

Models We apply DOUBLEDIPPER to a vari-
ety of models, both commercial and open-source.
The commercial models include Gemini 1.5 Pro,
Gemini 1.5 Flash (Reid et al., 2024) and GPT-
4o-mini (Achiam et al., 2023). The open-source
models we tested are Llama 3.1 8B, Llama 3.1
70B (Dubey et al., 2024), Gemma 2B (v2), Gemma
9B (v2) and Gemma 27B (Riviere et al., 2024),
Mistral-7B-Instruct (v0.2) (Jiang et al., 2023),
Mixtral-8x7B-Instruct (v0.1) (Jiang et al., 2024)
and Mistral Nemo Instruct 24071.

Few-shot generation in DOUBLEDIPPER is an
auxiliary task and should ideally run in an efficient
time without requiring heavy resources. Therefore,
in our main experiments, we employ Gemma 2B to
generate the demonstrations at it is the smallest and
most efficient model used in our experiments. See
Section 6 for an ablation analysis of the effect of the
chosen model for generating the demonstrations.

1https://mistral.ai/news/mistral-nemo/

Baselines We evaluate DOUBLEDIPPER against
two main baselines. The first is a vanilla base-
line that takes as input the entire context C and the
query q and generates only the answer a, a com-
mon prompting strategy in recent studies on long
context (Liu et al., 2023b; Levy et al., 2024). The
second baseline, Zero-shot + Evidence Retrieval,
prompts the model in a zero-shot manner to first
identify relevant passages before generating the an-
swer, following common practices in generating
with attribution (Gao et al., 2023; Slobodkin et al.,
2024; Fierro et al., 2024).

Evaluation We evaluate each dataset with the
original evaluation metrics. Namely, we report
Accuracy for Lost-in-the-middle (Liu et al., 2023b)
and FLenQA (Levy et al., 2024), and Token F1 for
HotPotQA (Yang et al., 2018), 2Wiki (Ho et al.,
2020) and MuSique (Trivedi et al., 2021).

In addition to the task’s accuracy, we also evalu-
ate the performance of the identification of the sup-
porting paragraph(s), by computing the F1 score on
the predicted set of supporting passages compared
to the ground truth (Yang et al., 2018; Ho et al.,
2020; Trivedi et al., 2021).

Implementation Details We randomly select
three passages from the input, each containing at
least two sentences, and ask the model to generate
a single QA pair for each passage. See Section 6
for an analysis of the number of self-generated
demonstrations on the performance

5 Results

Result 1: DOUBLEDIPPER offers a substantial
performance boost. Table 2 presents the QA per-
formance of the baseline, Zero-shot + Evidence Re-
trieval and DOUBLEDIPPER on our evaluation set.
For brevity, we report the results of eight models
here and four models in Appendix C in Table 8,
which show similar trends. The results first show
that prompting models to explicitly identify the
relevant paragraphs before generating the answer
(Zero-shot + Evidence Retrieval) leads to a perfor-
mance improvement of 9.7 points on average across
models over the vanilla baseline. DOUBLEDIPPER,
leveraging demonstrations generated with the effi-
cient Gemma 2B parameters, offers an additional
substantial boost of 6.3 points for all models on
average, culminating in an overall improvement
of 16 absolute points over the vanilla baseline.
Notably, while DOUBLEDIPPER produces simple
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Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Pro (vanilla) 60.5 24.9 95.0 97.6 64.4 46.7 71.6 23.1
Zero-shot + Evidence Retrieval 62.3 32.5 94.6 95.8 62.4 49.6 74.8 26.5
DOUBLEDIPPER 70.4 46.8 97.4 99.0 79.6 60.9 72.4 36.4

Gemini Flash (vanilla) 42.9 10.2 70.0 86.0 57.6 10.0 59.5 7.3
Zero-shot + Evidence Retrieval 58.2 30.2 78.8 90.6 65.0 44.9 67.4 30.2
DOUBLEDIPPER 66.1 48.0 85.8 95.0 68.6 60.6 65.0 39.7

Gemma 2 9B (v2) (vanilla) 44.0 11.4 74.8 81.8 55.6 13.8 61.0 9.3
Zero-shot + Evidence Retrieval 58.7 38.6 82.0 83.4 59.4 56.1 64.4 26.8
DOUBLEDIPPER 61.2 41.7 84.0 95.0 51.4 61.2 61.8 33.3

Gemma 2 27B (v2) (vanilla) 48.0 11.2 85.2 79.2 63.8 14.3 62.4 19.9
Zero-shot + Evidence Retrieval 59.7 34.3 90.6 87.4 59.0 51.7 65.2 29.8
DOUBLEDIPPER 64.2 42.0 92.0 96.4 58.6 64.2 62.5 33.9

Llama 3.1 8B (vanilla) 37.2 11.8 56.2 52.2 48.6 20.7 63.5 7.4
Zero-shot + Evidence Retrieval 53.1 42.2 71.8 65.4 50.8 55.3 62.0 24.5
DOUBLEDIPPER 59.9 38.7 91.2 90.6 51.0 59.3 58.1 30.1

Llama 3.1 70B (vanilla) 67.5 46.5 93.2 95.6 83.2 57.0 69.6 27.6
Zero-shot + Evidence Retrieval 71.0 57.6 97.8 97.6 81.0 62.0 71.5 29.5
DOUBLEDIPPER 72.9 62.3 98.6 98.8 73.0 71.5 66.0 40.2

Mistral 7B (v0.3) (vanilla) 37.4 14.1 59.2 57.4 50.2 15.8 60.8 4.6
Zero-shot + Evidence Retrieval 44.0 23.8 66.2 62.4 49.6 34.1 58.6 13.6
DOUBLEDIPPER 51.0 28.6 68.4 88.8 50.6 43.4 60.7 16.7

Mistral-Nemo 44.0 17.2 72.6 67.0 51.0 28.9 59.7 11.9
Zero-shot + Evidence Retrieval 46.7 29.1 59.8 67.2 51.0 39.8 60.6 19.4
DOUBLEDIPPER 53.3 38.7 58.0 81.0 51.4 51.9 62.9 29.5

Table 2: Accuracy of the QA task for the vanilla baseline (prompting the model to only answer the question),
Zero-shot + Evidence Retrieval (prompting the model to explicitly identify the relevant passage(s) before generating
the answer) and DOUBLEDIPPER with 3 demonstrations generated by Gemma 2 2B.

QAs answerable from a single paragraph, it always
surpasses the baseline in multi-hop QA datasets
(HotPotQA, 2Wiki and MuSique). Likewise, DOU-
BLEDIPPER outperforms the baseline also on most
FLenQA datasets (PIR, MonoRel and SRT), which
involve synthetic True/False questions although the
demonstrations in DOUBLEDIPPER are typically
simple factoid questions.

While DOUBLEDIPPER exhibits strong perfor-
mance overall, we observe nuanced behavior on
the SRT dataset, with performance gains varying
across models (improvement for Gemini, Llama
3.1 8B, Mistral 7B and Mistral Nemo). This dis-
crepancy is likely due to the fact that SRT demands
a specific type of reasoning, where models must
reason over both a rule (e.g., “If X is big and X is
good then X is tall”) and dispersed facts (e.g., “Erin
is Good” and “Erin is furry”) to determine whether
a statement (e.g., “Erin is tall”) can be derived from
the context. Finally, the Lost dataset highlights a
specific characteristic of DOUBLEDIPPER: while
the baseline’s known positional bias (Liu et al.,
2024a) masks the average improvement for some
models, DOUBLEDIPPER substantially boost per-
formance when relevant information appear in the
middle of the context (further elaborated in Result

3), demonstrating its efficacy in mitigating posi-
tional biases.

Result 2: Learning to retrieve the evidence(s)
with DOUBLEDIPPER is more effective in com-
mercial and large open source models. Table 3
presents the performance of the supporting para-
graphs prediction for the Zero-shot + Evidence Re-
trieval and DOUBLEDIPPER on our evaluation set.
For all commercial models, Llama 3.1 70B and the
recent Mistral-Nemo-Instruct-2407, DOUBLEDIP-
PER predicts better the supporting paragraphs than
in the zero-shot setting (+2.6 F1 for Gemini Pro,
+3.4 F1 for Gemini Flash, +2.7 F1 for Llama 3.1
70B and +6.4 F1 for Mistral-Nemo-Instruct-2407).
Conversely, DOUBLEDIPPER slightly hurts the per-
formance of common open source models (e.g.,
-2.8 F1 for Mistral, -0.3 F1 for Llama 3.1, -1.3 F1
for Gemma 27B, etc.).

This discrepancy appears to stem from shortcut
learning (Tang et al., 2023). Indeed, our demon-
strations in DOUBLEDIPPER use a single evidence
paragraph, and smaller models tend to overfit to
this pattern, learning to retrieve only one passage
even when multiple are needed. For instance, under
DOUBLEDIPPER, Gemma 2 9B retrieves an aver-
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Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Pro
Zero-shot + Evidence Retrieval 83.7 96.7 97.7 97.5 62.8 92.1 63.6 75.3
DOUBLEDIPPER 86.3 94.4 99.8 97.1 80.9 90.0 66.4 75.4

Gemini Flash
Zero-shot + Evidence Retrieval 75.7 82.3 90.5 72.6 70.4 80.9 67.3 65.9
DOUBLEDIPPER 79.1 83.7 98.3 80.2 71.2 84.6 66.1 69.5

Gemma 2 9B
Zero-shot + Evidence Retrieval 61.9 76.7 69.3 60.3 43.2 76.5 51.5 55.9
DOUBLEDIPPER 57.0 74.2 52.5 59.0 23.1 78.4 55.3 56.8

Gemma 2 27B
Zero-shot + Evidence Retrieval 85.1 96.2 97.9 96.1 84.1 90.7 53.4 77.3
DOUBLEDIPPER 83.8 97.5 85.4 97.6 74.9 93.0 59.7 78.8

Llama 3.1 8B
Zero-shot + Evidence Retrieval 61.7 53.2 86.5 66.9 67.8 63.2 41.1 53.5
DOUBLEDIPPER 61.4 68.9 71.4 54.9 52.8 73.7 53.0 54.8

Llama 3.1 70B
Zero-shot + Evidence Retrieval 85.1 98.2 98 89.2 82.3 93.9 52.5 81.6
DOUBLEDIPPER 87.8 98.6 100 92.8 83.8 96.5 61.6 81.6

Mistral 7B (v0.3)
Zero-shot + Evidence Retrieval 46.6 62.4 49.8 46.2 17.5 64.0 43.4 43.0
DOUBLEDIPPER 43.8 63.4 33.8 42.5 4.2 66.7 55.6 40.2

Mixtral 7x8B v(0.1)
Zero-shot + Evidence Retrieval 60.0 72.4 69.4 64.6 43.4 76.9 40.6 52.4
DOUBLEDIPPER 58.9 70.4 81.6 63.6 18.3 75.0 50.4 53.2

Mistral-Nemo
Zero-shot + Evidence Retrieval 69.7 91.1 85.0 76.9 35.9 88.8 39.8 70.3
DOUBLEDIPPER 76.1 95.9 95.1 81.5 39.0 93.7 54.8 73.0

Table 3: Performance (F1) of supporting paragraph(s) prediction.

age of only 1.2 paragraphs (compared to 2 in the un-
constrained” zero-shot setting), and Llama 3.1 8B
predicts 1.5 (compared to 3.5). Conversely, larger
models like Gemini Pro do not exhibit this behav-
ior, correctly generalizing to predict an average of
2 evidence paragraphs even with single-paragraph
demonstrations. This hypothesis is further sup-
ported by the “Lost” dataset, which requires only a
single evidence paragraph. On this dataset, nearly
all models, including smaller ones, benefit substan-
tially from DOUBLEDIPPER (e.g., +12.2 F1 for
Mistral 7B). Notably, despite their suboptimal re-
trieval performance on multi-evidence tasks, these
smaller models still produce better final answers
with DOUBLEDIPPER than the zero-shot baseline,
highlighting the net benefit of the approach.

Result 3: DOUBLEDIPPER makes models more
robust to the position of relevant information.
Following Liu et al. (2023b), Figure 4 shows the
performance of Gemma 2 9B, Mixtral 8x7B and
Gemini Flash for both the baseline and DOU-
BLEDIPPER on our sample of the Lost-of-the-
middle dataset, according to the position of the doc-
ument that contains the answer. See Appendix D
for the performance curve of the other tested mod-
els, which show similar trends.

Overall, the performance curve for DOUBLEDIP-
PER consistently surpasses the baseline when the
relevant information appears “in the middle” and
sometimes also at the beginning and/or the end
(e.g., Gemini Flash). This variation can likely be

k = 1 k = 3 k = 5 k = 10

Gemini Nano 60.0 62.1 62.2 62.3
Gemini Flash 65.3 66.1 65.9 66.1
Gemma 2B (v2) 47.0 49.5 49.6 49.9
Gemma 9B (v2) 58.7 61.2 61.4 61.3
Llama 3.1 57.7 59.9 60.6 61.4
Mistral 7B (v0.3) 48.9 51.0 51.1 51.4
Mixtral 7x8B (v0.1) 49.3 52.2 51.7 52.2

Table 4: Average performance on our evaluation set
with various numbers of self-generated few shot demon-
strations (k) in DOUBLEDIPPER. See Appendix E.1 for
the results on each evaluation dataset.

attributed to the inherent biases of LLMs towards
the beginning and end of inputs, while adding in
context demonstrations mitigates this bias. This
reveals that beyond improving performance, DOU-
BLEDIPPER can make the model more robust to
the position of the relevant document, likely due
to the explicit retrieval of relevant passages before
generating the answer.

6 Ablation Studies

How many examples are needed? In Table 4,
we explore for some models the impact of varying
k, the number of self-generated few-shot examples
in DOUBLEDIPPER to 1, 3, 5, and 10. On aver-
age, a single demonstration already provides an im-
provement over the baseline. Three demonstrations
adds another boost of 2 points, while increasing
the number of demonstrations to 5 and 10 leads
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Figure 4: Performance (accuracy) of Gemma 2 9B, Mixtral 8x7B and Gemini Flash with and without DOUBLEDIP-
PER on our sample of the Lost-in-the-middle dataset (Liu et al., 2023b) according to the position of the document
that contains the answer.

Gemma 2B Self Gemini Pro

Gemini Pro 70.4 71.6 71.6
Gemini Flash 66.1 67.5 68.1
Gemini Nano 62.1 61.7 62.8
Gemma 2B 49.5 49.5 51.0
Gemma 9B 61.2 62.0 63.5
Llama 3.1 59.9 60.1 61.5
Mistral v0.3 51.0 49.8 52.6
Mixtral 52.2 49.8 54.4

Table 5: Average performance of DOUBLEDIPPER with
different models for generating the demonstrations. See
Appendix E.2 for the results on each evaluation dataset.

to a marginal improvement. This finding is in line
with previous work (Brown et al., 2020a; Min et al.,
2022). We conclude that a small number of exam-
ples carries most of the benefit with our method,
but given additional computation budget, adding
more examples does carry additional minor benefit.

DOUBLEDIPPER without identification of sup-
porting paragraphs To ablate the second core
principle of DOUBLEDIPPER—the explicit identi-
fication of supporting paragraphs prior to answer
generation—we prompt open-source models with
self-generated few-shot examples consisting solely
of question-answer pairs, without instructing the
model to retrieve the relevant passage(s). These
demonstrations may undermine DOUBLEDIPPER’s
objective by encouraging models to produce an-
swers without grounding them in the source text.
The results confirms our hypothesis: removing evi-
dence identification consistently degrades QA per-
formance compared to the full DOUBLEDIPPER

approach. When averaging results across models
and datasets, this omission leads to a substantial
performance drop from 54.8 to 46.6. Detailed re-
sults are provided in Appendix E.3, Table 11.

Investigating the effect of the few-shot generator
To understand the impact of the default chosen

Baseline ICL DOUBLEDIPPER

Gemma 2 9B 44.0 51.0 61.2
Gemma 2 27B 48.0 54.9 64.2
Llama 3.1 8B 37.2 40.7 59.9
Llama 3.1 70B 67.5 65.4 72.9
Mistral v0.3 37.4 42.0 51.0
Mixtral v0.1 42.6 45.1 52.2
GPT 4o mini 51.3 56.1 60.8

Table 6: Comparison of traditional In-Context Learning
(ICL) where each demonstration example comprises a
full text, a question and an answer from an external
dataset to DOUBLEDIPPER where the demonstrations
contain only question-answer pairs, automatically gen-
erated on the same input text.

model (Gemma 2 2B) for generating the demon-
strations, we conducted two additional experiments.
The first experiment is SELF in which we use the
same model for generating the demonstrations and
for answering the original question. In the second
experiment, we generate the demonstrations with
the best LLM used in our experiments, namely
Gemini Pro. The average results are reported in
Table 7 and the performance for each evaluation
dataset is presented in Appendix E.2. The re-
sults show that generating the demonstrations with
Gemma 2 or SELF achieves similar performance,
while Gemini Pro leads to a consistent increase in
performance across models, indicating that future
better models can improve further the performance.
Please refer to Appendix E.2 for additional abla-
tions on the few-shot generation.

DOUBLEDIPPER vs. Traditional ICL Another
alternative to use ICL in practice is to preprend
each QA prompt by a fixed set of QA demon-
strations, each composed of a context, a question
and an answer. Although the demonstrations are
not necessarily from the same distribution as each
user query, this common practice is helpful for
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Baseline Correct Incorrect

Gemma 9B 58.2 61.2 59.8
Gemma 27B 59.7 64.2 59.3
Llama 3.1 8B 53.1 59.9 57.9
Mistral Nemo 44.0 51.0 49.1

Table 7: Comparison of the baseline to DOUBLEDIPPER
with correct and incorrect demonstrations.

task recognition and for an overview of the overall
format (Min et al., 2022; Pan et al., 2023). For
the demonstrations, we randomly selected 3 ex-
amples from the SQuAD 2.0 dataset (Rajpurkar
et al., 2018). We compare the average results of
the baseline, ICL and DOUBLEDIPPER in Table 6
and report full results in Appendix E.4 in Table 12.
While ICL is effective and outperforms the base-
line, DOUBLEDIPPER provides an additional per-
formance boost of 9.5 points on average.

Qualitative analysis: Correctness of the gener-
ated QA pairs We manually analyze 150 QAs
generated by Gemma 2B as demonstrations. Our
review confirms that 93.5% of these self-generated
QAs are correct, meaning that the question is mean-
ingful and the answer could be found in the corre-
sponding paragraph.

DOUBLEDIPPER with incorrect demonstrations
To further investigate the limitations of DOU-
BLEDIPPER, we prompted Gemma 2 2B to gen-
erate a question and an incorrect answer, and then
used these QA pairs as demonstrations. The results
in Table 7 are inconclusive: some models (Gemma
2 9B and 27B) show negligible change, while oth-
ers (LLama 3.1 8B and Mistral Nemo) benefit from
incorrect demonstrations, though they still substan-
tially underperform DOUBLEDIPPER with correct
demonstrations. As shown in previous work (Min
et al., 2022), the structure of the demonstrations
might still provide useful meta-level guidance for
the task format.

7 Conclusion

We introduce DOUBLEDIPPER, a simple method
for enhancing the performance of LLMs. By recy-
cling the input context to generate the demonstra-
tions, DOUBLEDIPPER successfully addresses the
practical challenges of ICL and outperforms mul-
tiple baselines in various QA settings, including
distractor passages in the input, True/False ques-
tions and multi-hop QA.

8 Limitations

Our work has several limitations.
First, our current work focuses on multiple vari-

ants of QA tasks (distractor passages, True/False
and multi-hop), where the demonstrations teach the
models to identify specific evidence paragraph(s)
and extract answers. Future research can extend
our work to other QA settings (e.g., information
seeking) and additional tasks (e.g., summarization).

Second, our evaluation set is constrained to in-
stances that are solely in English and range between
1,000 to 4,000 tokens. While this demonstrates
the method’s effectiveness, its scalability and per-
formance on much longer contexts (e.g., 100k+
tokens) and in multilingual settings remain open
questions.

Finally, while DOUBLEDIPPER is significantly
more token-efficient than traditional ICL, the ini-
tial step of generating demonstrations introduces
a computational and latency overhead compared
to a zero-shot baseline. This presents a trade-off
between inference cost and the substantial perfor-
mance gains our method provides.
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A Appendix

B Prompts

Figure 5 shows the zero-shot prompt we use
for generating the question-answer pairs in DOU-
BLEDIPPER. For the QA prompts, we use the same
instructions and prompt template as the original
papers (Lost-in-the-middle and FLenQA) and add
a simple line for the instructions in other multi-hop
QA datasets: “Please answer the question based
on the given passages below.”. For MuSique, since
the dataset includes questions that are not answer-
able, we add the following sentence to the prompt:

“If the question can’t be answered given the given
passages, please write "unanswerable"”.

C Additional Results

Table 8 shows the QA performance of the baseline,
Zero-shot + Evidence Retrieval and DOUBLEDIP-
PER on our evaluation set when applied to Gemma
2B, Gemini Nano and GPT-4o-mini. Her

D Lost-in-the-middle

Figure 6 shows the QA accuracy of the models
Gemma 2 2B, Mistral 7B, Gemini Nano and Gem-
ini Pro on our subset of the “Lost-in-the-middle”
dataset.

E Analysis

E.1 Impact of the Number of Demonstrations
in DOUBLEDIPPER

Table 9 presents the results of DOUBLEDIPPER

with 1, 3 (main experiment in the paper), 5 and
10 generated demonstrations. For all these ex-
periments, the demonstrations were generated by
Gemma 2 2B.

Figure 7 shows the QA accuracy of DOU-
BLEDIPPER on “Lost” according to the position
of the relevant passage for each k ∈ {1, 3, 5, 10}.

E.2 Impact of the few-shot generator

Table 10 presents the detailed QA performance of
all models with different models for generating
DOUBLEDIPPER’s demonstrations. As mentioned
in the paper (Section 6), generating the demonstra-
tions with the best model (ie. Gemini Pro) achieves
the best performance overall.

Can we generate demonstrations with smaller
LLMs? We next study whether smaller, more

efficient models could be used to generate demon-
strations for DOUBLEDIPPER. To do this, we
created demonstrations using two smaller LLMs,
Gemma 3 1B (Kamath et al., 2025) and Qwen 2.5
0.5B (Bai et al., 2023a), and provid them to a sub-
set of our evaluation models (Llama 3.1, Gemma
2 9B, Gemma 2 27B, and Mistral Nemo). The
results show that DOUBLEDIPPER maintains its
advantage over baselines, exhibiting only a modest
performance drop of less than 2 points compared
to using demonstrations from the larger Gemma 2
2B. This finding suggests that DOUBLEDIPPER re-
mains effective even when its demonstration gener-
ation component is replaced with more lightweight
models.

Can DOUBLEDIPPER benefit from incorrect
demonstrations? To answer this question, we
prompt Gemma 2 2B to generate a question and
an incorrect answer and provide these demonstra-
tions to a sample of our tested models (Llama
3.1, Gemma 2 9B, Gemma 2 27B and Mistral
Nemo). The results are mixed and not conclusive:
some models barely benefit or suffer from incor-
rect demonstrations (+1.6 for Gemma 2 9B, -0.4
for Gemma 2 27B), while others somehow bene-
fit from incorrect demonstrations (+4.8 for Llama
3.1 8B and +5.1 for Mistral Nemo over the base-
line). Critically, however, all models still perform
substantially worse than DOUBLEDIPPER with cor-
rect demonstrations. A possible explanation for the
unexpected gains is that even incorrect examples
provide useful structural guidance for the task for-
mat, a phenomenon observed in prior work (Min
et al., 2022).

E.3 Impact of the identification of supporting
paragraphs in the QA generation

Table 11 compares the performance of DOU-
BLEDIPPER to DOUBLEDIPPER without evidence
identification.

E.4 In-Context-Learning
Table 12 presents the results of our tested models
when prepended with three in-context demonstra-
tions, taken from the Squad 2.0 dataset (Rajpurkar
et al., 2018).
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Given the following TEXT, please write a simple question whose answer appears verbatim in
the text.The question should include enough information so that it can be understood
without the text.The answer should be concise.Please write both the question ans answer
in the following format:

Q:
A:
TEXT: [PARAGRAPH]

Figure 5: Template prompt for generating the QA pairs in DOUBLEDIPPER.

Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Nano (vanilla) 41.6 10.8 72.2 66.8 55.4 21.3 59.6 5.2
Zero-shot + Evidence Retrieval 56.5 32.0 82.4 82.4 56.4 56.7 60.5 25.2
DOUBLEDIPPER 62.1 40.6 86.6 95.4 56.2 65.1 60.5 30.4

GPT-4o-mini (vanilla) 51.3 19.0 78.6 89.6 71.6 23.3 67.8 9.3
Zero-shot + Evidence Retrieval 53.8 19.4 89.6 93.0 63.2 26.2 67.9 17.6
DOUBLEDIPPER 60.8 29.8 94.8 96.4 61.6 53.7 64.7 24.5

Gemma 2 2B (v2) (vanilla) 38.6 8.9 71.8 68.6 51.2 13.3 49.6 6.5
Zero-shot + Evidence Retrieval 42.0 22.3 66.8 70.6 40.2 30.6 47.6 16.2
DOUBLEDIPPER 49.5 23.7 85.8 81.6 50.0 39.9 46.7 18.8

Mixtral 7x8B (v0.1) (vanilla) 42.6 13.7 73.0 66.2 51.0 18.2 67.7 8.4
Zero-shot + Evidence Retrieval 47.4 18.8 81.8 73.6 50.6 26.3 67.9 13.1
DOUBLEDIPPER 52.2 22.3 91.8 86.0 47.8 35.1 66.6 16.0

Table 8: Accuracy of the QA task for the vanilla baseline (prompting the model to only answer the question),
Zero-shot + Evidence Retrieval (prompting the model to explicitly identify the relevant passage(s) before generating
the answer) and DOUBLEDIPPER with 3 demonstrations generated by Gemma 2 2B.

Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Nano

k = 1 60.03 37.68 85.20 88.20 56.40 62.50 60.68 29.56
k = 3 62.12 40.55 86.60 95.40 56.20 65.12 60.52 30.44
k = 5 62.25 41.79 87.00 95.60 55.20 65.05 60.56 30.52
k = 10 62.33 43.16 86.00 96.20 55.20 65.37 60.44 29.96

Gemini Flash

k = 1 65.34 48.83 84.80 90.80 66.40 60.17 65.16 41.19
k = 3 66.11 48.03 85.80 95.00 68.60 60.58 65.04 39.71
k = 5 65.87 47.49 87.20 95.00 66.60 61.13 64.20 39.48
k = 10 66.08 46.13 86.20 95.20 69.00 62.03 63.80 40.18

Gemma 2B (v2)

k = 1 47.05 24.05 73.60 77.00 50.20 41.32 47.04 16.13
k = 3 49.48 23.66 85.80 81.60 50.00 39.85 46.68 18.77
k = 5 49.59 26.70 85.40 80.40 48.40 40.34 46.56 19.30
k = 10 49.92 26.43 85.80 81.40 49.00 40.91 47.68 18.26

Gemma 9B (v2)

k = 1 58.77 37.58 81.00 87.60 51.60 58.46 63.44 31.68
k = 3 61.20 41.70 84.00 95.00 51.40 61.21 61.80 33.31
k = 5 61.40 44.42 84.20 94.80 50.00 62.99 60.76 32.60
k = 10 61.34 43.78 84.40 95.80 50.40 63.01 59.96 32.05

Llama 3.1 8B

k = 1 57.74 38.20 85.40 84.80 51.80 57.50 60.96 25.49
k = 3 59.86 38.75 91.20 90.60 51.00 59.29 58.12 30.09
k = 5 60.58 41.56 89.80 91.40 51.00 61.31 57.68 31.28
k = 10 61.41 44.68 89.00 91.00 51.00 63.88 56.36 33.98

Mistral 7B

k = 1 48.91 28.86 67.60 77.40 50.00 40.62 62.00 15.91
k = 3 51.03 28.65 68.40 88.80 50.60 43.44 60.68 16.66
k = 5 51.12 29.86 69.20 89.00 49.40 43.83 60.36 16.23
k = 10 51.44 30.14 68.20 89.40 49.00 46.49 59.96 16.91

Mixtral 7x8B

k = 1 49.26 19.83 86.00 74.80 49.40 31.73 69.00 14.07
k = 3 52.22 22.31 91.80 86.00 47.80 35.10 66.56 15.97
k = 5 51.65 23.55 91.40 82.40 47.20 34.64 64.92 17.46
k = 10 52.18 23.49 91.80 84.40 47.00 36.23 64.00 18.32

Table 9: Performance of DOUBLEDIPPER on our evaluation set with various numbers of self-generated few shot
demonstrations (k).
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Figure 6: Performance (accuracy) of Gemma 2 2B, Mistral 7B, Gemini Nano and Gemini Pro with and without
DOUBLEDIPPER on our sample of the Lost-in-the-middle dataset (Liu et al., 2023b) according to the position of the
document that contains the answer.

Figure 7: Performance (accuracy) of several models with DOUBLEDIPPER according to the number of self-generated
demonstrations in the prompt.

Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemini Pro Gemma 2B 70.4 46.8 97.4 99.0 79.6 60.9 72.4 36.4
Self 71.6 49.6 98.2 99.6 78.8 62.5 72.5 40.1

Gemini Flash
Gemma 2B 66.1 48.0 85.8 95.0 68.6 60.6 65.0 39.7
Self 67.5 49.5 88.6 96.8 65.6 64.3 65.2 42.5
Gemini Pro 68.1 50.3 90.4 96.0 69.0 64.8 64.8 41.6

Gemini Nano
Gemma 2B 62.1 40.6 86.6 95.4 56.2 65.1 60.5 30.4
Self 61.7 39.8 85.8 95.2 56.2 64.3 60.7 30.0
Gemini Pro 62.8 40.4 87.2 99.0 54.4 66.8 60.4 31.7

Gemma 2 2B Self 49.5 23.7 85.8 81.6 50.0 39.9 46.7 18.8
Gemini Pro 51.0 25.2 83.8 93.4 48.0 41.7 46.2 18.4

Gemma 2 9B
Gemma 2B 61.2 41.7 84.0 95.0 51.4 61.2 61.8 33.3
Self 62.0 44.8 82.4 97.0 50.6 62.9 61.5 34.9
Gemini Pro 63.5 46.2 86.4 99.2 52.2 64.4 61.4 34.8

Llama 3.1 8B
Gemma 2B 59.9 38.7 91.2 90.6 51.0 59.3 58.1 30.1
Self 60.1 41.3 88.6 89.8 50.8 61.5 57.8 31.0
Gemini Pro 61.5 41.0 89.8 95.6 51.6 63.5 57.5 31.7

Mistral 7B (v0.3)
Gemma 2B 51.0 28.6 68.4 88.8 50.6 43.4 60.7 16.7
Self 49.8 25.2 68.8 93.8 49.6 36.5 60.6 14.3
Gemini Pro 52.6 31.4 67.2 96.4 48.2 45.7 62.1 17.0

Mixtral 7x8B (v0.1)
Gemma 2B 52.2 22.3 91.8 86.0 47.8 35.1 66.6 16.0
Self 49.8 16.0 91.8 86.0 48.8 25.5 67.8 12.8
Gemini Pro 54.4 20.8 94.8 96.2 49.0 36.3 66.6 16.9

Table 10: Performance of DOUBLEDIPPER according to the model for generating the demonstrations (Gemma 2B,
Self or Gemini Pro).
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Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemma 2B DOUBLEDIPPER (QA only) 46.4 16.0 84.6 79.2 49.6 31.1 49.5 14.7
DOUBLEDIPPER 49.5 23.7 85.8 81.6 50.0 39.9 46.7 18.8

Gemma 9B DOUBLEDIPPER (QA only) 55.1 22.5 91.0 96.6 52.0 42.9 61.0 20.0
DOUBLEDIPPER 61.2 41.7 84.0 95.0 51.4 61.2 61.8 33.3

Mistral 7B (v0.3) DOUBLEDIPPER (QA only) 49.1 21.8 73.4 89.8 48.6 38.6 60.3 11.5
DOUBLEDIPPER 51.0 28.6 68.4 88.8 50.6 43.4 60.7 16.7

Mixtral 8x7B (v0.1) DOUBLEDIPPER (QA only) 49.5 17.0 91.4 86.8 50.8 22.9 65.8 11.9
DOUBLEDIPPER 52.2 22.3 91.8 86.0 47.8 35.1 66.6 16.0

Llama 3.1 8B DOUBLEDIPPER (QA only) 32.7 25.0 9.2 41.4 46.6 33.5 56.7 16.6
DOUBLEDIPPER 59.9 38.7 91.2 90.6 51.0 59.3 58.1 30.1

Table 11: Performance of DOUBLEDIPPER and DOUBLEDIPPER without instructing the models to retrieve the
evidence (QA only) on the QA datasets.

Avg. 2Wiki MonoRel PIR SRT HotPotQA Lost MuSique

Gemma 2 2B 40.4 11.5 69.4 59.8 50.6 33.1 48.8 9.7
Gemma 2 9B 51.0 21.7 76.8 78.8 53.6 49.1 60.0 17.3
Gemma 2 27B 54.9 21.3 85.0 76.6 58.2 53.3 61.5 28.3
Llama 3.1 8B 40.7 16.4 59.6 53.0 45.6 36.8 62.5 11.0
Llama 3.1 70B 65.4 38.1 93.0 91.4 75.4 59.7 67.6 32.4
Mistral v0.3 42.0 25.5 56.4 52.8 50.2 42.7 58.2 8.3
Mixtral v0.1 45.1 19.6 73.6 65.4 50.4 30.7 66.6 9.6
GPT 4o mini 56.1 29.7 77.4 86.8 65.2 49.4 65.6 18.5

Table 12: Accuracy of the QA task for the ICL experiment with 3 fixed demonstrations prepended to each instance.
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